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A NOTE ON IMAGES OF REDUCTION OPERATORS

MoSES GLASNER AND MITSURU NAKAI

(Received October 9, 1979)

Consider a nonnegative locally Holder continuous 2-form P on a
hyperbolic Riemann surface B. We denote by P(R) the space of solutions
of the equation d+du = wP on R. By PB(R), PD(R) and PBD(R) we
denote the subspaces of bounded, Dirichlet-finite and bounded Dirichlet-
finite solutions. The reduction operator T is a linear order preserving
mapping of a subspace of P(R) into H(R) defined by

(1) Tu=u+ 2| g, OuOPO,
2w Jr

where gp(-, {) is harmonic Green’s function for R. In case u € PY(R),
Y = B, D or BD, it is known that Twu exists and Tuc HY(R) (cf. [3]).
We denote by T, the restriction T|PY(R). Since Ty is an injection (cf.
[8]) it can be used to reduce questions concerning PY(R) to questions
concerning a subspace of HY(R), Y =B, D or BD.

Denote by X¥ the image of PY(R) under Ty, T = BD or D. The
problem of characterizing X% is central to the study of PD(R). Singer
[6], [7] gave the first substantial results in this direction. In [2] we
extended his technique to give a complete characterization of XJ}.
Although this result has significant practical applications, it is nonetheless
cumbersome to apply. The motivation of the present note is to give a
more efficient characterization of X7. However, we will not make use
of any result of [2] here.

To each function » € HD+(R) we associate a sequence {h,} € HBD*(R),
called the standard HBD-approximation to h, as follows. Set 4, =
(hNEYUk™"and by, = Iy, — k™, k=1, 2, ---, where II+, is the harmonic
projection of +, and N (resp. U) denotes the pointwise minimum (resp.
maximum). Later we shall elaborate on the useful properties of {h,}.
Consider the family

Z ={uecPDR)I0=u=1}.

Define a function 6 = sup,., #. Our main result can be stated as
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follows:

THEOREM. Let he HD*(R). Then he XZ if and only if {h}C XE»
and Dy(6h) < + .

1. In order to simplify our arguments we use the Royden ideal
boundary theory adapted to the equation d*du = uP. We begin by
reviewing some facts here but refer to [5] and [1] for more details. Let
M(R) be the space of continuous Tonelli functions on R with finite
Dirichlet integrals over R and let M(R) be the space of bounded fune-
tions in M(R), i.e., M(R) is the Royden algebra associated to R. Denote
by R* the Royden compactification of B and by 4 the harmonic boundary.
The set 4, of Green’s energy nondensity points is the set of points
g* € 4 such that ¢* has a neighborhood U* in R* with {1, 1)7.z < +oo.
Here,

@ 9% = 2=, 9, OP@PEPOPQ) ,
T Ja2x2

for an open set 2 C R and a suitable function @ on 2. The following
alternative description of 4, is useful:

dp = {q* € 4| u(q*) # 0, for some ue PD(R)}.

Moreover, 4, serves for a maximum principle for PD(R): For an open
set QCcR and a function wePD(Q), |u|]< M holds whenever
lim sup,.,. |u(q)| £ M for each ¢*coQ U (2 N 4p).

The modified Royden decomposition theorem may be formulated as
follows: Let W be an open subset of R with a C* relative boundary
and let fe M(R). Then there is a unique function he HD(W) N M(R)
such that (f —h)|[4U (R\W)=10. Moreover, the Dirichlet principle
holds: Dg(h — f, h) = 0. The notation h = 7w f is used. Concerning
the existence of solutions of dxdu = uP we have the following: Let
feM(R) and assume either that f is a nonnegative subsolution of
d+du = wP on R or that f is bounded and Supp(f|4) € 4,. Then there
is a unique function u e PD(R) with (w — f)|4 = 0. Here, we use the
symbol II*f to denote w.

For we PD*(R), the function T,u —u is a potential on R and
belongs to M(R). Thus it vanishes on 4. On the other hand, we also
have (Iu — w)|4 = 0 and we conclude by the maximum principle that
Tyou = IIuw. By the Dirichlet principle Dz(u) = Dz(Tpu) + Dp(u — Trw).
Since

Do 0a(:, QUOPO) = <,
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(ef. [3]), we have the formula
(2) Dy(w) = Dx(Tou) + {u, up% -

2. Let W be an open subset of R with oW being C'. We denote
by HD(W;oW) the functions in HD(W)NC(R) which vanish on R\ W.
It is easily seen that HD(W;oW) is generated by its nonnegative
functions. The extremization pt,: HD(W; 0W)— HD(R) is defined to
be the linear mapping such that g,u — % is a potential for each
ue HD*(W; dW). Since C'-coordinate lines are removable sets for
Tonelli functions we see that HD(W;oW)c M(R). Consequently,
II(ppu — u) =0 for each we HD*(W;o0W). We see that p,u = IIu for
each we HD(W;oW). For a function to be in the image of ¢, we have
the following test (ef. [4]).

