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0. Introduction. Let M be a compact simply connected 16-dimensional
differentiable manifold whose rational cohomology ring is isomorphic to
that of the Cay ley protective plane P(Cay), that is,

H*(M; Q) = Q[u]/(u*) deg u = 8 ,

and G be a compact connected Lie group which acts on M differentiably.
We say that a pair (G, M) is isomorphic to (G', Λf'), if there exist a Lie
group isomorphism h:G->G' and a diffeomorphism /: Λf-» M' satisfying

f{gx) = h(g)f(x) ,

for every g eG and for every x eM. A G-action on M induces an effec-
tive G/iϊ-action on M, where H is the intersection of all isotropy groups.
We say that (G, M) is essentially isomorphic to (G', M'), if there exists
an isomorphism between the induced pairs with effective actions (G/H, M)
and (G'/ίί', M'). In this paper, we shall prove the following theorems.

THEOREM I. Suppose that G acts on M with a codίmension one orbit.
Then, (G, M) is essentially isomorphic to

(Spin(9), FJSpinQ)) , (S/>(3), FJSpinQ)) ,

(Sp(3) x U(ΐ), FJSpinφ)) or (Sp(3) x Sp(l), FJSpinφ)) ,

described in §1, Examples 1 and 3.

THEOREM II. Every G-action on M with codimension two principal
orbits has at least two isolated singular orbits.

In §1, Example 2, we give one more example of G-actions with
codimension two principal orbits and three isolated singular orbits. We
do not know any other examples of G-actions on M with codimension
two principal orbits. After cohomological preliminaries in § 2, we prove
Theorem I in §3 and Theorem II in §4.

The author wishes to express his appreciation to Professor Fuichi
Uchida for many helpful suggestions.
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1. Some group actions on Cayley projective planes. We observe
some examples of group actions on Cayley projective planes. Let $ be
the set of all 3 x 3 Hermitian matrices over the Cayley number field
Cay. It is a 27-dimensional J?-module with respect to the matrix sum
and the scalar multiplication. A matrix J e ^ has the form

X= X(ξ, u) = lΰs ξ2

\u2 Hi

where ζl9 ξ2, ξBeR and ul9 u2, u3 e Cay. Let

,1 0

Ex = lθ 0

\0 0

/O 0 0^

Flι = 10 0 u

\o a o/
Then, the set {El9 E2, Es, F{*9 F2

e\ Fζ\ i = 0, 1, , 7} constitutes an R-
basis of $ . Here, {βo i = 0, 1, , 7} is the standard basis of Cay. The
Jordan product o is defined in $ by

An 12-isomorphism a?: $ —> $5 is called an automorphism of Qf, when

is/

\o

\o

0

0

0

0

0

0

0

1

0

0

0

for all X, F e $ . It is well known that the group of automorphisms of
ϊ$ is the exceptional Lie group F 4 . The Cayley projective plane P(Cay),
defined by

{Xe$\XoX= X, traceX= 1} ,

is identified with the left coset space FJSpinφ), where

Spin(9) = {xeF4\xE1 = E,} .

Spin(9) contains

Spin(8) = {xeFA\xEi = Ei9 i = 1, 2, 3}

and Spin(8) contains

Spin(Ί) = {xe Spin(8) \ xFl = F,1} .

We can find detailed accounts on Cay, the Lie group FA and its subgroups
in elaborate papers [6], [7].

EXAMPLE 1. The natural Spin(9)-action on P(Cay). Let



COMPACT TRANSFORMATION GROUPS 431

μ: Spin(9) X P(Cay) -> P{Cay)

be the natural Spίn(9)-action (that is, 5pin(9)-action through the inclusion
Spin(9) c F4) on P(Cay). Define for a fixed s, 0 ^ s ^ 1,

We can show that μ is transitive on A8 for any s and
( i ) Ax = {£Ί} is a fixed point,
(ii) Λ) is an 8-dimensional sphere. The isotropy group at E2eA0

is Spin(S).
(iii) For each s, 0 < s < l , As is a 15-dimensional sphere. The isotropy

group at (E, + E2 + Fi)/2eA1/2 is Spίn(7).

