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1. Introduction. In this note let {nm} be a sequence of positive
integers satisfying the gap condition

(1.1) nm+1/nm > 1 + cm"α (c > 0 and 0 ^ a ^ 1/2) ,

and {am} be a sequence of positive numbers such that

(1.2) j ^
[ak = O(Akk-a(\og Ak)-β) , β > 1/2 , as k -> +

Further, we put

k

(1-3) ξm(ω) = am cos 2π(wmω + α j and Tk = Σ ί» >

where {αm} is a sequence of arbitrary real numbers, and consider ξm's
as random variables on a probability space ([0, 1), Jf, P) where &~ is
the σ-field of all Borel sets on [0, 1) and P is the Lebesgue measure on

Then we write, for ω e [0, 1) and t ^ 0,

(1.4) S(ί) = S(ί, ω) - Γ4(α>) , if Aϊ ^ ί < AJ+1 ,

for & ̂  0, where we put Ao = 0 and To = 0.
The purpose of the present paper is to prove the following.

THEOREM. Without changing the distribution of {S(t), t ^ 0} we can
redefine the process {S(t), t ^ 0} on a richer probability space together
with standard Brownian motion {X(t), t ^ 0} such that

S(t) = X{t) + o(ί1/2) a.s. as t-> +oo .

Using the almost sure limiting behavior of {X(t), t ^ 0} and the
above theorem we can [deduce the corresponding limiting properties of
{S(t), t ^ 0} or {Tk(ω)}. For example we can obtain the following

COROLLARY (cf. [3]). Under the conditions (1.1) and (1.2) we have,
for a.e. ω,
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(1.5) lim sup (2A£ log log Ak)~m Σ αm cos 2π(nmω + am) = 1 .
Jfc-»+oo m = l

For α = 0, that is, when the sequence {nm} satisfies the Hadamard
gap condition, Weiss [4] proved that if ak = o(Ak(log log Ak)~m) as
k —> +oo, then (1.5) holds.

Recently, Philipp and Stout [1] have proved that if a = 0, ak = O(A\~δ)
for some 8 > 0, and {wj is a sequence of real numbers, then for any
λ < <5/32

S(ί) - JSΓ(t) + 0{tm~λ) a.s. as ί -> + oo .

For the proof of our theorem we approximate {Tk(ω)} by a martingale
and then apply a martingale version of the Skorohod representation
theorem due to Strassen ([2] Theorem 4.3 and also cf. [1]).

THEOREM OF STRASSEN. Let {Yk, χ$k} be a martingale difference
sequence. Then without changing the distribution of {Yk} we can redefine
the sequence {Yk} on a richer probability space together with a sequence
{Tk} of non-negative [random variables and standard Brownian motion
{X(t), t^O) such that

m) a.s.

Moreover, if ®k is the σ-field generated by {X(t), 0 ^ t ^ Σ i = i Tm), then
Tk is ®k-measurable and for some constant C

&_1) a.s.,

where (Qk is the σ-field generated by {Ym, 1 ^ m ^ k).

2. Preliminaries. I. Let us put, for each k,

p(0) = 0 , p(k) = max {w; nm < 2"} ,

( 2 > 1 ) ' = Σ f. and Bk = Ap(k+1)

Then if p(k) + 1 < p(k + 1), we have, by (1.1),
p(k+l)-l

+1)/np{k)+1 > Π (1
m=p(k)+l

c{p(k + 1) - p{k) -

p ( )

2 > np{k+1)/np{k)+1 > Π (1 + cm"")
m=p(k)+l

Hence we have

(2.2) p(k + 1) - p(k) = O(pa(k)) , as

and if mk = o(pL~"(k)) as fc—> + ° ° , then
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(2.3) p(k + mk)lp{k) -> 1 , as k -> + oo .

