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1. Introduction. Let G be the group of all Mobius transformations
of C = CU{} of the form ¢ (at + B)/(vt + 6), where a, 8,7, € C and
ad — By = 1. Here C is the complex plane. An element g: t— (at + B)/
(vt + 0), not being the identity, of G is called parabolic if tr’g=
(@ + 0) = 4.

Let I be a subgroup of G and let E be a finite dimensional com-
plex vector space. Let X be an anti-homomorphism of I" into GL(E),
the group of all non-singular linear mappings of E onto itself. A map-
ping 2: I' — E is called a cocycle if

2(9,° 92) = X(9:)(2(9,)) + 2(g)
for all g, and ¢, in I'. A cocycle z is a coboundary if
2(g9) = Ug)(X) — X

for some XeE. We denote by Z)(I', E) the space of all cocycles and
by B[, E) the space of all coboundaries. A cocycle z is called a
parabolic cocycle if, for any parabolic cyclic subgroup I, of I, 2|, is an
element of Bi([l",, E). We denote by PZ)I', E) the space of all para-
bolic cocycles.

The group G is a complex 3-dimensional Lie group isomorphic to
SL(2, C) modulo its center. The Lie algebra g of G is therefore the
algebra of 2x2 complex matrices of trace zero. We identify g with the
tangent space of G at the identity element e of G.

The adjoint representation Ad of G in g is defined by Ad(g)(X) =
(d4,).(X), where Xeg and (d4,), is the differential at e of the mapping
A,;:Gohi—gtohogeG. The adjoint representation is an anti-homo-
morphism of G into GL(g). Hence, for a subgroup I" of G, we can con-
struct the space of parabolic cocycles PZiu(I, g).

Let I be a subgroup of G and let 4: I'— G be a homomorphism of
I' into G. We say that ¢ is a parabolic homomorphism if tr*d(g) = 4
for any parabolic element ¢ in I'.

In this paper we prove the following:
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THEOREM. Let I' be a finitely gemerated subgroup of G and let
0: ' — @G be a parabolic homomorphism which is suffictently close to the
identity homomorphism. Then

where '’ = 6(I").

In Section 4 we give an application of this theorem concerning the
quasi-conformal deformation of a certain class of finitely generated
Kleinian groups.

I would like to express my gratitude to the referee for his informa-
tive advice.

2. Linear maps T and S, Let I" be a finitely generated sub-
group of G with a system of generators ¢ = {0, ---, 0y}. Let 4 be the
free group with free generators {\, -+, Ay} and let =: 4— I be the
homomorphism defined by #(\,) = 6,. Denote by @ = @(\, ---, Ay) an
element of 4, i.e., a word in N letters \,, ---, Ay. The kernel of = will
be denoted by ker z.

We define an anti-homomorphism p: 4 —GL(g) by 0 = Adewx. Then
we can construct, as in the case of Zi.([", g), the space of cocycles
ZX4, ), that is, Ze ZX(4,g) if and only if Z(hoN) = p(\V)EN) + ZOV)
for all » and N in 4.

Let V, be the subspace of Z)(4,g) defined by V,={ZecZi4,g):
Z(w) = 0 for all wekern}. By a result in [6], Zi«(I", g) is isomorphic to
V, by the map Zi(I',g)2z+>zowreV,. Moreover, PZi,(I',g) is iso-
morphic to the subspace PV, of V, defined by PV, = {Ze V,: for any
® with 7(w) parabolic, there exists an Xeg with Z(®w) = p(@)(X) — X}.

Let Ze ZX4, g) and let Z(\,) = X,. For a word w = 9,0++07,,, in
A with 9, = N\, or n, = Mgl for some k(s), 1 < k(s) < N, we have

Z((D) = 2(7]10' °° 077'4(0)))
7n(w)—1

= Z p(vn(w))o' . 0(0(7]8+1)(§(va)) + 2(7771.(«»))

1

= @
g

n

- :1Ad(v,,(w))°' o AdW,1)(E®.) + ZWniwn)

8

for v, = x(n,). Since Z(,)=—pP®.)(Z7:"))=—AdW,)(Z(7.")), we have
E(w) — ”(z:‘: Ya(a,w) ,

where
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AdW,w)os s - cAdW, ) (X))  If Y, = 04
_Ad(vn(w))o b oAd(vaXXk(s)) if ”s = O-k_(ls)

for s with 1 <s=<n(w) —1 and

Yoo = {

Xinwn I Yao) = Ornion
——Ad(vn(w))(Xk(n(w))) lf l)'n(w) = O-I:(J:n(w)) .

