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1. Introduction. In this note let {n,} be a sequence of positive
integers satisfying the gap condition

1.1 W1/ P > 1 + cm™ (¢c>0and 0 < <1/2),
and {a,} be a sequence of positive numbers such that
k 1/2
— (91 2 co
A= (2 ga) =t
a, = O(4,k*(log 4,)7%) , g >1/2, as k— +oo.

Further, we put

(1.2)

(1.3) En(®) = a, cos 2r(n,w + ,) and T, = Z_k, En s

where {a,} is a sequence of arbitrary real numbers, and consider &,’s
as random variables on a probability space ([0, 1), &, P) where & is
the o-field of all Borel sets on [0, 1) and P is the Lebesgue measure on
. Then we write, for we[0,1) and ¢t = 0,

(1.4) S@) =8¢, w) = T(w), i A=t <A,

for & = 0, where we put 4, =0 and T, = 0.
The purpose of the present paper is to prove the following.

THEOREM. Without changing the distribution of {S(), t = 0} we can
redefine the process {S(t),t = 0} on a richer probability space together
with standard Brownian motion {X(t), t = 0} such that

St) = X(t) + o(t*) a.s. as t— +oo .,

Using the almost sure limiting behavior of {X(¢),t = 0} and the
above theorem we can 'deduce the corresponding limiting properties of
{S), t = 0} or {T\(w)}. For example we can obtain the following

COROLLARY (cf. [3]). Under the conditions (1.1) and (1.2) we have,
for a.e. w,
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k
(1.5) likm sup (24% log log A,)"Y* 3, a,, cos 2x(n,@0 + ,) = 1.
400 m=1

For a = 0, that is, when the sequence {n,} satisfies the Hadamard
gap condition, Weiss [4] proved that if a, = o(4,(loglog 4,)7%) as
k — + oo, then (1.5) holds.

Recently, Philipp and Stout [1] have proved that if @ = 0, a, = 0(4};%)
for some 6 >0, and {n,} is a sequence of real numbers, then for any
A < 8/32

S@) = X&) + O@t*™%) a.s. as t— +oo .
For the proof of our theorem we approximate {T,.(w)} by a martingale

and then apply a martingale version of the Skorohod representation
theorem due to Strassen ([2] Theorem 4.3 and also ef. [1]).

THEOREM OF STRASSEN. Let {Y,, &) be a martingale difference
sequence. Then without changing the distribution of {Y,} we can redefine
the sequence {Y,} on a richer probability space together with a sequence
{T\} of mon-negative irandom wvariables and standard Browniam motion
{X(®), t = 0} such that

k k

S V.= X(3T.) as
Moreover, if &, is the o-field generated by {X(t),0 <t < >%_, T,}, then
T, i1s ®,-measurable and for some constant C

E(T,|6,.) = E(Yi|G,_) = E(Yi| 9 »
E(T:|G®,) = CE(Y1|9:-) a.s.,
where 9, 18 the o-field generated by {Y,, 1 < m < k.
2. Preliminaries. I. Let us put, for each £,

2(0) =0, p(k) = max {m;n, <2,

21) p(k+1)
( 4= 3 & and B, = Apgrn -
m=p(k)+1
Then if pk) + 1 < p(k + 1), we have, by (1.1),
pik+1)—1
2> Nppero/Mpay+s > II (A + em™)
m=p(k)+1

>1+clplk+1) — k) —1p™(k + 1) .
Hence we have
2.2) pk + 1) — pk) = O(p*(k)), as k— 4o,
and if m, = o(»**(k)) as k — + o, then
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2.3) pk + m)/pk) — 1, as k— 4o .
Further, we obtain from (1.2) and (2.2)

b= max a, = OB *k)(log B,)™*),

(k) <m<p(k+1)
p(k+1)

(2_4) m=p§(;l)+1 42 = blc{p(k + 1) - p(k)} = O(Bk(log .Bk)_ﬁ) N
E4; < bi{p(k + 1) — p(k)} = O(Bip~*(k)(log B,)™™) ,
' as k— 4 oo .
On the other hand, by (1.2) we have

k

S (log A,)%as/A%L = O(k), as k— +oo .

Therefore, we have
(2.5) log log B, = O(log »(k)) , as k— +o .

II. LemMA 1. For any given integers k, j, q and h such that
P +1L<h<p([d +1) <ok +1<q= plk+ 1), the number of solutions
(n,, n;) of the equations

Ng — Ny = Ny, =Ny,

where p(J) < i< h and pk) <r<gq, s at most C27 *p*(k) for some
constant C which does not depend on k, j, ¢ and h.