Further, we obtain from (1.2) and (2.2)

ιbk = max am = O(Bkp-a(k)(log.
pΓ

P(k + 1)

(2.4) j M = § ) +
EΔ\ ^ bl{p(k + 1) - ί)()k)} =

as A; —> + <

On the other hand, by (1.2) we have

Σ (log AJ^al/Al = 0(k) , as k -> + oo .

m = l

Therefore, we have

(2.5) log log Bk = O(log p(k)) , a s i - ^ + o o ,
II. LEMMA 1. For any given integers k, j , q and h such that

p(j) + 1 < h <̂  p(j + 1) < p(k) + 1 < q <̂  p(& + 1), the number of solutions
(nr, rii) of the equations

nq - nr = nh±ni,

where p(j) < i < h and p(k) < r <q, is at most C2j~kpa(k) for some
constant C which does not depend on k, j , q and h.

PROOF. If k < j + 5, the lemma is evident by (2.2). We assume
that k ^ j + 5. Let m denote the smallest index r of the solutions
(nr9 nt). Then the number of solutions is at most q — m. Since
(nh ± nt) <; 2 i+2 we have

nm

By (1.1) we have

1 + 2>'-k 5 > nf/nw > ϊ ϊ (1 + cs~a) > 1 + c(g -

Therefore, by (2.3) we can prove the lemma.

LEMMA 2. For any M and N (M < N) we have

E ^ CB%\ Σ {

where C is a positive constant which does not depend on M and N.

PROOF. For k = 1, 2, let us put
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p(k+i)

Uk = Δ\- EΔ\ - 2"1 Σ αm cos Aπ(nmω + am) .
m=p(k)+l

Then by (1.2) and (2.4) we have

N p(m+l) \l/2

ή( N 2\ 1/2 ( / N \2\ 1/2 / N p(m+l)

77T V~i / Λ2 Ί71 A2 \ I ^ ) ΊPl X"1 TT \ L I O"~l| X ' X ' /γ4•̂  2 J (A — J^Δi,) \ ^ ^Λί 2 J Um) r + ^ I 2 J 2 J α i
m=Af J I \m=M / J \m=Jί i=p(m)+l

iV fc-1 1/2 / f JV ) l/2\

Further, by Lemma 1 and (2.4) we have for k > j

lEU.Ujl^CX-'p^k) ' Σ " α Λ T αΛ

Since p(j + l)/p(j) —> 1 as i -> + oo, W e have for all &

(2.6) £ p-α(i)2J- fc ^ Cp"α(&) , for some C> 0 .

Therefore, we have

j r * = i . . . . .. . . ( JL _ Ϊ V 2 ( Λ;. fc-i , ) i / 2N k-1 ( N \1/2(N fc-1

Σ Σ V-k{EJiEφ°(k)p-"(jψ* s C Σ ^ 4 Σ Σ
=M + l j=M Kk=M + l ) U=Aί + l j=M

{ N \ 1/2 (N-l N \ 1/2 iV

Σ #4 Σ ^ Σ 2'-*f ^CΣEJl.
k = M + l ) {j=M k=j+l ) k=M

Also we need the following

LEMMA 3. For any M and N (M < N) we have

^ Ί ^ C Σ EΔUBN\\og BN)~2β + Σ
/ k=M I A:=Jί

max

where C is a positive constant independent of M and N.

PROOF. From the definition of Am we obtain

( i ) E(m*κMzr*N I Σί-jr Λ I4) ^ CE\ Σ*LM Δk\\

( ϋ ) E\ΣI=MΔk|
4 ^ C ^ ( Σ ί ^ ^ ) 2 ,

which are (4.4) and (2.7), respectively, of Chapter XV in [5]. Hence for
our proof it is sufficient to show that

E(Σ ΛΪY^ C Σ EΔUB/(\og BNΓ? + Σ EΔ\\ .
\k=M / k=M \ k=M )

By Lemma 2 we have



LACUNARY TRIGONOMETRIC SERIES 443

E
N

k=M
2 Σ E\Δ\ - EΔ\\2 +

kM
Σ

k=M

^ C Σ m\BN*Qog BN)-» + Σ EΔU .
k=M I k=M )

3. Division into blocks. I. Let us put q(0) = 1 and for every

(3.1) q(k) = min {m; BJ - B%

qa_a ^ ^ ( .

where e is a positive number such that 2/3 = 1 + lOe.
Then by (2.4) and (3.1) we have

f-B,,„/£„»_», -* 1 , as k -> + oo ,
( 3 ' 2 ) [q(k) - q(k - 1) > Cp"(q(k - l))(logBgίk_Ώγ° , for some C> 0 .

