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SEQUENCES SUMMABLE BY SOME RIESZ MEAN

B. KUTTNER
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1. We will use throughout s to denote a sequence {s,} (of complex
numbers, except where otherwise stated). We also suppose throughout
that s is the sequence of partial sums of the series

oo

a,
=0

so that
8, =@ +a + -+ +a,.

Let » = {\,} denote a sequence of non-negative numbers increasing to co.
Let & > 0. With the usual terminology, the sequence s is said to be
summable (R, \, k) to o if

(1) %Z(u——x,)"avaa

U” 2,<u

as u — oo, Writing

uk (w > 0);
Pr(u) = 0 =0,
we note that (1) can also be written
(2) L3 @l = W) = 4w = M50
as U — oo,

Instead of considering the properties of (R, \, k) for fixed A, k, we
consider the following problem. Given k > 0, what sequences s have the
property of being summable (R, \, k) for some A? Let R, denote the set
of all such sequences. Thus R, is defined as the set of all s for which
there is some A and some complex number ¢ for which (1) (or, what is
the same thing, (2)) holds. Note that, when s is real, the values ¢ = +
are not allowed. Thus the problem considered is that of investigating
the sequence set R,. While the present paper leaves a number of ques-
tions unsettled, it constitutes a contribution to the study of this problem.

It should be remarked that some results connected with this problem
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have been obtained by L. V. Grepachevskaya' [2]. But Grepachevskaya
considers only the case k& = 1, and restricts himself to real sequences.

It is convenient to state for reference a result which follows at once
from the well known fact that (R, \, k) is totally regular.

ProPOSITION A. If s is real, and if s — +o or 8,— —c as n —co,
then, for any k>0, s¢ R,.
We shall prove the following result.

THEOREM 1. Let k> 0. If s has any subsequence belonging to R,,
then se R,.

Evidently, any convergent sequence belongs to R,. The assertion
that s has a convergent subsequence is equivalent to the assertion that

(3) [8,] > oo
as n — oo, and thus Theorem 1 includes the following result.
ProposiTION B. If (8) holds, then se€ R, for any k > 0.

The following result is an immediate corollary of Propositions A and
B.

ProposiTION C. For any k> 0, R, is not a linear space.

In fact, if {s,}eR,, {t.}€R,, it does not necessarily follow that
{s. + t,} € R,. Suppose for example, that

_ 0 (neven); _(n (n even) ;
= n (n odd) , "0 (nodd).

It follows from Proposition B that, for all &k > 0, {s,} € R,, {t.} € R,. But,
by Proposition A, {s, + t,} ¢ R, for any k. We have also the following
result.

THEOREM 2. Let k> 0. In order that se R,, it is mecessary that

= 1
(4) Sotme=e.

Here we adopt the convention that, if s, = 0 for a finite set of values
of m, these values are to be ignored in considering (4). But we regard
(4) as holding if s, = 0 for an infinity of =.

It will be noted that (4) involves only the moduli of the terms s,.
I conjecture that, roughly speaking, (4) is also sufficient as far as |s,|
is concerned. More precisely, the conjecture is that, if we are given |s,|

' I am indebted to Professor M. R. Parameswaran for drawing my attention to this paper.
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but are free to choose arg s,, then, if (4) holds, we can choose arg s,
so that se B,. However I have so far been able to prove this conjecture
only in the cases 0 <k <1 and ¥ =2. As I am hoping, at some future
time, to obtain a proof at any rate for the case in which %k is any
positive integer, I do not give the proof for the case k = 2 here, but

confine myself to the case 0 <k <1. Thus we shall prove the following
theorem.

THEOREM 8. Let 0 <k <1. Suppose that the values of |s,| are
given, and that they satisfy (4). Then it is possible to choose arg s, so
that s GRk.

I now consider the special case in which ¥ = 1. Even in this case,
I have been able to obtain conditions which are both necessary and
sufficient for se€ R, only in the case in which s is restricted to be a real
sequence. Supposing that s, is real, the case in which s, is ultimately
of constant sign may be dealt with by the results already given. For
either (8) holds, in which case we may apply Proposition B, or else
8, — + oo or s, — —oo a8 m — oo, in which case we may apply Proposition
A. So this case will be excluded. We may also suppose that, for all
n, s,#0. For if s,=0 for an infinity of » then, again, (3) holds; and the
alteration of a finite number of terms of s will not affect the property
of belonging, or not belonging, to R,. Thus we may suppose that the
sequence is divided into blocks of consecutive terms, the terms in any
one block all of the same sign, this sign being the opposite of that for
the next block. Of course, a block may consist of just one term. Let
0, denote the minimum modulus of the terms in the m + 1st block.
On this understanding, and, with this notation, we have the following
result.

