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The Marcinkiewicz interpolation theorem has been generalized, on
the one hand, by Calderén [2] and Hunt [4] to quasi-linear operators
from a couple of Lorentz spaces to another. After Lions and Peetre
discussed interpolation of linear operators from a couple of Banach
spaces to another, Krée [6] and Peetre-Sparr [7] have succeeded in
generalizing the theory to (quasi-) linear operators from a couple of
quasi-normed Abelian groups to another. On the other hand, the weak
type assumptions at the end points of indices have also been gener-
alized by Calderon [2] in the case of Lebesgue spaces and by De Vore-
Riemenschneider-Sharpley [3] in the case of normed spaces. We give
here an interpolation theorem which generalizes all of the above results.

1. Real interpolation groups of a couple of quasi-normed Abelian
groups. We recall some of the results of Peetre-Sparr [7] (see [1]).
Let X be an Abelian group. A quasi-norm on X is by definition a

real-valued function || ||; on X satisfying the following conditions:
(1) lzllx =0, and |2)y=0=2=0;

(2) =2l = llzlx;

(3) Iz +yllx = ezl + [yl ,

where £ is a constant independent of x and y. Such a quasi-norm is
called a k-quasi-norm. An Abelian group equipped with a quasi-norm
is called a quasi-normed Abelian group.

If (2, #,p) is a measure space, then for each 0 < p < c the
Lebesgue space L?(2) is a quasi-normed Abelian group under the «,-
quasi-norm

(I, l7@raxe )", 0<p<e,

ess sup | f(s)| , p=co,

(4) ”fHLP(.Q) = %

where
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1, 1=p= oo,
(5) K, = 20-27 - 0 <p<1.

When (2, #, ) is the multiplicative group (0, «) with the Haar
measure ds/s, we write Li for L”(2). In this case we also admit @ as
an index and define Ly to be the subspace of L3 of all elements f(s)
such that f(s) — 0 essentially as s — « and as s —0. The norm is the
restriction of the norm of L3. The index w is defined to be greater
than any finite p but we do not define order relation between @ and «
to avoid confusion.

We define o> 0 by (2¢)° = 2. Then for each g-quasi-norm | |,
there is a 1-quasi-norm || ||¥ such that
(6) lzllx = (=l = 2[=[% .

Thus a natural uniform topology is introduced in the quasi-normed
Abelian group X by the metric ||z — y||3.

A pair of quasi-normed Abelian groups (X, X,) is said to be com-
patible if there is a Hausdorff topological group -2~ for which continu-
ous linear injections i,; X, — 227 and i,;: X, — 22~ are defined.

Let X = (X, X)) be a compatible couple of quasi-normed Abelian
groups with r,-quasi-norm | |,, and k.-quasi-norm || |,. Then the
sum X, + X, in 22 is a quasi-normed Abelian group under

(7) ”x“XO+X1 = inf{“-’”onx(, + ||:L'1||X1; r =+ x},

which is a k-quasi-norm with £ = max {x,, £,}. We also define a k-quasi-
norm L(x,t) on X, + X, with a parameter 0 <t < « by

(8) L(x, t) = Ly(x, t) = inf {onnxo + t-IHxlnxl; x=u, + x} .

This is nothing but K(¢~, ) of Peetre-Sparr [7] but more convenient in
many respects. When an ze X, + X, is fixed, L(x,t) is a positive,
decreasing and continuous function of ¢.

If0<f<land 0<qg= = or q = w, the real interpolation group
X, , = (X,, X\)s,, is defined to be the set of all x€ X, + X, such that

(9) @]y, = 1E°Lw, t)[|2g < oo .

Xy, is a quasi-normed Abelian group under the quasi-norm |[x||.,,.

The index ¢ = @ is often useful. For example, we have (C°, C!)) .=
Lip’ and (C°, C')y,, = lip’. For other examples see [5], where co— is
used instead of w.

If0<qg=rorif ¢g=w and » = -, then we have the continuous
inclusion X, ,c X,,. This is an immediate consequence of the following
lemma due to Hunt [4].
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LEMMA. Suppose that f(t) is a mnon-negative and non-increasing
Sfunction on (0, ) and that 0 < 6 < 1. If t°f(t) belongs to L%, then 1t
belongs to L% for any r = q and

10) @) 1Oz = 0N F @) ]zs -

If (2, #,p) is a reasonable measure space, then the Lebesgue
spaces L?(2), p = P, are continuously imbedded in the Hausdorff topo-
logical vector space of all equivalence classes of measurable functions
which belong to L? on each subset of finite measure. Thus (L*(R2),
L*(R2)) is a compatible couple of quasi-normed Abelian groups for all
0<p; = oo

