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ON THE SEMI-SIMPLE GAMMA RINGS
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1. Introduction. N. Nobusawa [1] introduced the notion of a Turing,
more general than a ring, and proved analogues of the Wedderburn-
Artin theorems for simple Γ-rings and for semi-simple Γ-rings; Barnes
[2] obtained analogues of the classical Noether-Lasker theorems concerning
primary representations of ideals for /"-rings; Luh [3], [4] gave a genera-
lization of the Jacobson structure theorems for primitive Γ-rings having
minimum one-sided ideals, and obtained several other structure theorems
for simple Γ-rings; Goppage-Luh [5] introduced the notion of Jacobson
radical, Levitzki nil radical, nil radical and strongly nilpotent radical
for Γ-rings and Barnes' [2] prime radical was studied further. Also,
inclusion relations for these radicals were obtained, and it was shown
that the radicals all coincide in the case of a Γ-ring which satisfies the
descending chain condition on one-sided ideals. The author [6] gave a
characterization of the prime radical of a Γ-ring M by introducing the
notion of semi-primeness, and obtained close radical properties between
a Γ-ring M and its right operator ring R.

In this paper, first we introduce the notion of a Γ-ring jkf-module and
define Jacobson radical J(M) along with the ideas of irreducible modules,
while in [5] and [6] J(M) was defined by the ideas of rqr elements. Prop-
erties of J(M) and its relation with J(R) are considered here, and it is also
shown that our definition coincides with the one in [5] and [6]. After
the semi-simplicity is defined by J(M) = (0), the relation between semi-
simple M and semi-simple R is considered. Defining the direct sum of
Γ-rings Sif i e Sί, and the primitivity and getting the analogous results of
corresponding part in ring theory, we have that a Γ-ring is semi-simple
if and only if it is isomorphic to a subdirect sum of primitive Γ-rings.

For all notions relevant to ring theory we refer to [7].

2. Preliminaries. Let M and Γ be additive abelian groups. If for
all a,b,ceM and J,δeΓ the following conditions are satisfied, (1) albe
M, (2) (a + b)Ίc = ale + bΎc, α(7 + δ)b = a7b + aδb, al(b + c) = aΊb + ale
(3) (a7b)δc = al(bδc), then M is called a Γ-ring. If A and B are subsets
of a Γ-ring M and Θ Q Γ, we denote AΘB, the subset of M consisting
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of all finite sums of the form Σ i α J A > where c^eA, f>£e2?, and 7*6 0.
For singleton subsets we abbreviate this notation, for example, {a}ΘB =
aΘB. A right (left) ideal of a Γ-ring M is an additive subgroup / of
M such that IΓM Q I(MΓI £ I). If I is both a right and a left ideal,
then we say that I is an ideal, or a two-sided ideal of M. For each a of
a Γ-ring M, the smallest right ideal containing a is called the principal
right ideal generated by a and is denoted by |α>. Similarly we define
(a\ and (a), the principal left and two-sided (respectively) ideals generated
by a. A subring of a Γ-ring M is an additive subgroup S of M such
that SΓS £ S.

Let M be a Γ-ring and F be the free abelian group generated by
Γ x M. Then

A = α?, = θ |

is a subgroup of F Let 22 = F/A, the factor group, and denote the
coset (7, x) + A by [7, a?]. It can be verified easily that [a, x] + [α, y] =
[α, a + 2/] and [α, α;] + [/S, #] = [α + /3, α;] for all a, βeΓ and x,yeM.
We define a multiplication in iϋ by

Σ [«o »*] Σ [&, Vi] = Σ [«*, £

Then i2 forms a ring. If we define a composition on M x R into ikf by

a Σ [«ί, »<] = Σ aa-iXi for α e M, Σ [«<» »<] e R ,

then M is a right i2-module, and we call R the right operator ring of
Γ-ring M. In ordinary ring theory, if Mr = (0) forces r = 0, then Λf
is said to be a faithful j?-module. For subsets NξZM, ΦQΓ, we denote
by [Φ, JV] the set of all finite sums Σ Ϊ [̂ t> ^] i n ?̂> where τ t eΦ,^eiV.
Thus, in particular, 22 = [Γ, Λf]. For P Q R we define P* = {α e ΛΓ| [Γ, α] =
[Γ, {a}] Q P}. It follows that if P is a right (left) ideal of R, then P*
is a right (left) ideal of M. Also for any collection ^ of sets in 22,
n P 6 ^ P* = (ΓU* P)*. For Q Q M we define

Q*' = (Σ [«*, a j 6 22|ikf(Σ [«*, ̂ ] ) £ Q) .
i i

Then it follows that if Q is a right (left) ideal of M, then Q*' is a right
(left) ideal of R. Also for any collection Ξί of sets in ikf, Π^e^Q*' =
(Π«β^Q)*'.

