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1. Introduction. N. Nobusawa [1] introduced the notion of a I'-ring,
more general than a ring, and proved analogues of the Wedderburn-
Artin theorems for simple I'-rings and for semi-simple I'-rings; Barnes
[2] obtained analogues of the classical Noether-Lasker theorems concerning
primary representations of ideals for I'-rings; Luh [3], [4] gave a genera-
lization of the Jacobson structure theorems for primitive I'-rings having
minimum one-sided ideals, and obtained several other structure theorems
for simple I'-rings; Coppage-Luh [5] introduced the notion of Jacobson
radical, Levitzki nil radical, nil radical and strongly nilpotent radical
for I'-rings and Barnes’ [2] prime radical was studied further. Also,
inclusion relations for these radicals were obtained, and it was shown
that the radicals all coincide in the case of a I'-ring which satisfies the
descending chain condition on one-sided ideals. The author [6] gave a
characterization of the prime radical of a I'-ring M by introducing the
notion of semi-primeness, and obtained close radical properties between
a I'-ring M and its right operator ring R.

In this paper, first we introduce the notion of a I'-ring M-module and
define Jacobson radical J(M) along with the ideas of irreducible modules,
while in [5] and [6] J(M) was defined by the ideas of rqr elements. Prop-
erties of J(M) and its relation with J(R) are considered here, and it is also
shown that our definition coincides with the one in [5] and [6]. After
the semi-simplicity is defined by J(M) = (0), the relation between semi-
simple M and semi-simple R is considered. Defining the direct sum of
I'-rings S,, 1 €Y, and the primitivity and getting the analogous results of
corresponding part in ring theory, we have that a I'-ring is semi-simple
if and only if it is isomorphic to a subdirect sum of primitive I'-rings.

For all notions relevant to ring theory we refer to [7].

2. Preliminaries. Let M and I' be additive abelian groups. If for
all @,b,ce M and 7, 6€ " the following conditions are satisfied, (1) avbe
M, (2) (¢ + b)ve = ave + bye, a(Y + 0)b = avb + add, a¥(b + ¢) = a¥b + ave
(3) (avb)oc = av(boc), then M is called a I'-ring. If A and B are subsets
of a I'-ring M and @ C I', we denote AOB, the subset of M consisting
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of all finite sums of the form 3;a,7;b;,, where a,€A,b,e B, and 7,€06.
For singleton subsets we abbreviate this notation, for example, {a}OB =
aOB. A right (left) ideal of a I'-ring M is an additive subgroup I of
M such that I'M < I(MI'I < I). If I is both a right and a left ideal,
then we say that I is an ideal, or a two-sided ideal of M. For each a of
a I'-ring M, the smallest right ideal containing « is called the principal
right ideal generated by @ and is denoted by |a). Similarly we define
{a| and {a), the principal left and two-sided (respectively) ideals generated
by a@. A subring of a I'-ring M is an additive subgroup S of M such
that SI'SC 8. :

Let M be a I'-ring and F be the free abelian group generated by
I' x M. Then

A= {z, nty v) e Flae M — 3, n,ava, = 0}

is a subgroup of F. Let R = F/A, the factor group, and denote the
coset (7, 2) + A by [7, #]. It can be verified easily that [, 2] + [a, y] =
[a, 2 + y] and [e, 2] + [B, 2] = [@ + B, «] for all @, Bel and z, yec M.
We define a multiplication in B by
Ei] [ai; xi] ; [Bj, yj] = g‘: [au xiﬁjyj] .
Then R forms a ring. If we define a composition on M X R into M by
adia;, 2] = X ez, for aelM, > [,z ]eR,
i T

then M is a right R-module, and we call R the right operator ring of
I'-ring M. In ordinary ring theory, if M» = (0) forces » =0, then M
is said to be a faithful R-module. For subsets NS M, @ = I, we denote
by [®, N] the set of all finite sums >);[7,, ;] in R, where 7, €9, x, € N.
Thus, in particular, R=[I", M]. For PC R we define P* = {a € M|[[, a] =
[T, {a}] € P}. It follows that if P is a right (left) ideal of R, then P*
is a right (left) ideal of M. Also for any collection & of sets in R,
Nree P* = (Npre P)*. For Q S M we define

QY = {; [au wi] € RIM(; [au xz]) - Q} .

