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Introduction. Every analytic automorphism of a compact Riemann
surface punctured at a finite number of points is analytically continued
to an automorphism of the compact Riemann surface. On the contrary,
there are many examples of compact complex analytic surface S and
analytic curve A in S such that the complement S\A has an analytic
automorphism which cannot be continued to a bimeromorphic trans-
formation of S. Such an analytic automorphism will be called a tran-
scendental automorphism of S\A in this paper. By Sakai [5], the loga-
rithmic Kodaira dimension of S\A having a transcendental automorphism
is smaller than two. On the other hand, Wakabayashi [8] has given
some necessary conditions on algebraic curves A in the complex projec-
tive plane P2 under which the logarithmic Kodaira dimension of P2\A
is smaller than two. In this paper, we show that P2\A having a tran-
scendental automorphism is very special, in the following sense:

A rational function / on a non-singular complex algebraic surface S
is called a rational function of special type on S if the irreducible com-
ponents of almost all level curves / = const, of / i n S\{the indetermina-
tion points of /} are biholomorphically equivalent to the Gaussian plane
C or to the punctured Gaussian plane C* = C\{0}. We can present our
principal result as follows (see also Theorem 2 in §4): If P2\A has a
transcendental analytic automorphism and if A is not a non-singular cubic
curve, then there exists a rational function / on P2 such that the re-
striction f\p2\Λ to P2\A is a rational function of special type on P2\A.
If, furthermore, A is irreducible, then A is a level curve of the rational
function of special type on P2.

Our principle is as follows: If P2\A has a transcendental auto-
morphism, then there exists a holomorphic mapping φ of the punctured
disc into P2\ A with an essential singularity at the origin whose cluster
set φ(0; P2) at the origin in P2 is contained in A. After the minimal
resolution of the singularities of A and its normally-crossing minimaliza-
tion {σ1 in § 2, 2°), we apply a theorem on the cluster sets due to
Nishino and Suzuki [4] to our problem (cf. § 2, 1°).
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In § 1, we will give some examples of the domains P2\A having
transcendental automorphisms with rational functions of special type on
P\ We shall describe the processes of the minimal resolution of the
singularities of A and its normally-crossing minimalization in detail in

§ 3 is the central part of this paper where we present an applica-
tion of the result due to Nishino and Suzuki (Theorem 1 in § 3).

Our study on the rational functions of special type on P2 will be
published elsewhere. Finally, the author would like to express his hearty
thanks to Dr. M. Suzuki for his invaluable suggestions.

1. Transcendental automorphisms of the complement of an algebraic
curve in P2 and rational functions of special type on P2. Consider a
rational function / on a non-singular algebraic surface S which may be
non-compact. Let σ be the set of the indetermination points of /. For
a complex value a (which may be <*>)» an irreducible component of the
level curve {p e S\σ; f{p) = a} is called a prime curve of / in this paper
(Nishino). We call / a rational function of type C on S if almost all
prime curves of / are biholomorphically equivalent to C, the Gaussian
plane. If almost all prime curves of / are biholomorphically equivalent
to the punctured Gaussian plane C* = {z e C; z Φ 0}, then / is called a
rational function of type C* on S. The rational function /on S is said
to be of special type on S if / is either of type C or of type C* on S.

Now suppose that S — P2, the complex protective plane. Since the
complement P2\ A of an algebraic curve A in P2 is a Stein manifold, we
obtain, owing to Suzuki [6, Chap. IV, §8], the following proposition.

PROPOSITION. Every level curve of a rational function of type C on
P2 is irreducible and non-singular in P2\σ and is biholomorphically
equivalent to C. Each prime curve of a rational function of type C*
on P2 is a non-singular algebraic curve in P2\σ and is biholomorphical-
ly equivalent to C or to C*.

An analytic automorphism T of a non-singular algebraic surface S
is called a transcendental automorphism of S if T is not algebraic. Con-
sider the complex Euclidean plane C2 with the coordinate (x, y). We
proved in our previous paper [1] the following: If there exists a tran-
scendental automorphism of C2 which transforms some algebraic curve in
C2 into another, then there exists a polynomial P(x, y) which defines a
regular function of special type on C2\A, and conversely.

In [1], we gave a list of typical examples of algebraic curves in C2

which are invariant under transcendental automorphisms of C2, that is,
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(I), (II), (III) in § 1 and (IV) in § 2 in [1]. These give also the examples
of algebraic curves A whose complement C2\ A have transcendental auto-
morphisms. In order to complete this list of examples, we add the fol-
lowing examples of algebraic curves whose complements have transcen-
dental automorphisms together with examples of rational functions of
special type.

