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0, Introduction. In this paper we study the C*-algebra generated
by the Toeplitz operators defined on strongly pseudoconvex domains in
normal Stein spaces. We show that there exist short exact sequences
of *-algebras which give elements of Ext. defined by Brown-Douglas-
Fillmore ([4]).

Let fl be a strongly pseudoconvex domain in a normal Stein space
M (with or without singularities). Suppose that Ω has a volume form.
Let L\Ω) (resp. L\dΩ)) be the square integrable functions on Ω (resp.
on dΩ) and let H2(Ω) (resp. H\dΩ)) be the holomorphic square integrable
functions on Ω (resp. be the closure of the C°°-functions on dΩ which are
extendible to holomorphic functions in Ω). Let

Π: L\Ω)) — H\Ω)

(or Π: L\dΩ) — H\dΩ))

be the orthogonal projection.
For any topological space X, we denote by C(X) the Banach algebra

of all complex valued continuous functions on X, endowed with supremum
norm.

For φ 6 C(Ω) (resp. ψ e C(dΩ))> we define the Toeplitz operator

TΦ[Ω]:H\Ω)^H\Ω)

(resp. Tφ[dΩ]: H\dΩ) ~+ H\dΩ))

by Tφ(f) - Π(φ f).
Let S~(β) (resp. ^ {dΩ)) denote the C*-algebra generated by the

operators Tφ for all φ in C(Ω) (resp. C(dΩ)). Let us define a mapping

(resp.

by ξφ = Tφ, then ξ is contractive and *-linear. For any Hubert space
H, we denote by £f(H) the C*-algebra of all bounded linear operators
on H, by Sf^{H) the closed ideal of compact operators on H.

Our main results are as follows.
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THEOREM 1. There exists a *-homomorphism p from J^{Ω) onto C(dΩ)
such that

0 > Sf^{H\Ω)) > ^{Ω) -?-> C(dΩ) • 0

is exact and p(Tφ) = φ\dΩ for all φeC(dΩ).

THEOREM 2. There exists a *-homomorphism p from S~{dΩ) onto
C(dΩ) with cross section ζ such that

0 > £?^{H\dΩ)) > ^{dΩ) - ^ CidΩ) > 0

is exact.

The case when Ω is the unit disc is classical and has been studied
by many peoples (see the books of Douglas [8], [9]). When Ω is a strongly
pseudoconvex domain in Cn, the Theorem 1 has been given by Janas [13],
(see the remark of Yabuta [18]). Theorem 2 for multiply connected
domains in C is given by Abrahamse [1] and for spheres in Cn is in Coburn
[6], On the other hand, Rossi [15] has proved that each abstract strongly
pseudoconvex manifold bounds a Stein space with singularity, but seldom
without singularity. Consequently, it will be worth while to extend the
result to domains in Stein spaces.

1. Domains in Stein spaces. Let M be a complex space. Let 9t(Λf)
denote the set of regular points of M and let @(ifef) = M — ίR(M) denote
the set of singular points of M. A Hermitian inner product hx on each
Hlt*(CTJR(M)), x e 9t(M), is called a Hermitian metric of Miί the following
condition is satisfied.

*) There exists a proper resolution

where M is a nonsingular complex manifold with a Hermitian metric h
such that

hy " f*hf(v)

for every yef~\ίR(M)).
Then naturally we have the volume form dV on SR(Jkf), and we can do
the integration on M by regarding @(M) to be measure zero.

Let Ω be an open variety in M with smooth boundary dΩ such that
Ω is compact. Suppose that dΩ is contained in 9t(Λf) and is defined by
the equation r = 0 where r is a continuous function, C°° on SR(Λf), with
r < 0 inside Ω, r > 0 outside Ω, and | dr | = 1 on dΩ. We call Ω a strongly
pseudoconvex domain if the Levi form is positive definite at each point
of dΩ.
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Now suppose that Ω is a strongly pseudoconvex domain in a normal
Stein space M with a Hermitian metric. The volume form dV naturally
induces a volume form dS on dΩ.