Then it follows that if @ is a right (left) ideal of M, then Q@* is a right
(left) ideal of R. Also for any collection = of sets in M, MNe..Q* =
(Nee= Q)*'.

If M, is a I';-ring for ¢ = 1, 2 then an ordered pair (4, ¢) of mappings
is called a homomorphism of M, onto M, if it satisfies the following
properties:
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(1) 6 is a group homomorphism from M, onto M,.
(2) ¢ is a group isomorphism from I', onto I,.
(3) For every x,ye M, every vel,,

(@vy)6 = (@0)(V¢)(y0) .

The kernel of the homomorphism (4, ¢) is defined to be K = {x € M, |z6 = 0}.
Clearly K is an ideal of M,. If 6 is a group isomorphism from M, onto
M,, i.e., if K = (0), then (4, ¢) is called an isomorphism from the I',-ring
M, onto the I',ring M,.

Let (6, ¢) be a homomorphism from the I',-ring M, onto the [',-ring
M, and B a right (resp. left, two-sided) ideal of M,. Then B#™' =
{x e M,|z0 € B} is also a right (resp. left, two-sided) ideal of M,. Similarly,
if (6, ¢) is a homomorphism of the I',-ring M, onto the I',ring M, and
A is any right (resp. left, two-sided) ideal of M,, then Af = {af|ac A}
is a right (resp. left, two-sided) ideal of M,.

Let A be an ideal of a I'-ring M. Then M/A = {x + A|xc M}, the
set of cosets of A, is again a ['-ring with respect to the operations

@+A+wW+A=@+y +A4
@+ Ay + A =27y + A,

as may be verified by a straightforward computation. We call M/A the
residue class I'-ring of M with respect to A. The mapping (z,¢) from
a I'-ring M onto the I'-ring M/A, where 7 is defined by zz = # + 4 and
¢ is the identity mapping of I', is a homomorphism called the natural
homomorphism from M onto M/A.

The proof of the following fundamental theorem of homomorphism
for I'-rings is minor modifications of the proof of the corresponding
theorem in ordinary ring theory, and will be omitted.

THEOREM 2.1. If (6, ¢) is a homomorphism from the I'-ring M,
onto the I'y-ring M, with kernel K, then M,/K and M, are isomorphic.

3. The Jacobson radical. The additive group N is said to be a
I'-ring M-module if there is a I'-mapping (I'-composition) from N x I" x M
to N (sending (%, 7, m) to nym) such that:

(1) nY(e+ b) =nva + nrd

(2) (n, + ny)va = nYa + n,Ya

(3) (nva)odb = nY(add),
for all n, n, m, €N, all ¢, be M and all 7v,6€I". For the sake of brevity
we shall drop the “I'-ring” in a I'-ring M-module and refer it merely as
an M-module.
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ExAMPLES. Let M be any I'-ring and N be a right ideal of M. We
impose on N a natural M-module structure by defining the action of M
on N to coincide with the product of elements of M. Let M be any I'-
ring and M/P be a residue class ring of M, where P is an ideal of M.
If we define (¥ + P)ym = xym + P for all « + Pe M/P, all me M and
all veI', then the additive group M/P forms an M-module.

We say that N is a I'-faithful M-module if NI'z = (0) forces z = 0.
For an M-module N, we define A,(N) = {x€ M|NI'x = (0)}.

LEmMMA 3.1. If N is an M-module then Ay(N) is a two-sided ideal
of M. Moreover, N is a I-faithful M/A,(N)-module.

Proor. That A,(N) is a right ideal of M is immediate from the
axioms for an M-module. To see that it is also a left ideal we proceed
as follows: NI'(MI'Ay(N)) = (N M)T'A,(N) < NI'4A,(N) = (0), hence
MIA,(N)ZA,(N). Thus, A (N) is a two-sided ideal of M. We now make
of N an M/A,(N)-module by defining, for ne N, veI and m + A,(N)e
MJ/A,(N), the action nY(m + A,(N)) = nvm. If m, + Ay,(N) = m,+ A (N)
then m, — m, e A,(N) hence aY(m, — m;) = 0 for all ae N, all veI', that
is, aym, = aYym,. Thus, the action of M/A,(N) on N has been shown to
be well defined. The verification that this defines the structure of an
M/A,(N)-module on N may be completed by a straightforward eomputa-
tion. Finally, to see that N is a I'-faithful M/A,(N)-module we note
that if nY(m + A4(N)) = (0) for all n e N and all ¥ e " then by definition
nYym = 0 hence me A,(N). This says that only the zero element of
M/A,(N) annihilates all of N.