EXAMPLE 2. Γ/ιe natural Spίn(S)-actίon on P(Cay). For any sc 6
Spin(8), there exists a triple

fo, x2, x3) 6 SO(8) x 50(8) x 50(8) ,
satisfying

X1UX2V — X3UV ,

for all u, v e Cay. In fact, xt is determined by

xFΐ = ^ i t t , u 6 Cay , ΐ = 1, 2, 3 .

Then, the natural 5p/n(8)-action μf = μ\Spin(8) x P{Cay) on P(Cay) is
given by

ζl ^3 ^2\ \ / ζl ^3^3 Xz^2\

ξ 2 Uλ = Xfa ξ2 XXUX

\u2 ΰ, ζjl

We can see easily the following:

\X2U2

( i ) Eίf E2 and E9 are fixed points.
(ii) For each s, 0 < s < 1, μ' is transitive on 7-spheres:

0 0 0

0 s

0

2 = s(l - s)\ ,

U2\
2 = 8(1 - 8)\ ,

8(1 - 8)
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(iii) For fixed s, t, 0 < s < 1, 0 < t < 1, 0 < 1. - s - ί < 1, μ' is
transitive on

- = S7 x S7.
s u3 u2

\ il f 11
(Λ/3 V lΛ/±

\U2 Uγ 1 — 8 — t/

The isotropy group at {Έx + E2 + Ez + Fl + F2

ι + Fξ)β is G2.

EXAMPLE 3. Sp(3) x Sp(ΐ)-action on P(Cay). By regarding the
quaternion number field H as the subalgebra of Cay spanned by
{e0, elf e2, e3}, we can consider that any element of Cay has the form

a + bβi a,beH.

Then, every matrix l e g can be written as follows:

where

ξ2 aλ,

\a2 ax ξj

0 δ 3 - δ Λ

F(be,) = I - 6 8 0 6X k , 6 = (6X, b2,b3) e H x H x H .

δ 2 - 6 , 0 /

Yokota [7, § 4] shows that Sp(8) x Sp(l)/Z2 is isomorphic to a compact
subgroup of F 4 by a map <p: Sp(S) x Sp(ΐ) -> F4> defined by

9(A, p)(XH + F(6O) = ^L^A* + F((pbA*X) , A e «p(3) , p e Sp(l) .

Here, A* denotes the transpose conjugate of A.
Now, observe the Sp(S) x S[p(l)-action on FJSpin(9) induced by φ.

Let X(f), 1/2 ^ t ^ 1, be a matrix of $, given by

t {t(l - ί)}1/2e4 0\ /ί 0 0\

- {ί(l - tψ% 1 - ί 0 1 = I 0 1 - ί 0 1 + F((0, 0, {ί(l - £)}1/2K) .

0 0 0/ \0 0 0/

We can see the following:
( i ) The isotropy group at X(l) is

a
x p YeSp(2), a,pe SpQ)\ = Sp(l) x Sp(2) x Sp(l) .
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The orbit through X(l) is diffeomorphic to P2(H).
(ii) The isotropy group at X(l/2) is

Y
x p YeSpφ), p e Sp(ΐ) = Sp(2) x Sp(l) .

The orbit through X(l/2) is diffeomorphic to S11.
(iii) The isotropy group at X(t), 1/2 < t < 1, is

x p a,b,pe Sp(l)

Pi

= Sp(l) x Sp(l) x SpQ) .

The orbit through X(t) is 15-dimensional.

2. Cohomology of orbits. 2.1. Suppose that M is a compact simply
connected 16-dimensional differentiable manifold, satisfying

H*(M; Q) = Q[u]/(u*) , deg % = 8 .

We call such a manifold a compact rational cohomology Cayley protective
plane. Let M19 M2 be 16-dimensional compact connected differentiable
submanifolds of M, such that

M1 U M2 = M and J l ί . n M ^ dMx - 3M2 .

