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1. Introduction. In [2] and [4] we have given a comparative study
of the zeros of L-functions of absolute abelian extensions. Here extending
this we shall give a remark to Uchida's work [9] on Artin's L-functions
under certain assumption. Our assumption which will be described later
is much weaker than the Riemann hypothesis and was already proved
for the Riemann zeta function and Dirichlet L-functions.

Let F be an algebraic number field of finite degree. Let L(s, ψ, KφjF)
be a primitive abelian Hecke's L function, where ψ is an one dimensional
character of cyclic extension K+/F and the conductor of ψ is that of
KψlF. Let N(t, f, F) be the number of the zeros of L(s, ψf KψjF) in
0 < Re s < 1 and 0 <; Im s tί t, possible zeros on the boundary being
counted with weight one-half. Then the moments

Mk(T, h; ψ, ψ', F)

S IT

{N(t + h, f, F) - N(t, ψ, F) - (N(t + h, f, F) - N(t, f, F))}kdt
T

for k ^ 1 may be considered as the measure of the independence of the
distribution of the zeros of L(s, ψ, Kψ/F) and L(s, f, Kf,IF), where
h > 0, ψ' Φ ψ is a primitive character having the conductor of Kψ,\F
as the conductor of ψ'. We shall see later that if

Σ

then for each k ^ 1, when h log T —> oo as Γ—> oo, we have

M2k(T, h; f, f', F)

^ k f f ψr) log {h log T)f'
where NFp is the absolute norm of a prime ideal p of F and π(x) is the
number of rational primes p less than x as usual. So the degree of the
independence of the distribution of the zeros of L(s, <f, K+/F) and
L(8, ψ\ Kψ,jF) may be considered as a function of CF(ψ, ψf). Moreover
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if F = Q, then

πF(χ;f,ψ')= Σ \f(p)-Ψ'(p)\2

~ 2π(x) - Σ ΨΨ(P) ~ Σ
P^x pύx

~ 2π(x) .

So CQ(ψ, ψ') = 2 reflects the fact that rational primes are uniformly
distributed in the arithmetic progressions.

Our problem is related with Artin's conjecture on Artin's L-func-
tions. Here we shall quote an example from Uchida's [8]. Let G be a
group of order 24 generated by σ, τ and p whose relations are as
follows: <74 = pz = 1, σ2 = τ2, στσ~ι = τ"1, pσp~ι = τ, pτp~ι — τσ. G has
seven conjugate classes which are represented by 1, σ2, σ, p, p2, pσ2

and p2σ2. G has three different 2-dimensional characters χlf χ2 and χ3

satisfying χ,(l) = 2, χlσ2) = - 2 and χ^σ) = 0 for every i, and χ̂ /o) =
χ^p2) = - 1 , χ.ipσ2) = Up2σ2) - 1, χ,^) = -ω, Up2) = -ω2, χ2(pσ2) = ω,
%2(|02tf2) = ̂ 2 and χ3 = χ2, where α> is a primitive cube root of unity.
Let K be a Galois extension of Q with the Galois group G. Thus we
have three multiplicatively independent Artin's L-functions L(sfχifK/Q)
for i = 1, 2, 3 as usual. For simplicity we write L(s, χ j = L(s, χi9 K/Q).
Now let H be the subgroup of G generated by pσ2. Let φ and 'f be
one-dimensional characters of H such that φ{ρσ2) = — ω and ψ(pσ2) = — 1.
Then as is noticed in Theorem 2 of [9],

L(s, χ,)2 = L(s, 9>)L(β, ̂ )/L(s, f ) ' , L(β, χ2)
2 = L(s, φ)L(β, f )/L(s, φ)

and L(s, χ3)
2 = L(s, φ)L(s, ψ)/L(s, φ)f where

φG, K/Q) = L(s, φ, K/F) , L(β, y) - L(β, ?

and L(s, ψ) = L(s, ψ̂ , Kψ/F) with the induced character φ01 on G, the
intermediate field ί7 corresponding to H and the quadratic extension Kψ
of F. Our particularly interesting problem is to find asymptotic laws
far Nfo(T), Nφψ(T) and Nψφ(T) and where

with m (̂/o) = "the multiplicity of p as a zero of L(β, ψ»).w In this paper
we shall give lower bounds for Nψψ{T)y Nφψ{T) and Nφφ(T). In the
following of this paper we shall fix our situation as above and we shall
ignore the dependence on the fields and characters if it is not necessary,
although we can discuss generally.

