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1. Introduction. In [2] and [4] we have given a comparative study
of the zeros of L-functions of absolute abelian extensions. Here extending
this we shall give a remark to Uchida’s work [9] on Artin’s L-functions
under certain assumption. Our assumption which will be described later
is much weaker than the Riemann hypothesis and was already proved
for the Riemann zeta function and Dirichlet L-functions.

Let F be an algebraic number field of finite degree. Let L(s, v, Ky/F)
be a primitive abelian Hecke’s L function, where + is an one dimensional
character of cyclic extension Ky/F and the conductor of + is that of
Ky/F. Let N(t,+, F) be the number of the zeros of L(s, v, Ky/F) in
0<Res<1 and 0<Ims <t possible zeros on the boundary being
counted with weight one-half. Then the moments

Mk(T’ h; "/” "l",, F)
B Sj'T {N(t + hr "{'/" F) - N(t: "/"r F) - (N(t + h’ "I"’9 F) - N(t’ 'V'f” F))}kdt
for © = 1 may be considered as the measure of the independence of the
distribution of the zeros of L(s, 4, Ky/F) and L(s, v, Ky./F), where

h >0, 4" # « is a primitive character having the conductor of Ky./F
as the conductor of +'. We shall see later that if

(@3 Ay ¥) = 2 IA%: , () — ' (p))[?
~ Ce(¥, ¥)n(x) ,
then for each ¥ = 1, when hlog T — « as T — <o, we have
M(T, b; ¥, ¥', F)

2[6' ’ k
~ —=2__T(2C, log (h log T))*,
iy T(ECe ¥) log (hlog T)
where N,p is the absolute norm of a prime ideal p of F' and =(x) is the
number of rational primes p less than z as usual. So the degree of the
independence of the distribution of the zeros of L(s, v, Ky/F) and
L(s, ¥', Ky,/F) may be considered as a function of Cy(v, ¥'). Moreover
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if FF= @, then
Tp(@; ) = 3 [9() — ¥ ()P
~ 2n(@) — 3, ¥ (p) — X T(D)
~ 2m(x) . ” ‘

So Cy(yr, ¥') = 2 reflects the fact that rational primes are uniformly
distributed in the arithmetic progressions.

Our problem is related with Artin’s conjecture on Artin’s L-func-
tions. Here we shall quote an example from Uchida’s [8]. Let G be a
group of order 24 generated by o, ¢ and p whose relations are as
follows: ¢*=p*=1, o* =7 ogto'=71"", pop™' =7, pro "' =70. G has
seven conjugate classes which are represented by 1, ¢% o, p, 0%, po*
and p%¢®. G has three different 2-dimensional characters y,, ). and Y,
satisfying 1,(1) = 2, y(0*) = —2 and yx,(0) = 0 for every 4, and x,(o) =
(0" = —1, X(00%) = x(0%0*) =1, 2(0) = —0, %(0°) = —@*, Y(p0®) = o,
Y1:(0°0*) = @* and ¥, = ¥,, where ® is a primitive cube root of unity.
Let K be a Galois extension of @ with the Galois group G. Thus we
have three multiplicatively independent Artin’s L-functions L(s,Y;,K/Q)
for ¢ =1, 2,8 as usual. For simplicity we write L(s, x,) = L(s, X:;, K/Q).
Now let H be the subgroup of G generated by po®. Let ¢ and + be
one-dimensional characters of H such that ¢(00*) = —w and v (00®) = —1.
Then as is noticed in Theorem 2 of [9],

L(S’ X1)2 = L(S’ @)L(S, @)/L(Sv "1")9 L(S, X2)2 = L(S, @)L(S, ’lll‘)/L(S, @)
and L(31 X3)2 = L(39 QD)L(S: ’IP‘)/L(S, q-)): where
L(s, ) = L(s, % K/Q) = L(s, p, K|F),  L(s, ) = L(s, §, K/ F')

and L(s, 4) = L(s, v, Ky/F) with the induced character ¢¢ on G, the
intermediate field F' corresponding to H and the quadratic extension Ky
of F. Our particularly interesting problem is to find asymptotic laws
for Nyo(T), Nyy(T) and N,3(T) and where

Nyo(T) = 3, my(0)

with my(0) = “the multiplicity of o as a zero of L(s, ¥).” In this paper
we shall give lower bounds for Ny, (T), N,uw(T) and N,;(T). In the
following of this paper we shall fix our situation as above and we shall
ignore the dependence on the fields and characters if it is not necessary,
although we can discuss generally.