Hence Ze V, if and only if > Y/ = 0 for all w € ker 7 (see also [6]).
Moreover, Ze V, is an element of PV, if and only if, for any @ with
n(w) parabolic, there exists an Xeg such that S Yl =
Ad(r(w))(X) — X.

Let L, geG, be the left translation of G and let f be the holo-
morphic function on G defined by f(g) = tr*g — 4. Then we have the
following.

iy = {

LEMMA 1 (Gardiner and Kra [4]). Let we A with n(w) parabolic
and let Y be an element of g. Then Y = Ad(n(w))(X) — X for some
Xeg iof and only if d(foL.w).(Y) =0 for the tangent linear mapping
d(f o L), at ecG.

By this lemma we have immediately the following.

LEMMA 2. Let Z€ Z;(4, g) and let Z(\,) = X,. Then Z is an element
of PV, +f and only if Yl =0 for all wekerm and
d(foLze). O Yo = 0 for all w with n(w) parabolic.

Let T/»“,1 < s < n(w) we 4, be the linear mapping of g onto itself
defined by

Ad(”n(al)) Oeero Ad(”a—H) if Y, = Or(s)
_Ad(vn(m))o e oAd(va) if Y, = O-;(la)

for s with 1 <s < n(w) — 1 and

Tx(a,w) — {

id if Yuw = Ok

T.,f'(’";') — {
w . —
—AdWaw) I Y = Okinien »

where id is the identity mapping. We set T'"“ (k) = >, ko= Ts*'. Here
T k,) = 0 if k(s) # k, for all s. Let T'»“ be the linear mapping of
g” into g defined by T = (T**“(1), + -+, T?>*(N)). For w e A we denote
by S the linear mapping d(f o L.,). of g into C.

PROPOSITION. Let I' be a finitely generated subgroup of G with a
system of generators o = {0, -+, 0y} and let A be the free group with
free gemerators {\, -+, Ay} with the homomorphism w: A—I" defined by
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w(\) = 0,. Then PZi(I',g) 18 <isomorphic to the subspace W=
{Xeg": T(X) =0 for all wekern and S T(X) =0 for all ®
with w(w) parabolic} of g".

Proor. Set Z(\,) = X, for Ze Z)4, g). Let X be a vector obtained
by arranging X, ---, X, in a column. Then Z}X(4, g) is isomorphic to
g” by the mapping Zi(4,g)eZ— Xecg". So we see by Lemma 2 that
PV, is isomorphic to W. Since PZi (I, g) is isomorphic to PV,, we are
done.

Next we represent linear maps T and S““, w € 4, by matrices
with respect to the basis

8 lo 1)+ ool (vol

for g. Let o,(t) = (@t + By)/(Yit + ;). Then

a0, + By Mid — By
Ad(g,) = 2340, 03 — G5
— 20,7, —% ai

with respect to this basis. Hence, by the definition of T, we see
that T is a 8x3N complex matrix and that each entry of this
matrix is a polynomial of .0, + ByYi, Vi0k — QLB 280k 0%y — By — 207,y
—v%, and a2 with k=1, ---, N. On the other hand, for

-
Y= €g
c —a

and we 4 with n(w)t) = (at + B)/(vt + d), we have

A(f ° L) Y) = (@/d) f o Lir(u(D(2))]2=0
= (d/dx)[tr*{n(®) o p(2)} — 4].=
= (d/dx){aa(X) + B7(x) + YB(x) + 60(2)} — 4]|.=
= 2(a + 0){(e¢ — 0)a + vb + Be},
where p(x)(t) = (a(2)t + B))/(v(x)t + 6(x)) is a path in G satisfying
p(0) = ¢ and (d/dx)p(x)|,—, = Y. Hence the matrix S is of the form
St = (2(a — 6% 2(a + o)y 2(a + 9)B) .

Since «, B, 7, and ¢ are some polynomials of &, B, Yy, 01, ***, @y, By Vs Ons
we see that S is a 1x3 complex matrix and each entry is a poly-
nomial of a,, B, 7, 0y, *++, &y, By, Yn, 0y. Note that the matrices T«
and S’ are independent of the choice of the representative of o,.
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3. Proof of main theorem. Let 6:I' -G be a parabolic homo-
morphism. We set 6(I") = I'’ and 6(c,) = 0,(f). The group I’ is a sub-
group of G with a system of generators ¢(d) = {0,), «-+, o4(6)}. Let
we: A— T be the homomorphism defined by =,\,) = 0,(0). We set
0 (0)(t) = (a0t + Bu(0)/(7()t + 0,(6)).