To state our results more precisely, let N(a, T; φ) be the number
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of the zeros of L(s, φ) in a < Re s < 1 and 0 <̂  Im s ^ T. We denote
the following estimate by (φ, K/F); N(a, T; φ) < ri+&{1"2a) log T for some
positive constant b and uniformly for a ^ 1/2. For simplicity we put
Nφ(t) = JV(ί, 93, i*7). We may remark here that (<pQ, Q/Q) with the principal
character φ0 (namely, for the Riemann zeta-function) was demonstrated
by A. Selberg [5]. Now in this paper we shall prove

THEOREM. Suppose that (φ, K/F), (φ, K/F) and (ψ, Kψ/F) hold.
Then

NΨφ{T) ^ C,NΨ{T) , NΨ-Ψ(T) :> C2Nφ(T)

and Nφir(T) ^ C3Nφ(T) with some positive absolute constants Clf C2 and
C3 .

2. Proof of Theorem.

2-1. We shall prove only Nψφ(T) ^ CJS[ψ{T), since other cases come
similarly. From the functional equation of L(s, φ), one gets for t > 0,

Nψ(t) = Mlog t - b2t + S(t, φ) + blφ) + 0(1/(1 + t)) ,

where b1 depends only on the degree of F, b2 may depend on F and the
norm of the conductor of φ, b3(φ) may depend on φ and F, and

S(t, φ) = (1/τr) arg L(l/2 + it, φ) as usual.

Similarly, one gets

N+(t) = M log t-b'2t + S(t, ψ) + 68(f) + 0(1/(1 + t)) .

We put Λ(ί) = Nf{t + h) - J^(t) - (JV;(t + Λ) - Nφ(t)) and

for positive M. Suppose that \E'M\^AT. Then, of the intervals
(Γ, T + h),(T + h,T + 2h), , at least [AT/h] must contain a point of
E'M. If (Γ + fe^, T + h(n + 1)) contains t of £^, then there must exist
B, p = β + i y s u c h t h a t m+(p) > mφ(ρ) a n d t ^ Ί ^ t + h . H e n c h t h e r e
exists a p satisfying mψ(ρ) > mφ{ρ) in T + hn<Ύ<T + h(n + 2). So,
Nirφ(T) > Nψ(T) if we can take fe = C/log Γ with some positive constant
C. In the following we shall prove that | E'u \ > T for h = C/log Γ. By
asymptotic formulas for JV (̂ί) and ^ ( ί ) this is reduced to get | EM \ > T
for ft = C/log Γ, where

^ = {te(Γ,2Γ);Λ(ί)>ilf}

and

fh(t) = S(t + ft, ψ) - S(έ, f) - (S(ί + ft, ^) - S(έ, 9)) .
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We shall carry out this step by step. From 2-3 to 2-6 below we shall
assume Riemann hypothesis to L(s, ψ) and L(s, φ) instead of (ψ, KψjF)
and (<p, K/F). It is clear from Selberg's argument in [5] how to modify
our argument. Our argument below follows pp. 308-314 of [7].

2-2. We put Re s = μ and a = Max (2, 1 + μ). We start from the
following integral as in pp. 308-314 of [7]

1 Γ α + ί

2πl )a-*

z-8 Λ,2(Z-S) Jt

(z - s)2 L

We get on the one hand

where iVSί is the absolute norm of integral ideal SΆ of F and

for

^ logo;

with

)
(0 otherwise.

