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1. Introduction. If f(z)is a holomorphic function on the closed unit
disc |z] < 1, then the inequality

(1) | 1o o = | ey pa

holds for any 6, 0 < 6 < 27, and any p > 0, where the constant 1/2 is
the best possible. This is the inequality mentioned in the title and was
obtained by Fejér and Riesz [3]. The purpose of this note is to extend
this result to holomorphic functions defined on the unit ball of the com-
plex m-space C" and then to apply it to obtain a certain geometric
property of quasiconformal holomorphic mappings.

For the points of C* we shall use the notation z = (2, ---, 2,), where
2 = Xopy + 125, €C, 1<k <m, and 2, 1 <1< 26, are real variables.
Under the correspondence z — (x,, ---, 2,,) the space C™ is identified with

the real Euclidean space R*™. The inner product <{z, w) in C" is defined
by the expression >\»_, z,w,. When z, w are viewed as vectors in R,
their inner product (z, w), is given by the real part of <z, w), i.e.,
(z, w), = Re ({z, w)). Let B be the open unit ball {zeC"|>r., |2,|* < 1}
of C* and 0B be the boundary of B. The surface area element of the
sphere 0B will be denoted by dz. For any p, 0 < p < «, the Hardy
space H?(B) is then defined as the set of holomorphic functions f on B
such that

sup {Sw [fr2) |Pdz(2)|0 < r < 1} < oo,

For fe H?(B) the radial limit f*(z) is known to exist for almost every
point z€0B and the resulting function f* belongs to the Lr*-space on
0B with respect to the measure dz (cf., Stein [6; Chapter II, Section 9]).
In §2 we shall prove the following

THEOREM 1. Let L be any hyperplane in the space R™ passing
through the origin, do the surface area element of L, and w a wunit
vector im C™ which 1s orthogonal to L with respect to the real inmer



494 M. HASUMI AND N. MOCHIZUKI
product {,>,.. Then the inequality
(2) |, f@Pdo@) = | 177@P |G, w)lde@)
LNB 2 Jim
holds for any p, 0 < p < oo, and any f€ H?(B). In particular, we have
(3) | f@hdee) =+ 1@z .
LNB 2 Jon

As is well known, the classical Fejér-Riesz theorem has a simple
geometric meaning. Namely, if a univalent holomorphic function maps
the unit dise |z| < 1 onto the interior of a domain bounded by a rectifi-
able Jordan curve C, then the image of any diameter is shorter than
the half of the length of C. As an application of Theorem 1 it is
possible to prove an analogous geometric result for K-quasiconformal
holomorphic mappings from the closed unit ball in C". §3 is devoted to
the proof of the following

THEOREM 2. Let F be a univalent holomorphic mapping of the closed
unit ball B into C", which is K-quasiconformal with a constant K =1
in the semse of Wu [7] (cf., §3 of this nmote). Let Area (I') denote the
real (2n — 1)-dimensional volume of a hypersurface I' in the space R*".
Then, for the hyperplane in R*™ of the form L, = {z€C"|Im z, = 0}, we
have

(4) Area (F(L, N B)) < 27'K*™(1 + (2n — 1)ag)V* Area (F(0B)) ,
where the consant ax, 0 < a, < 1, is determined by the equation
(1 — ap)™ (1 + 2n — Dag) = K,

In general, for any hyperplane L in R™ passing through the origin,
we have

(5) Area (F(L N B)) < 27'K"™(1 + (2n — 1)ay)"* Area (F(0B)) ,
where K' = K(1 + (2n — 1)ag)".

2. Proof of Theorem 1. First we shall prove a slightly more
general result as a lemma. For z=1(2, --+,2,)€C", n =2, we set Z =

(2, + -+, 2o0) and [|Z]| = (X2t |2,

LEMMA 1. Suppose that the function f(z) is continuous on the closed
unit ball B and, for each fived % C™* with ||Z|| < 1, the function z, —
f#, 2z,) is holomorphic on the disc |z,| < (1 — ||Z]*)¥®. Let do, be the
surface area element of L, = {ze€C"|Imz, = 0}. Then
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(6) [, @re =Ll | @pislde

for every p, 0 < p < oo, where the constant 1/2 is the best possible.