A submodule of an M-module N is an additive subgroup S of N such
that S’M < S.

N is said to be an irreducible M-module if NI'M = (0) and if the
only submodules of N are (0) and N.

LEmMMA 3.2. N s an irreducible M-module if and only +f N is an
wrreducible R-module.

PrROOF. Let N be an irreducible M-module. Then NI'M = N. We
make of N an R-module by defining, for n € N, 3 [7,, #;] € R, the composition
ny, [, «.] =n>, (7, ), which is defined by 3\ nv, z,. If (v, z)+ A =
>0 y;) + A then > (7, @) — >, (0, y;)€A. Since NA = (NI'M)A =
NI'(0) = (0) we have n(3} (v;, %) — 3. (9, ¥;)) =0, that is, n 3 (7, 2) =
n >, (0;, ¥;). Thus the composition from N x R to N is well-defined.
The verification that this defines the structure of an R-module on N may
be completed by a straightforward computation. Let N’ be an additive
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subgroup of N such that N'R < N’. Since N'R = N'[I", M] = N'T' M,
we get N'I'M < N'. Therefore, N’ is a submodule of an M-module N.
Since N is irreducible, N’ must be N or (0). Thus, N is an irreducible
R-module. On the other hand, let N be an irreducible R-module. If
we define the action nvx = n[7, ], a similar argument as in the proof
above will show that N is an irreducible M-module. Thus, the proof is
completed.

Let R be the right operator ring of a I'-ring M. A right ideal p
of R is said to be regular if there is an e € R such that z — axzep for
all zeR.

LeMMA 3.3. Let R be the right operator ring of a I-ring M. If
N is an irreducible M-module then N 1is isomorphic as an R-module
to R/o for some maximal regular right ideal o of R. Conwversely, for
every maximal regular right ideal p of R, R/p is an irreducible R-module.

PROOF. Since N is irreducible, by the above definition we must have
that NI'M = (0). Since S = {neN|nl'M = (0)} is a submodule of N and
is not N, it must be (0). Equivalently, if » s 0 is in N then nI"M = (0).
However, nI'M is a submodule of N hence n/'M = N. By Lemma 3.2
N is an R-module and so we can define +: R — N by +(r) = nr for every
reR. We see at once that + is a homomorphism of R into N as R-
modules; since nR = nl'M = N we have that +r is surjective. Finally,
Ker v = {re R|nr = 0} is a right ideal o: by standard homomorphism
theorem we have that N is isomorphic to R/0 as an R-module. Any
right ideal of R which properly contains 0 maps, under +, into a submodule
of N. Hence p is a maximal right ideal in R. Since nR = N there is
an element @ € R such that na = n. Therefore for any 2z € R naz = nx,
which is to say n(x — ax) = 0. This puts # — ax in po. As the converse
will be shown easily, we omit the proof.

The Jacobson radical of a /I'-ring M, written as J(M), is the set of
all elements of M which annihilate all the irreducible M-modules. If M
has no irreducible modules we put J(M) = M. We note that J(M) =
N A4(N), where this intersection runs over all irreducible M-modules N.
Since the A,(N) are two-sided ideals of M by Lemma 3.1, we see that
J(M) is a two-sided ideal of M.

In ordinary ring theory, for the right operator ring R of a [-ring
M we have also that J(R) = [ Az(N) where this intersection runs over
all irreducible R-modules N, and where A (N)={r € R|Nr=(0)}. We have
that A,(N)* = Ax(N), for Ay(N)*={re R|IMrZAy(N)}={re R|N['Mr =
(0)} = {reR|Nr = (0)} = Ax(N). Also Ax(N)* = Ay(N), for A N)* =
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(we M|[I, 2] S Ax(N)} = {xe M|NI'z = (0)} = Ay(N). By these facts and
Lemma 3.2 we have J(M)* = (N A4x(N)* = NA,(N)* = N Az(N) =
J(R). Similarly, J(R)* = (N A:(N)* = N 4x(N)* = N Ax(N) = J(M).
Hence we have

THEOREM 3.1. If M is a I'-ring and R is the right operator ring
of M then JM) = J(R)* and J(R) = J(M)*'.

