TOEPLITZ OPERATORS ON STRONGLY PSEUDOCONVEX DOMAINS IN STEIN SPACES

HAJIME SATO AND KÔZÔ YABUTA

(Received December 15, 1976)

0. Introduction. In this paper we study the C^* -algebra generated by the Toeplitz operators defined on strongly pseudoconvex domains in normal Stein spaces. We show that there exist short exact sequences of *-algebras which give elements of Ext. defined by Brown-Douglas-Fillmore ([4]).

Let Ω be a strongly pseudoconvex domain in a normal Stein space M (with or without singularities). Suppose that Ω has a volume form. Let $L^2(\Omega)$ (resp. $L^2(\partial\Omega)$) be the square integrable functions on Ω (resp. on $\partial\Omega$) and let $H^2(\Omega)$ (resp. $H^2(\partial\Omega)$) be the holomorphic square integrable functions on Ω (resp. be the closure of the C^{∞} -functions on $\partial\Omega$ which are extendible to holomorphic functions in Ω). Let

$$\Pi: L^{2}(\Omega)) \longrightarrow H^{2}(\Omega)$$

(or $\Pi: L^{2}(\partial\Omega) \longrightarrow H^{2}(\partial\Omega)$)

be the orthogonal projection.

For any topological space X, we denote by C(X) the Banach algebra of all complex valued continuous functions on X, endowed with supremum norm.

For $\phi \in C(\overline{\Omega})$ (resp. $\phi \in C(\partial \Omega)$), we define the Toeplitz operator

$$\begin{split} T_{\phi}[\mathcal{Q}] \colon H^{\mathfrak{2}}(\mathcal{Q}) & \longrightarrow H^{\mathfrak{2}}(\mathcal{Q}) \\ (\text{resp. } T_{\phi}[\partial \mathcal{Q}] \colon H^{\mathfrak{2}}(\partial \mathcal{Q}) & \longrightarrow H^{\mathfrak{2}}(\partial \mathcal{Q})) \end{split}$$

by $T_{\phi}(f) = \Pi(\phi \cdot f)$.

Let $\mathscr{T}(\Omega)$ (resp. $\mathscr{T}(\partial\Omega)$) denote the C^{*}-algebra generated by the operators T_{ϕ} for all ϕ in $C(\overline{\Omega})$ (resp. $C(\partial\Omega)$). Let us define a mapping

$$\xi: C(\bar{\Omega}) \to \mathscr{T}(\Omega)$$

(resp. $C(\partial \Omega) \to \mathscr{T}(\partial \Omega)$)

by $\xi \phi = T_{\phi}$, then ξ is contractive and *-linear. For any Hilbert space H, we denote by $\mathscr{L}(H)$ the C*-algebra of all bounded linear operators on H, by $\mathscr{L}\mathscr{C}(H)$ the closed ideal of compact operators on H.

Our main results are as follows.

THEOREM 1. There exists a *-homomorphism ρ from $\mathcal{T}(\Omega)$ onto $C(\partial\Omega)$ such that

 $0 \longrightarrow \mathscr{LC}(H^{\scriptscriptstyle 2}(\Omega)) \longrightarrow \mathscr{T}(\Omega) \stackrel{\rho}{\longrightarrow} C(\partial \Omega) \longrightarrow 0$

is exact and $\rho(T_{\phi}) = \phi | \partial \Omega$ for all $\phi \in C(\partial \Omega)$.

THEOREM 2. There exists a *-homomorphism ρ from $\mathcal{T}(\partial\Omega)$ onto $C(\partial\Omega)$ with cross section ξ such that

$$0 \longrightarrow \mathscr{LC}(H^{\scriptscriptstyle 2}(\partial \Omega)) \longrightarrow \mathscr{T}(\partial \Omega) \stackrel{\rho}{\longrightarrow} C(\partial \Omega) \longrightarrow 0$$

is exact.

The case when Ω is the unit disc is classical and has been studied by many peoples (see the books of Douglas [8], [9]). When Ω is a strongly pseudoconvex domain in C^n , the Theorem 1 has been given by Janas [13], (see the remark of Yabuta [18]). Theorem 2 for multiply connected domains in C is given by Abrahamse [1] and for spheres in C^n is in Coburn [6]. On the other hand, Rossi [15] has proved that each abstract strongly pseudoconvex manifold bounds a Stein space with singularity, but seldom without singularity. Consequently, it will be worth while to extend the result to domains in Stein spaces.