Putting f(Λ) = [{alogp(q(k - 1)) + 2/3 log log -B^.J/log 2], (2.5) implies
that

flt 8) . f t x = | < > 0 o * P ( ί ( * - l ) ) ) . i f « > 0 »
r W (OaoglogBf,»_„), if a = 0, as & ^ + o o .

Since ψ-(fc) = oto(fc) — (̂A; — 1)) as A; -> + oo, if w e put

then q'(k) < q(k) for all A; > λ;0. Without loss of generality we may as-
sume that q'(k) < q(k) for all k. We write

Vh= Σ Δm, Wk = Σ Δm,
m=q'(k) m=q(k-l)

= Σ EΔl and Z)/ = ΣCi .
m=q(k-l) k=X

Then from (3.1), (3.2), (3.3) and (2.4) we obtain

(3.5) Cl = 2)ϊ(log Dk)-^a + 0(1))

and

(3.6) EWl = O(Dlf(k)/(log Dk)^pa(q(k - 1)))

= o(C!/(log A)4 e) , as & -^ + oo .

LEMMA 4. Lei ^fc and μk

r denote respectively the maximum and
minimum frequencies of a trigonometric polynomial Σmi^S-D (Δ*m — EΔ%).
Then we have

as &—> +oo. Γfee same conclusion holds for VI — EV\.
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PROOF. Since (2.3) and (3.3) imply that p(g(fc- l)-ψ(k))/p(q(k-l)) -> 1,
as k-> +oo, W e have, by (2.4) and (3.3),

- 1) - f (&))(log A-i)2/J

A- 2 ) 1 + 9 ε ) , as Λ -> + - .

Therefore, by (3.1) it is seen that q\k - 1) < ?(fc - 1) - ψ(k), if k > k0.
On the other hand from the definition of Am we can see that the fre-
quencies of terms of Σi'-ίδ-i) (Ά ~ ^™) ^ e i n *h e interval

[c2«*-l)lp«(q{k - 1)), 2«'(fc)+1] .

Hence we have

μk'/μk > c29(&-1)-9'(ft-1)-1ί)-α(g(fc ~ 1)) > c2^k)p-«(q(k - 1))

> c(log A-i)2^ - * + ° ° , as k-> +°° .

In the same way we can prove the remaining part of the lemma.

LEMMA 5. We have

(ii) Σ t i F | - Z^1 + oOVαogZ^)-2*) α.s., as JV-> +oo.

PROOF, (i) By Lemma 2 and Lemma 4 we have, for some C > 0,

</'(&)-!

A)2e Σ
m=g(fc-l)

This shows that the series Σ Dk\logDkf
ε Σmi^-i) VI - EΔ2

m) is the
Fourier series of some square integrable function and by Lemma 4 this
series converges a.s. Hence by Kronecker's lemma we have

Hm Dγ(\og DN)U Σ JΣ" 1 CA - EΔ2

m) = 0 , a.s.

(ii) In the same way as in the proof of (i) we have

#|g2>ϊ2(logDkT(V\ - EVΪ)^ £ CΣDialogDkTE{V\ - EVl)2

^ C Σ ΰfc4(log Dk)
u{EVi ~ (EVl)2} .

On the other hand, by Lemma 3, (3.4) and (3.5) we have
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EVl = O(DlEVl(log Dk)~v + (EVIY)

= O(DlCl(\og A)" 2 ί + C

= O(DlCl(\og A)" 1" 5 5), as

Hence we have

and in the same way as in (i) we can see that

Hm Z>/(log I?,,)26 £(Vi-EVD = O a.s.