On the other hand, by the theorem of residues, we get

-log x k{
L

(n + r2 - + Σ ^ ^ ,
(2fc + s)2

 P (s — p)2

where p runs over non-trivial zeros of L(s, ψ), v is the number of real
places ramified at KψjF, rx and r2 are usual notations. Hence we get
under the same notations

LEMMA 1.

+ rf) y α;-^-1-8 -

, n + r - v ^ x~2k

i o g a ; έ ί (2k + 1 + s)2

r 8 - v ^ 2k8

log a? *=i (2fc + s)2 log x p (s - p)2

2-3. By the logarithmic derivative of Weierstrass' product formula
for L(s, ψ), one gets for t > tQ
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ψfi, •¥) = Σ - ) + O(log ί ) .
pip p

We call this Lemma 1'. Using Lemmas 1 and 1', one gets as in the proof
of Theorem 14.21 of [7],

= _ Σ

for μ ^ α, where a = 1/2 + (log #)~\ ί > 2 and 4 ^ a? ̂  t\ Now

arg L(l/2 + it, ψ) = - \ Im =-(JM + it,
Jl/2 L

= - Γlm ̂ (/i + it, ψ)dμ - (a - 1/2) Im ̂ ( α + iί,
Ja L L

+ [ Im C^Ua + it, f) - Qμ + it, f )
Ji/2 \L L

= J t + J2 + J3 ,

say. J t and J2 can be treated using the above formula for μ ^ a. J3

can be treated using Lemma 1', and we get

LEMMA 2. For t > 2, 4 ^ a? <: £2, α = 1/2 + (I/log a), ^

log (ΛΓSί)

From this we get further

π

loga;

log* (jv*o«"»«>

I)(i\φ)2(1I+<ί) log (Np)

0 ( Σ Σ W ) " ' /2) + O(log ί/log »)
r>2 p
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The last two terms are bounded for T <: t ^ 2Γ, x ^ Tc with a fixed
positive c. The other terms of the right hand side are one of the
following types:

Σ

and

with \a(p)\«ψW for Np ̂  y
log y

- with I a'(p) I < 1 for Np ̂  y .
NΊ£* (Npγ+2

2-4. Here we shall prove

LEMMA 3. Suppose that T>T0,l<y< T1/k and \a(p) | < \og(Np)/logy,
I a'(p) I < 1 for Np <; y. Then for each k ^ 1,

and

dt<T .

PROOF.

y
^ i r (Npγ/2+it

Hence the first integral is

α(q f e) 1

log fc)+

= TS, + S2,

say. Sx < (log 2/)~fe(Σi\rp^ (log Np)/Np)k < 1 by the prime ideal theorem.
Now we put δ,(m) = \{p1 ft; JVfo ^ ί/ for j = 1, , i, JNΓ(ft ft) = m}|
for i = 1, 2, •••,&. Then we have &fc(m) < 1 if m = pf1 #{*, where
p's may not be different, /< ̂  1 and p{* < ?/. We have also bh{m) = 0
for other cases. Now
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S2 < Σ bk(m)bk(n)(mn)-1/2 | log (n/m) \ -1

+ msykΣ<B<m bk(m)bk(n)(mn)-^\\o^(n/m)\~ι = S3 + St ,

say. S3<yk < T.

S* C Σ Σ h(m)bk(m - r)m-1/2(m - r)~
m^yk r<m/2

m^yk r<m/2 m^yk

< log y( Σ Hvf)Y < log y(π(y))k

<logy(y/logy)k <yk < Γ.

Hence S2 < Γ and

(Np)ι/2+it

The second part of our Lemma 3 comes in a similar manner. q.e.d.

2-5. Using Lemma 3 we get

LEMMA 4.

for each k ^ 1, # < T1/2k and h > 0, where fh(t) is the same as in 2-1
e put a(p) = (ψ(p) - φ(p))(e-ihl0SlNp) - 1).

2-6. Hence we get

+ O(T) .

