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1. Introduction. For ordinary differential equations, many authors
have discussed necessary and sufficient conditions for a closed set in the
n-dimensional Euclidean space R" to be positively invariant. Yorke [11]
has discussed this problem by using a non-Lipschitzian Liapunov function
which is lower-semicontinuous. For an autonomous system, Brezis [1]
obtained a result under the assumption that the right hand side of the
system is locally Lipschitzian, and his proof depends essentially on this
assumption. Crandall [2] obtained a similar result by applying the method
of polygonal approximations. For a nonautonomous system, Hartman [5]
also considered an approximation which is different from the one con-
sidered in [2].

The purpose of this article is to discuss the same question for
functional differential equations with infinite delay. Seifert [10] also
discussed this question under the assumption that a closed set is convex.
In Section 2, we introduce an abstract phase space B which satisfies some
general hypotheses slightly different from those considered in [4]. We
consider a subset 2 in R X R"™ such that the cross section 2, = {y € R";
(t, y) € 2} is convex for all t€ R and that the cross section 2, satisfies a
continuity condition in the sense of Hausdorff metric. We discuss the
properties of 2 which play an important role in Section 3. In Section 3,
we state the main theorem. We give the necessary and sufficient condi-
tion that, for any initial value (o, ) in R X B such that ¢(t —o)ec @,
for all ¢t < o, there exists at least one solution «(f) through (o, ¢) which
is defined on its right maximal interval of existence and satisfies
(¢, z(t)) € 2 there. Special approximate solutions are needed to prove
the theorem. The construction of the solutions, although analogous to
the one in [5], is much more complicated for functional differential
equations. The proof of the theorem is given in Section 4. The case
where the delay is finite has been considered in [7] and [8] by a different
approach.
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2. Preliminaries. Let R"™ be an n-dimensional real linear vector
space, and let R = R'. We denote by B a real linear vector space of
functions mapping (— oo, 0] into R* with a semi-norm |-|. No confusion
will occur if we use the same symbol |-| to denote the norm in R*. For
elements ¢ -and + in B, ¢ =+ means that ¢(0) = (@) for all ¢ in
(—c0,0]. Then the quotient space B* = B/|-| is a normed linear space
with the norm naturally induced by the semi-norm. The topology of B
is defined by the semi-norm, that is, a family {V(g, €);9€ B, ¢ > 0} is
an open base, where V(g, ¢) = {v+€ B; |¢ — | < &}. B with this topology
is a pseudo-metric space.

For any ¢ in B and any 8 = 0, let ¢ be the restriction of ¢ to the
interval (—o, —g]. This is a function mapping (— e, —g] into R".
Denote the space of such functions ¢ by B and define a semi-norm |-|,
in B by

Dl = inf {l4; v B,y =7}, 7eB.
If we let |¢|; = |¢?|; for ¢ € B, then |-|, is also a semi-norm in B.

For an R"valued function z defined on (— o, 0), we define the
function x, for each te€(— <o, ¢) by the relation x,0) = 2t + ), — o <
6=<0.

Let D be an open set in R X B and let f: D— R" be a given con-
tinuous funection. A functional differential equation on D is the relation

(1) @'(t) = f¢, z,) ,

where 2'(t) stands for the right hand derivative of x(t). For (g, ¢) in
D, an R"-valued function x defined on (— o, ¢ + A) with 0 < 4 <  is
said to be a solution of (1) through (o, ¢) if =, = ¢ and if = is continu-
ously differentiable and satisfies (1) for all ¢t eo, o + A).

We make the following hypotheses on the space B.

(Bl) For an A >0, let x: (—c, A) — R" be a function such that z,
is in B and x is continuous on [0, A). Then z, is in B for all ¢ in [0, 4)
and z, is continuous in ¢.

(B2) There is a continuous function K(B) > 0 such that

6] = K(6) sup [4(0)] + [61,

for all ¢ in B and for all g in [0, ).

Under the hypotheses (Bl) and (B2), there exists a solution of (1)
through (o, ¢) in D. This was proved by Kaminogo [4].