1. Domains in Stein spaces. Let M be a complex space. Let $\Re(M)$ denote the set of regular points of M and let $\mathfrak{S}(M) = M - \mathfrak{R}(M)$ denote the set of singular points of M. A Hermitian inner product h_x on each $\Pi_{1,0}(CT_x\mathfrak{R}(M)), x \in \mathfrak{R}(M)$, is called a Hermitian metric of M if the following condition is satisfied.

*) There exists a proper resolution

 $f\colon \widetilde{M} \longrightarrow M$,

where \widetilde{M} is a nonsingular complex manifold with a Hermitian metric \widetilde{h} such that

$${\widetilde h}_y=f^*h_{{\scriptscriptstyle f}(y)}$$

for every $y \in f^{-1}(\mathfrak{R}(M))$.

Then naturally we have the volume form dV on $\Re(M)$, and we can do the integration on M by regarding $\mathfrak{S}(M)$ to be measure zero.

Let Ω be an open variety in M with smooth boundary $\partial\Omega$ such that $\overline{\Omega}$ is compact. Suppose that $\partial\Omega$ is contained in $\Re(M)$ and is defined by the equation r = 0 where r is a continuous function, C^{∞} on $\Re(M)$, with r < 0 inside $\Omega, r > 0$ outside $\overline{\Omega}$, and |dr| = 1 on $\partial\Omega$. We call Ω a strongly pseudoconvex domain if the Levi form is positive definite at each point of $\partial\Omega$.

Now suppose that Ω is a strongly pseudoconvex domain in a normal Stein space M with a Hermitian metric. The volume form dV naturally induces a volume form dS on $\partial\Omega$.

We define some Hilbert spaces as follows

 $L^2(\Omega)$: the space of square integrable functions on Ω

 $L^2(\partial \Omega)$: the space of square integrable functions on $\partial \Omega$

- $H^2(\Omega)$: the space of square integrable functions on Ω which are holomorphic in Ω
- $H^2(\partial\Omega)$: the $L^2(\partial\Omega)$ closure of C^{∞} -functions on $\partial\Omega$

which are extendible to holomorphic functions on Ω .

We have the proper resolution $\tilde{\Omega}$ of Ω by Hironaka's theorem [12]. Since Ω is normal, the total transform in $\tilde{\Omega}$ of each singular point is connected by the Zariski's main theorem (cf. e.g. [16]). Consequently the holomorphic functions on Ω and the holomorphic functions on $\tilde{\Omega}$ are isomorphic.

It is known that $H^2(\Omega)$ is a closed subspace of $L^2(\Omega)$. Obviously $H^2(\partial\Omega)$ is a closed subspace of $L^2(\partial\Omega)$. Remark that, since Ω has nonconstant holomorphic functions, $\partial\Omega$ is connected if dim $\Omega > 1$ ([10, 5.3.6]). We have the operator $\bar{\partial}_b$ on $L^2(\partial\Omega)$ ([10, Chap. V]). By the extension theorem ([10, 5.3.5]), we know that, if dim $\Omega > 1$, then $H^2(\partial\Omega)$ is the null space of the operator $\bar{\partial}_b$, and the space $H^2(\partial\Omega)$ is independent of Ω .

The projection $\Pi: L^2(\Omega) \to H^2(\Omega)$ (resp. $L^2(\partial\Omega) \to H^2(\partial\Omega)$) is given by the integration with Bergman kernel on $\widetilde{\Omega}$ (resp. with the limit of Cauchy-Szegö kernel on $\partial\Omega = \partial\widetilde{\Omega}$).

We have the following lemma. For any $\phi \in C(\overline{\Omega})(\text{resp. } C(\partial \Omega))$, denote by M_{ϕ} the multiplication by ϕ .

LEMMA 1. The operator

$$(1 - \Pi)M_{\phi}: H^{2}(\Omega) \to L^{2}(\Omega))$$

(resp.: $H^{2}(\partial \Omega) \to L^{2}(\partial \Omega)$)

is compact.

PROOF. For smooth $\phi \in C^{\infty}(\overline{\Omega})$ (or $\phi \in C^{\infty}(\partial\Omega)$), it is a consequence of the Kohn's solution of $\overline{\partial}$ -Neumenn problem or $\overline{\partial}_{b^{-}}$ Neumann problem (if dim $\Omega > 1$) and has been proved in Venugopalkrishna [17] or in Folland-Kohn [10]. Since any $\phi \in C(\overline{\Omega})$ (or $C(\partial\Omega)$) can be approximated uniformly by smooth ones, the lemma follows in these cases.