By Proposition in Section 2, we see that PZi,(/"? g) is isomorphic to
W) ={Xeg": T (X) =0 for all wekerw, and S« oTw@(X) =0
for all w with 7,(w) parabolic}.

If 6 is a parabolic homomorphism sufficiently close to the identity
homomorphism and if w(w) is parabolic, then O(n(w)) # e and O(z(w)) is
parabolic. Thus we have

(*%) kerr c kerw, and
(%x%) {we A: n(w) parabolic} C{w e 4: my(w) parabolic}.

Since g" is a finite dimensional vector space, there exist finitely
many words w,, ---, wyckerw and ;, ---, Wy €4 with w(®;) parabolic
such that W is the set of common zeros of those linear mappings T
with @ running through w,’s and S@*”eT‘"*" with @' running through
®j’s. Also there exist finitely many words w € ker 7, and @’ with 7,(w’)
parabolic such that W(6) is the set of common zeros of those finitely
many linear mappings T/« and Ste@e"o Te@he"  Since the inclusion
relations (xx) and (xxx) hold, we may assume, for 6 sufficiently close to
the identity, that W(6) is the set of common zeros of 7" with w
running through w,, -+, W,z € kerm, and S« T with @' run-
ning through i, ---, @y, ye With 7,(®}) parabolic for 1 < j < M + M(6).

Let T be the linear mapping of g" into g¥x C¥ with T obtained by
arranging Ttoe?, ... Toer) Sooedo Teep ... Stoey)o T@ey) in g column.
Also let T(6) be the linear mapping of g¥ into gX*¥ x C***9 with T(6)
obtained by arranging Te0 ... TiOegrx@) Slode) o Te6hep ..
Stet®:oyim@) o T 9uix6) in a column. Then we have

W={Xeg": T(X) = 0}
and
W) = {Xeg": T(O)(X) =0} .

LEMMA 3. Let 6:1' — G be a parabolic homomorphism which 1is
sufficiently close to the identity homomorphism and let T and T(6) be
the linear mappings defined as above. Then

rank T < rank T(6) .

PROOF. Let T'“ = (th.)izmssiznsen a0d let T = (85,.(0))<mss1<nssn
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for 1 =1, ..., K with respect to the basis (x) for g. Then, by the con-
struction of the matrices T’ and T“?:“’, we have
toun = Pra(@yy By 71y 04y * =+, Cyy By, Yy Ox)
and
tma(0) = Prn(a(0), 81(0), 7:(6), 0,(6), -+, @x(0), Bx(6), Yx(0), 05(6))
for polynomials P;, in 4N variables. Moreover, if
Strei o T3 = (1]2)1snssn
and if
Stehop o U010 — (97 (), cpngay fOr =1, M
with respect to the basis (x) for g, then
r{, = an(“n Bis Y1y Oyy =+, Ay, By Yoy Oy)
and
7{,(0) = Pi(,(0), B.(6), 7:(6), 8,(6), - -+, ax(0), Bx(6), Vx(6), 6x(6))

for polynomials P, in 4N variables. If ¢ is sufficiently close to the
identity homomorphism, then «,(6), 8.(0), 7.(6) and &,(6) are sufficiently
close to «;, B;, 7, and §,, respectively, for k. =1, ---, N. Hence the com-
plex numbers t.,.(0) and »/,(6) are sufficiently close to t., and 7i,, re-
spectively, and we have the required inequality.

By Proposition in Section 2 and Lemma 3 we see that
dim PZ;,(I", g) = dim W = dimker T,
dim PZL,(I"%, g) = dim W(6) = dim ker T(6)
and
rank T < rank T(6)

for a parabolic homomorphism 6 which is sufficiently close to the identity
homomorphism.

Now we have the following main theorem announced in the intro-
duction.

THEOREM 1. Let I’ be a finitely generated subgroup of G and let
0:I' > G be a parabolic homomorphism. Assume that 0 is sufficiently
close to the identity homomorphism. Then

dim PZ}«(I", ¢) = dim PZ}.(I"’, g) .