Let

/*: H*(M; Q) - H%MS; Q) (s - 1, 2)

be the homomorphism induced by the inclusion fs: Ms c M. Considering
the cohomology exact sequence of (Λf, M8), we obtain

(1) P(M3_S, dMz_8; t) - ίP(Ms; ί) = P(ker /*; t) - ίP(im /*; t) .

Using this and the Poincare duality for Ms:

(2) P(MS, 3ikfs; t) = tiQP(Ms; r
1 ) ,

we have the following lemma in the same way as in [2, Lemma 2.1.1].

LEMMA 1. Let ns be the non-negative integer, such that

fΐ(unή Φ 0 and fϊ(un°+1) = 0 .

Then we have nx + n2 = 1.

Now, assume that a compact connected Lie group G acts on M
differentiably with a codimension 1 orbit GjK. Then, by [2, Lemma
1.2.1], G/K is a principal orbit and there are just two singular orbits
G/Klf G/K2. We can assume that KdK^ K2 and that there is a closed



434 K. I WAT A

invariant tubular neighborhood Ms of G/Ks in M, such that

M=M1\jMif M1ΓίMt = dMι = dM2 = G/K .

Let

ks = 16 - dim G/iΓ, (β = 1, 2) .

Then

2 ^ ik, ^ 16 - 8ns

and we have:

LEMMA 2 ([2, Lemma 2.2.3]). Ifk2 > 2, ίftew GjKx is simply connected
and hence Kx is connected.

Our aim of this section is to prove:

PROPOSITION 1. The two singular orbits G/Klf G/K2 are orientable
and their Poincare polynomials are either

(P(G/KS; t) = l + t\

\p(G/Kd_8; ί) = 1 ,

or

P(G/K8; t) = 1 + P + f ,

for s = 1, 2.

2.2. PROOF OF PROPOSITION 1. Without loss of generality, we can
assume that nγ — \ and n2 = 0. Then, (1) turns to

( 3) PCMi, 3ikfi; t) - tP(M2; t) - ί8 + ί16 - t ,

( 4 ) P(ΛΓ2, dM2; t) - iP(Mx; ί) = t16 - ί(l + ί8) .

Note that if G/Ks is orientable, we have

( 5 ) PCM., 3M8; ί) - tk°P(G/Ks; t)

by the Thorn isomorphism.

(a) First, suppose that both GjKx and G/K2 are orientable. Then,
from the above formulas it follows that

( 6 ) (1 - t^^PiG/K,; t) = th*-\l - f - tlδ) + 1 + t8 - tlδ ,

(7) (1 - tk^k*-2)P(G/K2; t) = tk^\l + f - ί15) + 1 - f - ί15 .

( i ) Tfcβ case kx = k2 mod 2. By (6), k2 is even and both sides of (6)
are divisible by 1 — t2. Hence we have
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(1 + ί2 + -. + t^-^PiG/K,; t)

= (1 + t + - + ί u)(l - t + t2 - f + . + ί*»-8)

+ t\l + t8 + . . . + t*»-*) .

Therefore XiG/K,) Φ 0. This implies that P(G/KU t) is an even function
and fe2 — 16. Similarly, kx = 8 follows from (7). Thus we have

(P(G/Ki; t) = 1 + ? ,

{P(G/X,; t) = 1 .

(ii) Γ/ie case k± Φ fc2mod2. 1°. If kt is even and k2 is odd, then
by (6), X{G/K1) = 3 and hence P(G/K1; t) is an even function. Therefore,
we obtain from (6)

(PiGjK,-, t) = t**-1 + 1 + ί8 ,

[t^^-ψiG/K,; t) = tk*-\tΊ + ί15) + ί15 .

Since fc2 ̂  16, it follows that kγ = 8, fe2 = 5 by the Poincare duality and
hence

fP(G/JBΓi; t) = 1 + t + f ,

{P(G/Zf; t) - 1 + ί11 .