Consider the case of dim $\Omega = 1$. Since *M* is normal *M* is an open Riemann surface and $\partial \Omega$ consists of a finite number of non-intersecting smooth Jordan curves. Thus the proof of the lemma is essentially the same as that of Lemma 2.8 in Abrahamse [1]. Indeed, every continuous function on $\partial\Omega$ can be approximated uniformly on $\partial\Omega$ by linear span of meromorphic functions on M with exactly one simple pole in $M \setminus \partial\Omega$. For the proof combine Corollary 2 in Kodama [14] and Satz 12 in Behnke-Stein [3]. Further if P(z, a) is a meromorphic function on M with exactly one simple pole at a point $a \in M \setminus \partial\Omega$, then $(f(z) - f(a))P(z, a) \in H^2(\partial\Omega)$ for every $f \in H^2(\partial\Omega)$. Thus for such a P(z, a) we have

$$(1-\Pi)M_{P(z,a)}f = f(a)(1-\Pi)P(z,a)$$
 for $f \in H^2(\partial\Omega)$.

Hence $(1-\Pi)M_P$ is of rank one. Since every $\phi \in C(\partial \Omega)$ can be approximated uniformly by linear span of such P, it follows that $(1-\Pi)M_{\phi}$ is compact.

The following is also proved in [17] or [10].

LEMMA 2. If $\phi \in C(\overline{\Omega})$ satisfies the equation $\phi = 0$ on $\partial\Omega$, then the multiplication by ϕ is a compact operator from $H^2(\Omega)$ to $L^2(\Omega)$.

2. Proof of the theorems. To prove theorems, we recall the definition of joint spectrum and joint approximate point spectrum. Let B be a commutative Banach algebra with unit. Let f_1, f_2, \dots, f_k be in B. Then the joint spectrum $\sigma(f_1, f_2, \dots, f_k)$ is the set of points $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ in C^k such that

$$B(f_1 - \lambda_1) + B(f_2 - \lambda_2) + \cdots + B(f_k - \lambda_k) \neq B$$
.

Let us denote by $\mathfrak{M}(B)$ the maximal ideal space of B. Then it is well-known that

$$\sigma(f_1, f_2, \cdots, f_k) = \{(m(f_1), m(f_2), \cdots, m(f_k)); m \in \mathfrak{M}(B)\}$$

Let T_1, T_2, \dots, T_k be a finite commuting subset in $\mathscr{L}(H)$. Then $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ in C^k is in the joint approximate point spectrum $\sigma_{\pi}(T_1, T_2, \dots, T_k)$ if

$$\mathscr{L}(H)(T_{\scriptscriptstyle 1}-\lambda_{\scriptscriptstyle 1})+\mathscr{L}(H)(T_{\scriptscriptstyle 2}-\lambda_{\scriptscriptstyle 2})+\cdots+\mathscr{L}(H)(T_{\scriptscriptstyle k}-\lambda_{\scriptscriptstyle k})
ot=\mathscr{L}(H)$$
 .

The joint approximate point spectrum is a compact non-empty subset of C^k . The projection map from C^k to C^l defines a continuous map from $\sigma_{\pi}(T_1, T_2, \dots, T_k)$ onto $\sigma_{\pi}(T_1, T_2, \dots, T_l)$ for each $1 \leq l \leq k$. Thus if $\{T_{\alpha}; \alpha \in J\}$ is a commuting family of operators in $\mathscr{L}(H)$, then the joint approximate point spectrum $\sigma_{\pi}(T_{\alpha}; \alpha \in J)$ is the projective limit $\lim_{\alpha_1,\alpha_2,\dots,\alpha_n \subset J} \sigma_{\pi}(T_{\alpha_1}, T_{\alpha_2}, \dots, T_{\alpha_n})$ directed for all finite subsets of J.