If ilif€ is a ΓΓring for i = 1, 2 then an ordered pair (0, 0) of mappings
is called a homomorphism of M1 onto ilί2 if it satisfies the following
properties:
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(1) θ is a group homomorphism from M± onto M2.
(2) φ is a group isomorphism from Γ1 onto Γ2.
(3) For every x, y e ikZΊ, every 7 e Γl

lf

(xΎy)θ = (xθ)(Ύφ)(yθ) .

The kernel of the homomorphism (#, p) is defined to be K = {x e M1 \ xθ = 0}.
Clearly if is an ideal of Mr. If 0 is a group isomorphism from M1 onto
M2, i.e., if K = (0), then (0, 0) is called an isomorphism from the Turing
Jlίi onto the Γ2-ring M2.

Let (θ, φ) be a homomorphism from the Turing M1 onto the Γ2-ring
M2 and β a right (resp. left, two-sided) ideal of M2. Then BiTL =
{xeM^xθ eB) is also a right (resp. left, two-sided) ideal of ΛΓlβ Similarly,
if (0, 0) is a homomorphism of the Turing Mγ onto the Γ2-ring M2 and
A is any right (resp. left, two-sided) ideal of M19 then Aθ = {aθ\ae A}
is a right (resp. left, two-sided) ideal of M2.

Let A be an ideal of a Γ-ring M. Then Λf/A = {x + A|a;eikί}, the
set of cosets of A, is again a Γ-ring with respect to the operations

(x + A) + (y + A) = (a? + j/) + A

(x + A)T(y + A) = xΊy + A ,

as may be verified by a straightforward computation. We call M/A the
residue class /Vring of M with respect to A. The mapping (τ, ή from
a Γ-ring ikf onto the Γ-ring M/A, where τ is defined by xτ = x + A and
* is the identity mapping of Γ, is a homomorphism called the natural
homomorphism from M onto M/A.

The proof of the following fundamental theorem of homomorphism
for Γ-rings is minor modifications of the proof of the corresponding
theorem in ordinary ring theory, and will be omitted.

THEOREM 2.1. If (θ, φ) is a homomorphism from the Faring Mι

onto the Faring M2 with kernel K, then MJK and M2 are isomorphic.

3. The Jacobson radical. The additive group N is said to be a
Γ-ring M-module if there is a Γ-mapping (Γ-composition) from Nx Γ x M
to N (sending (n, 7, m) to nΎm) such that:

(1) nΎ(a + 6) = nΎa + nΎb
(2) (n,! + n2)Ύa = nja + n2Ύa
( 3) (nΎa)db = nΎ(adb),

for all n, nlf n2 e N, all a,beM and all 7, δ e Γ. For the sake of brevity
we shall drop the "Γ-ring" in a Γ-ring M-module and refer it merely as
an Λf-module.
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EXAMPLES. Let M be any Γ-ring and N be a right ideal of M. We
impose on N a natural ikf-module structure by defining the action of M
on N to coincide with the product of elements of M. Let M be any Tu-
ring and M/P be a residue class ring of ikf, where P is an ideal of M.
If we define (x + P)lm = xlm + P for all x + PeM/P, all meM and
all ΎeΓ, then the additive group M/P forms an ikf-module.

We say that N is a Γ-faithful ikf-module if NΓx = (0) forces x = 0.
For an ikf-module ΛΓ, we define AM{N) = {a;eikf|iVΓa; = (0)}.

LEMMA 3.1. 1/ N is an M-module then AM(N) is a two-sided ideal
of M. Moreover, N is a Γ-faithful M/AM(N)-module.

PROOF. That AM(N) is a right ideal of M is immediate from the
axioms for an M-module. To see that it is also a left ideal we proceed
as follows: NΓ(MΓAM(N)) = (NΓM)ΓAM(N) Q NΓAM(N) = (0), hence
MΓAM{N)QAM(N). Thus, AM(N) is a two-sided ideal of M. We now make
of N an M/AM(N)-module by defining, for neN,yeΓ and m + AM(N) e
M/AM(N), the action w7(m + A^iV)) = mm. If mx + AM(N) = m2 + ^(iV)
then m1 — m2e AM(N) hence #7(7^ - m2) = 0 for all α e JV, all 7 e Γ, that
is, α7mx = alm2. Thus, the action of M/AM(N) on JV has been shown to
be well defined. The verification that this defines the structure of an
M/AM(Nymodu\e on N may be completed by a straightforward computa-
tion. Finally, to see that N is a Γ-faithful M/AM(N)-moάu\e we note
that if nΊ{m + AM(N)) = (0) for all n e N and all 7 6 Γ then by definition
nΊm = 0 hence m e AM(N). This says that only the zero element of
M/AM(N) annihilates all of N.