2°. If &! is odd and fc2 is even, then in the same way as in 1°, we
have

(P(G/K2; t) = tk^\l + f) + 1 ,

\tki+k*-2P(G/K2; t) = tk^+u + f + t15 .

This implies fcx = 9 and Λ2 = 0, which is contrary to k2 ̂  2. Hence, this
case does not occur.

(b) Next, consider the case where one of the two singular orbits
is orientable and the other is not.

Assume that G\KX is orientable and G/K2 is not. Then by Lemma 2,
we have kx = 2 and (3) turns to

t15P(G/K2; r
1 ) = t'ΨiG/K,; r 1 ) + t lβ — *8 — 1 .

By (2) and (5),

VΨ(G/Ki; r 1 ) = P(G/JSΓι; ί) .

Moreover, by the argument of [2, 2.4 — 2.6], we have

tl5P(G/K2) r 1 ) = fk^P(GIK2; t) .

Therefore,

(1 - f'ήPiG/K,; t) = (1 - tafc2+β)(l + ί4) + ί8**-1 - ί15 .
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It follows that P{G/KX\ t) is an even function and k2 = 8. Hence, we
have

(1 - nP(G/Ki; ί) = (1 - f2)(1 + f) ,

which is impossible. Similarly, we can see that the case where G/KL is
non-orientable and G/K2 is orientable does not occur.

(c) If we suppose that G/Kx and G/K2 are non-orientable, we have
kx = k2 = 2 by Lemma 2. From [2, 2.4 ~ 2.6] it follows that

(1 + f)P(G/K2; ί) = (1 + f)P(G/Ki; t) - (ί7 + t8) ,

which is impossible. Thus, the proof of Proposition 1 is completed.

3. Actions with codimension one orbits. 3.1. As in the previous
section, let M be a compact rational cohomology Cayley protective plane
and G be a compact connected Lie group which acts on M differentiably
with a codimension one principal orbit G/K. To classify (G, M) up
to essential isomorphism, we can assume that G acts on M almost
effectively. In this case, G acts on the principal orbit G/K almost effec-
tively. Therefore, K does not contain any positive dimensional closed
normal subgroup of G. There are just two singular orbits G/Kγ and
G/K2. We can assume K<z.Kx and KaK2. Each G/Ks has a closed
invariant tubular neighborhood M8, such that

M=M1\JM2, M1ΠMi = dM1 = dM2 = G/K

and

MS = G x Dk« , 8 = 1 , 2 ,

as G-manifold. Here, Ks acts on a fc8-dimensional disk Dks via the slice
representation

σs: Ks -+ 0(k8) .

This Enaction is transitive on the (ks — l)-sphere dDks. M is formed
from M1 and Λf2 by the identification of their boundaries under a G-
equivariant diffeomorphism /: dMλ —> 3Λf2. We denote such a manifold by
M(f). The following lemma of Uchida [2, Lemma 5.3.1] plays a funda-
mental role in our classification problem.

LEMMA 3. Let f, / ': dM1 —* 3ikf2 6e G-equivariant dίffeomorphisms.
Then, M(f) is equivariantly dίffeomorphίc to M(f) as G-manifolds, if
one of the following conditions is satisfied:

( i ) f is G-diffeotopic to /',
(ii) f~ιf is extendable to a G-equivariant diffeomorphism on M19
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(iii) Z'/" 1 is extendable to a G-equivariant diffeomorphism on M2.

Notice that the set of all G-equivariant diffeomorphisms dM1 —> dM2 is
naturally identified with N(K, G)/K, where N(K, G) denotes the
normalizer of K in G.

We recall one more result on Lie group actions on compact rational
cohomology Cayley projective planes, due to Chang and Skijelbred.

LEMMA 4 ([1, Theorem 2.2 and Proposition 3.8]). Let M be a compact
rational cohomology Cayley projective plane and let G be a compact con-
nected Lie group acting almost effectively on M. Then, rank G ^ 4.
Moreover, G2 x T2 cannot act almost effectively on M, where T1 is a
2-dimensional torus.