LEMMA. Let & be an open subset of 4 and W an open subset of R
with C' relative boundary such that &> c W. Let w be a bounded non-
negative Tonellt function om R which is continuous on RU & and
w|lZ =1, wR\W=0. If he HD*(R) such that h|d\Z =0 and
Dy (wh) < + oo, then h is im the image of ttp.

Since wh e M(R) and wh|R~ W = 0, the function v = IIz—(wh) has
the properties v|4 = wh|4 and ve HD(W; oW). Clearly, wh|Z = h|Z.
For any q*ed\ 2 take a net {¢g;}CR with ¢* =limgq,, Then 0=
lim wh(q;) < lim sup w(q;) lim k(g;) = 0 because w is bounded and h(¢*) = 0.
Therefore, h|4 = wh|4 = v|4. We conclude that & = lIv = pyv.

3. For an he HD*(R), let {h,} be the standard HBD-approximation
to h. Set F, = {p*ed|h(p*) = k'}, a compact subset of 4,k =1,2, ---.
The properties of {h,} that we shall use are contained in the

LEMMA. (i) Supp®,|4) CFy;

(ii) lim (h,]|4) = h|4;

(iii) {h,} < Xpp if and only if |4\ dp = 0;
(iv)  Dg(hi) < Dg(h);

(v) h = CD-limh,.

Note that h, |4 = (R NE)UE™ —Ek*. This implies (i) and (ii).
For the proof of (iii) assume that {h,} < X;,. Fix & and choose u,€
PBD(R) such that Tpyu, = h,. Since |4\ 4, = 0 and ITu, = h,, we have
hy|4\ 4, = 0. By (ii) we conclude that h|4\ 4, = 0. Conversely, assume
that h|4\ 4, = 0. For any fixed k, we have F, C 4, and hence by (i),
Supp (h,|4) © 4,. Therefore we may consider u, = II*h,. By the
maximum principle we conclude that T, u, = h,, and the proof of (iii)



94 M. GLASNER AND M. NAKAI

is complete. Clearly Dg(y) < Dz(h) and thus (iv) follows from the
Dirichlet principle.

By comparing boundary values we see that h, < h,r, < h. Thus
h = C-limh, exists on R and # <h. By (iv) and Fatou’s lemma we
conclude that ke HD(R). In view of h|4 = h,|4 and (i) we see that
h=h on R. We conclude that h =C-limh, Since h —h, =
II(h — 4, + k'), the Dirichlet principle implies that Dgh —h,) =
Dy(h — 4 + k) = D, (h), where A, = {pcR|h(p) <k™ or h(p) >k}
This shows that also » = D-lim h,.

4. If we PD+(R), then in a natural way we may define a sequence
{u,} called the standard PBD-approximation to w. In fact,set h = Tru.
Then h|d\4p = u|4\4p = 0 and hence Lemma 3 (iii) implies that {k,}, the
standard HBD-appoximation to %, is contained in X7,. Set u, = Tsph,.

LEMMA. (i) Supp (u.|d4) CF, C 4y
(ii) lim (u,|4) = u|4;

(ili)  Dgp(ur) = Dgr(w);

(iv) u = CD-lim u,.

The facts h|d = u|4, h,|4 = u,|4 together with Lemma 3 (i) and 3
(ii) imply that (i) and (ii) hold. By comparing the boundary values we
see that u, < u,+; < u. From (2) we see that Dg(u) = Dp(h) + {u, u)r
and Dg(u,) = Dgz(h,) + {u;, wyph Thus (iii) follows from Lemma 3 (iii).
By an argument analogous to that used in proving Lemma 3 (v) we see
that u = C-lim u,. Again by (2) Dz(u — w,) = Dg(h — h;) + {u — Uy, U — Uy 5.
By Lemma 8 (v) and the monotone convergence theorem we conclude
that % = D-lim u,, which completes the proof.

It is worthwhile to point out here that although for he HD*(R)
the assumption % e X} implies {r,} < X7%,, the converse is not true even
if h is bounded. Indeed in [1] we constructed 2-forms P and @ on a
Riemann surface 7~ such that 4, = 4, yet there is a function ve
Q@BD(T~) such that v|4 = w|4 for every we PBD(T*). Thus if we set
h = Tppv, then h|4N\4p = v|4\ 4, = 0, i.e., {h} C X5, but h¢ X3,.