A submodule of an ikf-module N is an additive subgroup S of N such
that SΓM £ S.

N is said to be an irreducible ikf-module if NΓM Φ (0) and if the
only submodules of N are (0) and N.

LEMMA 3.2. N is an irreducible M-module if and only if N is an
irreducible R-module.

PROOF. Let N be an irreducible ikf-module. Then NΓM = N. We
make of iVan iϋ-module by defining, for neN,Σ [%> χλ e R9 the composition
^ Σ [%, »<] = n Σ (%, xt), which is defined by Σ nyi9 xt. If Σ (%, a?i) + A =
Σ («i, Vs) + A then Σ (7,, xt) - Σ (δ, , Vj) 6 A. Since iVA = (NΓM) A =
2VΓ(0) = (0) we have n(Σ (%, »/) - Σ («i, »i)) = 0, that is, n Σ (%, **) =
^ Σ (£j» Vi) Thus the composition from N x R to iV is well-defined.
The verification that this defines the structure of an i?-module on N may
be completed by a straightforward computation. Let N' be an additive
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subgroup of N such that N'R C N'. Since N'R = N'[Γ, M] = JNΓTΛf,
we get N'ΓM £ iNΓ. Therefore, N' is a submodule of an M-module N.
Since iV is irreducible, N' must be N or (0). Thus, JV is an irreducible
ΐ?-module. On the other hand, let N be an irreducible iϋ-module. If
we define the action nix = n[Ί, x], a, similar argument as in the proof
above will show that N is an irreducible M-module. Thus, the proof is
completed.

Let R be the right operator ring of a Γ-ring M. A right ideal p
of R is said to be regular if there is an α e R such that x — αxe p for
all xeR.

LEMMA 3.3. Let R be the right operator ring of a Γ-ring M. If
N is an irreducible M-module then N is isomorphic as an R-module
to Rip for some maximal regular right ideal p of R. Conversely, for
every maximal regular right ideal p of R, Rip is an irreducible R-module.

PROOF. Since N is irreducible, by the above definition we must have
that NΓMφ (0). Since S = {neN\nΓM = (0)} is a submodule of iVand
is not N, it must be (0). Equivalently, if n Φ 0 is in iVthen nΓMΦ (0).
However, nΓM is a submodule of N hence nΓM = N. By Lemma 3.2
N is an iϋ-module and so we can define <f: R —• N by ψ(r) = nr for every
r eR. We see at once that ψ is a homomorphism of R into N as R-
modules; since nR = nΓM = N we have that ψ is surjective. Finally,
Kerψ = {reR\nr = 0} is a right ideal p: by standard homomorphism
theorem we have that N is isomorphic to R/p as an i2-module. Any
right ideal of R which properly contains p maps, under ψ, into a submodule
of N. Hence p is a maximal right ideal in R. Since nR — N there is
an element a e R such that na = n. Therefore for any x 6 R nax = nx,
which is to say n(x — ax) = 0. This puts x — ax in p. As the converse
will be shown easily, we omit the proof.

The Jacobson radical of a Γ-ring M, written as J(M)y is the set of
all elements of M which annihilate all the irreducible M-modules. If M
has no irreducible modules we put J(M) = M. We note that J(M) =
Π AM(N), where this intersection runs over all irreducible Λf-modules N.
Since the AM(N) are two-sided ideals of M by Lemma 3.1, we see that
J(M) is a two-sided ideal of M.

In ordinary ring theory, for the right operator ring R of a Γ-ring
M we have also that J(R) = Π AR(N) where this intersection runs over
all irreducible i2-modules Nf and where AR{N)-{r eR\Nr = (0)}. We have
that AM(N)*' = AR(N), for AM(N)*' = {r eR\MrQAM(N)} = {r eR\NΓMr =
(0)} = {reR\Nr = (0)} = AR(N). Also AR(N)* = AM(N), for AR(N)* =
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{x e M\ [Γ, x] S AR(N)} = {xeM\ NΓx = (0)} = AM(N). By these facts and
Lemma 3.2 we have J(M)*' = (Π AM(N))*' = Γl AM(N)*' = Π -MiV) =
J(Λ). Similarly, /(£)* = (Π AR(N))* = Π AΛ(tf)* - Γl A*(tf) - J(M).
Hence we have

THEOREM 3.1. If M is a Γ-ring and R is the right operator ring
of M then J(M) = J(R)* and J(R) = J(M)*'.

