
Tόhoku Math. Journ.
32(1980), 225-233.

TWO POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR
SECOND ORDER DIFFERENTIAL EQUATIONS

IN HILBERT SPACES

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday

JEAN MA WHIN

(Received May 1, 1979, revised June 21, 1979)

1. Introduction. This paper is devoted to the study of existence
and uniqueness of solutions for the Picard boundary value problem

(1.1) x"{t) + kx'(t) + /(t, x(t), x'(t)) = 0 , ί 6 [0, π] ,

(1.2) x(0) = x(π) = 0 ,

with /: Ix H x H —> H, keR, I = [0, π] and H is a real Hubert space.
The results are motivated by and improve the ones given in [6] for the
case H = Rn, where references to the corresponding literature are also
given. One can add a recent paper by Brown and Lin [2] for the
scalar case.

We shall essentially consider two types of regularity assumptions
for /. In Theorem 1 we suppose that / is completely continuous, which
allows an existence proof based upon Leray-Schauder's theorem. The
required a priori bounds for the possible solutions are obtained via
ZΛestimates and an extension of a Nagumo-type condition of Lasota
and Yorke [5] given in Lemma 1. A condition for the uniqueness of the
solution given in Theorem 2 suggests then to replace the complete con-
tinuity of / by some monotonicity-type condition, and this is done in
Theorem 3. To prove this result we use the approach introduced in [7]
which consists in approximating (1.1)-(1.2) by suitable finite-dimensional
differential equations which can be solved using Theorem 1 and then
using the monotonicity to obtain an exact solution from those approxi-
mate ones.

Obvious modifications allow replacing (1.2) by other boundary condi-
tions, homogeneous or not. Moreover, we shall refer to [6] with easy
adaptations for the obtention of various interesting special cases of the
main results given here.

2. p-Nagumo functions and an extension of a result of Lasota-
Yorke. We first introduce the following definition.
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DEFINITION. If p ^ 1 is a real number, a p-Nagumo function will
be a continuous function h: R+->R+\{Q} such that

(2.1)

REMARKS 1. For p = 1, this is the usual definition for a Nagumo
function (see e.g., [4]).

2. If h(s) = s

q + C, with C> 0, it is easy to check that h is a
p-Nagumo function if and only if pq<; 2.

Condition (2.1) and the positiveness of h imply that the continuous
function

u/π

is increasing in x for each fixed u and such that limβ_+00 X(x, u)= + °°.
Therefore, the equation in x

X(x, u) = u

has a unique solution x = g{u) for each ueR+. This mapping g is thus
defined on R+ by the relation

*/* Ms

— 1

—ds = u .
s)

Clearly one must have, on R+, g(u) ^ u/π. Now, if v > u, one has

Q(2/p)-l Γg(u) c(2/p)-iS gfr)

if g(u)<vjπ, then #(w) < v/π ^ flr(v), and if g(u)^v/π and g(v)<*g(u), then
[V/ Γ, #(V)] is strictly contained in [u/π, g(u)] which is in contradiction to
(2.3). Thus g is increasing on R+.

We can now prove the following lemma, essentially due, for p = 1
and H = Rn, to Lasota and Yorke [5].

LEMMA 1. Let p ^ 1 be a real, h a p-Nagumo function and g the
function given by (2.2). If xe C2([0, π], H), with H a real Hilbert
space, is such that, for all t e [0, π], one has

(2.4) I (*'(«), *"(«)) I ^ p-%(|»'(t)| ') |*'(ί)l' ,

^iίfe (,) the inner product in H and \ | the corresponding norm, then,
for all t e [0, π], one has

!* ' («)! '^ff ( j * I as'
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PROOF. By (2.4) one has, for every u, v e [0, π]f

(2.5)

The last equality follows from the change of variable defined by the
absolutely continuous transformation s = \x'(t)\p (see e.g., [3]), and the
fact that, almost everywhere, (d/dt)\x'(t)\p = p\xf {t)\p~\x\t\ x"{t)). Now,
by the mean value theorem, there exists u e [0, π] such that

[π\x'(t)\pdt = π\x\u)\p ,
Jo

and by the continuity of x', there exists ve[Q, π] such that \x'(v)\ =
maxίe[o>7r]|ίc'(£)|. With such a choice for u and v, it follows from (2.5)
and the definition of g that, by letting

and hence

(max \x'{t)\λ - |aj'(ι;)|' ^ g{w) =

which completes the proof.