For (o, ¢) in D, let Q(a, ¢) be the collection of (T, x), where T > 0
and « is a solution of (1) through (o, ¢) defined on (—c0, 0 + T). We
introduce a partial order < in Q(o, ¢) in the following way. For ele-
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ments (T, ') and (T? 2 in Q(g, ¢), we write (T, x') < (T? x*) when
T' < T* and the restriction of «* to the interval (— o, ¢ + T") is equal
to #'. Then Zorn’s lemma implies the existence of a maximal element
(T, ) in Q(a, ¢), and « is called a right maximal solution of (1) through
(0, ) and the interval (— o, ¢ + T) is called the right maximal interval
of existence of x.

Under the hypotheses (B1) and (B2), we have the following.

LEMMA 1. For any ¢ in B and constants A >0, L >0, let Fi(¢)
be a set of functions u: (— oo, Al — R" such that u, = ¢ and |u(t) — u(s)| =
L|t —s| on [0, A]. Then the set I' = {u,; w € Fi(¢), t €[0, A} is compact
wn B.

For the proof, see Lemma 2.1 of Hale and Kato [4], though the
phase space considered in [4] is slightly different from ours.

Let 2 be a set in R X R* such that the cross section 2, = {y € R*;
(t, y) € 2} is nonempty for all € R. Assume that £ satisfies the follow-
ing continuity eondition (C).

(C) Forany e > 0and any te R, there is a 6 = d(¢, t) > 0 such that
if |t — s8] < 4, then

inf{r >0, UQ, r) D2, and UL, 1D} <e,
where U(£2,, ) is an r-neighborhood of 2,.

LEMMA 2. If 2, is a closed set im R™ for any t€ R and the condi-
tton (C) is satisfied, then 2 is a closed set inm R X R™.

Proor. If the conclusion is false, then there is a sequence {(t,, ¥.)}
in 2 such that (¢, v.) > (., ¥,) €2 as k— co. Since y,¢ 2,, and 2, is
closed, we see that U(y,, ¢,) N 2, is empty for some & >0. On the
other hand, if k is large, U(y,, ¢,/3) contains a point 2z, €2, since the
condition (C) implies that 2, cU(2,,¢/3) for sufficiently large k.
Moreover, |y, — ¥,| < ¢&/3 if k is large. Thus for sufficiently large k,
we have

%o — 2] S 1Yo — Ul + |9 — 2] < &f8 + /8 <6,
a contradiction to the emptiness of U(y,, ¢,) N 2,,, and we are done.
From now on, let |y| = (37, %) for ¥y = (y,, - -+, ¥,) in R™.

LEMMA 3. Suppose that 2, is closed comvex for all te R and that
the condition (C) is satisfied. For a continuous function p(t):[o, «)—
R*, let d(p(t), 2,) = inf {|{pt) —y|;y€R2,). Then there is a continuous
Sfunction g(t): [0, ) — R"* such that g(t) € 2, and d(p(t), 2,) = |p(t) — 9(t)|.
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Proor. Since 2, is closed, there exists a g(t) € 2, with d(p(¢), 2,) =
|p(t) — g(t)| for each t €[o, ). We show that g(¢) is uniquely determined
for each t. Otherwise, there would exist a ze 2, for some se[g, )
such that z + g(s) and |p(s) —z|=d(p(s), 2,)=|p(s)—g(s)|. Set d(p(s), 2,)=7r
and let S(p(s), ) denote the sphere in R* with radius » and center p(s).
Then g¢(s) and 2z belong not only to 2, but also to S(»(s), »). Since 2, is
convex, the segment Ag(s) + (1 — \)z with 0 <\ < 1 belongs to 2,. We
see immediately that |n(s) — {\g(s) + 1 — N)z}| < » for 0 < )\ < 1, which
contradicts d(p(s), 2,) = .

Next the continuity of d(»(¢), 2,) in ¢ will be proved. For any ¢, se
[o, =), we have

(2)  [d(®®), 2,) — d(p(s), 2,)]
= |d(p@®), 2) — d(p@®), 2,)| + [d(p®), 2,) — d(p(s), 2.)] .