We define some Hubert spaces as follows
L2(Ω): the space of square integrable functions on Ω

L\dΩ)\ the space of square integrable functions on dΩ
H2(Ω): the space of square integrable functions on Ω

which are holomorphic in Ω
H\dΩ): the L\dΩ) closure of C°°-functions on dΩ

which are extendable to holomorphic functions on Ω.
We have the proper resolution Ω of Ω by Hironaka's theorem [12].

Since Ω is normal, the total transform in Ω of each singular point is
connected by the Zariski's main theorem (cf. e.g. [16]). Consequently
the holomorphic functions on Ω and the holomorphic functions on Ω are
isomorphic.

It is known that H2(Ω) is a closed subspace of U{Ω). Obviously
H2(dΩ) is a closed subspace of L\dΩ). Remark that, since Ω has non-
constant holomorphic functions, dΩ is connected if dim Ω > 1 ([10,
5.3.6]). We have the operator db on U(dΩ) ([10, Chap. V]). By the
extension theorem ([10, 5.3.5]), we know that, if dimβ > 1, then H2(dΩ)
is the null space of the operator db, and the space H2{dΩ) is independent
of Ω.

The projection Π: L\Ω) -> H\Ω) (resp. L\dΩ) -+ H\dΩ)) is given by
the integration with Bergman kernel on Ω (resp. with the limit of Cauchy-
Szegδ kernel on dΩ = dΩ).

We have the following lemma. For any φ e C(i3)(resp. C(dΩ)), denote
by Mφ the multiplication by ψ.

LEMMA 1. The operator

(1 - Π)MΦ: H\Ω) -> L\Ω))

(resp.: H\dΩ) — L\dΩ))

is compact.

PROOF. For smooth ψeC°°(Ω) (or φeG^idΩ)), it is a consequence of
the Kohn's solution of 3-Neumenn problem or db~ Neumann problem (if
dim Ω > 1) and has been proved in Venugopalkrishna [17] or in Folland-
Kohn [10]. Since any φ e C(Ω) (or C(dΩ)) can be approximated uniformly
by smooth ones, the lemma follows in these cases.

Consider the case of dim Ω = 1. Since M is normal M is an open
Kiemann surface and dΩ consists of a finite number of non-intersecting
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smooth Jordan curves. Thus the proof of the lemma is essentially the
same as that of Lemma 2.8 in Abrahamse [1] Indeed, every continuous
function on dΩ can be approximated uniformly on dΩ by linear span of
meromorphic functions on M with exactly one simple pole in M\dΩ. For
the proof combine Corollary 2 in Kodama [14] and Satz 12 in Behnke-Stein
[3]. Further if P{z, a) is a meromorphic function on M with exactly
one simple pole at a point a e M\dΩ, then (f(z) — f(a))P(z, a) e H2(dΩ) for
every f sH2(dΩ). Thus for such a P(z, a) we have

(1 - Π)MΓίZιa)f = f(a)(l - Π)P(zf a) for feH\dΩ).

Hence (1—Π)MP is of rank one. Since every φ e C(dΩ) can be approximated
uniformly by linear span of such P, it follows that (1 — Π)MΦ is compact.

The following is also proved in [17] or [10],

LEMMA 2. If φe C(Ω) satisfies the equation φ = 0 on dΩ, then the
multiplication by φ is a compact operator from H\Ω) to If(Ω).

2. Proof of the theorems. To prove theorems, we recall the definition
of joint spectrum and joint approximate point spectrum. Let B be a
commutative Banach algebra with unit. Let flf fZf ••-,/& be in B. Then
the joint spectrum σ(flf f2, , fk) is the set of points λ = (X, X2, , Xk)
in Ck such that

B(f - λ j + B(f2 _ λ,) + • + B(fh -Xk)ΦB.