3.2. We show:

PROPOSITION 2. Assume that the Poίncare polynomials of two
singular orbits G/Klf G/K2 are given by

P(G/Ki; t) = l + f,

[P(GIK2; t) = 1 .

Then, (G, M) is essentially isomorphic to (Spin(9), FJSpin(9)), where
Spin(9) acts naturally on FJSp'n(9).

PROOF. Since dim G/K2 = 0, we have

K2 = G , G/K - KJK = S15 .

It follows from Lemma 4 that

G = Spin(9) , K = Spin(7) .

By Lemma 2, G\Kγ is simply connected and Kγ is connected. Therefore,

Kx = Spin(S) .

Consider the slice representation

σ,: Kx -+ 0(8) .

The projections

p<: SpinQS) -> SO(β) , i = 1, 2, 3 ,

defined by

Pi\Xι, X2, Xs) = Xi f

are irreducible and mutually different real 8-dimensional representations
of Spin(8). Their complexifications are also irreducible and mutually
different. On the other hand, it can be seen by WeyΓs formula that
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there are just three 8-dimensional irreducible complex representations of
Spin(8). Therefore, σ1 is equivalent to some one among p/s by [2,
Lemma 5.5.1]. Since Kγ acts transitively on S7 via σx with the isotropy
group K, we have K = pϊ\SO(7)) for some i (i = 1, 2, 3). Put

*<«> = pτ\SO(7)) , i = 1, 2, 3 .

Then, Spin(9)/K{1) - SO(9)/SO(7) and Spin(9)/K{2) = S15 by [6, Remark

6.3]. Define an iί-isomorphism ^: ,ξy —> ^ by

nz ξ2 uλ = I u2 f3

^ 2 ^ 1 f3/ \-^3 - M l

Then xeSpin(9) by [6, Lemma 3.2], and ar 1 !^ 2 ^ = X(3). Therefore, we
can assume that K = ίΓ(3) and ^ = p3, because of G/K = S15. The
uniqueness of the slice representation

σ2: K2 -> 0(16)

is obvious. Moreover, since

N(K, G)/K = N(K, K2)/K = N(Spin(7), Spin(9))/Spin(7) = Z2

is generated by the class of the antipodal involution of S15 = KJK, we
can see by Lemma 3 that ((?, M) is uniquely determined up to essential iso-
morphism. On the other hand, we have seen in Example 1 that the pair
(Spin(9)f FJSpin(9)) with the natural Spin(9)-action is an example of
(G, M) in our consideration. This completes the proof of Proposition 2.

3.3. PROPOSITION 3. Suppose that the Poίncare polynomials of
singular orbits are of the form

(PiG/K,; t) = 1 + t + t ,

[P(G/K2; t) = l + t«.

Then, (G, M) is essentially isomorphic to (Sp(S), FJSpin(9)), 5p((3) x ί7(l),
FJSpin(9)) or (Sp(β) x Sp(ϊ), FJSpin(9)). Here, in each case, the group
acts on FJSpin(9) through φ defined m §1, Example 3.

PROOF. Since k2 = 5, it follows from Lemma 2 that G\Kγ is simply
connected and Kγ is connected. We can assume that

G = G' x U,

where Gf is a compact simply connected Lie group which acts on G/Kt

almost effectively and U is a compact connected Lie group which acts
on G\Kλ trivially. By our assumption, rank Kλ — rank G. Therefore,
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K, = κ; xu,
where K[ is a subgroup of G' and (G', K[) is pairwise locally isomorphic
to (Sp(3), Sp(l) x Sp(2)) or (<?2, SO(4)). By an argument similar to that
of [2, Lemma 9.2.2], we can show that K[ acts on KJK = S7 transitively.
Therefore, (G', Kl) is pairwise locally isomorphic to (Sp(β), Sp(l) x Sp(2)),
because 50(4) cannot act transitively on S7. Note that rank U ^ 1, by
Lemma 4. First, we consider the case U = {1}; that is,

G = Sp(Z) , Kγ = Sp(l) x Sp(2) .