EXAMPLE (V). Suppose that m and n are positive integers. The
rational function x~myn is of type C* on C2. Consider an algebraic
curve A — \J)=ι{x~myn = αy} where each aά is a complex number. The
following transformation is a transcendental automorphism of C2\A:

xf = exp( n Σ
\ 3=1

y' = 2/ exp(m Σ (%Σ (%~myn —

EXAMPLE (VI). Suppose that I, m and n are positive integers and
Pϊ-i(aj) is a polynomial of degree at most I — 1 with Pι-X(Q) Φ 0. The
rational function χ-m(xιy + P^x))* is of type C* on C2. Consider an
algebraic curve A = Ui=i {%~m(%ιy + Pι-γ(x)Y = a3) where each a5 is a
complex number. The following transformation is a transcendental
automorphism of C2\A:

x' = xΉn ,

y' = y.Hm~*1 + χ-ιΉ-nl{Pι-1{x)Ήm - Pι-,{x Hn)} ,

where H = H{x, y) = exp(Σi=i{^m(^?/ + Pi-MT ~ as}-τ).

Now we consider an algebraic curve A in P2 whose complement
P2\A has a transcendental automorphism. When A contains a complex
line as its irreducible component, we have listed all the typical cases
above ((I) - (VI)). Here we give other examples. Let (X: Y: Z) be a
homogeneous coordinate of P 2 . An inhomogeneous coordinate of P 2 is
given by x = X/Z and y = Y/Z.

EXAMPLE (VII). The rational function / o n P 2 defined by f(x, y) =
[(y - x2)(y - x2 + 2xy2) + yδ]2/(y - x2f is of type C on P 2 . Consider the
algebraic curve A defined by {[(y — x2)(y — x2 + 2xy2) + y*]-(y — x2) = 0}.
Then P 2 \ A is biregularly isomorphic to the product space CxC*. Hence
there exists a transcendental automorphism of P2\A. The reader will
find out the proof of these facts by the performance of the σ-processes
which resolves the indetermination points of / (cf. Lemma 2 in § 3). An
intrinsic proof of these facts will be given in another paper where we
will also treat other rational functions of special type on P 2 .
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EXAMPLE (VIII). We can also verify that the rational function / on
P2 defined by

f(χ, v) = Kv - χ2)(v - *? + %*t) + vδ](χy - ^ + v3)Kv - χΎ

is of type C* on P2 and that P2\A is biregularly isomorphic to the prod-
uct space C* x C*f where A is the algebraic curve defined by {f(xf y) = 0}\J
{/(#, V) — °°} Hence P 2 \ A has transcendental automorphisms.

The algebraic curve defined by {(y — x2){y — x2 + 2xy2) + yδ = 0} was
first noted by Yoshihara [9] and Wakabayashi in their study on the
logarithmic Kodaira dimension.

2. Preliminaries. 1° A theorem due to Nishino and Suzuki [4].
Let S be a non-singular complex analytic surface and let E be a con-
nected analytic curve on S satisfying the following two conditions:

( i ) Any singular point of E is an ordinary double point.
(ii) E contains no (compact) exceptional curve of the first kind

having at most two intersection with the other irreducible components
of E.

Suppose that there is a holomorphic mapping φ: Dr —> S\E of the
punctured disc D' = {z eC; 0 < \z\ < 1} into S\E. Set Gr = φ(Dί) and
let Gr be the closure of Gr in S, where D'r = {z e C; 0 < \z\ < r}. The
set φ(0; S) = Πr>o Gr is called the cluster set of φ at z = 0 in S. Re-

TABLE I

Name of type
Number of
points of

C f)E'

Explanation of C and E'

-2 - 2

Ϋ(nltn2t
l,n2,



ANALYTIC AUTOMORPHISMS 81

cently, Nishino and Suzuki have given an interesting result as in the
following.

THEOREM N-S. Assume that the cluster set C = φ(0; S) is contained
in E and that C is a compact set in S containing two points at least.
Then C must consist of irreducible components of E. If C Φ E, then
C must belong to one of the classes of curves listed in Table I. //
C = E, then C must belong to one of the classes of curves listed in
Table II, which we quote from Suzuki [7] with notations adjusted.