Proor. If k< j + 5, the lemma is evident by (2.2). We assume
that k> 7 +5. Let m denote the smallest index » of the solutions
(n, m;). Then the number of solutions is at most ¢ — m. Since
(n, = n,) < 2/ we have

N = Mg — 2742 > My (1 — 27427%) = m (1 4 277%.5)7* .
By (1.1) we have
1+27%.5> n,/n, > qﬁ AL+es)>1+cl@q—mp™k+1).

Therefore, by (2.8) we can prove the lemma.

LEMMA 2. For any M and N (M < N) we have

a(

where C is a positive constant which does not depend on M and N.

S {4 — Ea)
m=M

) = 0By 3, Baiog B,
m=M

ProoF. For k=1,2, --- let us put
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p(k+1
U,= 4 — Ef; — 271 (Z:) a? cos dn(n,0 + a,,) .
m=p(k)+1
Then by (1.2) and (2.4) we have
N 1/2 N p(m+1) 1/2
{2 Prste(s o)} (g 5 )
m=M

m=M j=p(m)+1

N

2 3 S muU,

k=M+1 j=M

o({é BB, (log BN)“”}W) , as No 4 oo .

Further, by Lemma 1 and (2.4) we have for k > j

p(i+1)

|EUU,| < C2p(h) S abe Sy axb;

q=p(k)+1 h=p(5)+1

= 0@ MERELp (k)p~*(7)}*By'(log By)™),  as N— +oo.

Since p(5 + 1)/p(j) — 1 as j — + o, we have for all k&
2.6) S ()2 < Cp~*(k),  for some C>0.

Therefore, we have

N k—1 3 N k-1 ks 1/2
S S BBy GGyt sci S B4l 3 5 Baz
k=M+1 j=M k=M+1 j=M
N N 3 /2
<cl| > mal’ {z Es S, zr"} <C > Ef
k=M+1 =M k=j+1 k=M

Also we need the following

LEMMA 8. For any M and N (M < N) we have

(max by Ak} ) < cé EAi{BNZ(log By +§“,{ EA?,} ,

M=rsN

where C is a positive constant independent of M and N.

PrROOF. From the definition of 4, we obtain

(1) Emaxyc,sy|Di-x4l') < CE| X0y 4%

(ii) B34l = CECy &),
which are (4.4) and (2.7), respectively, of Chapter XV in [5]. Hence for
our proof it is sufficient to show that

N 2 N N
E( s Ai) <CS Ef {BNz(log B) ¥+ S EA,%} .
k=M k=M k=M

By Lemma 2 we have
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N
|3 4

2 N N 2
<2 3 E|4 — ELP + 2(2 EA;)
k=M k=M
N N
<C3, EAi{BN?(log By ¥+ S EA%,} .
k=M k=M
3. Division into blocks. I. Let us put ¢(0) =1 and for every
k=1
(3.1) q(k) = min {m; B, — Biy_y = Biu-nlog B,u_) 7>},

where ¢ is a positive number such that 28 =1 + 10e.
Then by (2.4) and (3.1) we have

Byw/Bgyie-n — 1, as k— 4o,
q(k) — q(k — 1) > Cp*(q(k — 1))(log B,_)*,  for some C>0.

Putting (k) = [{a log p(¢(k — 1)) + 28 log log B,_,}/log 2], (2.5) implies
that

(3.2) {

O(log p(g(k — 1))), if a>0,

O(log log B,.—1) » if a=0, as k— +.
Since (k) = o(q(k) — q(k — 1)) as k — + =, if we put

gk =qlk —1) +yk) +1,

then ¢'(k) < q(k) for all &k > k,. Without loss of generality we may as-
sume that ¢'(k) < q(k) for all k. We write

q(k)—1 q’(k)—1

jvkz S 4, We= 'S 4,

33 ) = {

@ e
lCi = Ef:, and D= 3,C:.
m=q(k—1) k=1
Then from (3.1), (8.2), (8.3) and (2.4) we obtain
(3.5) Ci = Di(log D)™ 7*(1 + o(1))
and
(3.6) EW; = O(Diy(k)/(log Dy)*p*(q(k — 1)))

= o(C}/(log D,)*) , as k— +oo .