A I'-ring M is said to be semi-simple if J(M) = (0).

THEOREM 3.2. If a I'-ring M 1is semi-simple then the right operator
ring R of M is also semi-simple.

Proor. Let (0), be the zero ideal in M, and (0); be the zero ideal
in R. JWM)* = (0)} = {reR|Mr = (0),} = (0)z, for M is a faithful R-
module. Hence by Theorem 3.1 we have J(R) = (0)z.

THEOREM 3.38. Let a I'-ring M be a I'-faithful M-module, that is,
MI'x = (0) vmplies x = 0. If R is semi-simple then M 1is semi-simple.

Proor. Since M is I'-faithful, J(R)* = (0)} = {a € M|[[, a] = (0)z} =
{ae M|MI'a = (0),} = (0),. Thus, by Theorem 3.1, we get J(M) = (0),.

For the right operator ring R of a I'-ring M, we define (o: R) =
{vr € R|Rx < p}, where p is a right ideal of R.

LEMMA 3.4. Ax(N) = (0: R) is the largest two-sided ideal of R which
lies in 0, where o is a maximal regular right ideal of R and N denotes
R/p.

ProoF. If x€ Ax(N) then Nz = (0), which is to say, (r + p)x = p
for all re R. This says that Rx & o, hence Ax(N) < (0: R). Similarly
(0: R) < Ax(N) whence A,(N) = (p: R). Since p is regular there is an
ac R with x — ax e p for all € R; in particular, if € (0: R) then since
ax € Rx Z p we get x€p. Thus the proof is completed.

By Lemma 3.3 and Lemma 3.4 we get A,(N) = (o: R)*, and so by
the definition of J(M), we have

THEOREM 3.4. J(M) = N (o: R)*, where o runs over all the maximal
regular right ideals of R, and where (0: R) is the largest two-sided ideal
of R lying in 0.

An element a of a I'-ring M is said to be right-quasi-regular (abbrevi-
ated rqr) if for any v €I’ the element [7, @] of the right operator ring R
of M is right-quasi-regular in the usual sense. That is to say, a is rqr,
if for any veI, there exists >, [, 2;] in R such that
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[v, a] + g 7 @] — IV, a] é [Vox] =0,

i.e.,
xYa + ﬁ‘, Y, — i (xva)vx, = 0 for all zeM.
i=1 i=1

A subset S of M is rqr if every element in S is rqr.

THEOREM 3.5. J(M) is a right-quasi-regular ideal and contains all
right-quasi-regular right ideals of M.

ProOF. Let R be the right operator ring of M. The ordinary ring
theory shows that J(R) is a rqr ideal of R and contains all the rqr right
ideals of R (c.f., [7] p. 12). As has already been shown in this paper,
we have

J(M) = J(R)* = {ac M|[[, a] = J(R)} .

If ¢ eJ(M), then for any vel [7, a]eJ(R), so [V, a] is rqr, that is, @ is
rqr. Let N be a rqr right ideal of M. There remains to show [7, N] <
J(R), where 7 is any element of I'. If meN, then n is rqr, so that
[, n] is rqr. Since N is a right ideal of M, we have [v, N[, M] =
[v, NIT'M] < [v, N] and hence [7, N] is a right ideal of R. Therefore,
[v, N] is a rqr right ideal of R. Thus [v, N] < J(R) and the proof of
the theorem is completed.

As an immediate consequence of Theorem 3.5 the Jacobson radical
J(M) of M can be characterized as follows:

JM) = {ac M|{a) is rqr}.
This is the definition of J(M) given in [5] and [6].

4, Semi-simple I'-rings. Let S,, 7€, be a family of I"-rings indexed
by the set 2. By the direct sum (complete direct sum) of the I'-rings
S, 1€, we mean the set S = Tl;ca S;={a: A —U.cx S;|a(?) € S,, all 7 e},
We give a I'-ring structure to S by defining
4.1) (a + b)(%) = a(t) + b(s)

(a7b)(7) = a(i)Yb(7)
for all @, beS,vel and t€¥.