Then we have

K = 5p(l) X S[p(l) , K2 = Sp(2) .

Since any representation Sp(2) —> Sp(3) is reducible, we can assume that

Y
YeSp(2)[K —

up to conjugation. The first factor Sp(l) of Kγ acts trivially on KJK.
For, if Sp(l) acts on KJK almost effectively, then K has the form

la
a,βe Sp(l)

This contradicts our assumption KaK2. Hence we have

K = Sp(l) x H ,

where HaSp(2), H ~ Sp(l). The slice representations

d: K, -> 0(8) , σ2: iί2 -> 0(5)

are uniquely determined up to equivalence. Moreover, N{K, G)/K =
N(K, K2)/K ~ Z2 is generated by the class of the antipodal involution of
KJK = S\ Therefore, by Lemma 3, (G, M) is uniquely determined up
to essential isomorphism. Next, consider the case

G = Sp(3) x U , K, = 5p(l) x Sp(2) x J7, J7 ̂  {1} .

Since G acts on ikf almost effectively by our assumption, we may suppose
that U acts on KJK non-trivially. Then,

K= Sp(ΐ) x ( 7 x l ) o [ / ,

where VaSp(2), V = Sp(l). In this situation, note that rank K2 =
rank G — 1. We can show as in the case U — {1}

l)oU,
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where WczSp(3), W = Sp(2). The slice representations

are determined uniquely up to equivalence. Moreover, we have

N(K, G)° = K and N(K, G)/K = Z2 in case U = Sp(X) ,

N(K, G)°/K = Uil) and N(K, G)/N(K, G)° = Z2 in case U = (7(1) .

Therefore, when U = £>p(l) or ί/(l), we can show by Lemma 3 that
(G, Λf) is determined uniquely up to essential isomorphism. On the other
hand, the Sp(Z) x Sp(l)-action φ on P(Cay) of § 1, Example 3 gives
examples of (G, M) in our consideration, in case G = Sp(Z) x Sp(ϊ)f

Sp(Z) x ί/(l) or Sp(3). Thus the proof of Proposition 3 is completed.

From Propositions 1, 2 and 3, Theorem I follows easily.

4. Actions with codimension two principal orbits. In this section,
we shall prove Theorem II. As a simple consequence from [3, Theorem
0.1], we can see that there exists at least one isolated singular orbit.
Therefore, from now on, we assume that a compact connected Lie group
G acts differentiably and almost effectively on a compact rational
cohomology Cayley protective plane M with codimension two principal
orbit G/H and only one isolated singular orbit G/K. Then, we know
that there exists a non-isolated singular orbit, say, G/L. Let

k = 16 - dim G/K , Z = 16 - dim G/L .

Since 2 < I < k, it follows that G/K, G/L are simply connected and K,
L are connected. K acts on a (k — l)-sphere via the slice representation
K-*O(k). This UL-action has codimension one principal orbit K/H and
two singular orbits K/Lly K/L2, where Lu L2 are conjugate to L in G.

As in §2, the following two cases are possible:

\P(G/K; ί) = 1 ,

(P(G/L; ί) = 1 + t8 ,

(P(G/K; t) = 1 + V + f ,
( Π ) ; ί) - 1 + tn .

First, we show that the case (i) does not occur. Suppose that G = K
acts on M almost effectively and G = G' x U, where G' is a connected
semi-simple Lie group which acts almost effectively on G/L and U is a
connected Lie group which acts trivially on G/L. Then, L — V x U,
where U is a compact subgroup of G'. Since G/L is indecomposable, G'
is simple. Therefore, (G', 27) is pairwise locally isomorphic to (Spin(9),
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Spin(8)). If follows from Lemma 4 that U = {1} and hence L = V =
8pin{8). On the other hand, L/H = S6 by [5, (2.2)]. This is a contradic-
tion, because Spin(S) cannot act transitively on SQ.