Since (3.6) implies that

D*N-Σi EVl = Σ!EWl - o(D/(\og DN)~2ε) , as tf-> + oo ,
k=l k=ί

we can prove the second part of the lemma.

II. LEMMA 6. We have lim^^ DN1 Σί=i Wk = 0 a.s.

PROOF. For every positive integer N let us put IN = {m; q(k — 1) ^
m < q\k), k = 1, 2, , N}, I'N = {m; meIN and m is even} and IN =
{m; meIN and m is odd}. If m 6IN and λ^ = (log DN)2ε/DN, then | λ^Jm | <
1/4 for all large N. Since |a?| < 1/2 implies that exp (x) ^ (1 + x) exp (ίc2),
we have

/ \ ( /
exp (λtf Σ 4») = jexp(2λiVr Σ ^

\ melN / ( \ meίjy

(me I ft me I ft " ) ~ \ vΐeΊN

Hence we have

I \ me Iff m

< T7τ 1 I I (Λ I Q"\ A \ I I /"I I Q"\ /I \ (

s _£2/ *i I I I •*• "T" ^^N^m) XX \ -̂ • ^^N^m) Γ

( \ 1/2
fij I J[ IX —p £u/\jffZim)Jjj \\_ IJL "T" ^^N^m) [

me I ft me I ft )

Estimating the frequencies of terms of Δm for meΓN, we have

1/2

EΔm 'if (1 + 2λ^zίi) = 0 .

Therefore, we have
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E Π (1 + 2 λ ^ J = E Π (1 + 2λ*4.) = 1 ,

and we obtain

Π
me/-

meIN mεIN

If we take xN = DN/(log DN)% then we have

(3.7) P\ Σ 4 . > 2λ* Σ A + »4 ̂  exp {-(log I^) } .
Iwe/jy- meIN )

Next we take m^ = min {m; DL ̂  exp (kr)}, where 7 is a positive number
such that 1/(2 + 5e) < 7 < 1/2. Since

{exp (kr)}k~ra+*ε) = o(exp (k + l) r - exp (kr)) , as & -> + °o ,

(3.5) implies that there exists an integer k0 such that if k > &0, then

(3.8) exp {(k + 1)'} > D2

m, ̂  exp (&0 .

By (3.7) we have

Σ ^
Therefore, by Lemma 5 (i) we have

(3.9) lim sup D»\ Σ Δm ^ 0 a.s.

Putting Zk = max (IΣUβc^) 4 l ; w e IWjb, ζ?(mfc_x) ̂  r < g'(mfc)}, we have,
by Lemma 3 and (3.8),

E\Zk\* = O(Dlk(Dlk - DialogDmk)-v + (Dik - Dlkjη

= 0{DlhkΠ-*r* + Dlkk-*+2*) , as h -> + oo .

Hence, we have Σ^m^l^&i 4 < +°° and this implies that

(3.10) lim D»\Zh = 0 a.s.
fc—>+oo

Since D^/D^^-^l as fc-> +oo, (3.9) and (3.10) show that

lim sup D / Σ TFfc ̂  0 , a.s.,
Λ;-»+oo fc=i

and replacing {Wk} by {—TΓ*}, we have

lim inf D^1 Σ Wk ̂  0 , a.s.
*•-> + <» fc=l

I I I . L E M M A 7. For any t ^ O let N(t) and M(t) denote the integers

such that D2

MU) ^ A2

NU) ^ t < A2

NU)+1 ^ D2

MU)+1. Then we have
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M(t)

S(t) = Σ Vk + o(tm) , α.s., as t -• + oo .