A Γ-ring M is said to be semi-simple if J(M) = (0).

THEOREM 3.2. If a Γ-ring M is semi-simple then the right operator
ring R of M is also semi-simple.

PROOF. Let (0)^ be the zero ideal in M, and (0)^ be the zero ideal
in R. J(M)*' = (O)i' = {reR\Mr = (0)*} - (0)Λ, for M is a faithful R-
module. Hence by Theorem 3.1 we have J(R) = (0)Λ.

THEOREM 3.3. Let a Γ-ring M be a Γ~faithful M-module, that is,
MΓx = (0) implies x = 0. If R is semi-simple then M is semi-simple.

PROOF. Since M is Γ-faithful, J(R)* = (0)* = {aeM\ [Γ, a] = (0)*} =
{aeM\MΓa = (0)*} - (0)*. Thus, by Theorem 3.1, we get J(M) = (0)M.

For the right operator ring R of a Γ-ring M, we define (̂ o: i?) =
{xeR\Rx Q p), where p is a right ideal of R.

LEMMA 3.4. AR(N) = (|θ: iϋ) is the largest two-sided ideal of R which

lies in p, where p is a maximal regular right ideal of R and N denotes

R/p.

PROOF. If x e AR(N) then Nx = (0), which is to say, (r + p)x = p
for all reR. This says that RxQp, hence AR(N) £ (p: R). Similarly
(p:R) £ A îNΓ) whence AR(N) = ( î i2). Since p is regular there is an
aeR with x — axep for all a?eR; in particular, if a?6(p: R) then since
axeRx Q p we get a? e p. Thus the proof is completed.

By Lemma 3.3 and Lemma 3.4 we get AM(N) = (p:R)*, and so by
the definition of J(M), we have

THEOREM 3.4. J(M) = Π (i°: ^)*> where p runs over all the maximal
regular right ideals of R, and where (p: R) is the largest two-sided ideal
of R lying in p.

An element a of a Γ-ring M is said to be right-quasi-regular (abbrevi-
ated rqr) if for any 7 e Γ the element [7, a] of the right operator ring R
of M is right-quasi-regular in the usual sense. That is to say, a is rqr,
if for any 7 e Γ, there exists Σ?=i [%> χi\ i n R such that



SEMI-SIMPLE GAMMA RINGS 223

i.e.,

+ Σ XΎ^ - Σ (tfra)Ύtxt = 0 for all a? e Λf .
ϊ = l ϊ = l

A subset S of M is rqr if every element in S is rqr.

THEOREM 3.5. J(M) is a right-quasi-regular ideal and contains all
right-quasi-regular right ideals of M.

PROOF. Let R be the right operator ring of M. The ordinary ring
theory shows that J(R) is a rqr ideal of R and contains all the rqr right
ideals of R (c.f., [7] p. 12). As has already been shown in this paper,
we have

J(M) = J(R)* = {a e M\ [Γ, a] S J(R)} .

If a e J(M), then for any 7 e Γ [Ύ, a] e J(R), so [7, a] is rqr, that is, a is
rqr. Let N be a rqr right ideal of M. There remains to show [7, N] Q
J(R), where 7 is any element of Γ. If n e N, then n is rqr, so that
[7, n] is rqr. Since N is a right ideal of M, we have [7, N][Γ, M] =
[7, NΓM] S [7, N] and hence [7, N] is a right ideal of R. Therefore,
[7, N] is a rqr right ideal of R. Thus [7, iV] C J(R) and the proof of
the theorem is completed.

As an immediate consequence of Theorem 3.5 the Jacobson radical
J(M) of M can be characterized as follows:

J(M) = {aeM\(a) is rqr}.

This is the definition of J(M) given in [5] and [6].

4. Semi-simple Γ-rings. Let Sif i e 81, be a family of Γ-rings indexed
by the set Sί. By the direct sum (complete direct sum) of the Γ-rings
Si9 i 6 % we mean the set S = ILe* S, = {α: 8ί — Uea S, | α(i) e Si9 all i e Si}.
We give a Γ-ring structure to S by defining

(4.1) (a + &)(i) = α(i) + b(i)

(aΎb)(i) = a(i)Ύb(i)

for all α, 6 6 S, 7 e Γ and i e 81.