For any ¢ > 0 and any fixed ¢ in [o, ), there exists a §, = d,(t, ¢) > 0
such that if |t — s| < 4,, then

(3) ld(p(t), 2,) — d(p(s), 2| < ¢/2,
because we have |d(p(?), 2,) — d(p(s), 2,)| = |p(t) — p(s)|. Let d(p(t), 2,) =
[p(t) — u*| for w*e€R,. Then, by the condition (C), there exists a 9, =

04(t, €) > 0 such that if |t — s| < §,, then U(u’, ¢/2) contains a point v° in
2, and U(g(t), €/2) contains a point w® in £2,. Therefore we have

dp®), 2) = [p@) — v'| = |p®) — w'| + |w' — v = d(p(®), 2,) + ¢/2
and
dp®), 2,) < [p@) —w'| = [p@) — 9@)| + [9(t) — w*| = d(p(t), 2) + ¢/2,
which then imply that if |¢ — s| < d,, we have
(4) ld(p(8), 2,) — d(p(@), 2)| = ¢/2.

Combining (3) and (4), the right hand side of (2) is less than ¢ if
|t — 8| < 0, where 6 = min {6,, 6,}. Thus d(p(t), 2,) is continuous in ¢.

Finally we show that g¢(¢) is continuous. Suppose that g¢g(t) is not
continuous at ¢ = ¢, = 6. Then there exists an ¢, > 0 and a sequence {t,}
such that ¢, — ¢, as k — <o and that |g(¢,) — g(t,)| = ¢, for all k. =1,2, ---.
Since p(t) and d(p(t), 2,) are continuous in ¢, the sequence {g(t,)} is bounded,
and hence we may assume that the sequence is convergent. Set
lim,_.. g(t,) = 2, Then z,€ 2, by Lemma 2. Moreover, since d(p(t), 2,) =
|p(t) — g(t)] and p(t) are continuous in ¢, we have

Ip(t.) — 2| = lim, ... [p(t;) — 9(t.)| = lim,_.. d(p(t,), Q2,) = d(pt.), 2.,) .
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Thus z, = g(t,) because of the uniqueness of g(f). On the other hand,
lg(t,) — g(t,)| = e, implies |g(t,) — 2,| = €,, Which contradicts z, = g(¢,).
This proves that g(t) is continuous and completes the proof.

3. The main result. Consider a system
(5) z'(t) = f¢, @) ,
where f: R X B— R" is a continuous function.

THEOREM. Assume that 2, is closed convex for all t€ R and the con-
dition (C) is satisfied. Then the following two statements are equivalent:

(i) For any (0,9)€R X B with ¢(t —a)e R, for all t < g, there
exists at least one solution x of () through (o, ¢) defined on its right
maximal interval of existence and satisfying (¢, x(t)) € 2 on the interval.

(ii) For any (o, ) € R X B with ¢(t — o) e 2, for all t < o, it holds
that

lim, o+ d(¢(0) + hf(o, ), Lo14)/h =0 .

We prove this theorem in the next section. In the rest of this
section, we consider special approximate solutions under the condition

(ii).

Let (0, 9) € R X B be such that ¢(t —o0)e 2, for all t <o. Since f
is continuous at (g, ¢), there are positive constants », A and 6 such that
|fIl<r on [o,0+ Al X V(g,0). Let L =max{K(B);0=<p3=< A}>0.
Define ¢ by
¢(t - 0) ’ t é o,

#(0) , t=0.

Then &, belongs to B for all ¢ = ¢ by the hypothesis (Bl) and &, = 4.
Furthermore, by the hypothesis (Bl), there is an a = a(o, ¢) with 0 <
a < A such that

(6) 8Lra + |, —¢| <6 for all telo, 0 + a].