LEMMA 4. Let p, and ' denote respectively the maximum and
minimum frequencies of a trigonometric polynomial 3L% 51, (42 — E4).
Then we have

W[y — + oo and g/t — oo,

as k— + . The same conclusion holds for Vi — EV3i.
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ProoF. Since (2.8) and (3.3) imply that p(q(k—1)—(k))/p(g(k—1))—1,
as k— + o, we have, by (2.4) and (3.3),

Biu-y — Biu-n-—yw = ¥v(&)Di/p*(@(k — 1) — y(k))(log D,_,)*
= o(D}_,/(log D,_)**™) , as k— +co.

Therefore, by (8.1) it is seen that ¢'(k — 1) < gk — 1) — (k), if k& > k,.
On the other hand from the definition of 4, we can see that the fre-
quencies of terms of Y%zt (44 — E4%) lie in the interval
[e2-2/p"(q(k — 1)), 2"+ .
Hence we have
[y > c20*T T E T (g () — 1)) > 2P p*(q(k — 1))
> c¢(log D,_)*¥ — + =, as k— 4+ .

In the same way we can prove the remaining part of the lemma.

LEMMA 5. We have

(1) XN, Sutker ) £ = o(Dy*(log Dy)™™) a.s.,

(ii) ¥, Vi= D, + o(Dy*(log Dy)™*) a.s., a8 N— + oo,

PROOF. (i) By Lemma 2 and Lemma 4 we have, for some C > 0,
q'(k)—-1

E|3 DiGog D |3 (4 — B
=1

m=q (k-1

2

q’ (k)—1
2, (4 — Ef)

m=q(k—1)

< C(g‘, Di*(log D,,)4=-2ﬂEW,2,) < 4o

2

< C3 Di*(log D)“E
k=1

This shows that the series ) D;*(log D,)* 328k, (4% — EA) is the
Fourier series of some square integrable function and by Lemma 4 this
series converges a.s. Hence by Kronecker’s lemma we have

N q'(k)-1

lim Dy*(log Dy)* >, >, (&% — E4) =0, a.s.
N-—o0 k=1 m=q(k—-1)
(ii) In the same way as in the proof of (i) we have
E|3, Di*(log D)*(Vi — BV| = C 3} Di*log D)“E(Vi — EV3y
=1 =1
< C 3, Di¥(log D)(EV} — (EV) .

On the other hand, by Lemma 3, (3.4) and (3.5) we have
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EV: =O0(DiEVilog D)% + (EV%?
= O(DiCi(log D,)™* + CiDi(log D,)™"™)
= O(DjCi(log D)%), as k— 4o,
Hence we have

E|3, Di*log DJ*(Vi — BVD| <+,
and in the same way as in (i) we can see that
lim Dy*(log Dy)* 33 (Vi — EVD) =0 a.s.
Since (8.6) implies that
ZEV,, Z, EW; = o(Dy*(log Dy)™™), as N— +o,

we can prove the second part of the lemma.
II. LEMMA 6. We have limy_, D7 35, W, =0 a.s.

Proor. For every positive integer N let us put Iy ={m;qk — 1) <
m< qk),k=12 +---,N}, Iy={m;mel, and m is even} and Iy =
{m; m e Iy and m is odd}. If m €Iy and Ay = (log Dy)*/Dy, then |Ayd,| <
1/4 for all large N. Since |z| < 1/2 implies that exp (z) < (1 + ) exp (x?),
we have

exp (v 3 ) = foxp (210 3 an)exn (20 3 40)}"
< LIEI, L+ 2040 T1 Q0+ 2x,NAm)} exp (mv 5 As,,) .

Hence we have

E{exp (’“N,.Z 4, — Dy S A%,.)}

el meIN

< E{ T (1+ 24, T+ ZxNAm)}

meIN mel N

< { I L+ 20408 T+ szA,,,)}

mel N
Estimating the frequencies of terms of 4, for m e Iy, we have
Edy T (L+20nyd) = 0.
jell'v

Therefore, we have
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ET (1+2u4)=E II (1+2umd)=1,
me N

meIN

and we obtain

E{exp(hlv S 4, — 2% S A;,)} <1.

meIN mely

If we take xy = Dy/(log Dy)¢, then we have

3.7) { S 4>y S A+ xN} < exp {—(log Dy)} .

melpn melp

Next we take m, = min {m; D?, = exp (k¥')}, where v is a positive number
such that 1/@2 + 5e) < v < 1/2. Smce