THEOREM 4. Let s be a real sequence. In order that seR,, it 1is
necessary and suffictent that
& 1
(5) 2, —— = oo,
o

m=0 m

The sufficiency part of this theorem is included in Theorem 3 of [2].
But I give a proof, partly for the sake of completeness and partly
because, by making use of Theorem 1 of this paper, it is possible to
prove the result slightly more simply than in [2].

We note that Theorem 4 includes the case k¥ = 1 of Theorem 3. For
if we are free to choose arg s,, we may take the terms s, as all real
and alternately positive and negative. Then each block consists of just
one term, and the sum (4) (with &k = 1) reduces to (5).
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It is not clear how a condition such as that of Theorem 4 can be
extended to complex sequences. In view of the non-linear nature of R,
we cannot deal with the problem by considering separately real and
imaginary parts. Some remarks may, however, be made.

For any real 6, write

8.(0) = Al s} ;

that is to say, s,(0) is the projection of s, on a line through the origin
inclined at an angle 6 to the real axis. Let s(d) denote the sequence
{s.(0)}. In order that se R, it is clearly necessary that s(d) e R, for all
6. It would appear to be at least prima facie plausible that this condition
is also sufficient; and if this were proved to be the case the problem of
obtaining necessary and sufficient conditions for se R, with s complex
would be solved. It is therefore worth while proving the following
result.

THEOREM 5. There is a complex sequence s such that s(6) e R, for
all real 6, but s ¢ R,.

2. We require a lemma.

LEmMMA 1. Let k> 0. Suppose that, for a given s, there is a non-
decreasing sequence N = {\,} of mon-negative numbers with A, —  as
n — oo such that (2) holds. Then there is an increasing A\ with the
same properties.

Thus the definition of R, would be unaffected if instead of (as is
usual) requiring ) to be increasing, we required only that it should be
non-decreasing. The result is proved in [5] (see the first part of §3),
though it is not there stated as a formal lemma.

Theorem 1 is an immediate consequence of this lemma. Suppose
that the subsequence' {s(n,)} is summable (R, A, k) to ¢. Thus

(6) L 3% s(m)uw = N) = fult = Ny1) = 0

as 4 — oo, Now define

_ No(M = M) ;

ln
; )’T+l(nr < n § %r+1, r = 0, 1, 2, .. ') .

Then

' To avoid repeated suffixes, we write s(n) in place of s, whenever n is replaced by an
expression itself involving suffixes.
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-@%g Saldu(u — ) — Gu(U — fn1))

reduces to the sum on the left of (6). Thus s is summable (R, g, k); and
U, is non-decreasing so that the conclusion follows.

I now give a result which is an immediate corollary of a well known
theorem on infinite products, but which we will require to use more than
once, and which it is therefore convenient to state as a lemma.

LEMMA 2. Let \ = {\,} be & non-decreasing sequence of non-negative
numbers. Then, in order that \,— o« as n — oo, it 18 mecessary and
sufficient that

(7) Z )\'n+1 - )"u
n=1 7\,“_“

should diverge.

For the divergence of (7) is equivalent to the divergence (to zero)
of

v N -\ = A
1— _L_’L) — n_ |
’;[=Il ( Nt "‘I=I‘ Npg1

In order to prove Theorem 2, suppose that se€ R,. Thus, by defini-
tion, s is summable (to o, say) by some (R, M\, k). By the well known
limitation theorem ([1], Theorem 1.61 or [3], Theorem 21),

weomof2a))

n+1 T >"n

however, we need only the weaker result that

n=of()

n+1 n
If (4) were false, it would follow that

o0

A’1L+1 — )"n
—aHl 8 L 0 ,
"‘g: )"‘n+1
and, by Lemma 2, this would contradict the requirement that A, — o
as n — oo,

3. We now prove Theorem 3. By a theorem of Jurkat [4], it is
enough to consider the discontinuous Riesz means (R*, \, k); so we write

1 Z’.i {()"n+l - )\'v)k - (>"n+1 - 7\'u+1)k}su .

t. =
n %
Ny ¥=0
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Suppose that (4) holds. Then we can find a decreasing sequence {7,} of
positive numbers such that 7, — 0 as n — o, and such that