Here we shall use the following

LEMMA 5. Let Fa(x) = ΣP^X I Kv) \2a/Pa for positive a. Suppose that
Fa(x) < 1 for a ^ 2 αwcϊ JP1/2(CC) < a:c wiίfe some positive c. Then for
x — Tef/k and for each k ^ 1,

k

dt =?τ Trv, v b(P)

provided ί7^)—*oo as ^—>oo, where C(k) = 2k\/(2π)2kk\ and 0 V (fc - 2) =
Max (0, fc - 2).
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(Cf. Lemma 3 of [3].)

Thus to estimate our integral we have only to know about

Fί(x)= Σ \V(v)\2V-ι\e-ihl°sp-l\\

where we put

δ'(P) = Σ WW - φ(P)) .
Np=p

We may remark here that as above we may ignore prime ideals of degree
greater than 2. We may also ignore rational primes p which ramifies
at K/Q since the number of such primes is finite. Now we have for
our p,

Σ Ψ(P) = ψG(P) and Σ <p(P) = φ\v) .
Np=p Np=p

On the other hand since we can take 1, σ, τ, στ as representatives of
G/H, we have φσ(l) = 4, φG(σ2) = - 4 , ^(σ) - 0, and <?*(£) = <p(£) if
ζ = pa* or ξ - p = (pσ2)4 or f = p2 = (pσ2)2 or ξ = ρ2σ2 = (^σ2)5. The same

is true for ψG(ξ). Hence

(0 if σpe{l,σ,σ2}
b'(p) =

(ψ(cT) ( O otherwise ,
where σp is a representative of the conjugate class determined by the
Frobenius element σ^ of & in K which divides p and σp e {1, <τ, σ2} means
that the conjugate class of σp can be represented by one among 1, σ and
σ2. Hence by Tschebotareff's density theorem, we get

= (3A/24)a/(log x) + O(a?/(log x)2) ,

where A is the cardinal of the union of the conjugate classes represented
by pσ2, p, p2, p2σ2. Hence we get

f\(aθ = (2 3A/24) log (h log x) + 0(1) ,

provided h log x —> °o as x —> oo.

2-7. Hence we get

T H E O R E M . For each k ^ l and T > To,

Γfh(t)2kdt = C(Λ)T(2(3A/24) log (3 + h log T))k

+ O(Γ(log (3 + h log T))*-1/2) .

(Similarly we get
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T H E O R E M . For e a c h k ^ l a n d T > T09

S 2T

S(t, φfHt = C(k)T(((4?A' + A)/24) log (log T)f
T

+ O(Γ(log (log T))*-1/2) ,

where A! is the cardinal of the union of the conjugate classes represented
by 1 and σ2

y and A is the same as before.
The same is true for S(t, ψ )).

2-8. We need one more mean value theorem.

LEMMA 6.

S(t, ψ)dt < log T .

T

PROOF. From Lemma 1' in 2-3 and

\TS(t,φ)dt = — \t log \Ujt + iT
JO 7Γ Jl/2

we get our conclusion as in pp. 187-189 of [7].

2-9. From the first theorem in 2-7, we get

for sufficiently large h log T and for each k ^ 1. From Lemma 6 we get

\%T f k ( t ) d t < log T' f o r h > 0 .
JT

2-10. Now we can complete our proof of the main theorem. We
suppose that h = C/log T with a sufficiently large constant C. We write
f(t) instead of fh(t). Let ^ = {te(Γ, 2Γ);/(t) > Λf} for non-negative ΛΓ
as in 2-1. Let φM(t) be the characteristic function of EM. Then we have

S 2Γ C2T f2Γ

f{t)φlt)dt = f(t)φM{t)φlt)dt + /(ί)(l - φM(t))φlt)dt
T JT JT

^ (EMr^ζf(tγdtJ/2 + MT .
On the other hand

S
2Γ Γ2T Γ2T

f(t)φo(t)dt = 1/2 |/(ί)|dt + l/2l f(t)dt
T JT JTG 2

3/2//f2Γ \l/2

/(j |/()| 4ώ) +O(logΓ).

Using 2-9 we get
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\EM\ > T for sufficiently large C depending on M.
q.e.d. of the main Theorem.
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