Let us denote by 3K(B) the maximal ideal space of B. Then it is well-
known that

σ(fu ft, •••,/*) = {(m(/J, m(/2), , m(Λ)); m e m(B)} .

Let Tu T2t , Tk be a finite commuting subset in Jtf(H). Then λ =
(λ1? λ2, •• ,λjfc) in Ck is in the joint approximate point spectrum σz(Tu

T2, •••, Tk) if

λj + J^(H)(T2 - λ2) + . . . + J^(H)(Tk - Xk)

The joint approximate point spectrum is a compact non-empty subset of
Ck. The projection map from Ck to Cι defines a continuous map from
0*(TU T2, •••, Tk) onto σπ(Tu T2, •••, Tt) for each 1 ^ I ^ k. Thus if
{T^ aeJ} is a commuting family of operators in £?{H), then the
joint approximate point spectrum σπ(Ta;aeJ) is the projective limit
limίβllβ2,...fβΛΪCjσίr(Γβl, Ta2f •••, TaJ directed for all finite subsets of J.

An operator T in £f(H) is called hyponormal if ΓT* ^ T*T. Bunce
[5] has proved the following;

THEOREM (Bunce). If'{Ta} is a commuting family of hyponormal
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operators in Jίf(H)f S' is the C*-algebra generated by {Ta}, and
is the commutator ideal for JTΊ then there exists a *-homomorphism
from JΓ onto C(σπ(Ta] aeJ)) such that the sequence

0 > £f (JT) -i-> ^r J^U C(σπ(Ta; a e J)) > 0

is exact, where i is the inclusion.
The homomorphism ΎJ satisfies

V(Ta)(X) = Pβ(λ) ,

where X e σs(Ta; a e J) and Pa: σπ(Ta; aeJ)—*C denotes the projection to
the a-th component.

Let π: ^^^/^(^) denote the natural projection.
is a commutative Banach algebra.

COROLLARY. / / Tίf T2, •••, Tk are in {Ta}, then we have

σπ(Tίf Tz, , Tk) - σ(π(ϊ\), π(T2), , π(Tk)) .

PROOF. We have

σr{Tu T2, . . , Tk) - {(P^λ), P2(λ), , Pk(X)); λ e σπ(Ta; a e J)}

); λ e σπ(Γα; α 6 J)}

e SK(C(^(Γβ; α 6 J)))}

, ζ(π(Tk))); ζ e

which completes the proof.
Now we define the subspace A in C(fl) (resp. C(dΩ)) by the sup.

norm closure of the continuous functions on Ω (resp. on dΩ) each of
which can be extended to a holomorphic function in a neighborhood of Ω.
Let Γ(A) denote the Shilov boundary of A. Since Ω is a strongly pseudo-
convex domain in a Stein space, we obtain (cf. [11, IX, C7])

Γ(A) = dΩ .

Let ^(A, Ω) (resp. JΓ~(A, Sβ)) be the C*-algebra on H\Ω) (resp.
H\dΩ)) generated by Tφ for all φeA.

LEMMA 3. We have

, Ω) -

(resp. ^~(A, dΩ) -

PROOF. Since A separates points in Ω (resp. dΩ), the set [φψ\ φ, ψeA}
is linearly dense in C(Ω) (resp. C(dΩ)) by the Stone-Weierstrass theorem.
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On the other hand, we have H2V|| ̂  II/IU for all feC(Ω) (resp. feC(3Ω)).
Thus ^ " ( β ) ( r e s p . ^~(dΩ)) coincides with the C*-algebra generated by
{TΨ[Ω\, φe A}(resp. {TΦ[dΩ]; φs A}).