COROLLARY 1. The conclusion of Lemma 1 holds if (2.4) is replaced
by

\x"{t)\ <L p-M*\m\*\t)\'-i , t e [0, π] .

3. Existence for the case of a completely continuous / and a
uniqueness condition. Keeping the terminology and notations of Sections
1 and 2, we shall now prove an existence theorem for (1.1)-(1.2) when /
is completely continuous, i.e., continuous and such that it takes bounded
subsets into relatively compact subsets.

THEOREM 1. Assume that the following conditions hold.
(1) f is completely continuous on IxHxH.
(2) There exist nonnegative numbers a, b, c with a + b < 1, such

that

(x,f(t,x,y))^a\x\* + b\x\\y\ + e\x\

for all (t, x, y)eIxHxH.
( 3 ) There exists a continuous function h: R+ —> J?+\{0} such that
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hk = fe( ) + 2|ft| is α 2-Nagumo function and such that

(3.1) \2(y,f(t,x,y))\<^h(\y\>)\y\>

for all t e I, y e H and xe H such that \ x | <* π(l — a — δ)"^.
T%β% problem (1.1)-(1.2) feαs α£ Zeαsί owe solution, and all its solu-

tions are such that

Z\x'(t)\2dtj2 ^ τr1/2(l - α - δ)"^ ,

(3.2) max \x(t)\ ^ π(l - α - byxc ,
t6[O,JΓ]

max |a?'(ί)| ^ [f7*(π(l — α — δ)V)]1 / 2 ,

where gk is the function associated to hk by formula (2.2).

PROOF. We shall apply the Leray-Schauder theorem in its simplest
form (see e.g., [6]). If G is the scalar Green function associated to the
problem

-x"(t) - kx\t) = b(t) , x(0) = x(π) - 0 ,

then, for each λ e ]0, 1[, the boundary value problem

(3.3) χ'\t) + kx'(t) + λ/(ί, x(t), x'(t)) = 0 , t 6 [0, TΓ] ,

(3.4) α(0) = a?(π) = 0 ,

is equivalent to the fixed point problem

(3.5) x(t) = x[π G(t, s)f(sf x(s), x\s))ds = XT(x){t) ,
Jo

in the space C\I, H) of functions from / into H of class C1, with the
norm

\x\x = m a x \x(t)\ + m a x \x'(t)\ = \x\Q + |a?'|o
ί e / t e /

Now assumption (1) and a classical argument show that the mapping
T: C\I, H)-+CXI, H) is completely continuous. The result will then fol-
low from Leray-Schauder's theorem if we can show that all possible
solutions of (3.5), or equivalently of (3.3)-(3.4) are a priori bounded inde-
pendently of λ and of the solution. To show this, let us denote by <, >
the inner product

<», y> = \\x(fi), y{t))dt

in the Hubert space £%f = 27(0, π; H) and by || || the corresponding
norm. If a? is a possible solution of (3.3)-(3.4), then, for all ί e J ,
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(x"(t), x(t)) + k(x'(t), x(t)) + λ(/(ί, x(t), x'(t)), x{t)) = 0, and hence, using
assumption (2), (a"(t), x(t)) + k(x\t\ x{t)) + Xa\x(t)\2 + Xb\x(t)\\x'(t)\ +
λc|a?(ί)l ^ 0> £ £ -ί- Integrating over / we obtain, after integration by
parts and use of the boundary conditions and of Schwarz inequality,

(3.6) | | * Ί | « £ α | | s | | * + 6||*|| | | * ' | | + τr1/2c|M| .

Now, using the following inequalities of Poincare and Sobolev type,
whose proof given e.g., in [6] for H = Rn trivially extend to the general
case,

I Ί II < I I T ' I I I T < τ r 1 / 2 I I Ύ Ί I

\x\\ ^ \\x II t \x o = ^ π II x II >

we deduce from (3.6) that

(3.7) ||»'|| ^ π1/2(l - α - 6Γc

and

(3.8) \x\Q^π(l - a - &)"xc .