{exp (")}~ r4+% = o(exp (kK + 1)" — exp (k7)) , as k— +oo,
(8.5) implies that there exists an integer k, such that if k& > k,, then
(3.8) exp {(k + 1)} > D}, = exp (k') .
By (3.7) we have
by P{m 3 4.>2D5(log Do) 5. i+ Duyllog Doy } < foeo.
Therefore, by Lemma 5 (i) we have
3.9) lim sup D, Z, 4, =<0 a.s.

k—+oo melmg
Putting Z, = max {| 3Xn-yim,_p 4ul; m € L, q(m,_)) < 7 < ¢'(my)}, we have,
by Lemma 3 and (3.8),
EleP = O(sznk(Dfnk mk 1)(10g -D'mk) 2 + (-D mk 1)2)
= 0D 7% + D k7*7) as k— +o .
Hence, we have >, D,*E|Z,|* < +c and this implies that
(3.10) lim D;.Z, =0 a.s.

k—+4-o00

Since D, /D,, ,—1 as k— +c, (3.9) and (3.10) show that

lim sup D3* Z w. <0, a.s.,

k—+oo

and replacing {W,} by {— W,}, we have

lim inf D3 Z w,=0, a.s.

k->+o0

III. LEMMA 7. Forany t =0 let N(t) and M(t) denote the integers
such that D%{(t) = A?\r(t) St < A?V(t)-‘-l = Di!(t)+1- Then we have
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M)
S@) = kZ V. + ot"®, a.s., as t— +oo.
=1

ProOF. By (1.4) and (2.4) we have

M(t)

M(t)
S@t) = Tyw = kEzl Ve + ! Wi+ Ty — Toqurom

k=

and | Tyu — Thuuom| = Zywy + o(Dypy(og Dy))™?) as ¢t — +co, where
Z, = max, {| Dim-gm dul;a(k) < r < q(k + 1)}. By Lemma 3 and (3.5) we
have

é} D*EZ} = O<ki;1 D;*Ci(log D)% + gD?Ci)
~ 0($, Di*Citog D) < + - .

Hence by Lemma 6 we can prove Lemma 7.

4. Martingale representation. For each positive integer &k let
r(k) = qk) + [(27'a log p(q(k)) + Blog log D,)/log 2] and &, be the o-field
generated by the intervals {[277® (v + 1)277®); 0 < v < 2"®}. Then we
put

X, =V,— E(V,I% and Y, = EV,|8 — E(V,|-) -
Clearly {Y,, &.} is a martingale difference sequence.

LEMMA 8. We have
(i) |Xi] =o(CiDi'(log Dy)™™) a.s.,
(ii) E(Vi|$_) = o(CiDi'(log D)™*) a.s. as k— +oco.

Proor. (i) Since |&; — E(¢; |80 | < am;27"% a.s., we have by (2.2)

4y — BB = S amar®

Jj=p(m)+1

= O({E4:p*(m)}22m"*)  a.s. as k— 4o .
On the other hand we have, by (2.6), (2.3) and (3.5),

q(k)—1

q(k)—1 1/2
Z {Edsnpa(m)}lﬂzm-"r(k) — O{Ci Z pa(m)z?m—?r(k)}
m=q’ (k) m=q’ (k)
= 0(Cyp**(q(k) — 1)27"~"®) = O(C,p**(q(k) — L)p~**(q(k))(log D;)~*)
= o(CiDz'(log D)™™, as k— +oo .

By the above two relations we can complete the proof of (i).
(ii) Since |E(; |-y | < 2(27m;)'a2"* Y a.s., we have

|E(4,|Fi-) | = O{EL,p*(m)}V227*E D™ a5 as k— +oo .
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On the other hand by (2.6), (2.3), (3.5) and the definitions of {»(k)} and
{9’(k)} we have

q(k)—1 q(k)—1 1/2
Z(k {EA;pa(m)}uzzr(k—n—m — O(Ck{ Ek pa(m)z-—zfm} 2r(k—1)>
m=q’ (k) m=q’ (k)

= O(C,p**(¢' (k))27*170'®) = O(C,p*"*(¢'(k))p~*"*(q(k — 1))(log D,)™%)
= o(C:D3;(log D)%), as k— + oo .
Hence we can prove (ii).

LEMMA 9. We have
(i) 20-1Y, — Vil = o(Dy(log Dy)™™) a.s.
(ii) >0, Y: = D% + o(D%(log Dy)™) a.s. a8 N — + co.

ProoF. (i) follows trivially from Lemma 8.