The set W defined by

W={t u);0=t=<0+ au, =9 and |u(t) —u(s)| < 2r|t — s|
on [g,0 + al}

é(t) =

is compact in R X B by Lemma 1.
Let ¢, 0<e <7, be given. Since W is compact, there is an
(e, W) > 0 such that

(7) | f(E, ¢") — f(E, 81| < e
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if (¢, ) e W and |¢' — ¢*| < 7(e, W), where we can assume that
(8) 7, W) < Lra..

Now consider the set Q.(g, 4) which consists of all (T, x), where 0 <
T<a and x is a function mapping (—c, o + T] into R* with the
following properties:

(I) 2,=¢, a6+ T)e,.r and d(x@), 2,) <7, W)L for all
telo,o0 + T].

(II) |x@) —x@)| =2r|t —t'| on [0,0 + T].

(III) |x(t) — f(t, x,)| < 3¢ for almost all t€[o, 0 + T], where &(t) is
the derivative of a(t).

(IV) Every subinterval of [g, 0 + T] of length ¢ contains a point s
such that (s, z(s)) € 2.

LEMMA 4. The set Q.(o, ¢) 1s nonempty for any small ¢ > 0.

Proor. By Lemma 3, there is a continuous mapping g:[o, «) — R
such that d((0) + hflo, ¢), 2,+1) = |4(0) + hflo, ) —g(c + h)| and g(o + k) €
Q,., for all h = 0. For S with 0 < S £ ¢, define a function y by
. ¢(t - 0) ’ t é g,
 (900) + {(9(0 + ) — $(0)/S}t —0), 6<t=0+S.

We show that (S, y) belongs to Q.(c, ¢) if S is sufficiently small.

The condition (ii) implies that there is a 06, with 0 < 4, < ¢ such
that

y(t)

(9) |(glo + h) — 6(0))/h — flo, )| < &
for all h €(0, 6,]. Hence if S <4,, we have
(10) ly(@®) —y@)| = [(g(c + S) — §(0))/S|]t —t'|

= (1flo, ) + o)t —¢'| = 2r[t —¢'|

on[o, 0 + S]. Then by the hypothesis (B2), we have |y, — ¢| < |y, — &.| +
|¢, — ¢| < 2rL(t — 0) + | @, — ¢| for all te[o, 0 + S]. Hence the continuity
of fimplies that there is a 6, with 0 <4, <0, such that | f(g, ¢) — f(t, y.)| <e
for all te[o,o + S]if S <4,. From this and (9), it follows that

1) |y@) — f¢, y)| = {glo + S) — ¢(0)}/S — flo, ¢)| + | flo, 8) — f(&, y.)|
< 2¢

for all telo, o + S]if S < 4..

Since g(o) = ¢(0) = y(o) and y(¢t) satisfies (10) for S < §,, there is a
0, with 0 < d; < 6, such that |g(t) — y(t)| < 9, W)L on [o,0 + S] if
S < 6,. Therefore we have
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(12) d(y (), 2,) = [y@®) — g@®)| <7, W)L

for all tef[o,0 + S] if S<4,. From (10), (11) and (12), it follows that
y(t) satisfies (I), (II) and (III) if S = d,. The condition (IV) is also satisfied
because 0 < §, < e. This completes the proof.

LEMMA 5. There is an element (a, x) in QJo, ¢) for any small ¢ > 0.

PRrOOF. Introduce a partial order < in Q.(o, ) as follows. For
elements (T, 2') and (T%, «°) in Q.(0, ¢), we write (T, 2') < (T% «*) when
T' < T* and the restriction of x* to the interval (— <, o + T"] is equal to
x'. First, we show that there is a maximal element. @Q.(c, ¢) is non-
empty by Lemma 4. Let E = {(T% «*; n € 4} be any totally ordered set
in Q.(a, ¢). Set J =sup{T*ned}. If (T4 2*) = (T", x*) for \, e d, we
see that

|2* (o + T — x"(c + T)| = | + T — x*(e + T*)| < 20| T* — T|

by the condition (II). Hence limgi,; x*(0 + T%) = p exists, and pe 2,.,
by Lemma 2. Define x*(¢) by
2(t), t=o+ T* ned,

*(F) =
>0 {p, t=0+J.