To state our results more precisely, let N(a, T; ») be the number



ZEROS OF L-FUNCTIONS 419

of the zeros of L(s, ) in a <Res <1 and 0 <Ims<T. We denote
the following estimate by (@, K/F); N(a, T; ) € T***"~* Jog T for some
positive constant b and uniformly for a = 1/2. For simplicity we put
N,(t) = N(t, p, F). We may remark here that (¢, Q/Q) with the principal
character @, (namely, for the Riemann zeta-function) was demonstrated
by A. Selberg [6]. Now in this paper we shall prove

THEOREM. Suppose that (¢, K/F'), (p, K/F) and (4, Ky/F) hold.
Then

Nyo(T) =2 C.\Ny(T),  Ny(T) = C.N,(T)
and Nyy(T) = C;N,(T) with some positive absolute comstants C, C, and
03 .
2. Proof of Theorem.

2-1. We shall prove only Ny,(T) = C,Ny(T'), since other cases come
similarly. From the functional equation of L(s, ), one gets for ¢ > 0,
N,(t) = btlog t — bt + S @) + be@) + O/ + 8)) ,
where b, depends only on the degree of F, b, may depend on F' and the

norm of the conductor of ¢, b(p) may depend on ¢ and F, and
S(t, ) = (1/7) arg L(1/2 + it, ) as usual.
Similarly, one gets
Ny(t) = bitlogt — byt + S(t, ) + by(y) + OQ/A + ¢)) .

We put g,(t) = Ny(t + h) — Ny(t) — (N,(t + h) — N,(t)) and

Ey = {te (T, 2T); g.(t) > M}
for positive M. Suppose that |Ey| = AT. Then, of the intervals
(T, T + h), (T + h, T + 2h), -+, at least [AT/h] must contain a point of
E,. If (T + hn, T + h(n + 1)) contains ¢t of Ej, then there must exist
a p = B + v such that my(0) > m,(0) and ¢t <7 < ¢+ h. Hench there
exists a o satisfying my(0) > m,(0) in T + hn <7 < T + h(n + 2). So,
Ny (T) > Ny(T) if we can take h = C/log T with some positive constant
C. In the following we shall prove that |E}| > T for h = C/log T. By
asymptotic formulas for Ny(t) and N,(¢t) this is reduced to get |E,|>T
for h = C/log T, where

E, = {te(T, 2T); fu(t) > M}
and

fu®) = 8t + h, ) — S, ) — (St + R, @) — S(t, 9))
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We shall carry out this step by step. From 2-3 to 2-6 below we shall
assume Riemann hypothesis to L(s, ¥) and L(s, ) instead of (v, Ky/F)
and (p, K/F). 1t is clear from Selberg’s argument in [5] how to modify
our argument. Our argument below follows pp. 308-314 of [7].

2-2. We put Res = ¢ and @« = Max (2,1 + ). We start from the
following integral as in pp. 308-314 of [7]

1 Sa+ioo xz—a i m2(2—3) L'
274 Ja—io (2 —38)? L

We get on the one hand

(2, ¥)dz .

log xNé,z Aw((‘;‘;’\(r);i“)(sm) ,

where N is the absolute norm of integral ideal 2 of F and

A(N) for NA=Zx
4,) = {A(%I) log (2*/(N))

for o < NU < 22

log »
with
N; if A=p"
AQD) = {log p i .p
0 otherwise.

On the other hand, by the theorem of residues, we get
—2k—i-s __ ge—22k+its)

@2k + 1+ s8)?

x—zk—a - x—2(2k+s) mp——s - xZ(p—s)

—logm%(s, ) + Y+ rz)lg_:,) ®

Py — ) S + ,
+ (ry + 1, )k; T R P
where p runs over non-trivial zeros of L(s, v), v is the number of real
places ramified at Ky/F, r, and 7, are usual notations. Hence we get
under the same notations

LEMMA 1.
_"(s’ ,\P.) — — Ax(m)"/"(%) + (” + ,r?) m—zlc—l—a —_ x—2(2k+1+a)
L yaze2 (N logae = (2 + 1+ 8)?
,rl + ,'.2 —y o x—zk—-a . x—2(2k+s) + 1 xp-a . wZ(p—s)
loga i= 2k + s)? loga % (s — o)

2-3. By the logarithmic derivative of Weierstrass’ product formula
for L(s, 4), one gets for ¢t > ¢,
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L _ 1 1
’L‘(sy V) = z‘:‘ (:; + F) + O(log t) .