(ii) By Lemma 5 (ii) it is sufficient to show that
N N
kZ, Y: — kZ‘, Vil = o(D%(og Dy)™*) a.s. as N— + oo,
=1 =1

Since max; <<y | Y + Vil < max <oy @Vl + | X,| + |E(Vi|Be-d) ) = O(Dy)
a.s. as N— + o, (i) implies (ii). Therefore, by Lemma 7 and Lemma 9
(i) we have

M(t)
(4.1) S@) = kz Y, + o(t"®, a.s. as t— +oo .,

5. Embedding procedure. We apply the theorem of Strassen stated
in §1. Let {X(¢), t = 0} be standard Brownian motion. Then there exist
non-negative random variables T, such that

{x( mﬁz T,,,), k> 1} and | mﬁz Y,, k= 1}

have the same distribution. Hence without loss of generality we can
redefine {Y,} by

(.1) v, = x( mz';; T.) - X(ZEZ Tm)

and can keep the same notation. Thus 9, becomes the o-field generated

by {(XC™, T;,), m <k} and @, is the o-field generated by {X(t), 0 <t <
k_,T.}. Notethat $,c®,, k =1 and each T, is ®,-measurable. More-

over, for some constant C we have

{E(Tk|®k—1) = E(Y}|9:.-) as.,

E(Ti|G,) = CE(Y1]|9:i-1) a.s.

LEMMA 10. We have

(5.2)
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N
kZ_, T. = D% + o(D%(log Dy)™*) a.s., as N— + o,
Proor. By (5.2) we have
N N
k2=1 Tk — Dy = ,é{Tk - E(Tkl®k—1)}

N N
= 2 {Yi - E(Yi[9 )} + X Yi— Dy, as.
Since EY4: < 16EV: we have, by Lemma 3 and (3.5),
EY} = OWDiEVi(og D)™ + (EV%)?)
= O(DiCi(log D,)™ %), as k— + oo .

Therefore, we have
3, Di(log DY“BYE <+ .
Hence by (5.2) we have
S (T, — B(T4|8, ) = o(Di(log D)) as.,

N
2 Yi — E(Yi[9:)} = o(Di(log Dy)™) a.s.  as N— +oo,

for two martingales. Therefore, by Lemma 9 (ii) we can prove the
lemma.

Next let us define a random process {S*(¢), t = 0} by
N
(5.3) S*(t) =kZ Y,, if Dy =<t< D%..

Observe that {S(¢)} and {S*(¢)} are not necessarily defined on the same
probability space, since we redefined {Y,} by (5.1). But we can redefine
{S@®)}, {S*(¢)} and {X(t)} on still another probability space so that the
joint distribution of {S*(¢)} and {X(¢)} as well as that of {S(¢)} and the
old version of {S*(¢)} remains unchanged. Hence without loss of generality
we can assume that {S(¢)}, {S*(¢)} and {X(¢)} are defined on the same
probability space and that the lemmas proved so far continue to hold in
this new setup.

Therefore, by (4.1) and (5.3) it is enough for the proof of our theorem
to show the following.

LEMMA 11. We have S*(t) = X(t) + o(¢¥*) a.s., as t— + oo,
ProOF. Let ¢, = (loglog D,)"¢ and define the sets as follows:
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B, = {max( X(g, T,,) — X(t),; Drst< Df,+1) > 45”D“} ,

—
M=
~

.) = D3

> Di(log Dn)—“}

for 0<r 8< .
For the proof it is sufficient to show that P(lim sup,_... F,) = 0. Since
(3.5) implies
E,cG,UH,1,2)cF,U{F:nNHQ2)UHO12CcF,UH,(Q,?2)

for » = n, and since Lemma 10 implies P(lim sup,... F,) =0, it is
sufficient to show that

(5.4) P{lim sup H,(1, 2)} 0.

N—+oc0
Let m;, = min {m; D% = exp V' k)}. Then by (3.5) there exists an integer
k, such that &k > k, implies
exp V'k)< D, <exp(Vk+1),
D;,,. 1 + (log D, )"} < D}, {1 + 2(log D,,)"*} .

For n = m,, and m, <n < m,, (5.5) implies that H (2, 1) C H:(1, 2).
Therefore, by (5.4) it is sufficient to show that

(5.5) {

(5.6) P{lirkn sup H,, (2, 1)} = 0.
— 400

Using Lévy’s maximal inequality we have

P{H,, 2, 1)} < 2P{| X(4D;, (log D,,)*)| > €u,Du,}
< 2P{| X(1)| > e, (log D, )*/2} < exp {—(V k)/8}, for k >k, .

Hence by the Borel-Cantelli lemma we can prove (5.6).
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