Then (J, z*) is in Q.(0, ¢) and is the supremum of E. Therefore there
is a maximal element (T, z) in Q.(0, ) by Zorn’s lemma.

Next, we prove that T = a for the maximal element (T, x) obtained
above. Suppose that T < a. By Lemma 3, there is a continuous mapping
9::[o,0 + T]— R" such that d(x(t), 2,) = |2(t) — ¢.(t)| and g,(t)e 2, for
all telo,0+ T]. Let & (—c,0+ T]— R" be a function such that
&, =g¢and &) = g,(t) on [o,0 + T]. Then ¢, €B for all tefo,0 + T] by
the hypothesis (B1). Recall that |x(t) — £(t)| = |x() — 9.(8)| < (e, W)L
on [o,0 + T]by (I). Since z(t) satisfies (I) and (II), it follows from the
hypothesis (B2) and (6), (8) that

|Ea+-T - ¢| é |50+T - $U+T| + iq’;a-l-:" - ¢l
S Lsup &0 + T+ 0) — ¢(0)| + [§oer — &1

= L_;;;éﬂ{ls(ojL T+60)—x(c+T+6)|+ |x@+ T+ 0) —¢0)]}
+ | @otz — 6]
< L{p(e, W)L + 20T} + |$orr — ¢| = 8Lre + |our — ] <0 .
Therefore we have
(13) | flo+ T, ¢ = 7.
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Since ¢,.,(t —0—T)e2, forall t <o+ T and &(c + T) = x2(0 + T),
we have

(14) }_ifol_]*'_ d(x(o- + T) + hf(o + T, Ea+T); ‘Qo+T+h)/h =0

by the condition (ii). Again by Lemma 3, there is a continuous function
g.(t): [0 + T, ) — R" such that

d@@ + T) + hf(0 + T, &orz), Lovrin)
=20+ T)+hflo + T, &) — g0 + T + h)|

and g,(c + T+ h)€ 2,7+, for all o = 0. Then by (14), there is a 4,
with 0 < 6, £ ¢ such that

(15) | flo + T, &ir) — {920 + T+ h) —a(0 + T)Yh| s ¢

for all A€ (0, d,].
Let S be a constant such that 0 < S< a — T and S < 6,, and define
a function y by

z(t) , t=so+ T,
20+ T)+{(glo+T+8) —a(c + T)/S}t —0 —T),
o+T=st=c+T+8§.

We show that (T + S, y¥) belongs to Q.(g, ) if S is sufficiently small.
Since y(t) = a(t) for t < o + T, it is sufficient to consider the case ¢t >
o+ T. By (18) and (15) and as in the proof of Lemma 4, we can find
a 0, with 0 < 8, < 6, such that y(¢t) satisfies (I), (II) and (IV) for S < 4,.

To show (III), define another function z by 2(¢) = &) on (— <, ¢ + T]
and 2z(t) =y@®) on [0+ T,0 + T + S], where S=24,. Then y,=2,=¢
and sup {|2(¢) — y(t); telo, 0 + T + S]} = sup {|z(¢) — &@);telo, 0 + T]} <
n(e, W)L, and hence

e —zlsL_sup [yt +0) =zt +0)] <Lk W)L =7, W)
for all tef[o, 0 + T + S] by the hypothesis (B2). (¢, y.) belongs to the
compact set W for all te[o,0 + T + S] since y(t) satisfies (II) on
[6,0 + T + S]. Thus we have

(16) |f(tr yt) _'f(ty zt)[ <é& on [0,0+ T+S]

by (7). Since z(t) is 2r-Lipschitzian in te[c + T,0 + T + S], we see
that |2, — &,47| = |2, — 2,47 is small if ¢t — (¢ + T) > 0 is sufficiently
small by the hypotheses (B1) and (B2). Therefore the continuity of f
implies that there is a , with 0 < 6, < 8, such that

(17) If(t’ zt) - f(O' + Ty Ea+7‘)| <e

y@) =
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for all teflc+ T,0+ T+ S] if S<46,. Let S=4, Then it follows
from (15), (16) and (17) that

19@) — f& y)| = Hgolo + T+ S) —a(o + T)}/S — flo + T, &,41)|
+ | flo + T, &) — &, 2)| + | f§, 20) — f(t, 90|
< 3

for all telo+ T,0 + T + S].