® @) =

|84l
We may suppose that |s,| — o« as m — o, since otherwise the conclusion
follows from Proposition B. Since the alternation of a finite number of
terms is irrelevant, we may suppose that, for all n, s, #0. We can
then choose 7, so that, further

(9) Nu < |84 -
We will take all the s,’s as real. Their signs, and the values of \,,
will be defined inductively in such a way that
t, = 9, .
Thus s will be summable (R, \, k) to 0.
The inductive definition is as follows. Take A, = 0. Now suppose

that N\, Ay, ¢++, M, and the signs of s, s, *--, S,_, have been determined.
This fixes

£00 = S50 = W = (= s,

[In the case n = 0, f,(\) is identically zero]. Now consider the set A,
of all solutions greater than A\, of either of the equations

(10) 5,09 + (2222 Yl = 7.

AN— N

k

(a £ = (222 )8 = =7,

This set is not empty. For' f,(\,) =t,, = =9, If fu(N,) = —7%,_, then,
since the expression on the left of (10) tends to |s,| > %, as » — « it
follows that (10) has a solution greater than A,. Similarly if f,(\,) = 7,
then (11) has a solution greater than \,. Now (10) cannot have arbitrarily
large solutions, since the expression on the left tends to |s,| > %, as
A — oo, Similarly, (11) cannot have arbitrarily large solutions. Hence
the set A, is bounded, and thus, by continuity, it has a largest member.
Take \,;, as this greatest member. If it is a solution of (10), take s,
as positive; otherwise take s, as negative. Then

2/

' In the case n =0, we take t_; = 0.
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as required. Thus it remains only to verify that the requirement that
A, — o0 a8 n — oo is satisfied.
If .., is a solution of (10), then

_ 5
(12) Fig) = (Res=2a Vg, < —7, .

)"n+1
For otherwise, (11) would have a solution greater than \,,;,, which would
contradict the definition of A,,, as the greatest member of 4,. It follows
that

Nnss — Na \F
(13) Mo Xa Vg, 2 g,
( k"n+1
A similar argument with signs changed shows that (13) continues to hold
when \,,, is a solution of (11). We now deduce from (8) and (13) that

i )"'n+1 _ k"n,

n=1 Nt

diverges. Hence the conclusion follows from Lemma 2.

4. In order to prove Theorem 4, we require another lemma. This
lemma amounts essentially merely to a restatement of the definition of
R,, but it will be convenient for the application to have the definition
restated in this form. Although in the application to Theorem 4 we will
be considering only real sequences, the lemma applies equally well to
complex sequences, so will be stated in the more general form.

LEMMA 3. In order that the (complex) sequence s should belong to
R, it 1s mecessary and sufficient that there should exist a sequence
t = {t,} such that

(i) t converges ;
(ii) ta€[ta 84);
(14) (iii) 327 (Faes — /(8 — 84)

diverges.

Here [t,_,, s.) denotes the line segment joining the points ¢, ,, s,,
taken as closed at ¢,_, and open at s,. If ¢,., =s,, then (ii) is to be
taken as meaning that ¢, = s,. Note that, by (ii), (14) is a series of
real non-negative numbers. In the case in which ¢,_, = s,, so that the
numerator and denominator of a term in the sum (14) both vanish, the
value of this term may be assigned arbitrarily (so long as it is real and
non-negative). In the case in which s is real we note that if |s,| —
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as n — oo (the only case we need consider, by Proposition B) then, by (i)
tn — 8~ —8,

so that (iii) is equivalent to the assertion that

(15) >t

diverges.

Proor. It is enough to consider the discontinuous means, so we
write

Z (7\'»+1 - >"v)s» .

Then s € R, if and only if, for a suitably chosen A, (i) holds. We express
the requirements that \, should be real, non-negative and non-decreasing
and that N, — o as n — « in terms of {. We have

Nnts = Ma)8 = Npyils — Naloy
so that
(16) Mati(tn = 84) = Nalboey — 84)
If ¢t,_, = s, it follows that ¢, = s, (and \,,, may be chosen arbitrarily,

so long as N\, > N\,). If not, we write (16) in the form

Npgr = xn{l + M} .
t'n. — 8y
Since N\,., > \,, the expression
oy — b
t, — 8.
must be real and non-negative, which gives us (ii). Finally the require-
ment that A, —» o can be put in the form that

=

II .

diverges; and (by (16)) this is equivalent to the divergence of (14).
5. We now come to the proof of Theorem 4.