5. Consider the family <& and the function & defined in the
beginning of this paper. For each p* € 4, there is a function f,.€ M(R)
with 0 < f,. = 1, f,.(»p*) = 1 and Supp(f,-|4)C4,. Thus we may consider
Uy = II*f,.. Note that u,. € < and hence u,. <3j. We conclude that
1 =lim inf, ,u,.(p) < lim inf, . ,.0(p) < limsup,.,.0(p) < 1. We extend the
function 6 to 4, by setting 6|4, = 1. Then we have shown that ¢ is
continuous on R U 4.



REDUCTION OPERATORS 95

It is easily seen that & is a Perron family with respect to d+du =
uP. Clearly 0e =2. If u, u,€ &, then u, U u, is a nonnegative subsolu-
tion in M(R). Thus I17(u, U u,) exists, is the least solution majorant of
u, and %, and belongs to &2. Since & is a Perron family we have that
0 € PB*(R) and that there is an increasing sequence {6,} C < such that
6 = B-lim J,.

LEMMA. Let he HD*(R). Under the assumption that {h,}C Xz,
there exists a sequence {6,} C .= such that

(1) GlF=1;

(ii) Supp (0,]4) C 4p;

(iii) 6 = B-lim é,.

We shall call the sequence {§,} the PBD-approximation to o deter-
mined by h. Although {6,} © PBD(R), 6 need not be in PBD(R). We
begin the proof by replacing {5,} by a sequence {5} € = with the
property that Supp (5.]4)C 4, as well as 6 = B-lim§,. To accomplish
this we consider the standard PBD-approximation {§,.)7_, to 6, and note
that the diagonal sequence §, = §,, has the required properties. Now
consider the functions

=F+BIERNEHVE+D? -E+D7], k=12 ---.

Clearly, g,e M(R), 09, =<1, ¢.,|F,=1 and since {h,} C X}, we also
have Supp (g;|4)CF,,C4,. Since Supp ((6,Ug,)|4)C4p, we may define
0, = IT*(6, U g,). It is easily seen that §,e & and satisfies (i) and (ii).
By the maximum principle §, < §, and since § = B-limj, we conclude
that (iii) holds.

6. In [2] we characterized X/ as follows. If he HD*(R), then
he X} if and only if {h)c X%, and D;(6,h,) = (1), where {h;} is the
standard HBD-approximation to A and {6,} is the PBD-approximation to
0 determined by k. The condition D,(6.k,) = (1) is difficult to verify
in practice. By Fatou’s lemma it implies that Dz(6h) < + < and this
gives the hope that Dy(6.h,) = &(1) and Dx(0h) < + > are equivalent.
On the other hand, Singer [6] showed that with a slightly different o
the two conditions are not equivalent. In spite of this doubt our main
theorem shows that indeed the two conditions are equivalent. For the
sake of completeness we present here the proof of the necessity of the
condition of our main theorem.

Let he HD*(R) and assume that he X). Let we PD(R) such that
Touw = h. Choose the standard HBD-approximation {k,} to h, the standard
PBD-approximation {u,} to # and the PBD-approximation {6} to ¢
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determined by k. The function u,(1 — é,) € M+*(R) and hence by Lemmas
4 (i) and 5 (i) we have u,(1 — 6,)|4 = 0. In view of the duality between
4 and M, R) (cf. [6]) we may choose a sequence {f,} C Mj(R) with
(1 — 0,) = BD-lim f,. By this and Green’s formula we obtain

(8) Daus(l—9)) = lim Dy(fy wt — 0) = lim (= | _fidxdu1 - 5))
= lim (-S Fau(l— 8P+ S Foud P+ 2 § £ A dB,,)
n R R R
< —liminf S fouy(l — 6,)P + lim supS Fuuyd, P
n R n R
+ 2 lim sup S fadu, N\ +do,, .
n R

In view of u,(1—0,)=0 and f,=0, the first term on the right hand side
of (8) is nonpositive. We estimate the second term:

(4) lim sup S Fuusd P < lim sup S FuusP = —1im Dp(f,, )
n R n R n
= — Dg(ui(1 — 04), ug) .