Consequently, we obtain an element (T + S, y) in Q.(g, ¢) such that
(T,2) 2(T+8S,y) and (T, x) # (T + S, y), which contradicts the maxi-
mality of (T, x). Thus T should be equal to «, and we are done.

4. The proof of the theorem. It is easily proved that (i) implies
(ii), and so we prove the converse.

Let {¢,} be a sequence such that ¢, >0 and ¢, —0 as k— . Let
(0, $) € RX B be such that ¢(t — 0)e 2, for all ¢ < 0. By Lemma 5, there
exists an a > 0 such that the set Q. (o, ¢) contains an element (a, x*)
for each k. Since the sequence of the functions {x*(¢)} is uniformly
bounded and equicontinuous on [0, ¢ + @], we may assume that the
sequence converges uniformly to a continuous function x(¢) on [o, 0 + a]
as k— . Let x(t) = ¢(t — o) for t < 0. Then =z, belongs to B for all
telo, 0 + a] by the hypothesis (Bl). Also, |«f —x,| >0 as k — o for
all tel[o,0 + a] by the hypothesis (B2). Since (¢, x¥) belongs to the
compact set W for all te[o, 0 + a] by (II), we have |f(t, «f)| < C for
all tef[o,0 + a] and all k, where C is a constant. Hence, applying
Lebesgue’s dominant convergence theorem, we see by (II) and (III) that

o) = lima() = lim {50) + | 0
= 5(0) + lim{{' 765, at)ds + | [4) — 6, at)las}

= 50) + | f6, 2)ds

for all tefo, 0 + a]. Thus 2(¢) is a solution of (5) through (g, ¢).

By (IV), for each tefo, 0 + ] and k, there is a point s*e|[o, ¢ + a]
such that [t —s*|<¢, and (s 2*(s*))eR2. Then, by (II), we have
lx(t) — «%(s")| = |2@) — o*(@t)| + |a*(t) — «*(s*)| = |a(t) — «*(t)| + 2r¢,, which
implies lim,_., (s*, 2*(s*)) = (¢, #(t)), and hence (¢, x(t))€ 2 by Lemma 2.
Consequently, x(t) is the solution of (5) through (o, ¢) such that (¢, x(t)) € 2
on (—oo, 0 + al.

Now let Q(g, ¢, 2) be the set defined by

Qg, ¢, 2) = {(T, ) € Q(g, 9); ¢, y(©)) € 2 on (—oo, 0 + T)} .
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Then Q(o, ¢, 2) is nonempty because (o, x) € Q(g, ¢, 2). Introducing the
same partial order in Q(o, ¢, 2) as in Q(o, ¢), we obtain a maximal ele-
ment (T, y) in Q(o, ¢, 2) by Zorn’s lemma. We show that the (T, y) is
also a maximal element in Q(g, ¢). Otherwise, ¥ can be extended up to
t=0 4+ T, and then (¢, y(t)) e 2 for all t <o + T by Lemma 2. Clearly,
Y,+r belongs to B by the hypothesis (Bl). Therefore, by applying the
condition (ii) to (¢ + T, ¥,+r) and by the same argument as above we
obtain an element (a/,2) in Qo + T, ¥,+7, 2). Then (T + o, 2) is in
Qo, ¢, 2), (T + a',2) = (T,y) and (T + ', 2) # (T, y). This contradicts
the maximality of (T, ) in Q(o, ¢, 2). Thus (T, y) is in Q(a, ¢, 2) and
is the maximal element in Q(g, ¢), that is, y is the solution of (5) through
(0, ) defined on its right maximal interval of existence (—c, 0 + T)
and satisfying (¢, y(f)) € 2 there. '
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