PROOF. By (1.4) and (2.4) we have
M(t) M(t)

S(t) = τNU) = Σ ^ + Σ wk + Γyu) — τp{q{MU)))
k k ί

Σ
k=ί

and I 2V(ί, - T^urum | ^ £*<„ + o(ZW)(log Arm)"') as t -> + oo, where
Zfc = max r {|Σm=g(A;) 4 J ; «(*) ^ r < q(k + 1)}. By Lemma 3 and (3.5) we
have

Σ DϊEZl - θ ( Σ l>Γ2CJ(log AΓ 2 ' + Σ Λϊ4

fc=l \ Λ = l k=ί

= o(£ DϊK viog D*)-1--) < +oo.

Hence by Lemma 6 we can prove Lemma 7.

4. Martingale representation. For each positive integer k let
r(k) = g(&) + [(2-χα log p(g(ft)) + /3 log log Dk)βog 2] and gfc be the σ-field
generated by the intervals {[v2~r{k\ (v + l)2"r( fc)); 0 <> v < 2r(fe)}. Then we
put

Xk=Vk- E(Vk\%k) and Yk = E(Vk\%k) - E(Vk\%k-d .

Clearly {Yk,$k} is a martingale difference sequence.

LEMMA 8. We have

( i ) \Xk\= o{C\Di\\og DkY
u) a.8.,

(ii) E(Vk\gM) - ©(CIDϊXlog A)"2 1) α β αβ k - + - .

PROOF, (i) Since |fy - Efa\%k)\ £ aόnβrnk) a.s., we have by (2.2)

p(m+l)

M.-i?(4.|g*)|^ Σ α,-%2-̂ '
i=p(»)+i

= 0({^ipβ(m)}V 22m" r ( f c )) a.s. as k -> + oo .

On the other hand we have, by (2.6), (2.3) and (3.5),
Q(k)-1 ( ( q(k)-l

Σ U^))"(m)}M2"-'m = O CI Σ
m=q'(k) { K m=q'(k)= O(Ckp"/2(q(k) - ί)2"ίk)-r^) = O(Ckp

a/\q(k) - l)p-a'\q(k))(log

Dk)-iε) , as fc -> + oo .

By the above two relations we can complete the proof of (i).
(ii) Since \E{ξj\%k_ύ\ ^ 2(2τr»i)~1%2r(*-1) a.s., we have

I E(Δm I %k_,) I = 0({EJlp«(mW'*2r*-»-n) a.s. as k - +
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On the other hand by (2.6), (2.3), (3.5) and the definitions of {r(&)} and
{q\k)} we have

< 7 ( f c ) - l / ( q(k)-l \ 1/2 \

Σ {EJipa(m)}m2rik-1)-m = OicΛ Σ Pa(m)2-2m\ 2r(*-1>)
m=q'(k) \ {m=q'(k) ) /

= 0{Ckv"<\q\k))Wk-»-^) = O(Ckp*>\q'{k))p-a'\q{k -

= o{ClDϊι{\os AΓ2 ε) , as k -> + co .

Hence we can prove (ii).

LEMMA 9. We have
ogDH)-») a.s.

(ϋ) Σί-i Yl = DN + o(D%(\og DNΓ') a.s. as i\Γ-> +
PROOF. ( i ) follows trivially from Lemma 8.
(ii) By Lemma 5 (ii) it is sufficient to show that

Σ Yl - Σ V
k=l fc=l

= o(D%(log DNy2ε) a.s. as N-

Since m*κιMN\Yh + Vk\ ^ m a x ^ ^ (2\Vh\ + \Xk\
a.s. as iV-> +oo, (i) implies (ii). Therefore, by Lemma 7 and Lemma 9
(i) we have

M(t)

(4.1) S(t) = Σ y* + o(£1/2) i a.s. as ί -> + oo .
fc=l

5. Embedding procedure. We apply the theorem of Strassen stated
in §1. Let {X(t), t ^ 0} be standard Brownian motion. Then there exist
non-negative random variables Tk such that

{x( Σ, T ), Λ ̂  l} and {Σχ ̂  & ^ lj

have the same distribution. Hence without loss of generality we can
redefine {Yk} by

(5.1) γk - X ( Σ τm) -

and can keep the same notation. Thus !Qk becomes the σ-field generated
by {X(ΣT=i Γy), m ̂  k} and @fc is the σ-field generated by {X(t), 0 ̂ t ^
ΣίUi Tm). Note that ^ c © ^ k ̂  1 and each jΓfc is ©fc-measurable. More-
over, for some constant C we have

k-i) a.s.,

. . , . . . . _ , .. .©fc-i) a.s.