An operator T in $\mathscr{L}(H)$ is called hyponormal if $TT^* \leq T^*T$. Bunce [5] has proved the following;

THEOREM (Bunce). If $\{T_a\}$ is a commuting family of hyponormal

156

operators in $\mathcal{L}(H)$, \mathcal{T} is the C*-algebra generated by $\{T_{\alpha}\}$, and $\mathcal{C}(\mathcal{T})$ is the commutator ideal for \mathcal{T} , then there exists a *-homomorphism η from \mathcal{T} onto $C(\sigma_{\pi}(T_{\alpha}; \alpha \in J))$ such that the sequence

$$0 \longrightarrow \mathscr{C}(\mathscr{T}) \xrightarrow{i} \mathscr{T} \xrightarrow{\eta} C(\sigma_{\pi}(T_{\alpha}; \alpha \in J)) \longrightarrow 0$$

is exact, where i is the inclusion.

The homomorphism η satisfies

$$\eta(T_{lpha})(\lambda) = P_{lpha}(\lambda)$$
 ,

where $\lambda \in \sigma_{\pi}(T_{\alpha}; \alpha \in J)$ and $P_{\alpha}: \sigma_{\pi}(T_{\alpha}; \alpha \in J) \rightarrow C$ denotes the projection to the α -th component.

Let $\pi: \mathcal{T} \to \mathcal{T} | \mathcal{C}(\mathcal{T})$ denote the natural projection. Then $\mathcal{T} | \mathcal{C}(\mathcal{T})$ is a commutative Banach algebra.

COROLLARY. If T_1, T_2, \dots, T_k are in $\{T_{\alpha}\}$, then we have $\sigma_{\pi}(T_1, T_2, \dots, T_k) = \sigma(\pi(T_1), \pi(T_2), \dots, \pi(T_k))$.

PROOF. We have

$$egin{aligned} &\sigma_{\pi}(T_1,\ T_2,\ \cdots,\ T_k)=\{(P_1(\lambda),\ P_2(\lambda),\ \cdots,\ P_k(\lambda));\ \lambda\in\sigma_{\pi}(T_{lpha};\ lpha\in J)\}\ &=\{(\eta(T_1)(\lambda),\ \eta(T_2)(\lambda),\ \cdots,\ \eta(T_k)(\lambda));\ \lambda\in\sigma_{\pi}(T_{lpha};\ lpha\in J)\}\ &=\{(\xi(\eta(T_1)),\ \xi(\eta(T_2)),\ \cdots,\ \xi(\eta(T_k)));\ \xi\in\mathfrak{M}(C(\sigma_{\pi}(T_{lpha};\ lpha\in J)))\}\ &=\{(\zeta(\pi(T_1)),\ \zeta(\pi(T_2)),\ \cdots,\ \zeta(\pi(T_k)));\ \zeta\in\mathfrak{M}(\mathscr{T}/\mathscr{C}(\mathscr{T})))\}\ &=\sigma(\pi(T_1),\ \pi(T_2),\ \cdots,\ \pi(T_k))\ ,\end{aligned}$$

which completes the proof.

Now we define the subspace A in $C(\overline{\Omega})$ (resp. $C(\partial\Omega)$) by the sup. norm closure of the continuous functions on $\overline{\Omega}$ (resp. on $\partial\Omega$) each of which can be extended to a holomorphic function in a neighborhood of $\overline{\Omega}$. Let $\Gamma(A)$ denote the Shilov boundary of A. Since Ω is a strongly pseudoconvex domain in a Stein space, we obtain (cf. [11, IX, C7])

$$\Gamma(A) = \partial \Omega$$
.

Let $\mathscr{T}(A, \Omega)$ (resp. $\mathscr{T}(A, \partial \Omega)$) be the C^{*}-algebra on $H^2(\Omega)$ (resp. $H^2(\partial \Omega)$) generated by T_{ϕ} for all $\phi \in A$.

LEMMA 3. We have

$$\mathcal{J}(A, \Omega) = \mathcal{J}(\Omega)$$

(resp. $\mathcal{J}(A, \partial \Omega) = \mathcal{J}(\partial \Omega)$).

PROOF. Since A separates points in $\overline{\Omega}$ (resp. $\partial\Omega$), the set $\{\phi\bar{\psi}; \phi, \psi \in A\}$ is linearly dense in $C(\overline{\Omega})$ (resp. $C(\partial\Omega)$) by the Stone-Weierstrass theorem.

On the other hand, we have $||T_{\phi}|| \leq ||f||_{\infty}$ for all $f \in C(\overline{\Omega})$ (resp. $f \in C(\partial\Omega)$). Thus $\mathscr{T}(\Omega)$ (resp. $\mathscr{T}(\partial\Omega)$) coincides with the C*-algebra generated by $\{T_{\phi}[\Omega]; \phi \in A\}$ (resp. $\{T_{\phi}[\partial\Omega]; \phi \in A\}$).