PrROOF. Since dimker T =8N —rank T and dimker 7(§) = SN—
rank T(9), we have dim PZ},([", g) = dim W = dimker T = 3N — rank T'>
3N — rank T(0) = dim ker T(6) = dim W(6) = dim PZ}.(I"’, g).
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4. An application to Kleinian groups. In the following, we always
assume that I" is a finitely generated Kleinian group with a system of
generators ¢ ={o,,---,0y}. We denote by II the vector space of complex
polynomials of degree at most 2. Let X: G— GL(II) be the anti-homo-

morphism defined by
(@) @)(@) = v(g@®) (vt + )

for vell and g€ G of the form g:t+ (at + B)/(vt + ). Then the space
PZXTI', II) is isomorphic to the space PZi.([,g) (see [4]). Let I' be
non-elementary and assume that 7% is a non-elementary Kleinian group.
Then dim BX([", IT) = dim By(I"%, II) = 3 (see [2]). So, if we consider the
parabolic cohomology spaces PH,([',Il)= PZ,I',II)/B;I',II) and
PHII II) = PZ(I'%, I)|By(I"°, IT), we obtain the following by Theorem 1.

THEOREM 2. Let I' be a non-elementary finitely generated Kleinian
group and let 6 be a parabolic homomorphism which is sufficiently
close to the identity homomorphism. Assume that I'° is a non-elementa-
ry Kleinian group. Then

dim PHXI', II) =z dim PHX[’, IT) .

Let (L.(C)), be the open unit ball in L_(C), the space of all meas-
urable functions on C such that the essential supremum, ||-||.,, is finite.
For an element z e (L,(C)),, we denote by w* a unique quasi-conformal
self-mapping of C which fixes 0,1, - and satisfies the Beltrami equation

ow /07 = pdw")/oz .

Such a quasi-conformal mapping w* is said to be compatible with I" if
w'olo(w)*CG. Let B(I') be the space of all pe(L,(C)), with
wtolo(w)*CG. For peB(I'), we set wrogo(w*)™ =g(t)eG for geI.
Then the mapping g+ g(#¢) is a continuous mapping of B(I") into G with
9(0) = g. In fact, this mapping is holomorphic (see [1] and [3]). Hence
the isomorphism 6(x): I' — G defined by 6(¢)(g) = g(¢) is close to the
identity homomorphism if ||z||., is close to zero. Moreover, 6(¢) is a
parabolic homomorphism. We denote the group 6(p)(I") by I'*. If I' is
a non-elementary Kleinian group, then I[I'* is also a non-elementary

Kleinian group. So we have:

COROLLARY. Let I' be a non-elementary finitely generated Kleinian
group and let w* be a quasi-conformal self-mapping of c compatible
with I’y where ||tt||.. 18 close to zero. Then

dim PHXI, IT) = dim PHXI™", II) .
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Let 2(I") be the region of discontinuity of a non-elementary finitely
generated Kleinian group I" and let A(Q("), I') be the space of bounded
holomorphic quadratic forms on 2(I'). Let B*: A(2(I"), I')— PHy(I", I)
be the so-called Bers map with respect to I'. For a quasi-conformal
mapping w* compatible with I", we have dim A(Q(I"), I') = dim A(Q(I'#),
I'), So we can prove the following:

THEOREM 3. Let I' be a non-elementary finitely generated Kleinian
group with PH(I', II) = B*(AQ("), I')) and let w* be a quasi-conformal
self-mapping of C compatible with I', where el s sufficiently close
to zero. Then

PHy(I', IT) = B(p)*(AQ(I™), I'*))
for the Bers map B(t)* with respect to I'*.

ProOF. By Corollary we see that dim PH(I", 1) = dim PH}([%, II).
Since B*(A(R(I), I')) = PHLI', II) and since B* is injective, we have
dim A((I"), I') = dim PHYT, IT). Moreover, B)*: AU, I'*) —
PH)I'* IT) is also injective. Hence dim A(R(I"), I') = dim PHYI", IT) =
dim PHAT*, IT) = dim A((['%), I'*). Since dim AQ(), I') = dim A(Q(I™"),
I#), we have dim PH(I'* II) = dim A(Q('*), I'*). By the injectivity of
B(w)* we are done.

By Theorem 1 in [5], we have the following as an immediate con-
sequence of Theorem 3.

COROLLARY. Under the same hypothesis as in Theorem 3, I'* is
quasi-conformally stable.
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