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0. Introduction. In this paper we study the C*-algebra generated
by the Toeplitz operators defined on strongly pseudoconvex domains in
normal Stein spaces. We show that there exist short exact sequences
of *-algebras which give elements of Ext. defined by Brown-Douglas-
Fillmore ([4]).

Let 2 be a strongly pseudoconvex domain in a normal Stein space
M (with or without singularities). Suppose that 2 has a volume form.
Let L¥Q) (resp. L*2)) be the square integrable functions on 2 (resp.
on 92) and let H*2) (resp. H*(02)) be the holomorphic square integrable
functions on 2 (resp. be the closure of the C~-functions on 02 which are
extendible to holomorphic functions in £2). Let

I1: LX2)) — H*(Q)
(or IT: L*(0Q2) — H*(092))
be the orthogonal projection.

For any topological space X, we denote by C(X) the Banach algebra
of all complex valued continuous functions on X, endowed with supremum
norm.

For ¢ € C(2) (resp. ¢ e C(02)), we define the Toeplitz operator

T,[Q]: H*(2) — H* Q)
(resp. T,[00]: H*(02) — H*(0R2))
by T,(f) = Il($-1).

Let .97(2) (resp. .7 (02)) denote the C*-algebra generated by the
operators T, for all ¢ in C(2) (resp. C(6R2)). Let us define a mapping

£:C(2)— 7 (Q)
(resp. C(0R) — .7 (0R))
by & = T,, then & is contractive and *-linear. For any Hilbert space
H, we denote by < (H) the C*-algebra of all bounded linear operators

on H, by ¥ #(H) the closed ideal of compact operators on H.
Our main results are as follows.
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THEOREM 1. There exists a *-homomorphism o from .7 (2) onto C(0Q)
such that

0 — FE(H Q) — T (2) - C(62) 0
is exact and o(T,;) = ¢]02 for all ¢ € C(02).

THEOREM 2. There exists a *-homomorphism 0 from .7 (082) onto
C(02) with cross section & such that

00— FE(H(02) — 7 (02) _2, C(o2)— 0
18 exact.

The case when £ is the unit disc is classical and has been studied
by many peoples (see the books of Douglas [8], [9]). When 2 is a strongly
pseudoconvex domain in C*, the Theorem 1 has been given by Janas [13],
(see the remark of Yabuta [18]). Theorem 2 for multiply connected
domains in C is given by Abrahamse [1] and for spheres in C" is in Coburn
[6]. On the other hand, Rossi [15] has proved that each abstract strongly
pseudoconvex manifold bounds a Stein space with singularity, but seldom
without singularity. Consequently, it will be worth while to extend the
result to domains in Stein spaces.

1. Domains in Stein spaces. Let M be a complex space. Let R(M)
denote the set of regular points of M and let &(M) = M — R(M) denote
the set of singular points of M. A Hermitian inner product %, on each
I, (CT,R(M)), x e R(M), is called a Hermitian metric of M if the following
condition is satisfied.

*)  There exists a proper resolution

fiM—M,
where M is a nonsingular complex manifold with a Hermitian metric %
such that

7':1/ = f*hf(m
for every y e f(R(M)).
Then naturally we have the volume form dV on R(M), and we can do
the integration on M by regarding S(M) to be measure zero.

Let 2 be an open variety in M with smooth boundary 02 such that
2 is compact. Suppose that 32 is contained in R(M) and is defined by
the equation » = 0 where # is a continuous function, C* on R(M), with
» < 0 inside 2, » > 0 outside 2, and |dr| = 1 on 2. We call 2 a strongly
pseudoconvex domain if the Levi form is positive definite at each point
of 00.
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Now suppose that 2 is a strongly pseudoconvex domain in a normal
Stein space M with a Hermitian metric. The volume form dV naturally
induces a volume form dS on 09.

We define some Hilbert spaces as follows

L*2): the space of square integrable functions on £

L*(62): the space of square integrable functions on 0Q

H*2): the space of square integrable functions on @

which are holomorphic in 2
H*0R2): the L*0Q2) closure of C~-functions on 02
which are extendible to holomorphic functions on 2.

We have the proper resolution £ of 2 by Hironaka’s theorem [12].
Since 2 is normal, the total transform in £ of each singular point is
connected by the Zariski’s main theorem (cf. e.g. [16]). Consequently
the holomorphic functions on 2 and the holomorphic functions on 2 are
isomorphic.

It is known that H*(2) is a closed subspace of L*2). Obviously
H?*(02) is a closed subspace of L*0£2). Remark that, since £ has non-
constant holomorphic functions, 02 is connected if dim 2 >1 ([10,
5.3.6]). We have the operator 9, on L*@2) ([10, Chap. V]). By the
extension theorem ([10, 5.3.5]), we know that, if dim 2 > 1, then H*(092)
is the null space of the operator d,, and the space H?*@R) is independent
of 0.