It follows now from (3.3) that, for all tel, (x"(t), x'(t)) + k\x'(t)\~+
λ(/(ί, x(t), x'(t)), x'(t)) = 0, and hence, using (3.7), (3.8) and assumption
(3),

(3.9) [s'lS ^ ^(il^'ll2) ^ g&a - α - 6)V) ,

as firfc is increasing. The proof is now complete.

Let us now consider the problem of the uniqueness of the solution.

THEOREM 2. (1.1)-(1.2) has at most one solution if
(A) / is continuous on IxHxH.
(B) There exist nonnegative numbers α, b with a + b < 1, such

that, for all tel and x, y, u, v in H, one has

(3.10) (x - u , f ( t , x , y) - f ( t , u , v)) ^ a\x - u \ 2 + b\x - u \ \ y - v \ .

PROOF. Define L: dom haSίf -* 3if and N: dom Na<%* -> 2ίf by

(3.11) domL = {xe^f\ x and x' are absolutely continuous, x " e J f

and x(0) = α(7r) - 0} , LΛJ= ~x" - fca?' ,

(3.12) dom JV- CXI, H) , Nx=-f( , x( ), «'(•)) ,

so that problem (1.1)-(1.2) is equivalent to the equation

Lx + Nx = 0

in domL. We shall show that, with respect to the inner product of
L2(0, π; H), L + N is strongly monotone (see e.g., [8] for the correspond-
ing definition). Using again the Schwarz and Poincare inequalities, we
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obtain, for every x and u in dom L, by (3.10),

<(L + N)x - (L + N)u, x-u)

= \' \x'(t) - u'(t)\*dt - \\f(t, x{t), x'(t)) - f(t, u{t), «'(«)), x{t) - u(t))dt
Jo Jo

^ C V ( ί ) - u'(t)\2dt - a \"\x(t) - u(t)\2 - b\π\x(t) - u(t)\\x'(t) - u'(t)\dt
Jo Jo Jo

^ ( 1 - a - b)\\x' - u'\\* ^ (1 - α - 6)||a? - u\\* .

Thus, L + N is strongly monotone on dom L, and together with the
continuity of any solution, this immediately implies the uniqueness.

COROLLARY 2. Assume that condition (B) of Theorem 2 and condi-
tions (1) and (3) of Theorem 1 ίϋitt c — max ί 6 J | /(£, 0, 0)| hold. Then
problem (1.1)-(1.2) has a unique solution.

PROOF. By (3.10) with u = v = 0, we obtain

(*, Λt, x, y)) £ a\x\* + 6 | g | | v | + |a?||/(t, 0, 0)| ^ a\x\> + 6|α;||v| + c\x\ ,

so that conditions (1) to (3) of Theorem 1 as well as conditions (A) and
(B) of Theorem 2 are satisfied.

4. Existence and uniqueness for the case of a continuous /• We
shall now show that the uniqueness condition (B) of Theorem 2 together
with a Nagumo-type condition of type (3) of Theorem 1 implies the ex-
istence and the uniqueness of a solution for (1.1)-(1.2) under a mere
continuity assumption for /.

THEOREM 3. Assume that conditions (A) and (B) of Theorem 2,
condition (3) of Theorem 1 with c = max ίe/|/(*, 0, 0)|, and the following
assumption hold.

(C) The set

{/(«, x,y)eH:teI,\x\£π(l-a- b)^c , | y | ^ [gk(π(l -a- 6)"2c2)]1/2}

is bounded in H.
Then, problem (1.1)-(1.2) has a unique solution.

PROOF. We denoted for brevity by £έf the Hubert space L2(0, π; H);
of course, domL and domiNΓ as defined in (3.11) and (3.12) are vector
subspaces of έ%f and problem (1.1)-(1.2) is equivalent to the equation

Lx + Nx = 0

in d o m L c ^ . The proof proceeds in three steps.
First step. For each finite-dimensional vector subspace F of H, let

us denote by PF: H —> H the orthogonal projector onto F. Define the
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corresponding orthogonal projector &> on £έf by

( ^ V t O ( t ) = P F ( u ( t ) ) , t e l ,

and let us write ^ = I m ^ V . It is immediately checked that, in
, the equation

^V(Lav + Nxjr) = 0 , αv e dom L ί l / ' ,

is equivalent to the boundary value problem

(4.1) χ'jr(t) + kx'At) + PFf(t, xΛt), x'Λt)) = 0 , t e I,

(4.2) αv(0) = α^(π) = 0 .