SUFFICIENCY. By Theorem 1, it is enough to prove that s has a
subsequence belonging to R,. We consider the subsequence formed by
taking the term of minimum modulus from each block. Changing the
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notation, and using s = {s,} to denote this subsequence, we are given
that

. |
>
4 s,]

diverges, and that the terms s, alternate in sign. It follows that we
can determine a sequence {7,} of positive numbers such that 7, — 0 and
such that

0 2

diverges. We may further suppose that, for all =,
(18) N <18l .

Now define

t, = 7,508, .

Since 7, — 0 as » — oo, condition (i) of Lemma 3 holds. Further, since
s, alternates in sign, it follows from (18) that (ii) holds. Finally,
|tn — tu_y| > |t.|, and it therefore follows from the divergence of (17) that
(iii) holds. Thus all the conditions of Lemma 3 are satisfied.

NECESSITY. Suppose that sc€ R,. We may suppose that |s,| — = as
n — oo, since otherwise the result that (5) holds is trivial. By Lemma
3, there is a sequence t satisfying the conditions of that lemma. Thus,
for all sufficiently large u,

(19) sl <lsal 5 (8] </sul .

Let T, denote the set of suffixes occurring in the m + 1st block of
terms. By (19) and condition (ii) of Lemma 3 it follows that, for ne T,
(where m is sufficiently large), t, — t,-, is of constant sign, and of the
same sign as s,. Thus
2 It'n, - tn—-l[ = [“§ (t'n - t'n—-l)l =&,

nel

(say), where ¢, is bounded. (In fact, ¢, —0 as m — c; but only its
boundedness is needed.) Hence

tn - tn—~1 < &t_

neT y sn m

so that the divergence of (15) implies that (5) holds.

6. In order to prove Theorem 5, let {r,} denote the sequence
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0,0,1/2,0,1/3,2/3,0,1/4,1/2, 3/4, -+ .

That is to say, the sequence {r,} is formed by taking all numbers of
the form p/q with p an integer, 0 < p < ¢ (including those for which
», ¢ may have a common factor) first for ¢ = 1, then for ¢ = 2, then
¢ = 8 and so on; for a given ¢, the numbers p/g are in increasing order
of magnitude. Let A be a constant with 0 < » < 1. We define

(20) s, = (—1)™n(log n)*** exp (7 i7,) .

We take this as meaning 0 when » = 0. It is clear that (4), with &k = 1,
is not satisfied. Hence, by Theorem 2, s¢ R,. We will show, however,
that s(d) e R,, for every 6.

If 0 is a rational multiple of 7z, then s,(6) = 0 for some arbitrarily
large %, and the result therefore follows at once from Proposition B.
So we may suppose that # is an irrational multiple of #. It is only the
residue of @ mod # which is relevant (since altering 6 by = merely changes
the sign of s,(f)); hence we may suppose that —7/2 < 8 < /2. We note
that we can write s,(f) in the form

(21) $,(0) = (—1)""*n(log n)**sin (xr, — 0 — 7/2) .

Now in the sequence {r,} the set of terms p/q (0 < »p < q) will occur
for values of n satisfying

142+ +@—-H<n=1+2+---+gq;
that is to say, for

(22) (@ —Dg/2<n=q(@+1)2.
Consider the terms s,(0) satisfying (22) and for which, further
nr, >0+ w2.

These terms alternate in sign. Further, since (22) implies that n < ¢?,
they satisfy

(23) 8.(0)] = 2'*g*(log q)"*X(nr, — 0 — [2) .

Let the terms of the set now being considered be given by n = n, +
h (h=0,1,2, ---, H), where r, = p/q; thus

0+ /2 < n(p/g) < 0 + =/2 + 7/q
whence it follows that
(24) nr, —0 —xw/2< 7@+ h)q.

We also note that, as ¢ — «
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(25) H ~ (1/2 — 0[m)q

(and, for fixed #, the factor of ¢ on the right is a positive constant).
Now let {0,(6)} be formed from {s,(f)} in the same way as {0,} was
formed from {s,} in Theorem 4. Since the terms now being considered
alternate in sign, each one (except possibly the first and the last) must
constitute a block by itself; so their contribution to >’ 1/0,.(0) is at least
no+H—1 1 1 H—1 1
= ,

<2 50 = Tmqllog 9 2 T4 R

by (23) and (24). It follows from (25) that for fixed ¢ and sufficiently
large ¢, the expression (26) is at least equal to

(26)

¢
q(log )

where ¢ is a positive constant. Hence >} 1/0,(0) diverges, so that, by
Theorem 4, s(f) € R,.
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