In Table I, each irreducible component of C is a non-singular ra-
tional curve and is represented by a line. The integer attached to each
line represents the self-intersection number of the corresponding ir-
reducible component of C. We denote by Er the analytic curve consist-
ing of the components of E which do not belong to C, that is, Ef is the
closure of E\C.

In Table II, for the types βb (6 ̂ > 2), 7, 7', S and ε, each irreduible
component of C is a non-singular rational curve and is represented by
a vertex °. Each line represents a point of intersection of irreducible
components of C corresponding to the vertices. The integer attached to

TABLE II

Name of Type Explication of C

a(n)

β(n)

r
v

ΐ(nι,n2,
n2,
, n2,

^ 0.

0.

δ(n0;

, m) (b ̂  1) Figure 5,

an irreducible non-singular elliptic curve with the self-
intersection number (C2) = n ^ 0.
an irreducible rational curve with only one ordinary
double point and (C2) = n ^ 0.
Figure 1, all w< = —2 or max

Figure 2, all %i~ —2 or max
Figure 3, max {n\ + 1, n2,
Figure 4, (i) no ^ 2,

(ϋ) (Zi, h, h) = (3, 3, 3), (2, 4, 4) or (2, 3, 6 - m)
with m = 0,1, 2, 3,
(iii) for each i = 1,2, 3, (U, q^ is a pair of
coprime integers such that 0 < g< < U and
that Ufa = niti — 2_| nit2 — — j j ni,ri (con-
tinued fraction expansion), where t i i , ^ 2 a r e
the integers appearing in Figure 4.

max {nu n2, , nd ^ 0.

FIGURE 1 FIGURE 2



82 T. KIZUKA

-nUri -nurι^ -n1Λ

- 2 n, n2 nb
o o- o o

FIGURE 3 FIGURE 4

% n2 nb

FIGURE 5

vertex is the self-intersection number of the corresponding irreduc-
ible component of C.

2° Non-ordinary singularities of an algebraic curve in P2. Let A
be an algebraic curve in the complex protective plane P2. If a singular
point p of A is not an ordinary double point, we call p a non-ordinary
singular point of A. Now we describe the processes of the minimal res-
olution of the non-ordinary singularities of A and its normally-crossing
minimalization (σx in the following) in detail to obtain a lemma which
plays an important role in the proof of Theorem 1 in §3.

After the resolution of the non-ordinary singularities of A by a
minimal sequence of blowing-up's, we obtain a compact rational surface
S and a birational regular mapping σ0: S —> P2 of S onto P2 with the
following three properties:

( i ) The total preimage E = θo\A) of A is an algebraic curve
without a non-ordinary singular point.

(ii) Denote by pl9 p2, - , pm the non-ordinary singular points of A.
Each irreducible component of the curve B — U?=i σO'KPj) is n o n -

singular and rational. The restriction of the mapping σ0 to S\I? is a
biregular mapping of S\B onto P2\{Pj}7=1.

The self-intersection number of each irreducible component of B is
negative. Let B3 be an irreducible component of σ^ip/) with the self-
intersection number (j?j) = — 1. B9 intersects at most two other irre-
ducible components of B. Since σQf the resolution of the non-ordinary
singularities of A, is minimal, B5 must intersect the proper transform
of A by the mapping σό1. And Bd must intersect other components of
E at three points at least. Hence B contains no exceptional curve of
the first kind having at most two intersection with the other irreduc-
ible components of E.
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Now, by a finite sequence of the contractions of the exceptional
curves of the first kind contained in E, we obtain a compact rational
surface S and a birational regular mapping σx\ S —> S of S onto S with
the following three properties:

( i ) The image E = σ^E) of E is an algebraic curve with no non-
ordinary singular point and has no exceptional curve of the first kind
having at most two intersections with the other irreducible components
of E.

(ii) The restriction of the birational mappings = σ^σϊ1: P2 —> S to
P2\A is a biregular mapping of P2\A onto S\E.

(iii) Each Bό = σ^Bj) is a non-singular rational irreducible compo-
nent of E with the self-inter section number (Bj) ̂  — 1.

We obtain the following lemma easily.

LEMMA 1. ( i ) If A has m non-ordinary singular points, then E
has, at least, m non-singular rational irreducible components B3 (j =
1, 2, , m) with the self-intersection number (Bj) ̂  — 1.

(ii) If there exists an irreducible component Et of E with the self-
intersection number (E?) ̂  0, then A has a non-ordinary singular
point.

(iii) It is imposible that every irreducible component Et of E has
the self-intersection number (E2) <; — 2.