PrOOF. Note that the case » =1 in (6) is the original Fejér-Riesz
inequality (1), which is assumed to be known.
Let » = 2. We define polar coordinates for 0B as follows:

x, = cos b, ,
2, = sin 6, cos 6, ,
(7)Y e
2,,_, = sin @, sinf, - - - sin 6,,_, cos ,,_, ,
2,, = sin g, sin @, - -- sin b,,_,sinb,,_, ,
where 06, ---,0,,, <7 and 0 <6,,, < 2m. The surface area ele-

ment of 0B with respect to this parametrization is given by dr =

mtsin®™ % g,d@, - - - df,,_,. Choose an arbitrary Z e C** with ||Z] <1,
which is fixed for a moment. If 2z = (%, 2,)€0B, then 2z, =1 —
1Z 11" exp (i6;,_,) for a unique 6,,_,, 0 < 6,,_, < 27, where z, = ®y_, + 1%y,
1<k=<n-—1,and 6, 06, <7, are fixedfork,1 <k <2n — 2. Now
consider the function ¢ — f(Z, @ — ||Z|»)¥*() of a complex variable C.
Since this function is holomorphic on the disc |{| < 1 and continuous on
|| <1, the Fejér-Riesz inequality (1) implies that

|17 @ — 1z pa < 2 {71z, (@ — 1729 exp (i8,,.)) Pdds, -

Putting 2z, = 1 — |Z|]»)"* exp (16,,_,) and |z,|t = x, we have

(8) |, 1 e = |15, 2Pl dbs

Let x =,, , =sing, ---sinf,, ,c086,, ,, 0 < 6,,_, <« so that the left-
hand side of (8) is equal to

S" | f(E, xZn—l) Ip sin 01 - -+ 8in 02n—1d02n—1 .

0

On the other hand, the mapping (), - -, Opn_y) — (@1, Xoy +++, Xpyy) in (7)
with 05 6,, -+, 0,,_, < w defines a parametrization for L, N B, in which
we can write do, = [[3*7' sin**0,d0, - - - df,,_,. It follows that

9) | 1f@rdo

2n—

T T T 1 2n—2
=" (e, g T sin 0,40, ) T sint=0,6, - - do..
0 0 0 k=1 k=1
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= T 1 b2 n—2 R
S o S <_ S !f(z, zn) |P l Z, ! da?n'—]-) H Sln-n—l_kokdal T d02n_2
0 o\2 Jo k=1

A

S MECIEALOR

Finally, let p > 0 and let ¢ > 0. Since 1/2 is the best possible in
the case n =1, there exist a holomorphic function h(z) on the disc
2] =1 and a constant p,, 0 < p, < 1, such that

||, ot at > (4 — ¢) | 11oe) 1o

for all p, p, = 0 = 1. Define a function f with ¢ > 0 by
fZ, 2,) = h(L + & — [|Z[)™=,) .

Clearly, f satisfies the stated assumptions. Take %, ||Z| =04, 0 =
(1 —@1Q+ &) — ph™" %, and consider z = (Z, z,) on 0B. Then

Sim [ | fZ, x)|"de > (% — s> Szr \fZ, z,) 7|2, ]d6 ,

—lzy

where z, = |2,]¢”. Now divide 4B into S, and S, where S;:|Z| <6
and S,:||Z|| > 0. It can be seen just as in the inequality (9) that
|, 1r@rde@ > (= —¢)| 11@Pizld@
L, B 2 81
1

= (E — s)(SaB |f(2)|”]2,|dz(2) — Ssz ‘f(z)l”lznldz'(z)> ’

where the second term tends to 0 as ¢’ — 0. It follows that

SLWB | f(z)|Pdo,(2) > <—;— — 25) SBB | £(2) 7| 2, | dz(2)

for a sufficiently small ¢&’.