For a C*-subalgebra \mathcal{T} of $\mathcal{L}(H)$, we denote by $\mathcal{C}(\mathcal{T})$ the commutator ideal of \mathcal{T} .

LEMMA 4.

 $\mathcal{C}(\mathcal{T}) = \mathcal{L}\mathcal{C}$,

where \mathcal{T} denotes the C^{*}-algebra $\mathcal{T}(\Omega)(resp. \mathcal{T}(\partial\Omega))$ and \mathcal{LC} denotes $\mathcal{LC}(H^2(\Omega))(resp. \mathcal{LC}(H^2(\partial\Omega))).$

PROOF. \mathscr{T} is irreducible. Assume otherwise, there exists a reducing subspace for \mathscr{T} . Then there exists a non-trivial orthogonal projection $Q(\neq 0, 1)$ such that $QT_{\phi} = T_{\phi}Q$ for all $\phi \in C(\overline{\Omega}).(resp. C(\partial\Omega))$. Put $g = Q1 \in H^2(\Omega)(resp. H^2(\partial(\Omega)))$. Then we have, for all $\phi, \psi \in A$,

$$egin{aligned} &(g\phi,\,\psi)=(Q\phi,\,\psi)\ &\ &\ &\ &=(Q^2\phi,\,\psi)=(Q\phi,\,Q\psi)=(g\phi,\,g\psi)=(|\,g\,|^2\phi,\,\psi) \end{aligned}$$

and we have

$$\int_{arrho}(g-|g|^{\scriptscriptstyle 2})\phiar{\psi}d\,V=0$$

(resp. $\int_{arrho_{arrho}}(g-|g|^{\scriptscriptstyle 2})\phiar{\psi}dS=0)$.

Since A separates points in $\overline{\Omega}$ (resp. $\partial\Omega$), by the Stone-Weierstrass theorem, the set $\{\phi\overline{\psi}; \phi, \psi \in A\}$ is linearly dense in $C(\overline{\Omega})$ (resp. $C(\partial\Omega)$). Hence we have

$$(*)$$
 $g = |g|^2$ a.e.

Thus we know that g is real valued function in $H^2(\Omega)$ (resp. $H^2(\partial\Omega)$). Since g must be constant, and by (*), either g = 0 or g = 1, which contradicts the assumption $Q \neq 0, 1$. Next we show that $\mathscr{C}(\mathscr{T}) \neq \{0\}$. Assume otherwise. Then for all $\phi \in A$,

$$(T_{\phi}T_{\overline{\phi}}1, 1) = (T_{\overline{\phi}}T_{\phi}1, 1)$$
.

Hence

$$(T_{\overline{\phi}}\mathbf{1}, T_{\overline{\phi}}\mathbf{1}) = (T_{\phi}\mathbf{1}, T_{\phi}\mathbf{1}) = (\phi, \phi) = (\overline{\phi}, \overline{\phi}),$$

and we have

$$||\varPi ar \phi|| = ||ar \phi||$$
 .

Then it follows that $\bar{\phi}$ belongs to $H^2(\Omega)$ (resp. $H^2(\partial\Omega)$), a contradiction. Thirdly we see $\mathscr{C}(\mathscr{I}) \subset \mathscr{LC}$. We have, for any $\phi, \psi \in C(\bar{\Omega})$ (resp. $C(\partial\Omega)$),

158

$$egin{aligned} T_{\phi}T_{\psi} &- T_{\phi\psi} = \varPi M_{\phi}\varPi M_{\psi} - \varPi M_{\phi}M_{\psi} \ &= \varPi M_{\phi}(\varPi - 1)M_{\psi} \;. \end{aligned}$$

By Lemma 1, we obtain that $T_{\phi}T_{\psi} - T_{\phi\psi} \in \mathscr{LC}$. Thus we have $T_{\phi}T_{\psi} - T_{\psi}T_{\phi} \in \mathscr{LC}$ and the inclusion $\{0\} \neq \mathscr{C}(\mathscr{T}) \subset \mathscr{LC}$ follows. Now the irreducibility of \mathscr{T} shows that $\mathscr{LC} \subset \mathscr{C}(\mathscr{T})$ ([Dixmier 7, 2.11.3, 4.1.10]), and we have $\mathscr{C}(\mathscr{T}) = \mathscr{LC}$.