By condition (B) and the fact that PF is an orthogonal projector, one
has, for all x, y, u, v e F and all tel,

(x - u, PFf{t, x, y) - PFf(t, u, v)) = (x-u, f(t, x, y) - f(t, u, v))

^ a\x — u\2 + b\x — u\\y — v\ ,

and condition (3) of Theorem 1 is satisfied for PFf. Finally, PFf con-
tinuous on Ix Fx F will take bounded subsets into bounded subsets,
hence relatively compact subsets, of the finite-dimensional space F.
Thus, all the conditions of Corollary 2 are satisfied and, for each finite-
dimensional vector subspace F of H, there will exist a (unique) solution
a ^ e d o m L n ^ of (4.1)-(4.2) verifying (3.2) and therefore, by (4.1) and
assumption (C), such, that PF having norm one,

(4.3) |B£|0 = max|α£(t)| ^ K
t l

where K depends only upon α, b, c, k and h.
Second step. Let us denote by A the collection of all the vector

subspaces of 3ίf formed by the set of functions in L2(0, π; H) whose
range is contained in a given finite-dimensional vector subspace of H.
For every ^ e Λ, let us write

VjrQ = {Xsr\ Xjr is the unique solution of (4.1)-(4.2) obtained in the first
step, ^ e A and ^

and let us denote by WjrQ the weak closure of Vjr0 in Jg^. Since V^o

is bounded in £ίf, Wjr0 is weakly compact, and it is immediate to check
that the family {WV0: ^eA} has the finite intersection property. There-
fore, there exists xoef)^oeΛW^o. Let ^ by any element of A; since
xoe WjrQ, it follows from a lemma of Kaplansky (see e.g., [1], p. 81) that
one can find a sequence (*^Q in A such that ^l i) ^ for every neN*
and such that x^-n-^xOf where —* denotes the weak convergence in Sίf.
By (4.3) and (3.2) which imply that the sequence {xr^n + kx'jrn) is bounded
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in £%?, we can assume, going if necessary to a subsequence, that
— x'Jr% — kx^n-^v, if n-> co, for some veβέf. But, the graph of L is
convex and closed, and hence weakly closed, so that x0 e dom L and
v = I/cc0.

Z%ireZ sίep. Let ^ e Λ and let u e J^f) dom L. As L + ΛΓ is mono-
tone on dom L, we have, for all ^ eΛ, 0 <̂  <(L + N)u — (L + N)x.-9

u — x.-}, and therefore, if

0 ^ <( D

= <^V(L + N)u - ^(L + iV)^, w - a?̂ > - <(L + N)u, u - «..-> .

Consequently, one has

(4.4) 0 ^ <(L + N)u, u - x0) ,
for every uedomLΠJ^ and every J^eΛ. Let us show now that (4.4)
holds for every u e dom L. If u e dom L, it has the Fourier series

— Σ am sin mt , £ e /
m = l

which converges uniformly on J to u, the series

Σ m^m cos mί
m = l

converging uniformly on / t o t6;. Thus, if, for each neN*, we write
n n

un(t) = Σ am sin mi , u'Jfi) = Σ m αm cos mt ,
m = l m = l

un and %ή belong, for each n, to some ^%,wΠdomL, so that

(4.5) 0 ^ <(L + iSΓK, un - x0) ,

and, by the continuity of /, Nun converges uniformly on / to Nu. On
the other hand, Lun converges strongly in 3ίf to Lu, and it follows
then from (4.5) that

(4.6) 0 ^ <(L + N)u, u - x0)

for every uedomL. We now use Minty's trick (see e.g., [8]) be taking
u = x0 + τv, with τ > 0 and v e dom L in (4.6). This gives 0 <̂  <(L + N)
(x0 + τt;), v), and hence, if r—>0 + , 0 ^ <(L + N)xOf v), which implies
(L + N)x0 — 0, as dom L is dense in 3ίf, and completes the proof.
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