PROOF OF THEOREM 1. Choose a unitary transformation U in C" in
such a way that Uw = (0, ---,0,4). Then we have clearly U(L) = L,.
First assume that f is holomorphic in a neighborhood of the closed ball
B. In view of Lemma 1 we have

SL nB I(fOU—l)(z’){pdG"(zl) = % SBB !(f° U@ 1?|zde(@) .
Since Iz;l = ]<Z,, (0; Ty 0, ,L)>] = ]<UZ, Uw>] = 1<Z, w>l with 2’ = Uz and

since unitary transformations in C" do not change the surface area ele-
ment of any surface, we have
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(10) |, lr@rdo = L 15@PI wde)

We now take an arbitrary fe H?(B). Set f.(2) = f(rz) for 0 < » < 1.
Since f, are holomorphic in neighborhoods of B, the inequality (10) holds
for these functions. If we set F(z) = sup {|f.(?)|?|0 <+ < 1} for 2€0B,
then F(z) is integrable with respect to the measure dr as shown by
Rauch [5; Theorem 1]. This implies that

[, 1@ G wy de@ = | 177@) 17| G w)|de@
as 7 tends to 1. Hence, by means of Fatou’s lemma, we have
|, f@ide) = timint | 17,612

<tim 2| 17.07@wde@

— 1 * P
= 1| 1 @piew e,
as was to be proved.

3. An application to quasiconformal holomorphic mappings. Let
D be a domain in C® and let F: D — C™ be a holomorphic mapping, F =
(F,, ---, F,), where F'; are holomorphic functions defined in D. We say

that F is K-quasiconformal in D if there exists a constant K > 0 such
that

(11) |0F/oz, || = K|det J, [

on D for 1 <k <mn. Here, | | denotes the Euclidean norm of Cn,
oF|/oz, = (0F,/oz,, - -+, 0F,[0z,) and J, is the complex Jacobian matrix
(0F;/oz,) of F (cf., Wu [T; p. 229]).

We note that the K-quasiconformality has an equivalent formulation
in terms of real coordinates. Namely, D can be considered as a domain
in R*, denoted by D, and F, are expressed by real-valued functions
Gz, +++, X,,), 1 =1 =< 2n, with the domain D, such that

Fizy -+, 2,) = Goy(®y, =+, 0y0) 4 1Goy(0y, + -+, @) 1=j=n.

Setting G = (G, .-+, G,,), we get a mapping of D, into R*". Then F' is
K-quasiconformal if and only if the mapping G is K-quasiconformal in
the sense that

(11) |10G /o, || = K|det J,|"*"
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on D, for 1 <1 < 2n, where | || denotes the Euclidean norm of R*,
0G/ox, = (0G,/ox,, - - -, 0G,,[0x,), and J, is the Jacobian matrix (0G,/ox;) of
G. Indeed, it is easily checked by means of Cauchy-Riemann equations
that ||0G/ox,._.|| = ||0G/ox,.|| = ||0F/oz,|, 1<k<mn, and |detJ,| =
|det J->. So (11) and (11’) are equivalent. In order to prove Theorem
2 we need the following

LEMMA 2. Let A be a nonsingular N X N matriz with real entries
and regard it as a linear tramsformation in the real Euclidean N-space
RY. Let a;, 1< j < N, be the j-th column vector of A so that A =
(a, -+ a,). The transformation A maps the unit sphere of RY onto a
hyperellipsoid, which is denoted by 3 ,. Let I(A) be the length of maximum
semi-axes of X,. Given two numbers J >0 and K =1, we denote by
UK, J) the maximum of l(A) when A varies over the collection of matrices
satisfying the condition

|det A| =J and |a;|| < KJYY for 1<j=<N.
Then we have
UK, J) = KJ"*(1 + (N — Dag)'*,
where oy 1s determined by the condition
(12) 1 — a1 + (N — Dag) = K, 0=ax<1.