LEMMA 5. If a finite number of functions ϕ_1, \dots, ϕ_n are in A, then $\sigma_{\pi}(T_{\phi_1}, T_{\phi_2}, \dots, T_{\phi_n}) = \{(\phi_1(x), \phi_2(x), \dots, \phi_n(x)); x \in \partial\Omega\},\$

where $T_{\phi_j} = T_{\phi_j}(\Omega)(\text{resp. } T_{\phi_j} = T_{\phi_j}(\partial\Omega)).$

PROOF. By the corollary to the Bunce's theorem, we have

$$\sigma_{\pi}(T_{\phi_1}, T_{\phi_2}, \cdots, T_{\phi_n}) = \sigma(\pi(T_{\phi_1}), \pi(T_{\phi_2}), \cdots, \pi(T_{\phi_n}))$$

Now let $\lambda \in \{(\phi_1(x), \phi_2(x), \dots, \phi_n(x)); x \in \partial \Omega\}$. Then there exists $\psi_1, \psi_2, \dots, \psi_n \in C(\overline{\Omega})$ (resp. $C(\partial(\Omega))$ such that the function $\psi \in C(\overline{\Omega})$ (resp. $C(\partial\Omega)$) defined by

$$\phi(x)=\psi_{\scriptscriptstyle 1}(x)(\phi_{\scriptscriptstyle 1}(x)-\lambda_{\scriptscriptstyle 1})+\cdots+\psi_{\scriptscriptstyle n}(x)(\phi_{\scriptscriptstyle n}(x)-\lambda_{\scriptscriptstyle n})$$

satisfies the relation

$$\phi(x) = 1$$
 for $x \in \partial \Omega$.

We define the function $\phi - 1$ by $(\phi - 1)(x) = \phi(x) - 1$. Then

$$T_{\psi_1}(T_{\phi_1}-\lambda_1)+\cdots+T_{\psi_n}(T_{\phi_n}-\lambda_n)=I+T_{\phi_{-1}}$$

and

$$\pi(T_{\psi_1})(\pi(T_{\phi_1})-\lambda_1)+\cdots+\pi(T_{\psi_n})(\pi(T_{\phi_n})-\lambda_n)=I+\pi(T_{\phi_{-1}})$$

Since $(\phi - 1)(x) = 0$ on $\partial \Omega$, $\pi(T_{\phi-1}) = 0$ by Lemmas 2, 3 and 4. Thus we get

$$\lambda \oplus \sigma(\pi(T_{\phi_1}), \ \cdots, \ \pi(T_{\phi_n})) = \sigma_{\pi}(T_{\phi_1}, \ \cdots, \ T_{\phi_n})$$
 ,

and hence

$$\sigma_{\pi}(T_{\phi_1}, \cdots, T_{\phi_n}) \subset \{(\phi_1(x), \cdots, \phi_n(x)); x \in \partial \Omega\}.$$

Now we show the inverse implication. First we see that $||\phi||_{\infty} = ||T_{\phi}||$ for all $\phi \in A$. Indeed, if $\phi \in A$, we have

$$ig(\int |\phi|^j d\,V ig)^{1/j} = ig(\int |(T_{\phi}1)^j| \,d\,V ig)^{1/j} = ||(T_{\phi}1)^j||_2^{1/j} ||1||_2^{1/j} \leq ||T_{\phi}|| \,||1||_2^{2/j} \ (j = 1, \, 2, \, \cdots) \,.$$

Letting $j \rightarrow \infty$, we have

$$\|\phi\|_{\infty} = \|\phi\|_{L^{\infty}(dV)} \leq \|T_{\phi}\|.$$

Since $||T_{\phi}|| \leq ||\phi||_{\infty}$, we get $||\phi||_{\infty} = ||T_{\phi}||$. Now let \mathscr{A} denote the set $\mathscr{A} = \{T_{\phi}; \phi \in A\}$. Then \mathscr{A} is a commutative Banach algebra with identity. We define a map $\tau: A \to \mathscr{A}$ by $\tau(\phi) = T_{\phi}$ for $\phi \in A$. The map τ is an isometrical isomorphism. The map τ induces a map $\Gamma(\tau)$ between the Shilov boundaries $\tau_*: \Gamma(A) \to \Gamma(\mathscr{A})$ by $\tau_* x(T_{\phi}) = x(\tau^{-1}(T_{\phi})) = x(\phi) = \phi(x)$ for $x \in \Gamma(A), \phi \in A$. Then τ_* is a homeomorphism. By a result of Żelazko ([19, in the proof of theorem, p. 240]), for every $\zeta \in \Gamma(A)$, we have

 $(\zeta(T_{\phi_1}), \cdots, \zeta(T_{\phi_n})) \in \sigma_{\pi}(T_{\phi_1}, \cdots, T_{\phi_n})$.