(iv) // an irreducible component Et of E is an exceptional curve
of the first kind having at most two intersections with the other compo-
nents of E, then Et is an irreducible component of the proper transform
of A by the mapping σ*1.

(v) // the first Betti number bλ(E) of E is equal to zero, then so
is b±(A).

(vi) If a level curve of a rational function h on S with the value
a is contained in E, the level curve of the rational function σ*(h) on
P2 with the value a is contained in A, and conversely.

The statements (ii) and (iii) are proved because there is no algebraic
curve At in P2 with the self-intersection number (A2) <; 0.

3. An application of Theorem N-S. We prove in this section the
following theorem.

THEOREM 1. Let A be an algebraic curve in the complex protective
plane P2. Suppose that there exists a holomorphic mapping ψ of the
punctured disc Γf = {zeC; 0 < \z\ < 1} into P2\A whose cluster set C" =
α/r(0; P2) at z = 0 in P2 is contained in A and that C contains two
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points at least. Then, A must belong to one of the following three
classes of curves:

( i ) A non-singular cubic curve.
(ii) The sum of several irreducible components of the level curves

of a rational function of special type on P2.
(iii) The sum of several irreducible components of the level curves

of a rational function f of type C on P2 and an irreducible algebraic
curve Ao such that the restriction f\P2\A of f on P2\A0 is a rational
function of type C*.

Unfortunately, we do not know whether the case (i) actually takes
place.

Before beginning on the proof, we introduce a lemma due to Kodaira
and Spencer [2] which played an important role in our previous paper [1],

LEMMA 2. Let S be a non-singular compact complex algebraic sur-
face. If an irreducible non-singular rational curve Co in S has the
self-intersection number (Cj>) = 0, then there exists a holomorphic map-
ping π of S onto a compact Riemann surface R such that the triple
§ = (S, π, R) is an analytic family of rational curves over R having
Co as its regular fibre.

REMARKS. Under the same assumption as in Lemma 2, we know the
following:

( i ) If S is rational, then R = P\ the Riemann sphere.
(ii) An algebraic curve d in S with Cof]C1=0 is the sum of

several irreducible components of fibres of %.

Now we start on the proof of Theorem 1. We consider the compact
rational surfaces S and S as in § 2. The holomorphic mapping φ — σ°ψ
of Γ' into S\E satisfies the condition in Theorem N-S in §2. In the
following, we denote by Ct the irreducible component of C = <p(0; S) with
the self-inter section number nt in Tables I and II. First we suppose that
C Φ E. Then C must belong to one of the classes listed in Table I.

(1) The case γ\ In this case, rnax^ + 1, n2, , nb} ^ 0.
( i ) Suppose that nά ^ 0 for some j Φ 1. Assume, furthermore,

that % = (Cf) — 0. By Lemma 2 and by Remark (i) to Lemma 2, there
exists a rational function h on S with no indetermination point each
prime curve of which is a non-singular rational curve and whose level
curve with the value 0 is C3 . By virtue of the graph, we know that
Cs must intersect two other irreducible components, which we denote
by E1 and E2, of E. By Remark (ii) to Lemma 2, the other irreducible
components of E are prime curves of h. Since Cs intersects Eu as well
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as E2, transversally at a point, h\S\E is a rational function of type C* on
S\E. Since every rational function on P2 has one indetermination point
at least, the proper transform Ax of Ex by the mapping σ~ι or the prop-
er transform A2 of E2 by the mapping σ"1 is a point. If each of them
is a point, then the rational function / = σ*(h) is a rational function of
type C* on P2 and A consists of several prime curves of /. If A2 is
not a point, then / is a rational function of type C on P2 whose restric*-
tion /|p2\^2 to P2\A2 is a rational function of type C* on P2\A2, By
Lemma 1 (vi), the level curve of / with the value 0 is contained in A.
Because A contains A2 and {/ = 0}, A is reducible.

When % > 0, we obtain, after nά blowing-up's at the point of inter-
section Cj Π E19 the proper transform Cά of Cό with the self-intersection
number (C|) = 0. Hence the same result as in the above follows.