LEMMA 10. We have
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^ ΰ H o(D2

N(\og DN)-2ί) a.s., as

PROOF. By (5.2) we have

fc = l k=l

ξfk.d) + Σ.Yl-Dt

lt, a.s.

Since £T4

fc ^ 16EVI we have, by Lemma 3 and (3.5),

EYi = O(DΪEVl(log Dk)-^

= O(D2

kCl(\ogDa"1-*') ,

Therefore, we have

( k r < +00 .
l

Hence by (5.2) we have

,_,)} = o(D%(\og DN)-* ) a.s. ,Σ

N)->') a.s. as JV-^ +co ,

for two martingales. Therefore, by Lemma 9 (ii) we can prove the
lemma.

Next let us define a random process {S*(ί), t ^ 0} by

(5.3) S*(ί) = Σ y* , if D2

N^t< D2

N+1 .
fc = l

Observe that {S(ί)} and (S*(£)} are not necessarily defined on the same
probability space, since we redefined {Yk} by (5.1). But we can redefine
{S(t)}, {S*(ί)} and {X(t)} on still another probability space so that the
joint distribution of {£*(£)} and {X(t)} as well as that of {S(t)} and the
old version of {£*(£)} remains unchanged. Hence without loss of generality
we can assume that {S(t)}> {S*(t)} and {X(t)} are defined on the same
probability space and that the lemmas proved so far continue to hold in
this new setup.

Therefore, by (4.1) and (5.3) it is enough for the proof of our theorem
to show the following.

LEMMA 11. We have S*(t) = X(t) + o(ί1/2) α.s., as t-> +oo.

PROOF. Let εn = (log log Dn)~ε and define the sets as follows:
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E.

Fn

Gn

- { •

= {
= {

nax

χ(:

(

Γ

1

x(

s

Σ r») - X(ί)

- Dl > Dl(lo

- X{DΪ) >'

. TAKAHASHI

Dl ^ t < 1

HJίr, s) = {max (|X{D\ + h) - X(D\)\; 0 < | h | ^ ri?ί(logί>J-2 ε) > βe.2).} ,

for 0 < r, s < oo .

For the proof it is sufficient to show that P(lim supM^+κ> En) = 0. Since
(3.5) implies

K c G . U Hn{l, 2) c Fn U {(f. Π fl.(l, 2))} U H.Q., 2 ) c F , U £. (1 , 2)

for % ̂  w0 and since Lemma 10 implies P(lim supTC_+oo Fn) = 0, it is
sufficient to show that

(5.4) pflim sup Hn(l, 2)1 = 0 .

Let mk = min {m; D2

m ^ exp (l/T)}. Then by (3.5) there exists an integer
k0 such that k > kQ implies

ίexp (1/ k) ^ ΰ 2

m , < exp (i/fc + 1) ,

' 1 ^ ^ { 1 + dog i?.ft+1)"ϊf} < Dlk{l + 2(log

For n ^ mfco and mk <^ n < mk+1 (5.5) implies that Hc

mjc(2, 1) c£Γ;(l , 2).
Therefore, by (5.4) it is sufficient to show that

(5.6) P{lim sup Hmk(2, 1)} - 0 .

Using Levy's maximal inequality we have

P{Hmk(2, 1)} <S 2P{[X(4β^(logDm,)-2£)l > ε m ,ΰ m j

^ 2P{|X(1) I > εm,(log DmkY/2} < exp {-(τ/¥)V8} , f or k > k0 .

Hence by the Borel-Cantelli lemma we can prove (5.6).
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