OUTLINE OF PROOF. Let A = (a,---ay) be a matrix such that
U(A) = || Ag] = UK, J) for a ¢ = (&, -+, &) ERY, &+ -+ + & =1. Let
3" = 23,NS" where S’ denotes the subspace spanned by a;, 1 <7< N-—1.
We can write ay =y + b, yeS’, b1 S, and A¢ =¢&x + &yay, xel’,
g =(1—¢&y", so that [[As|f" =&"||x | + & [lyl]® + 28 {x, &) + x| B
If &vdx, ) < |&xllx]||lly]], then by rotating a, we could take ay = y’ + b,
y'eS, |yl = llyll, so that gy(x, ¥’) = |&x|llx |||’ [, hence [|A’s] > | A¢|
with |det A’| = |det A|, where A’ = (a,--- ay_,ay). Thus &,{x,y) =
léx]]lx |||y ]|l, which means that x and y lie on one and the same straight
line in 3’, and we have

(13) Al = @ x|l + [exlllyl) + &b .

Now suppose ||ay| < KJ*¥. Then taking ay =y’ + b, |V |* = (KJY¥)* —
1b]* > ||y |, we could have ||A’s|| > || A&||. It follows that ||a;| = KJ*¥,
1<j=<N. It is seen from (13) that || x| must be equal to the length
of maximum semi-axes of 3’.

Next we shall show that A can be taken so that {a;, @,) is a non-
negative constant for every pair of j, k, j* k. Let 3@, ---, j) =
2,Nn8S®, ---, 7), where S(i, ---, j) denotes the subspace of R" spanned
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by vectors a,, - - -, a;, distinet from each other. Then, if a,+a,, -, a;,
the projection of a, to S(®, ---, 5) lies on a maximum semi-axis of
X, ---,7), as is easily seen in the same way as above. Suppose
{a,, @,y # 0. We may assume that <{a, a,) > 0 by taking —a,, if neces-
sary. The projection of a, or —a, to S(1, 2) lies on the line t(a, + a,),
te R, since a, + a, is a maximum semi-axis of XY(1,2) by assumption,
hence we have a; = ¢(a, + a,), ¢ > 0. This implies that {a,, a;) > 0 and
{a,, @,y > 0. Continuing this procedure by considering the projection of
a, or —a, to (1,2, 3) which has a, + a, + a, as one of its maximum
semi-axes, we can finally conclude that <{a;, a,) >0, j # k.

Take arbitrary three vectors, e.g., a, a,, and a,. If 071,~ denotes

the vector ¢;, then the projection of 0711 onto the triangle AOA,A, bisects
the angle /£ A,0A,. The situation is similar for A, and A,, hence it can
be seen that {a, a,) = {a, a,) = {a;, a,). Thus {a;, a,) is a positive
constant for j, k, j # k. If <a,;, a,y = 0 for some j, k, then this holds
for all 5, k, j k. Note that we can write {a;, a;) = || a;|| ||a:||a = K*J*""a
with 0 <a <1, for j #k, so the constant @ can be computed from
the following: J* = det ({a;, a,p) = (K?J*")"A — a)"*Q1 + (N —1)a)). The
constant I(K, J) can be obtained by estimating || A£|? ||&|| =1, in which
>ier &8, takes on the maximum value N — 1 on the sphere [[&] = 1.

PrOOF OF THEOREM 2. First we assume that L = L,. Let G =
Gy, -+, Gy,), where F; = G,;_, + 1G,;. In order to estimate the left-hand
side of the inequality (4), we consider the mapping @, -, t,y) =
G(t,, -+, ty,_y, 0) of the unit ball 4 = {(t,, -, tyus) |2+ -+ + t%,_, < 1} of
R** into R, which is nothing other than the restriction of F' to the
set L,NB. Then the surface area element of @(4) is given by
(det (g,,))"%dt, - - - dt,,_, where