The projection II: L*(2) — H*(2) (resp. L*0R2)— H*02)) is given by
the integration with Bergman kernel on 19] (resp. with the limit of Cauchy-
Szego kernel on 02 = 09).

We have the following lemma. For any ¢ ¢ C(2)(resp. C(612)), denote
by M, the multiplication by g¢.

LEMMA 1. The operator

(1 — II)M,: H(Q2) — LX2))
(resp.: H*(02) — L*02))

s compact.

PrOOF. For smooth ¢ C=(2) (or ¢ € C~(02)), it is a consequence of
the Kohn’s solution of 6-Neumenn problem or d,- Neumann problem (if
dim 2 > 1) and has been proved in Venugopalkrishna [17] or in Folland-
Kohn [10]. Since any ¢ € C(2) (or C(02)) can be approximated uniformly
by smooth ones, the lemma follows in these cases.

Consider the case of dim 2 = 1. Since M is normal M is an open
Riemann surface and 02 consists of a finite number of non-intersecting
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smooth Jordan curves. Thus the proof of the lemma is essentially the
same as that of Lemma 2.8 in Abrahamse [1]. Indeed, every continuous
function on 92 can be approximated uniformly on 02 by linear span of
meromorphic functions on M with exactly one simple pole in M\02. For
the proof combine Corollary 2 in Kodama [14] and Satz 12 in Behnke-Stein
[8]. Further if P(z, @) is a meromorphic function on M with exactly
one simple pole at a point a € M\oR2, then (f(2) — f(a))P(z, a) € H*(42) for
every f e H*22). Thus for such a P(z, a) we have

(A — DMz, f = f(@)1 — INP(z, @) for feHG2).

Hence (1—II)M; is of rank one. Since every ¢ € C(02) can be approximated
uniformly by linear span of such P, it follows that (1 — I7)M, is compact.
The following is also proved in [17] or [10].

LEMMA 2. If ¢eC(2) satisfies the equation ¢ =0 on 02, then the
multiplication by ¢ is a compact operator from H*(2) to L*(2).

2. Proof of the theorems. To prove theorems, we recall the definition
of joint spectrum and joint approximate point spectrum. Let B be a
commutative Banach algebra with unit. Let f, f;, -+, f, bein B. Then
the joint spectrum o(f, f;, +-+, f) is the set of points A = O\, Ny <+, Np)
in C* such that

B(fi = N) + B(fy = M) + -+ + B(fi — M) # B.

Let us denote by IM(B) the maximal ideal space of B. Then it is well-
known that

o(fyy fo =0 Ji) = A(m(S), m(fo), - -+, m(£p); m e M(B)} .

Let T, T, «+-, T, be a finite commuting subset in F(H). Then \ =
(Mg, Ny, *o+, A) in C* is in the joint approximate point spectrum o.(T,,
Tzr tt % Tk) if

LHNT, —N) + LHNT, — M) + -0 + LEHNT — M) = L (H) .

The joint approximate point spectrum is a compact non-empty subset of
C*. The projection map from C* to C' defines a continuous map from
0. (T, Ty +++, T,) onto o (T, T,, -+, T,) for each 1 <1 <Fk. Thus if
{Ty; xeJ} is a commuting family of operators in <°(H), then the
joint approximate point spectrum o.(T,; ®€J) is the projective limit
im o 0. apcs Oe( Loy Tay -+, Ta,) directed for all finite subsets of J.

An operator T in <(H) is called hyponormal if TT* < T*T. Bunce
[56] has proved the following;

THEOREM (Bunce). If {T,} is a commuting family of hyponormal
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operators in F(H), 7 is the C*-algebra generated by {T,}, and (7 )
18 the commutator ideal for 7, them there exists a *-homomorphism 7)
SJrom 7 onto Clc(T,; aelJ)) such that the sequence

00— Z(T)— s T s Ca.(Ty: @€ J)) — 0

18 exact, where 1 is the inclusion.
The homomorphism 7 satisfies
NTHN) = Po(N)
where neo (T aeld) and P,:o(T,; acJ)— C denotes the projection to
the a-th component.

Let 7: 9 —.9 /&’ (7") denote the natural projection. Then .7 /& (5 )
is a commutative Banach algebra.

COROLLARY. If T, T, -+, T\ are in {T,}, then we have
an(le Tz; Y Tk) = U(TC( Tl)) 71'( TZ); Tty ﬂ:(Tk)) .
Proor. We have
o':(Tu Tzr M) Tk) = {(P1(>")’ Pz()"); ) Pko\'))) AE o-z(Tu; ae J)}
= {(THN), PTIN), =+, YT)N)); M€ 0(To; @€ )}
= {(&((TY), EO(TS)), - -+, E(TL))); & € MUCloTe; @ € J)))}
= {C(=(TY)), Ex(T), + -+, Lm(T))); L e M(T [&(F))}
= o(@(Ty), n(Ty), - -+, ©(Tw) ,
which completes the proof.