For the couple X = (L>(2), L*(Q)) with 0 < p < o, Krée [6] and
Bergh (see [1] p. 109) show that

(1) Lu(f, 0~ (] rreras )7

where f*(t) is the non-increasing rearrangement of f(s). Hence we
have the equivalence of interpolation groups (L=(2), L*(2))s,, and Lorentz
spaces L"92(2) for all p < q< « or q¢q = w. Here the Lorentz space
L»9(Q) is by definition the space of all equivalence classes of measurable
functions f(s) such that

(12) | fllzwaw = Htllpf*(t)“Li’ < oo

In fact, suppose that fe L**?(Q) with p £ ¢ < « or ¢ = ®. Then
we have

(13) 1 ke = IELCE ) s
e[ e @rasis |7
- [yl

/p

— m—1/q
=P

1
e *

*

| Gy *(s))dsls

Here we changed variable as ¢t* = u. Since the integral in the norm is
the convolution on (0, «) of the integrable function

0, o<u<l,

uw, uw=1,

h(u) = {

and (s”?f*(s))? € L{?, where ¢/p = 1, the right hand side is bounded from
above by
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PVl — ) |82 f*(8) || -

On the other hand, since f*(s) is non-increasing, the right hand
side of (138) is bounded from below by

(FHp | syt dsfs || T = 57w s

Hence it follows that every fe (L~(2), L*(2)),,, belongs to L*%9(Q) and
that two quasi-norms are equivalent.

1/p

—1/q
D

Ly

2. The general interpolation theorem. We assume from now on
that X = (X,, X,) and Y = (Y,, Y,) are compatible couples of quasi-normed
Abelian groups and that T is an operator defined on a subset D(T') of
X, + X, and with values in Y, + Y,.

DEFINITION 1. Let &, &, 7, and 7,€[0,1] with & < ¢ and 7,# 7,
and let 7, and 7,€(0, ). Then T is said to be of generalized weak
tyve (&, 70), No; (&1, 1), 71) if there is a constant M < o« independent of
x € D(T) such that

1/7q

(14) L(Tx, t) < M{t~voU:(sfoLX(x, s))'Ods/s]

+ t—'hB:r (81 Lx(x, S))“dS/SJm} ’

where
(15) v = (771 - 770)/(51 - Eo) .

The generalized weak type (v, ¢:; ., ¢,) of De Vore-Riemenschneider-
Sharpley [3] is our generalized weak type ((1/p,, 1), 1/q.); ((1/p., 1), 1/g.).

We do not assume any kind of linearity of T. The main result of
the present article is the following.

THEOREM 1. Suppose that T is an operator of generalized weak
type ((&o, 7o)y Moy (&1, )5 ). Then for any 0 <6 <1land 0 <g=sr=-ce
or 0 < g=<r=< w there is a constant C < oo such that

(16) | T2 |ly,, = Cllzllx,,, 2eD(T)N X,,,
where
(17) E=1 =0 + 08, n=~0~—060mn + 07, .

ProOF. Because of (10) it suffices to prove (16) only when ¢q = 7.
First we consider the case where ¢ = » = max {r, »,}. We have by (14)

t7—7 H:(stL(x, s))’Ods/s]

/7y

| 7ol , < £, ]

Ll
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e[ o, orane]

= Kk, |7 [ {H §°° (s/0)o-9m(st L(w, 5))"ds/s

* Su(s/“)“““”(seL(x, sH" Z::ln}
= ’cql'”"”"M(((é — &)1y + (& — E)’h)‘l/ﬂ) || r HXe,q .

The theorem in the general case is reduced to the above by the
following.

PROPOSITION 1. If T is of gemeralized weak type ((&, 70); No; (1, 70,
7)), then it is of gemeralized weak type ((&, o), Moy (&1, @)y ) Sfor any
0<qgp=r,and 0<q, .

1/

0
L‘,{”‘o

Proor. Since L(x, s) is decreasing in s, we have by Lemma

[ 6L, spasis | = @mymar] [ 6L, yrdsss |

1/qy

Similarly we have
Ht(sf-oL(x, s))f-ds/s]”°
t

e Lie, sedss + L, t9)edsls}

IA

< (e cq ™ { | 60 Liw, s)mdsfs |+ (G Lis, 1)

For the second term we have
tr
0

trorraLe, 1) = ey ot | L, eymdsys [

Thus the right hand side of (14) is bounded by a constant times

t7 1/q1
0

] [ "L, )eds)s | + o] |67, spmasys |
t

3. The Holmstedt theorem for quasi-linear operators. 7T is assumed
as above to be an operator from D(T)c X, + X into Y, + Y..