2n
gzm=2ﬁa—G", 1sl,m<2n—1,
=1 axl 537,,,
evaluated at the point (¢, ---, t,,_,, 0). Since the matrix (g,,) is positive

semidefinite, we have
det (glm) é G *°* Qon—1 o013

here we used the fact that, for any nonnegative hermitian matrix (4,,)
of any order =,

det (hlm> = hu e hnn ’

an inequality long known to be equivalent to Hadamard’s determinant
inequality. Now from the relations ¢,, ;.. = oo = ||0F/02, |5, L S k < n,
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stated in the paragraph preceding Lemma 2 as well as the inequality (11)
it follows that

Area (F(L, N B)) = Area (9(4))
= |, @etguyat, - dt.,

= S : (Gu *** Gonsonn)?dly « -+ dby,y

- S H 97
< Kot S | det J, | dg,(2) .

L,NB

(%)

Applying Theorem 1 (3), to the holomorphic function det.J, with p =
@2n — 1)/n, we get

Area (F(L, N B)) < %K‘ S |det J, &1 dz(z) .
B

Next we should estimate Area (F(6B)). Let 2z€dB, and let
{e, ---, e,_,} be an orthonormal frame of 6B at the point z; then the
surface area element of F(0B) at the point F(z) is given by A(z)dz(z)
where A(z) denotes the area of the parallelopiped spanned by the vectors
Je(z)e;, 1 < j <2n — 1. Take the unit normal vector, e,, to B at z
Since |det J,(z)| represents the volume of the parallelopiped spanned by
Je(2)e;, 1 < 7 < 2n, we see |det J4(2)| < A(z)||Js(?)e,,||. Here, we note
that ||J(2)e,, || does not exceed the length of maximum semi-axes of the
hyperellipsoid ¥ corresponding to the matrix Jg(2). Applying Lemma 2
to the case N =2n and J = |[det Jy(z)|, we thus have |J(2)e., | =
UK, |det J;(2)|) = K1 + (2n — 1)ag)"?|det J4(2)|"*". It follows that A(z) =
K1+ @2u—Dag)?|det J(2) [V = K™'(1 + (2n—1)ag) " ?|det Jx(2) |1,
and hence

Area (F(3B)) = Sw A(2)dr(2)
> K1 + (@n — Dag)™" Sw et J.(2) | "dr(z) .

Thus we have the inequality (4): Area (F(L,N B)) < 27'K*(1 + (2n —
Dag)"* Area (F(0B)).

Finally, to prove the inequality (5), let U be the unitary transforma-
tion employed in the proof of Theorem 1. Let V denote the real
representation of U, an orthogonal transformation in R*, and let V' =
(), 1=1l,j=2n, and J; = (a, -+ a,,). Then the j-th column ¢; of
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JeJ—1, the Jacobian matrix of the mapping GV, is of the form ¢; =
S v, 1< j<2n. Since X%, vi; = 1, ¢; belongs to the hyperellipsoid
spanned by the vectors a,, 1 <k < 2n. So Lemma 2 shows that |/¢;|| =
(K, |det Jz|) = KA + (2n — Dag)"*|det J4|"*" = K(1 + 2n — L)ag)"* X
|det (JzJy-1)[*", 1 < j < 2n, which means that GV~ is K'-quasiconformal
with the constant K’ = K(1 + (2n — 1)ag)®. The inequality (4) can now
be applied to yield the inequality (5).

4, Remarks. 1. We do not know whether the constant 1/2 in the
inequalities (2), (8), (4), and (5) is the best possible or not when n > 1.

2. In the case of the unit disc there have been several extensions
of the Fejér-Riesz inequality (cf., Carlson [2], Huber [4]). It may be of
some interest to find corresponding generalizations in the case of the
ball of C".

3. A univalent holomorphic mapping is conformal if and only if
K =1 in (11), and it should be noted that a, tends to zero as K tends
to 1. There are a variety of (equivalent) definitions for the quasicon-
formality of mappings besides the one used here (cf., Caraman [1]).
Other definitions will lead to different inequalities in place of (5).

4. Theorem 2 can be formulated for a wider class of mappings, e.g.,
nonsingular holomorphic mappings.
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