By the Schwarz inequality S [du, A *do,| = Di*(u,)DE*(0,) < + and
R

since {f,} is uniformly bounded, we conclude by the Lebesgue dominated

convergence theorem that

(5) limS Fudu A +dd, = S w(l — 8)duy A +do, .
n R R

Substituting (4) and (5) into (38) and applying the Schwarz inequality
repeatedly, we get

Dy(u(1 — 01)) = — Dg(ue(l — 04), up) + 2 SR up(l — 0p)duy, A\ *do,
= —Dp(up(1 — 04), us) — 2 SR (1 — odu A *d(u, (L — 6y))

+2| a-ovdu vau
= 3D (uk(l — 04))DE*(ws) + 2Dg(u) -
This implies that DY*(u,(1 — 6,)) < 4D3*(u,) and by the triangle inequality
we obtain
(6) DE*(0xui) = 5DH*(wy) -

7. Set @, = h, — u,. In this section we give an estimate on D;(0,%;)
which together with (6) will give the desired bound on D3*(d.h,). Note
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that ¢,|4 =0 and @, = 0. Thus 6,9, M*(R) and 6,p,/4 = 0. Conse-
quently we may choose a sequence {f,} < M;(R) with 6,2, = BD-lim f,.
We estimate Dz(6,p,) as follows:

Daups) = lim Do(f,, 04p0) = lim (= f,d+d.20)
< —lim infS £.0:9,P + lim sup S fud P
n R n R
— 2lim infS Fuddy A Ay < — Da(5us, ) — 2 § 5. Pudd, A *dp,
n R R

= — Dy(0,Ps, Us) — 2 SR 0,40, Pr) N\ *dp,, + 2 SR 0idP, N\ *d,

= D0 Dr*(wi) + 2DF*0:Pa) Dr*(Pe) + 2Dp(#4) -

In view of the Dirichlet principle, D.(®;) < Dg(u,) which implies that
D, (6,2, < 3DY%6,2,)DY*(uy) + 2Dx(u,). Hence,

D6, pr) = ADH(uy) .

From this and (6) we see that D3*6.h,) < 9D%*(u,) and by Lemma 4 (iii)
we arrive at Dy(6,h,) = <’(1). Finally by Fatou’s lemma we conclude
that Dy(06h) < + . This establishes the necessity of our condition.

8. We shall establish the sufficiency in Sections 8-13. We begin
with two simple inequalities. Assume 2 is an open subset of R and
@, 4r € M(2). Then
(7)  Dolpy) = S VAP A xdp + 2Sp¢¢d¢> A *dap + S P A *dapr

2 2
<2| yidp A «dp + 2D ,
where sup, || = b. Also,

(8) | widp A <dp = Dupy) — 2| pudp A rdy

= Doloy) — 2| pdloy) A xdy + 2 sy A <dy

2
= Do(pyp) + 2bD5*(Py) De(y) + 20°Do(y) -

We shall use (7) and (8) in case @, + are merely continuous Tonelli
functions on 2. To see the validity of (7) and (8) in this case, note
that @, 4 € M(2'), where £’ is a relatively compact open set in 2. Apply
(7) and (8) with 2 replaced by £2'. Then let 2’ — £ on the right hand
sides and then on the left hand sides. Of course, the right hand sides
or both sides may be + . The application of (7) and (8) that we intend
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to make is in the case where @ is a bounded continuous Tonelli function
on 2 and + is in M(2). In this case we see from (7) that S P N
+dp < + co implies that Dy(y) < +co and from (8) that Dy(@y) < + oo
implies that SQ Wdp A +dp < + oo,

9. Let he HD*(R) and assume that {h,} C X7, and Dg(0h) < + .
By Sard’s theorem we may choose an a€(0,1) such that W =
{pe R|d6(p) > a} has a C* relative boundary. Let o* be the lower semi-
continuous extension of é to R*. Then W* = {p* € R*|6*(»*) > a} is
open in R* and since é is continuous on R U 4, with 4|4, =1 we have
4pCW*. Since W*N R = W, the denseness of W*NR in W* gives
dpCW*CW.

Set w = (1 — a)™(0 — @) U0 and note that the hypotheses of Lemma
2 with 4, playing the role of ~ are met. Thus there is a function
ve HD(W; 0W) such that #,v = h. The proof will be complete when we
demonstrate a function 4 € PD(R) with u|4 = v| 4.

Note that by (8) we have

(9) X RS A +dd < + oo
R

and in view of 0 < v < h this implies that

(10) S VS A #dd < + oo .
w

By (7) we conclude that
11) Dy(0v) < + oo .