DEFINITION 2. T is said to be quasi-linear if a + y belongs to
D(T) whenever x and y belong to D(T) and if there are constants %
and ¢ independent of x and ¥ such that

(18) Ly(T(x + v), t) < k(Ly(Tw, ct) + Ly(Ty, ct)) .
If T is linear, then clearly (18) holds with & = £, and ¢ = 1.
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Krée [6] calls an operator T with D(T) = X, + X, quasi-linear if
there are constants k, and %k, such that for any x,€ X, and x, € X, there
are y,c Y, and y, €Y, satisfying

(19) Tw, + @) =9 + 9, and [[y;lly, = k|| @]y, -
This implies
(20) Ly(Tx, t) < kLy(x, t), 2eX, + X,,

with k& = max {k,, k,}. Hence it follows that T: X, , — Y,,, is bounded.
We consider, however, operators T whose restrictions T: X, — Y,
are not necessarily bounded.

DerFINITION 3. Let ¢ 7e[0,1] and »€(0, «]. T is said to be of
generalized weak type ((&, 1), ) if there exists a constant M < - such
that

(21) I Tx”Y;;,m = M“x”zl’e,r’ veD(T)N X;,, .

If £=0 or 1 (resp. » =0 or 1), then we replace X,, by X, (resp. YV,
by Y,).

If T is of generalized weak type ((& 7), %), then it is clearly of
generalized weak type ((& q), ) for any 0 < ¢ < 7.
The following theorem is due to Holmstedt [8] when T is linear.

THEOREM 2. Let &, &, 7, and 7, €[0, 1] with & < & and 7, # 7, and
let r, and r, €(0, ). If a quasi-linear operator T 1is simultaneously
of generalized weak type ((&, 10), M) and ((&, r.), V), and if there is a
constant a such that for every xeD(T) and 0 <t < o there are x,¢€
D(T)N X, and z,€ D(T) N X, satisfying x = x, + x, and

(22) 1% llxy + 27 |2 [lx, = aLy(, 8 ,

then T is of generalized weak type ((&, 7o), No; (&1, 71), W) and, in par-
ticular, the conclusion of Theorem 1 holds.

PrROOF. Let x be an arbitrary element in D(T). If we replace a
by a larger number, we can find a piecewise constant functions x,(t) €
D(T)Nn X, and 2.(t) € D(T) N X, such that
(23) l2e®) |, + 7 |2(®) ||z, = aLg(x, t) , 0 <t < oo,

Then applying (18) to x = z,(¢t") and y = x,(t"), we have

(24)  Ly(Tw, t) = kLy(Tu(t"), ct) + kLy(Tx,(t"), ct)
=< kEM,(ct)=™|| x,(t7) erwo + kM, (ct)=" || x,(t") ”Xfpn )
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The modifications necessary in the cases & = 0,1 or 7, = 0,1 would be

obvious.
Now, in case & > 0 we have

tm ” xﬁ(tr) ”XGO”"O

S ot {00 Lai), syt |+ [ [0 L, apdis |
Here we have
] [ (eLiatr), s)dsfs | < rator | (69(Liw, 8) + Liw(t), 5)ds]s |

= Kxkiy, {t—'/on (s*L(z, s))’ools/s]m0 + t'”OU (sfoL(a, (), 3)>rods/s]”’°} .

oo oo
128 128

/7o

Since L(z,(t7), 8) < s7*|| 2.8 | x,

t‘”OHZ(stL(xI(tT), s))rools/s]”’0

= (A = o) rotmmt 16D 1, (27) |,

= a((1 — go)ro) Vot~ L(w, t7)
= a( - 50)7‘0)—1/ro(51,,.1)1/1-1t_m|:Stf(selL(x’ s))flds/s}ml .

Here we employed the fact that L(zx, s) is decreasing.
Similarly we have

1/rq

t‘”OU:T(stL(mO(tY), s))’Ods/s]

< ¢ | (5 ot 1 dfs |
(Gt Lz, )

t7 1/ry
alegr) ey ] | 6 Lia, s)dsfs [

A

IA

In case & = 0 we have
t70 || @y(t7) || x, = at~7L(x, )
7 1/ry
= aeryrt] L, s)dsis [
0
Thus the first term of the right hand side of (24) is bounded by a

constant multiple of the right hand side of (14).
The second term of (24) is estimated similarly. We employ the

inequality
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vL(, 1) S (L - &) | (L, 9yedsis |
i
which is obtained from the fact that sL(x, s) is increasing.