Consequently we induce that for each $x \in \Gamma(A)$,

$$(\phi_1(\boldsymbol{x}), \cdots, \phi_n(\boldsymbol{x})) = (\tau_* \boldsymbol{x}(T_{\phi_1}), \cdots, \tau_* \boldsymbol{x}(T_{\phi_n})) \in \sigma_{\pi}(T_{\phi_1}, \cdots, T_{\phi_n}) .$$

Since $\Gamma(A) = \partial \Omega$, we obtain

$$\sigma_{\pi}(T_{\phi_1}, \cdots, T_{\phi_n}) \supset \{(\phi_1(x), \cdots, \phi_n(x)); x \in \partial \Omega\},\$$

which completes the proof.

PROOF OF THE THEOREMS. Let x be a point in $\partial \Omega$. For any $\phi \in A$, the number $\phi(x)$ is the ϕ -th component of an element in $\sigma_{\pi}(T_{\phi}; \phi \in A)$ by Lemma 5. Define a mapping β from $\partial \Omega$ to $\sigma_{\pi}(T_{\phi}; \phi \in A)$ by

$$\beta(x) = \{\phi(x); \phi \in A\} \in C^{A}.$$

Since Ω is Stein, A separates points in $\partial\Omega$. Hence β is injective. It is easy to see that β is continuous and by Lemma 5, it is surjective. Since $\partial\Omega$ is compact, β is a homeomorphism. Thus the mapping $\beta^*: C(\sigma_{\pi}(T_{\phi}:$ $\phi \in A)) \rightarrow C(\partial\Omega)$ defined by $\beta^*(f) = f \circ \beta$ is an isometrical *-isomorphism. Thus Theorems 1 and 2 are consequences of Lemmas 3 and 4 applied to the Bunce's theorem.

Remark that the theorems hold if we extend to the matrix case (see [9, 2.3]).

Finally in this section we remark that one can prove the theorems 1 and 2 using Theorem 1.4 in [20] instead of the Bunce's theorem and Zelazko's theorem. In fact, after noting the isometry between A and \mathscr{A} one has by that theorem the following: There exists a closed set X in $\overline{\Omega}$ (resp. $\partial \Omega$) containing $\Gamma(A) = \partial \Omega$ and a *-homomorphism ρ from \mathscr{T} onto C(X) such that the short sequence

$$0 \longrightarrow \mathscr{C}(\mathscr{T}) \xrightarrow{i} \mathscr{T} \xrightarrow{\rho} C(X) \longrightarrow 0$$

is exact and $\rho(T_{\phi}) = \phi | X$ for all $\phi \in C(\overline{\Omega})$ (resp. $C(\partial(\Omega))$). Now combining this with Lemmas 2 and 4 one gets the theorems.

161

3. Remarks. Brown-Douglas-Fillmore [4] or Atiyah has shown that, for a compact metrizable space X, the set of isomorphism classes of short exact sequences of *-algebra

$$0 \mapsto \mathscr{L} \mathscr{C}(H) \otimes M_n \mapsto \mathfrak{A} \otimes M_n \to C(X) \otimes M_n \to 0 ,$$

where \mathfrak{A} is a subalgebra of the bounded linear operators $\mathscr{L}(H)$ of a Hilbert space H and M_n is the set of $(n \times n)$ -matrices, is a group and is isomorphic to the group $K_1(X)$. Consequently Theorems 1 and 2 give elements \mathscr{T} in $K_1(\partial \Omega)$.