Now we define the subspace A in C(2) (resp. C(62)) by the sup.
norm closure of the continuous functions on 2 (resp. on 92) each of
which can be extended to a holomorphic function in a neighborhood of 2.
Let I'(A) denote the Shilov boundary of A. Since 2 is a strongly pseudo-
convex domain in a Stein space, we obtain (cf. [11, IX, CT7])

I'(d) =092.

Let 9 (4, 2) (resp. .7 (4, 02)) be the C*-algebra on H*Q) (resp.
H*(08)) generated by T, for all ¢c A.

LemmA 3. We have

T (4, Q) = 7(Q)
(resp. T (A, 0R) = .7 (692)) .

PROOF. Since A separates points in 2 (resp. 02), the set {¢¥; ¢, v € A}
is linearly dense in C(Q) (resp. C(32)) by the Stone-Weierstrass theorem.
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On the other hand, we have ||T,|| < || f|l. for all f € C(2) (resp. f € C(GQ2)).
Thus 7 (2)(resp. .7 (02)) coincides with the C*-algebra generated by

{T,[2]; ¢ € AY(resp. {T,[02]; ¢ € A}).

For a C*-subalgebra .9~ of & (H), we denote by &(9 ) the com-
mutator ideal of .7~

LemMMmA 4.

(T )=LX7%,
where 7 denotes the C*-algebra 7 (2)(resp. .7 (02)) and &% denotes
L& (H (D)) resp. & & (H*(02))).

PrROOF. .7 isirreducible. Assume otherwise, there exists a reducing
subspace for .. Then there exists a non-trivial orthogonal projection
Q(+0, 1) such that QT, = T,Q for all ¢ € C(2).(resp. C(62)). Put g = Qle
H*(Q)(resp. H*(9(2)). Then we have, for all ¢, € A4,

(98, ¥) = (Q¢, V)
= (@3, ¥) = (Q¢, Qv) = (94, 9v) = ({gl's, ¥)

and we have
[, @~ 19m97av =0

(resp. | (9= lgP)p¥dS = 0) .

Since A separates points in 2 (resp. 022), by the Stone-Weierstrass theorem,
the set {¢¥; ¢, ¥ € A} is linearly dense in C(2)(resp. C(32)). Hence we have
(%) g=|gl? a.e..

Thus we know that ¢ is real valued function in H*Q) (resp. H*(02)).
Since g must be constant, and by (x), either g = 0 or g = 1, which con-
tradicts the assumption @ % 0, 1. Next we show that & (97) = {0}.
Assume otherwise. Then for all g€ A,

(T, T51,1) = (T5T,1, 1) .
Hence
(T51, T51) = (Ty1, Ty1) = (g, ¢) = (9, 8) »
and we have
Mgl = [18]l .

Then it follows that ¢ belongs to H*(2) (resp. H*(02)), a contradiction.
Thirdly we see (9 ) ¥ %. We have, for any ¢, v € C(2)(resp. C(62)),
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= IIM,II — )My .

By Lemma 1, we obtain that 7,7y — Ty € ¥ %. Thus we have T,Ty —
TyTse X% and the inclusion {0} # (7 ) L% follows. Now the
irreducibility of .7~ shows that &% ¢ (") ([Dixmier 7, 2.11.3, 4.1.10)),
and we have &(9 ) = LZ.

LEMMA 5. If a finite number of functions ¢, ---, ¢, are in A, then
0Ty Ty =y Ty,) = {(6(2), u(), -, $a(®)); €02},
where Ty, = Ty (2)(resp. T;; = T,,(09)).
PrROOF. By the corollary to the Bunce’s theorem, we have
0Ty Topy ++ s Ty,) = 0(@(Ty), 7(Tyy), -+, ©(Ty,))

Now let )¢ {(g,(), ¢,(x), -+ -, ¢.(x)); x€0R}). Then there exists afr, 4, *++,
2, € C(2)(resp. C(0(L2)) such that the function ¢ C(2)(resp. C(32)) defined
by

#(@) = Y (XN, () — N + + o+ + Y (@) (Ba() — N)
satisfies the relation
o)y =1 for xzeol.

We define the function ¢ — 1 by (¢ — 1)(x) = ¢(x) — 1. Then
Ty (T, —N) 4 ooe 4+ Ty (Tg, — M) = T + Ty,
and
T(Ty ) @(Ty) — M) + o+ + 7Ty )7(Ty,) — Na) = I + 7(Ty)
Since (¢ — 1)(x) = 0 on 62, ©(T,_.,) = 0 by Lemmas 2, 3 and 4. Thus we get
N& o(@(Ty), <+, w(Ty,) = 0(Tyy -+, Ty,)
and hence
0Ty + ==y Tp,) C{(3:(®), - -+, 9a(2)); €02} .