4. Applications. First we prove the reiteration theorem of Peetre-
Sparr [7] as an application of Theorem 2.

THEOREM 3. Suppose that X = (X, X)) and Y = (Y,, Y,) are com-
patible couples of quasi-normed Abelian groups and that 0 < 6, <6, < 1.
Let 0 <n<1land 0<qg=< > or q=w be arbitrary numbers and let

(25) 6 = (1 — b, + 70, .
(1) If Y.Cc Xy, i =0,1, then
(26) Y, X5

(2) If Xp,,CY;, ©=0,1, for some 0 < q; < w or o, then
(27) Xf’,q c Y’M ’

(3) If Xp,,CY,CXp,w, © =0, 1, for some 0 < ¢, < w or co, then
(28) Y, =Xo,-

Here the inclusion A C B means that the quasi-normed Abelian group
A is included in the quasi-normed Abelian group B and there exists a
constant M such that

lalls = M|lall,, acd,

and A = B means that 4 and B are the same Abelian group with equi-

valent quasi-norms.
If 6, =0 (resp. 6, = 1), then X, .. and X, , (resp. X, .. and X, ,)

should be replaced by X, (resp. X,).
ProOF. (1) Define the operator T: Y, + Y, —» X, + X, by

TWo+9) =%+ %, %Y.
This is a linear injective operator of generalized weak types ((0, *), 6,)
and ((1, %), 6,) simultaneously. Hence it follows from Theorem 2 that the

identity operator T:Y,, — X, , is bounded.
(2) In this case the identity operator T: X, , + Xy,,— Y, + Y, is
linear and simultaneously of generalized weak type ((4,, ¢,), 0) and ((4,, q,),1).

Hence T: X, ,— Y,, is bounded.
Let (2, #, 1t) be a measure space. As we have shown in §1,
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(L=(Q), L*2))s,, = L**"(Q)

for any » = p. Since p can be chosen arbitrarily small, the reiteration
theorem verifies the following.

PROPOSITION 2. Let 0 < p, < Py < oo and q, q,€(0, o] U {w}. Then

forany 0 <0 <1land 0 <7r=< o or r=w we have

(29) (L (Q), L)), = L*(9),
where
(30) 1_1-6,06

7 Do D,

Lastly we show that the interpolation theorem of Calderéon [2] and
Hunt [4] is a consequence of Theorem 2.

DEFINITION 4. Let (2, #,p) and (2, _#Z', ') be two measure
spaces and let T be an operator with the domain D(T) in the space of
(equivalence classes of) measurable functions on 2 and the range in the
space of (equivalence classes of) measurable functions on 2'. T is said
to be quasi-linear if f + g€ D(T) whenever f and g € D(T) and if there
exists a constant K independent of f and g such that

(31) IT(f + 9l = KITf| + | Tgl), a.e.
THEOREM 4. Let T be a quasi-linear operator from the domain
D(T) of measurable functions on 2 into the space of measurable func-

tions on 2' and let Dy, D1, @ ¢, €(0, =] with p, < p, and q, * q,. If
for each f(s)e D(T) and m > 0 the truncations

£, [f&l=m,
32 o(8) = 1
(32) So(s) ,?(i))lm, 1£G) > m
0, lf&=m,
(33) Si(s) = 1 R iC)
f(s) |f(s)|m’ lf&)]>m,
belong to D(T) and if there are constants M, M, v, r, > 0 such that
(34) 1 TS|z 0 = Myl f P00 g ,
(35) | Tf || v oy & My || f|[oteoro o)

for all fe D(T), then for every 0 <8 <1 and 0 < r = c or r = w there
18 a constant M such that
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(36) ” Tf”L(q’r)(Q’) é M“f”[,“’»")(g)
for all fe D(T), where
1_1-6 96

P D, D, % a

ProOOF. Let 0 < P < min {p,, p,} and 0 < @ < min {q,, q,} and regard
T as an operator from the couple X = (L=(2), L*(2)) into the couple
Y = (L=(2), LY2).

The quasi-linearity condition (31) implies

(T(f + 9)*(t) = K{(T)*@/2) + (Tg)*(t/2)} .

(37

Q 1

Since Ly(h,t) ~ [t“?st (h*(s))st] /Q, it follows that T is quasi-linear in
0

the sense of Definition 2.

In view of Proposition 2, conditions (34) and (385) say that T is
simultaneously of generalized weak type ((P/p,, 7,), Q/a,) and ((P/p,, 7.),
Q/qy).

Lastly, since the infimum L,(f, t) = inf {||f||ze0) + ¢ fillorar; f =
fo + fi} is attained by some truncations (32) and (33) for each ¢, every
feD(T)N (L=(Q) + L"(2)) has a decomposition f=f,+ f, with f¢
D(T) N L=(Q) and f,€ D(T) N L*(2) such that

| follz=or + 7 fillzray = Lix(f, 1) -
Hence it follows from Theorems 1 and 2 that there exists a con-
stant C < « such that

I Tf v s = CNSfllxpspn » FED(T) N Xpyp, -

Since X,,, = L") and Y,,, = L'"(2") by Proposition 2, we have
(36).
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