If S is the direct sum of Γ-rings S<, i 6 81, with each element i of
Sί we may associate a mapping (0,, *) of S onto S€ as follows:

(4.2) oJdi = α(i) , α 6 S

7̂  = 7 , 7 G Γ .
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Clearly, Sθi = St. Moreover, it follows immediately from (4.1) that (θi9 ή
is a homomorphism of S onto St. If, now, T is a subring of S, Tθi is a
subring of St for each i e 81.

Let T be a subring of the direct sum of Γ-rings Si9 i 6 SI, and for
each i e 81 let (θif ή be the homomorphism of S onto St defined by (4.2).
If Tθi = St for every i e St, Γ is said to be a subdirect sum of the Ta-
rings Sif i e St.

LEMMA 4.1. A Γ-ring M is isomorphic to a subdirect sum of Γ-rings
Si9 i e St, i/ and (mi?/ i/ /or βαcfe i e St ίfrere eα isίs α homomorphism (φi, c)
of M onto Si such that if a is an arbitrary nonzero element of M, then
aφi Φ 0 for at least one i e St.

The proof may be established by very easy modifications of the proof
of Theorem 3.6 in [8], so this will be omitted.

In view of Theorem 2.1, if (φi9 c) is a homomorphism of M onto Sί9

then Si = M/Ki9 where Kt is the kernel of (φif ή. Therefore, we may
formulate Lemma 4.1 as follows:

LEMMA 4.2 A Γ-ring M is isomorphic to a subdirect sum of Γ-rings
Sί9 i € St, if and only if for each i e Sί there exists in M a two-sided
ideal Kt such that M/Kt = Sif moreover Πϊea Kt = (0).

A Γ-ring M is said to be primitive if it has a Γ-faithful irreducible
module.

THEOREM 4.1. A Γ-ring M is primitive if and only if the right
operator ring R is primitive and MΓx = (0) forces x = 0.

PROOF. Let M be primitive and JV be a Γ-faithful irreducible Jkf-
module. By Lemma 3.2 N is an irreducible iϋ-module. If Nr = (0), then
since NΓM — N we have NΓMr = (0), and so Mr = (0), thus r = 0.
Therefore, JV is faithful. If MΓx = (0), we get that (NΓM)Γx = (0),
and JVΓα; = (0), thus x = 0.

Conversely, let JV be a faithful irreducible i?-module. By Lemma
3.2 JV is an irreducible Jkf-module. To show that JV is Γ-faithful we
assume that JVΓα = (0). Then we have that JV[Γ, x] = (0), and [Γ, x] =
(0). Hence MΓx = (0), so x = 0. Thus, the proof is completed.

THEOREM 4.2. A Γ-ring M is primitive if and only if there exists
a maximal regular right ideal p in R such that (p: R)* = (0), where R
denotes the right operator ring of M. A primitive Γ-ring is semi-simple.

PROOF. Let M be primitive, then there exists a Γ-faithful irreducible
Jkf-module JV. By Lemma 3.3 there exists a maximal regular right ideal
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p in R such that N is isomorphic to R/p as an i2-module. Lemma 3.4
shows that (p: #)* = AM(N). Since N is Γ-faithful we get AM(N) = (0).
Thus, (ρ:R)* = (0). Let p be a maximal regular right ideal of R. Put
N = R/p. Since AM(N) = (p: #)* = (0) N is Γ-faithful, thus M is primitive.

Finally, J(M) = f] (p: i?)*, where p runs over all maximal regular
right ideals of R, hence if (p: R)* = (0) for one such p we have J(M) =
(0), and the proof is completed.

THEOREM 4.3. A Γ-ring M is semi-simple if and only if it is
isomorphic to a subdirect sum of primitive Γ-rings.

PROOF. Let M be a semi-simple Γ-ring. As is shown in Theorem
3.4, J(M) = f} (p: R)*, where p runs over the maximal regular right
ideals of R. Since M is semi-simple Π (P R)* = (0) By Lemma 4.2 M
is isomorphic to a subdirect sum of the M/(p: R)*. By Lemma 3.1 and
Lemma 3.4 M/(p: iϋ)* is primitive. Therefore M is isomorphic to a sub-
direct sum of primitive Γ-rings. On the other hand, suppose that M is
isomorphic to a subdirect sum of the rings Mφ = M/Kφ. Therefore
Π Kψ = (0). If the rings Mφ are all primitive, then they are semi-simple.
Since J(M) maps into a quasi-regular right ideal of Mφ it must map into
(0). Thus J(M) Q Kφ for each φ, hence J(M) Q f\ Kφ = (0) proving that
M is semi-simple. Thus, the proof is completed.
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