If S is the direct sum of I'-rings S,, 7€, with each element 7 of
9 we may associate a mapping (0, ¢) of S onto S; as follows:

(4.2) af, =a(i), aclS
v =7, vel.
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Clearly, S9, = S,. Moreover, it follows immediately from (4.1) that (6, ¢)
is a homomorphism of S onto S,. If, now, T is a subring of S, 79, is a
subring of S, for each 7€l

Let T be a subring of the direct sum of I'-rings S, 7€, and for
each 7 ¢ let (0, ¢) be the homomorphism of S onto S; defined by (4.2).
If T9,= S, for every 1€, T is said to be a subdirect sum of the I'-
rings S,, 1€ ¥U.

LEMMA 4.1. A I'-ring M s isomorphic to a subdirect sum of I'-rings
S, 1€, if and only if for each 1€ there exists & homomorphism (g;, ¢)
of M onto S, such that if a is an arbitrary nonzero element of M, then
ap;, # 0 for at least one © €.

The proof may be established by very easy modifications of the proof
of Theorem 3.6 in [8], so this will be omitted.

In view of Theorem 2.1, if (g,, ¢) is a homomorphism of M onto S,,
then S, = M/K,, where K, is the kernel of (¢,,¢). Therefore, we may
formulate Lemma 4.1 as follows:

LEMMA 4.2 A I'-ring M s isomorphic to a subdirect sum of I'-rings
S;,, 1€, if and only if for each 1e€U there exists in M a two-sided
ideal K, such that M/K, = S,, moreover (..« K; = (0).

A I-ring M is said to be primitive if it has a I'-faithful irreducible
module.

THEOREM 4.1. A I'-ring M is primitive f and only if the right
operator ring R is primitive and MI'xz = (0) forces x = 0.

Proor. Let M be primitive and N be a ['-faithful irreducible M-
module. By Lemma 3.2 N is an irreducible B-module. If N» = (0), then
gince NI'M = N we have NI'Mr = (0), and so Mr = (0), thus r = 0.
Therefore, N is faithful. If MI'x = (0), we get that (NI'M)I'z = (0),
and NI'z = (0), thus x = 0.

Conversely, let N be a faithful irreducible R-module. By Lemma
3.2 N is an irreducible M-module. To show that N is I'-faithful we
assume that NI'x = (0). Then we have that N[I", ] = (0), and [[, 2] =
(0). Hence MI'x = (0), so = 0. Thus, the proof is completed.

THEOREM 4.2. A [-ring M is primitive if and only if there exists
a maximal regular right ideal o in R such that (o: R)* = (0), where R
denotes the right operator ring of M. A primitive I'-ring is semi-simple.

PRrOOF. Let M be primitive, then there exists a I'-faithful irreducible
M-module N. By Lemma 3.3 there exists a maximal regular right ideal
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© in R such that N is isomorphic to R/0 as an R-module. Lemma 3.4
shows that (o: R)* = A,(N). Since N is I'-faithful we get A,(N) = (0).
Thus, (0: R)* = (0). Let o be a maximal regular right ideal of R. Put
N = R/p. Since A,(N) = (p: R)* = (0) N is I'-faithful, thus M is primitive.

Finally, J(M) = N (0: R)*, where p runs over all maximal regular
right ideals of R, hence if (o: R)* = (0) for one such p we have J(M) =
(0), and the proof is completed.

THEOREM 4.3. A I'-ring M is semi-simple if and only if it s
1wsomorphic to a subdirect sum of primitive I'-rings.

PrOOF. Let M be a semi-simple I'-ring. As is shown in Theorem
3.4, J(M) =N (o: R)*, where p runs over the maximal regular right
ideals of R. Since M is semi-simple ) (0: R)* = (0). By Lemma 4.2 M
is isomorphic to a subdirect sum of the M/(o: R)*. By Lemma 3.1 and
Lemma 3.4 M/(p: R)* is primitive. Therefore M is isomorphic to a sub-
direct sum of primitive I'-rings. On the other hand, suppose that M is
isomorphic to a subdirect sum of the rings M, = M/K,. Therefore
N K, = (0). If the rings M, are all primitive, then they are semi-simple.
Since J(M) maps into a quasi-regular right ideal of M, it must map into
(0). Thus J(M) < K, for each ¢, hence J(M) < M K, = (0) proving that
M is semi-simple. Thus, the proof is completed.
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