For a C*-subalgebra Jf of £f(H), we denote by W(^~) the com-
mutator ideal of

LEMMA 4.

where JίΓ denotes the C*-algebra ^~(Ω)(resp. ^~{dΩ)) and £fr^ denotes

PROOF. ^ is irreducible. Assume otherwise, there exists a reducing
subspace for ^ 7 Then there exists a non-trivial orthogonal projection
QOO, 1) such that QTΦ = TΦQ for all φ e C(Ω).(resp. C(dΩ)). Put g - Ql e
H2(Ω)(resp. H\d(Ω)). Then we have, for all $>, <f e A,

t ) - (Qφ, Qψ) - (^, ^ ) - {\gfφ, ψ)

and we have

(g- \g\2)ΦfdV = o

(resp. ( ( β r - l s r | 2 ) ^ ώ S = 0) .

Since A separates points in Ω (resp. dΩ)f by the Stone-Weierstrass theorem,
the set {φψ; φ, ψeA) is linearly dense in C(β)(resp. C{dΩ)). Hence we have

(*) 9 = \g\2 a .e . .

Thus we know that g is real valued function in H\Ω) (resp. H\dΩ)).
Since g must be constant, and by (*), either g = 0 or gr = 1, which con-
tradicts the assumption Q Φ 0, 1. Next we show that <£*(^~) Φ {0}.
Assume otherwise. Then for all φeA,

(T,T¥ifi) = (Tt-TA,i)-

Hence

(2V1, Γirl) - (Γ,lf Tφl) - (^ ^ - (φ, φ) ,

and we have

Then it follows that φ belongs to H\Ω) (resp. H\dΩ)), a contradiction.
Thirdly we see r^{^) c ^ ^ We have, for any φ,ψe C(£)(resp. C(βΩ)),
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- ΠMφMψ

= ΠMΦ(Π - l)MΨ .

By Lemma 1, we obtain that TΦT+ - Tφψ e ^ 9 f . Thus we have TφTψ ~
TψTφtSfϊf and the inclusion {0} =£ <g%^~) c .Sf <g* follows. Now the
irreducibility of ^ shows that £f<if c <Sf ( J H ([Dixmier 7, 2.11.3, 4.1.10]),
and we have

LEMMA 5. // a finite number of functions φlf , ψn are in A} then

σπ(TΦl, TH, . , TΦn) - {(Λ(aϊ), &0»), f ^ W ) ; a? e 3^2},

where TΦί == Γ^.(i2)(resp. Γ^. = Tφj(dΩ)).

PROOF. By the corollary to the Bunce's theorem, we have

σπ(TΦl, Tφ2, , TΦn) = σ(π(TΦl), π{TH), . . . , π(TΦJ) .

Now let λ $ {(Λ(flc), A(sc), , ί*»(ί»)).; a; 6 3,0}. Then there exists ψlf ψ2f

6 C(β)(resp. C(d(Ω)) such that the function <f e C(β)(resp. C(3i2)) defined

by

satisfies the relation

^(») = 1 for x e dΩ .

We define the function ψ - 1 by (φ - 1)(#) = ^(x) - 1. Then

TΨl{TΦι - λ,) + . - + TΨn(TΦn - λ.) = I + Γ,.,

and

π(TΨl)(π(TΦι) - λ j + . + π(7VJ(π(?; j - λ.) = / + π ( Γ ^ ) .

Since (^ - l)(a;) = 0 on dΩ, π(Tφ^) = 0 by Lemmas 2, 3 and 4. Thus we get

X$σ(π(TΦl), •, τr(TJ) - σπ(TΦl, - -., Γ,J ,

and hence

Now we show the inverse implication. First we see that H ÎU = || Tφ

for all φeA. Indeed, if φeA, we have

(ί = 1,2,

Letting j —• oo f we have
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= \\Φ\\L-{dv>£\\Tφ\\.

Since \\TΦ\\ ̂  H^IU we g e t \\φ\\^ = | | Γ , | j . Now let ^f denote the set

= {Tφ; φe A}. Then j ^ is a commutative Banach algebra with identity.
We define a map z: A ~> J& by τ{φ) = Tφ for φeA. The map r is an
isometrical isomorphism. The map r induces a map Γ{τ) between the
Shilov boundaries r*: Γ(A)^Γ(j^f) by τ*x(Tφ) = x(τ-\Tφ)) = x(Φ) = Φ(x)
for x e Γ(A), ^ e A. Then r* is a homeomorphism. By a result of Zelazko
([19, in the proof of theorem, p. 240]), for every ζ e Γ(A), we have

(ζ(TΦl), -*.fζ(TΦn))eσπ(TΦl, • - , TΦn).