(ii) Suppose that n^ — 1. Assume, furthermore, w3= — 1. We
denote by Co and CO two irreducible components of C with the self-
intersection number —2 on the left hand side of the graph. Contract-
ing d and Co, we obtain a birational regular mapping σ2: S-» σ2(S) of S
onto σ2(S) so that the image curve σ2(C0) of Co has the self-intersection
number (σ2(C0f) — 0. By Lemma 2, there exists a rational function /ι
on σ2(S) with no indetermination point each prime curve of which is a
non-singular rational curve and whose level curve with the value 0 is
(72(C0). Since every rational function on P2 has one indetermination
point at least, σ2(E) has an irreducible component I intersecting <72(C0)
tangentially at a point with the intersection number (<τ2(C0), I) — 2. By
Remark (ii) to Lemma 2, we know that the components of E other than
/ are prime curves of h. Hence the rational function h\S\E is a rational
function of type C* on S\E. The rational function / = σ*(h) is a ra-
tional function of type C* on P2 with only one indetermination point.
The algebraic curve A consists of several prime curves of /.

When nx > —1, we obtain, after the nλ + 1 blowing-up's at the
intersection of CΊ with the closure of E\(CQUCΌ\JC1), the proper trans-
form Cx of d with the self-intersection number (C?)=—1. Hence the
same result as in the above follows.

(2) The case ε. In this case, (Cj) ^ 0 for some j . Suppose that
j — 1 and that the cardinality of C Π E' is one. Assume, furthermore,
(d2) = 0. Then, by Lemma 2, there exists a rational function h on S
with no indetermination point each prime curve of which is a non-singular
rational curve and whose level curve with the value 0 is Cx. The curve
d intersects another irreducible component Eλ of E transversally. By
Remark (ii) to Lemma 2, the irreducible components of E other than
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E1 are prime curves of h. Hence the restriction h\S\E to S\E is a ra-
tional function of type C on S\E. We know that / = σ*(h) is a rational
function of type C on P 2 . The curve A consists of several prime curves
of/.

If nλ = (Ci2) > 0, we obtain, after nλ blowing-up's at the point of
intersection d Π Eu the proper transform Cx of Cx with the self-inter-
section number (Cl) = 0. Hence the same reasoning as above is applica-
ble, and we obtain the same result as in the above.

In the other case where j Φ 1, we can apply the same reasoning as
in (1) (i) to obtain the same result as in (1) (i).

Now we suppose that C = E. Then C must belong to one of the
classes of curves listed in Table II of Theorem N-S.

(3) The case a. By Lemma 1 (i), A has no non-ordinary singular
point. Since σ0 = σx = id., A is a non-singular cubic curve in P2.

(4) The case βlm If A has no non-ordinary singular point, then A
is an irreducible cubic with only one ordinary double point. Hence A
is transformed by a protective transformation of P2 into the curve
{XYZ — X3 + Y3 — 0}, a prime curve of the rational function of type
C* on P2 mentioned in § 1 (Example (VIII)). If A has a non-ordinary
singular point, by Lemma 1 (i), A has only one non-ordinary singular
point Pi and E = Bx. As was seen in § 1, Bx intersects the other ir-
reducible components of E at more than two points and the self-inter-
section number (B\) of Bt is —1. Hence we know that the self-inter-
section number n = (B?) is not smaller than 4. After n — 3 blowing-up's
at the ordinary double point of Bu we obtain the proper transform B[
of Bx with the self-intersection number (B[2) = 0. Therefore, we can
apply the same reasoning as in (1) (i) to obtain the same result as in

(1) (i).
(5) The case βb. By Lemma 1 (iii), the case with rii = — 2 for all

i does not take place. Therefore, for some j, the self-intersection
number (Cj) of C3 is not negative. Hence the same reasoning as in (1)
(i) is applicable, and we obtain the same result as in (1) (i).

(6) The case y. By Lemma 1 (iii), the case with % = — 2 for all i
does not take place. Suppose that b > 1. Then the same result as in
(1) follows by the same reasoning as in (1). Suppose that 6 = 1. By
Lemma 1 (ii) and (i), A has only one non-ordinary singular point pίm

Assume that A is irreducible. As was seen in § 2, Bx intersects the
proper transform A of A by the mapping σ^1 and intersects at most
two other components of B. By Lemma 1 (v), the curve A intersects Bx

at only one point. On the other hand, Bx intersects the other compo-
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nents of E at four points. It is a contradiction. Hence A is reducible.
Let Alf A2, - , Ak (k ^ 2) be the irreducible components of A. By
Lemma 1 (v), all At must intersect each other at only one point pQ. It
is easy to verify this fact when k — 2. When k ^ 3, it is proved by
the fact that any two algebraic curve in P2 must intersect each other.
There exists a rational function g with one indetermination point p0

whose level curve with the value 0 is Ax and whose level curve with
the value °° is A2. Consider the rational function h = (σ~ι)*(g) on S.
By Lemma 1 (iv), the level curve Σx of h with the value 0 and the level
curve Σ2 of h with the value oo are contained in E. The curves Σ1 and
Σ2 must be connected, respectively. Hence, looking at the graph of C,
we know that Σx or Σ2 must be exceptional. It is absurd. Hence the
case with 6 = 1 does not take place.