We call this Lemma 1’.

Using Lemmas 1 and 1/, one gets as in the proof
of Theorem 14.21 of [7],

Loy ooy s A
Ty = - 3 e

A,()4(A) — e
NéﬂW ) + O(CI} / log t)

for ¢t = a, where ¢ =1/2 + (log )™, ¢t > 2 and 4 < ¢ < ¢t
arg L(L/2 + it, ) = —Sf Im %(y + it g

+ O<x~p+1/2

Now

= S‘”Im %m + it, y)de — (@ — 1/2) Im %’(a + ity )

a LI . Ll .
o t — i
) m (Ea it - e+t )i
=J,+J,+ J;,

say. J, and J, can be treated using the above formula for yx = a.

J
can be treated using Lemma 1/, and we get

LEMMA 2. For t>2, 4 <2 =t a=1/2+ (1/log z), we have
1 A,(A)yr(A)
S(¢, ==1 -
G = Im S N log (NO)

1 A, (M)(N)
+ 0(logm vuzzt (N)°+et

From this we get further

) + O(log t/log x) .

St ¥) — =Im 3, %@r
1 (A O)ND)Y " — AE)y(p)
~ 1y .
™ ZT (NP log (Np)
100))
) (Np)a+iz
AP
N;ézz (Np)He+in )
AW
DR )
+ O, S (Np)™™*) 4+ O(log t/log x) .

r>2 p

1
log x
1

+ 0

+0(




422 A. FUJII

The last two terms are bounded for T <t < 2T, ¢ = T° with a fixed
positive ¢. The other terms of the right hand side are one of the

following types:

_ad) log (Np) -
¥s2s (Np)/2+et with [a(p)| € Tozy for Np<y

and

py '(Tv% with |a/(p)| €1 for Np=<y.

2-4. Here we shall prove

LemMA 3. Suppose that T> T, L <y < TV* and |a(p)| < log (Np)/logy,
la'(p)| € 1 for Np<y. Then for each k =1, we have

S” ap)
r | 52y (Np)1/2+u
.

(5 =20y = a(plapy) - -+ alb)
Fe=y (Np)/2+it Nopdrisisk (N(D, « » - Py))Y 2+

2k
dt LT

and

a’(p)

2k
2 gy | BT

PRrOOF.

Hence the first integral is

a’(pl) e a(.pk)m PP m SZT <N(q1 e qk) >“dt
NristNasy (NP, ++* D0l + =+ Q)2 I \N(p, «++ D)

lapy) - -+ a®alqy) - -+ ala)]
WSty N, -+ Py

N(py-eopp)=N(ay++-ag) - .
la(p) « -+ a(pal(q,) - - - a(qw) |

TR (NG, -+ Bugy - -+ )" | log B Be)
N(q, -+ - )
=TS, +8S,,

say. S, € (log %) *(Cxv<y (log Np)/Np)* € 1 by the prime ideal theorem.
Now we put b(m) = [{p,-+- ps Np; <y forj=1,--+, 4 Np, -+ p) = m}|
for +=1,2, ---, k. Then we have b, (m) <1 if m = p/r ... p{k, where
p’s may not be different, f; =1 and pfi <y. We have also b,(m) =0
for other cases. Now

LT-

_|_
log
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S, K >, b(m)b(n)(mn)™?|log (n/m)|™

m,néy",ngmn

+ >, b(mb(n)(mn)™?[log (n/m)|7 = S, + S,

méy"’m/2<n<m
say. S; < y* <« T.
S, < Zk >, b(mb(m — r)ym™*(m — r)"V mr!
msyk r

<m/2
< 3. bm) 3, 1r <logy 3, bu(m)
<log y( 3 b(p))* < log y(a(y))*

p/ sy

L logy(y/logy)* < y* < T.
Hence S, < T and

2T | _ﬂ_ o
ST szgly (Np)l/2+¢t At T .