10. Set r = Ty y0; i.e.,
(12) =0+ 2| 0, OIOPQ -
T Jw

Let {W,} be a regular exhaustion of W; specifically, W,c W,c W,., C W,
W, is compact, W = Uz, W, and aW, consists of analytic curves. Define
a sequence {r,} of functions on W by »,|W\ W, =0 and »,|W, = Tsy,0,
ie.,
ralWa =01 Wa + o= | g, (-, DIOPE)
2T Jwy

The following can easily be verified: 7, is a continuous Tonelli function
on W; r,|W, is harmonic; 6 <7, < 7,+, =<7 and r = B-lim7r,on W. We
further claim that
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13) Dy (rv) = 2(1) .

Using Green’s formula, we get

(14) Dy (r,v) = Saw ru*d(r,v) — 2 S r,odr, N\ *dv

n Wa

= S Svrd(r,v) — z§ rd(r) A xdo + 2§ ridy A +dv
Wy Wa v

Va

and by another application we obtain
(15) § v d(r,) = g d(6v) A *d(r,v) + 28 dvdr, A +dv
AWy, Wa Wa
= SW d(60) A *d(rv) + 2§ 3d(r,v) A *dv
” W‘n
—25 Srudv A *dv .
Wa

We substitute (15) into (14) and apply the Schwarz inequality to obtain
Dy, (r,v) = Dif2(r,v)(Dif*(0v) + 4Di*()) + 2Dy (v) .
In view of (11) we conclude that (13) holds.

11. In this section we establish
(16) | v, —0op=c).
We begin by applying Green’s formula:
(17) SW” v(r, — 0)OP = — Dy, (v'(r, — 8), )

=-§ v(m-—é)dv/\*dé—s vd(r, — ) A *db .
Wa

n

By the Schwarz inequality we obtain

(18) ‘SW“v(n—é)dv/\*dé’ gg vldv A *dd)|

Wa
1/2
< Dw(v)(s vdd A *d5> ,
w
as well as,

(19) ]SanZdw,,-—a)/\*dalgSW v2|drnA*d51+§ v'do A *dd

Wa

< (SW vdr, A *dr,,)UZ(SWdeS A *d&)m + Svada A *dd |

We apply (8):
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[ war, A sdr, = Dy, 0) + 2Dy 0)DY) + 2D, 0) .
Wa

This in view of (13) implies that S vdr, A\ xdr, = &(1). Substituting

w

this into (19) and then combining (f8) and (19) with (17), we get (16).

12. From (16) and the monotone convergence theorem we deduce
that

S W — 0)OP < + oo .

We substitute the expression for » — 6 from (12) into this and apply
Fubini’s theorem to obtain

SWXW"""(Z)QW(Z, 06(2)o(DP(2)P(Q) < + oo .

By the Schwarz inequality we see that
(0w, dv)E < + oo .

Since 6|W > a > 0, we conclude that
(20) v, vl < + oo

13. We arrive at the final stage of the proof of our theorem. Let
{R.} be an exhaustion of R by regular regions. Let s, ¢ I(R) such that
s, | B\N(R,NW)=v and d=ds, =s,P on R, N W. Then 0=s,<v and
hence s,., < s,. By the Harnack principle s = C-lims, exists on W.

Since v|R\W = 0, it is easily seen that actually s = C-lims, on R and
s|IR\W =0. We estimate D,(s,) using (2) and that the fact that s, < »:

Dy(s,) = DB,,,mV(Sn) + DW\(R,,,nW)(’U)
= Dy(v) + {s,, Sn>ﬁ"ﬂR” = Dy(v) + (v, v)7 .
In view of (20) and Fatou’s lemma we obtain D,(s) < + oo, i.e., s€

PD(W; oW).
We shall now show that also s = D-lims,. To this end note that

Dynp, (8, — 8, 8,) = — SWM (s, —8)s,P<0.

Consequently,
0= Dwnzz,‘(s —8,) = DwnR,,,(S) - DWOR”(Sn) .

Thus by Fatou’s lemma we arrive at

(21) 0 < lim sup Dyp, (s — 8,) = Dy(s) — lim inf Dy 5, (5,)
= Dy(s) — Dy(s) = 0.
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Furthermore,
0 <liminf D, (s — s,) = limsup D,,(s — s,)
= lim Dy (war,(8 — v) + lim sup Dy, (s — s,) .

The first term on the right is 0 because D,(s — v) < + and by (21)
also the second term is 0. We have established s = CD-lim s,,.

Note that also v —s=CD-lim (v —s,) and » — s,e M,(R). Thus
v —s8|d=0. The function s is a nonnegative subsolution in M (R) and
hence u = IT”s exists. We have established that u|4 =s|d =v|d=h|4
and the proof of the sufficiency is complete.
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