(7) The case γ\ By virtue of the shape of the graph of C, the
same reasoning as in (1) and (2) are applicable to this case. Hence we
can prove the statement of Theorem 1 in this case also.

(8) The case δ. We denote by Cίtj and Co the irreducible compo-
nents of C with the self-intersection number nitJ and nQ, respectively.
By Lemma 1 (ii) and (i), we know that A has only one non-ordinary
singular point p1 and that Co = Bx. Suppose that A is irreducible. By
Lemma 1 (v), the curve Bλ on S intersects the proper transform A of
A by the mapping OΌ"1 at only one point. As was seen in § 2, Bx inter-
sects at most two other components of B. Since Co intersects the other
components of C at three points, by Lemma 1 (iv), we know that
σx = id. and that the self-inter section number (C0

2) = — 1. Hence we
obtain A from C by the successive contraction of exceptional curves of
the first kind. But we obtain an irreducible algebraic curve only in the
cases where (qjlίf q2β2, qJQ = (1/2, 1/3, 1/6 -k) (k = 0, 1, 2, 3) or (qjllf

Qz/ht Qs/h) = (1/2, 1/3, 2/5). In the former case, the self-inter section
number of the curve so obtained equals k. In the latter case, it equals
7. Since the self-inter section number of a plane algebraic curve of de-
gree n is n2, it is a contradiction. Therefore, A must be reducible.
But, if A is reducible, the same reasoning as in (6) leads to a contradic-
tion. Hence the case δ does not take place.

(9) The case ε. Since every rational function on P2 has at least
one indetermination point, it is impossible that 6 = 1 and n1 — 0. Hence
we can apply the same reasoning as in (2) to this case to obtain the
same result as in (2).

Thus we have proved Theorem 1.

4. Conclusions. As was seen in Introduction, Theorem 1 implies
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the following.

THEOREM 2. Consider an algebraic curve A in the complex projec-
tive plane P2. If there exists a transcendental automorphism of the
complement P2\A, then A must belong to one of the three classes of
curves (i), (ii) and (iii) described in Theorem 1.

If A belongs to the class (iii), A must contain irreducible compo-
nents other than Ao. By Proposition in § 1, we obtain the following.

COROLLARY 1. Under the same assumption as in Theorem 1, con-
sider an irreducible component A' of A. If A! is not the curve Ao in
(iii) of Theorem 1, the universal covering of A'\{the singular points of
A on A'} is biholomorphically equivalent to the Riemann sphere P1 or
to the Gaussian plane C.

REMARK. By this corollary, we know that there exists an example
of an algebraic curve A in P2 such that P2\A has no transcendental
automorphism and that the logarithmic Kodaira dimension ic(P2\A) ^ 1.

Since the degenerating locus of a birational transformation of P2

consists of rational curves, we obtain the following easily.

COROLLARY 2. There exists an algebraic curve in P2 whose comple-
ment has no analytic automorphism besides the identity.

We do not know whether the complement P2\E of a non-singular
cubic curve E in P2 has a transcendental automorphism.

Combining Theorem 2 with the result of Suzuki [6, Chap. Ill], we
obtain the following theorem (see also [1]).

THEOREM 3. Let A be an algebraic curve in the complex Euclidean
plane C2. If C2\A has a transcendental automorphism, then A can be
transformed into an algebraic curve Ao belonging to one of the follow-
ing three classes of curves in C2 by an algebraic automorphism of C2:

( i ) An algebraic curve P(x) + Q(x) y = 0 where P(x) and Q(x) are
polynomials of x.

(ii) The sum of several prime curves of a rational function xmyn

where meZ* = Z\{0} and neZ*.
(iii) The sum of several prime curves of a rational function

xm[xιy + Pι-1{x)f9 where leZ+ = {feeZ k > 0}, m e Z * and neZ* and
where Pι-X(x) is a polynomial of x of degree at most I — 1 with Pz-i(O) Φ 0.

Conversely, if an algebraic curve A in C2 belongs to one of the
classes (i), (ii) and (iii), then C2\A has a transcendental automorphism
(see § 1).
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