Now we show the inverse implication. First we see that ||¢|l. = || T,]|
for all ¢ A. Indeed, if ¢c A, we have

(Jiorav)” = (Nimni1av)” = oo s i
=12,

Letting 7 — <o, we have



160 H. SATO AND K. YABUTA

¢l = lgllowr, = [| Toll .

Since || T;|| = ||¢]|., We get ||¢]l. = || Ts||. Now let .o denote the set
& = {T,;; € A}. Then .7 is a commutative Banach algebra with identity.
We define a map 7: A— .o by () = T, for s A. The map 7 is an
isometrical isomorphism. The map 7 induces a map I'(r) between the
Shilov boundaries 7,:I'(4) — I'(.7) by z,x(Ty) = a(z7(T,)) = x(g) = ¢(x)
for xe I'(A), §c A. Then r, is a homeomorphism. By a result of Zelazko
([19, in the proof of theorem, p. 240]), for every { e I'(A), we have

&), ==+, UTs,)) €0Tyy + =+, Th,)
Consequently we induce that for each x e I'(4),
(@), <« +y Bu(®)) = (Tu(Ty)), + =+, T42(Ty,)) € 0u( Ty + o+, T,) -
Since I'(A) = 02, we obtain
0Ty ++ 2y Ts,) D{(8:(), + -+, 3u(2)); w €082},
which completes the proof.

PrROOF OF THE THEOREMS. Let x be a point in 62. For any 4€ A4,
the number ¢(x) is the ¢-th component of an element in ¢.(T,; ¢ € A) by
Lemma 5. Define a mapping £ from o2 to o.(Ty; s€ 4) by

B(x) = {g(x); p € A} e C“.
Since £ is Stein, A separates points in 02. Hence £ is injective. It is
easy to see that @ is continuous and by Lemma 5, it is surjective. Since
08 is compact, B is a homeomorphism. Thus the mapping B*: C(o.(T};:
o € A)) — C(02) defined by B*(f) = foB is an isometrical *-isomorphism.
Thus Theorems 1 and 2 are consequences of Lemmas 8 and 4 applied to
the Bunce’s theorem.

Remark that the theorems hold if we extend to the matrix case
(see [9, 2.3)).

Finally in this section we remark that one can prove the theorems
1 and 2 using Theorem 1.4 in [20] instead of the Bunce’s theorem and
Zelazko’s theorem. In fact, after noting the isometry between A and
. one has by that theorem the following: There exists a closed set
X in 2 (resp. 02) containing I'(A) = 02 and a *-homomorphism o from
7 onto C(X) such that the short sequence

0— &(9) —— .7 - O(X) — 0

is exact and p(T;) = ¢| X for all ¢eC(2)(resp. C(3(2)). Now combining
this with Lemmas 2 and 4 one gets the theorems.
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3. Remarks. Brown-Douglas-Fillmore [4] or Atiyah has shown that,
for a compact metrizable space X, the set of isomorphism classes of
short exact sequences of *-algebra

0—-ZH)QM,—-ARQM,—-CX)R®M,—0,

where A is a subalgebra of the bounded linear operators << (H) of a
Hilbert space H and M, is the set of (» X n)-matrices, is a group and
is isomorphic to the group K,(X). Consequently Theorems 1 and 2 give
elements 9 in K,(09).

On the other hand, Atiyah [2] has defined a class of operators on
a compact Hausdorff space X called elliptic operators on X, denoted by
Ell (X). Then he defined a natural map Ell (X)— K{(X). Let us extend
naturally the Toeplitz operator T}, for ¢ e Cy (2)(resp. Cy, (02))(Cy, is the
Banach algebra of M,-valued continuous functions) as an operator

T,: Lin(Q) — Lin(Q)(resp. Lin(0Q) — Lin(092))

by T,I + (1 —II). Then it is easy to see that T, belongs to Ell (39) if
é(x) = 0 for any x€d®2. Thus we naturally obtain elements {7} in
K, (09).

The homotopy classes of ¢ in C(X) Q M, define elements {¢} in K'(02).
We have a natural bilinear mapping

N: K,(02) ® K'(02) — K02)
by
T Nt = {Ty} .
Note that the operator 7T, is not a pseudo-differential operator in
the usual sense if dim 2 > 1. To know the class .7~ in K,(02) will be

an interesting problem. The Brieskorn varieties give strongly pseudo-
convex domains in a Stein spaces. The calculation for such manifolds

is also not known.
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