The second part of our Lemma 3 comes in a similar manner. q.e.d.

2-5. Using Lemma 3 we get
LEMMA 4.

for each k=1, x < TV and h > 0, where fi(t) 18 the same as in 2-1
and we put a(p) = (Y(p) — @(p))(e s — 1),
2-6. Hence we get

|, o= (m 35, o) o

+ 0((8? (Im =, ?ﬁ‘g—‘f;m)zkdty_”% Tl/zk)
+ O(T) .

Here we shall use the following

LEMMA 5. Let F,(x) = 3,,<.|b(®)|*/p* for positive a. Suppose that
F.x) €1 for a =2 and F,,(x) € 2° with some positive c¢c. Then for
2= T% and for each k =1,

27
I,
provided F,(x)— co as x— oo, where C(k) = 2k!/2n)*k! and 0V (k — 2) =
Max (0, & — 2).

m 3, Y04t = ClyT@F (@) + OCTF @y »-»)

= p1/2+it
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(Cf. Lemma 3 of [3].)
Thus to estimate our integral we have only to know about

F@) = 3 [b@)[p e 1],
P
where we put

Vip) = X (v — o)) .

We may remark here that as above we may ignore prime ideals of degree
greater than 2. We may also ignore rational primes p which ramifies

at K/Q since the number of such primes is finite. Now we have for
our p,

S W) =) and 3 o) = o%p).

On the other hand since we can take 1, o, 7, 0t as representatives of
G/H, we have ¢°(1) =4, ¢%0*) = —4, 9¢%0) =0, and @%¢) = @(¢) if
&= po*or ¢ =p= (00" or & = 0* = (00*) or & = p’¢* = (po®)’. The same
is true for +%¢). Hence
4 2
b(p) = if o, e.{l, o, 0%}

|y (0,) — @(g,) otherwise ,

where o, is a representative of the conjugate class determined by the
Frobenius element o., of <& in K which divides p and ¢, € {1, 0, 6%} means
that the conjugate class of o, can be represented by one among 1, ¢ and
o®. Hence by Tschebotareff’s density theorem, we get

Ser=3 3 1

ape (Pag.gﬂafpz,!’za")
= (34/24)x/(log z) + O(x/(log x)*) ,

where A is the cardinal of the union of the conjugate classes represented
by od*, p, 0*, p’0°’. Hence we get

F(x) = (2-34/24) log (h log x) + O(1) ,
provided hlogx — o as ¥ — oo,
2-7. Hence we get

THEOREM. For each k=1 and T > T,

Sf fi%dt = Cl)T(2(3A/24) log (3 + I log T))*

+ O(T(log (8 + hlog T))*V%) .
(Similarly we get
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THEOREM. For each k=1 and T > T,

Sf S(t, p*dt = CU)T((L4’ + A)/24) log (log T))*
+ O(T'(log (log T))**),

where A’ is the cardinal of the unton of the conjugate classes represented
by 1 and 0% and A is the same as before.
The same s true for S(t, ¥)).

2-8. We need one more mean value theorem.

LEMMA 6.
S" S(¢, p)dt < log T .
T

PrROOF. From Lemma 1’ in 2-3 and

S:su, P)dt = % S; log | L + iT, y)| dgt + O(1)

we get our conclusion as in pp. 187-189 of [7].

2-9. From the first theorem in 2-7, we get
|, faty“dt = T(og (h1og T))"
for sufficiently large h log T and for each ¥ = 1. From Lemma 6 we get
ijh(t)dt <log T for h>0.

2-10. Now we can complete our proof of the main theorem. We
suppose that h = C/log T with a sufficiently large constant C. We write
f(t) instead of fi(t). Let Ey = {te(T, 2T); f(t) > M} for non-negative M
as in 2-1. Let ¢,(t) be the characteristic function of E,. Then we have

2T 27 2T
I 7ot = | fopatiniiat + | A — put)pgtiat
T 1/2
< @ (| feyar) "+ mr .
T
On the other hand
2T 2T 2T
[ rovpaee =127 1w 1ae + 12 | fieyae

= v2( (7 1rwypa) ([T 17wy kat) " + 0og T) .

Using 2-9 we get
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|Ey| > T for sufficiently large C depending on M.
q.e.d. of the main Theorem.
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