On the other hand, Atiyah [2] has defined a class of operators on a compact Hausdorff space X called elliptic operators on X, denoted by Ell(X). Then he defined a natural map Ell(X) $\rightarrow K_0(X)$. Let us extend naturally the Toeplitz operator T_{ϕ} , for $\phi \in C_{M_n}(\overline{\Omega})$ (resp. $C_{M_n}(\partial\Omega)$)(C_{M_n} is the Banach algebra of M_n -valued continuous functions) as an operator

$$\tilde{T}_{\phi}: L^{2}_{C^{n}}(\Omega) \mapsto L^{2}_{C^{n}}(\Omega)(\operatorname{resp.} L^{2}_{C^{n}}(\partial\Omega) \mapsto L^{2}_{C^{n}}(\partial\Omega))$$

by $T_{\phi}\Pi + (1 - \Pi)$. Then it is easy to see that \widetilde{T}_{ϕ} belongs to $\operatorname{Ell}(\partial\Omega)$ if $\phi(x) \neq 0$ for any $x \in \partial\Omega$. Thus we naturally obtain elements $\{T_{\phi}\}$ in $K_{\mathfrak{o}}(\partial\Omega)$.

The homotopy classes of ϕ in $C(X) \otimes M_n$ define elements $\{\phi\}$ in $K^1(\partial \Omega)$. We have a natural bilinear mapping

$$\bigcap: K_1(\partial \Omega) \otimes K^1(\partial \Omega) \to K_0(\partial \Omega)$$

by

$$\mathscr{T} \cap \{\phi\} = \{T_{\phi}\}$$
.

Note that the operator T_{ϕ} is not a pseudo-differential operator in the usual sense if dim $\Omega > 1$. To know the class \mathscr{T} in $K_1(\partial \Omega)$ will be an interesting problem. The Brieskorn varieties give strongly pseudoconvex domains in a Stein spaces. The calculation for such manifolds is also not known.

References

- M. B. ABRAHAMSE, Toeplitz operators in multiply connected regions, Amer. J. Math., 96 (1974), 261-297.
- [2] M. F. ATIYAH, Global theory of elliptic operators, Proc. International Conf. on Functional Analysis and Related Topics, 1969. Tokyo (1970), 21-30.
- [3] H. BEHNKE AND K. STEIN, Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann., 120 (1949), 430-461.
- [4] L. G. BROWN, R. G. DOUGLAS AND P. A. FILLMORE, Unitary equivlarence modulo the compact operators and extensions of C*-algebras, Proc. of a Conf. on Operator Theory, Lecture Notes in Math. 345, Springer-Verlag, 1973.
- [5] J. BUNCE, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc., 29 (1971), 499-505.

- [6] L. A. COBURN, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J., 23 (1973), 433-439.
- [7] J. DIXMIER, Les C*-algèbres et leurs représentations, Cahier Scientifiques, 29, Gauthier-Villars, Paris, 1964.
- [8] R. G. DOUGLAS, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
- [9] R. G. DOUGLAS, Banach algebra techniques in the theory of Toeplitz operators, Regional Conferences series in math. 15, Amer. Math. Soc., 1972.
- [10] G. B. FOLLAND-J. J. KOHN, The Neumann Problem for Cauchy-Riemann Complex, Annals of math. studies, 75 (1972).
- [11] R. C. GUNNING AND H. ROSSI, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
- [12] H. HIRONAKA, Desingularization of complex-analytic varieties. Actes, Congrès Intern. Math. 1970, Tome 2, (1971) 627-631.
- [13] J. JANAS, Toeplitz operators related to certain domains in C^n , Studia Math., 54 (1975), 73-79.
- [14] L. K. KODAMA, Boundary measures of analytic differentials and uniform approximation on a Riemann surface, Pacific J. Math., 15 (1965), 1261-1277.
- [15] H. Rossi, Attaching analytic spaces along a pseudoconcave boundary, Proc. Conf. on Complex Analysis, Springer-Verlag, New York (1965) 242-256.
- [16] K. UENO, Classification theory of algebraic varieties and compact complex spaces. Lecture notes in math. 439, Springer-Verlag, 1975.
- [17] U. VENUGOPALKRISHNA, Fredholm operators associated with strongly pseudoconvex domains in C^n , J. Functional Analysis, 9 (1972), 349-373.
- [18] K. YABUTA, A remark to a paper of JANAS: Toeplitz operators related to certain domains in C^n , to appear in Studia Math.
- [19] W. ZELAZKO, On a problem concerning joint approximate point spectra, Studia Math., 45 (1973), 239-240.
- [20] J. TOMIYAMA AND K. YABUTA, Toeplitz operators for uniform algebras, Tôhoku Math. J., 30 (1978), 117-129.

MATHEMATICAL INSTITUTE Tôhoku University Sendai, Japan and College of Technology Kyoto Technical University Matsugasaki, Kyoto, Japan

162