Consequently we induce that for each xeΓ(A),

(ΦMt , ΦM) - (τ*x(TΦl), , τ*x(TJ) e σ,(Γ^ , TΦn) .

Since /XA) = 3i3, we obtain

σπ(TΦlf . . . , Γ J D { ( ^ ) , , ^(a;)); α: e 3β} ,

which completes the proof.

PROOF OF THE THEOREMS. Let a; be a point in dΩ. For any φ e A,
the number φ(%) is the ^-th component of an element in σπ(Tφ; φeA) by
Lemma 5. Define a mapping β from dΩ to σκ(Tφ; φeA) by

β{x) - Mas); 0 eA} 6 C".

Since Ω is Stein, A separates points in dΩ. Hence β is injective. It is
easy to see that β is continuous and by Lemma 5, it is surjective. Since
dΩ is compact, β is a homeomorphism. Thus the mapping β*:C(σπ(Tφ:
Φ 6 A)) —* C(dΩ) defined by β*(f) = / ° β is an isometrical ^-isomorphism.
Thus Theorems 1 and 2 are consequences of Lemmas 3 and 4 applied to
the Bunce's theorem.

Remark that the theorems hold if we extend to the matrix case
(see [9, 2.3]).

Finally in this section we remark that one can prove the theorems
1 and 2 using Theorem 1.4 in [20] instead of the Bunce's theorem and
Zelazko's theorem. In fact, after noting the isometry between A and
j ^ one has by that theorem the following: There exists a closed set
X in Ω (resp. dΩ) containing Γ(A) ~ dΩ and a *-homomorphism p from

onto C(X) such that the short sequence

— ax) —> o
is exact and ρ(Tφ) = φ\X for all ^eC(42)(resp. C{d(Ω)). Now combining
this with Lemmas 2 and 4 one gets the theorems.
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3. Remarks. Brown-Douglas-Fillmore [4] or Atiyah has shown that,
for a compact metrizable space Xf the set of isomorphism classes of
short exact sequences of *-algebra

0-+5f&(H) <g) AT, — «l <g) Mn^C{X) (x) M% — 0 ,

where Sϊ is a subalgebra of the bounded linear operators Jίf(H) of a
Hubert space H and Mn is the set of (n x w)-matrices, is a group and
is isomorphic to the group KX(X). Consequently Theorems 1 and 2 give
elements άΓ in KJβΩ).

On the other hand, Atiyah [2] has defined a class of operators on
a compact Hausdorff space X called elliptic operators on X, denoted by
Ell (X). Then he defined a natural map Ell (X) — K0(X). Let us extend
naturally the Toeplitz operator Tφί for φ e CMn(Ω)(re$j). CxJβΩ))(CMn is the
Banach algebra of unvalued continuous functions) as an operator

fφ: L%n{Ω) ~+ LSn(β)(resp. L*c*(βΩ) -+ L2

cn(dΩ))

by TΦΠ + (1 - Π). Then it is easy to see that Tφ belongs to Ell (βΩ) if
ψ(x)φ{) for any xedΩ. Thus we naturally obtain elements {Tφ} in

The homotopy classes of φ in C{X) (g) Mn define elements {φ} in K\dΩ).
We have a natural bilinear mapping

Π: K,(dΩ) ® K\dΩ) ~+ KQ(dΩ)

by

Note that the operator Tφ is not a pseudo-differential operator in
the usual sense if dim Ω > 1. To know the class S~ in Kx{dΩ) will be
an interesting problem. The Brieskorn varieties give strongly pseudo-
convex domains in a Stein spaces. The calculation for such manifolds
is also not known.
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