Now, consider the case (ii). Note that k — 8 and I = 5 in this case.
Via the slice representation £"—>O(8), iΓ acts on S7 with codimension
one principal orbit K/H. Using [5, (5.2)], we can show that

K/L = S3 ,

(*) K/H = K/L, x K/L2 = S*x S* ,

H=L,nL2.

Let G = G' x U, where Gf is a compact connected Lie group which acts
on G/K almost effectively and U is a compact connected Lie group which
acts on G/K trivially. Then, K = K' x Z7, where If' is a compact sub-
group of G', and (G', if') is pairwise locally isomorphic to (Sp(3), Sp(2) x
Sp{l)) or (6r2, 50(4)). We shall show that both of these are impossible.
Note that rank U <; 1 by Lemma 4.

(a) Suppose that ((?', J5Γ') is pairwise locally isomorphic to (Sp(3),
Sp(2) x SpiYj). If Z7 acts on K/L, trivially, then by the conjugacy of
L2 with hλ it acts on K/L2 trivially. It follows that Lλ — L2 and there-
fore K/H = K/Lx This is a contradiction. Consequently, the ίJ-action
on K/Lλ is not trivial. Now suppose that U acts on K/L^ non-trivially.
If U=Sp(l), then U/UnL1 = Sz and therefore Ϊ7nlr 1 = {l}. So we
can assume Lx = Sp(2) x V, where VaSp(ϊ) x U, V = Sp(ΐ). Since L2

is conjugate to Lx in G, it follows that L2 = Sp(2) x V, where V c
Sp(l) x 17, V = Sp(ϊ). It is easy to see that H = Lλ Π L2 contains a
maximal torus of V and therefore dim H ^ dim Sp(2) + 1 = 11. This is
a contradiction, because dim K = 16 and dim if/if = 6 . If we suppose
that C7" = 17(1) acts on K/Lx non-trivially, then in the same way as above
we can show that H = Lx Π L2 is isomorphic to Sp(2) x U(ΐ) or H has
two connected components. This leads us to a contradiction. Thus we
have shown that (G', Kf) cannot be pairwise locally isomorphic to
(Sp(3), Sp(2) x Sp(l)).

(b) Next, suppose that (G', Kr) is pairwise locally isomorphic to
(6r2, S0(4)). If U acts on K/L, trivially, then by the conjugacy of L2

with Lx in G, H = L, Π ί/2 contains U as a normal subgroup. Since G
acts on M almost effectively by our assumption, it follows from (*) that
U = {1} and dim if = 0. Since π^K/H) - 0 by (*), we have π,(K) = 0.
This contradicts π,(K) = (̂S»O(4)) = Z2. Hence the ?7-action on K/L, is
not trivial. Now assume that Ϊ7acts on K/L, non-trivially. If U = f/(l),
then dim H = 1. Since ϋΓ/fl" is 2-connected, i ϊ is connected and there-
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fore H=U(1). This is a contradiction, because πλ{ H) = π^K) =
^(50(4) x U) = Z2 + Z. So we suppose that U = Sp(l) acts on K\Lλ

non-trivially. Then U acts on G/Lλ non-trivially. Since rank Lι =
rank G — 1 = 2 and dim G — dim Lx = 11, it follows from [4, Proposition
2] that Lx = (St/(2) x 1) o V, where F = 5p(l), SU(2) c G2. The inclusions
SU(2)dSO(A)(zG2 are given as follows ([8, §3.3]). Identify SU(2) with
{Q € 6?21 flfβ, = β*, i = 1, 2} and let A be the identity component of the
centralizer of SU{2) in G2. Then we can see that A is isomorphic to
Sp(l), SU(2) f]A = Z2 and S0(4) is identified with the subgroup SU(2) -
A/Z2 of G2. Moreover, S0(4) = N(SU(2), G2). Since L2 is conjugate to
Lx, we can write Lx Π I/2 = 5ί/(2) x {τ/6 Alhyh"1 = ?/}, for some fixed
fee A. The second factor on the right hand side contains the maximal
torus of A through h. Therefore, dimiϊ = dim(Li Π L2) ^ 4. This is a
contradiction, because dim K/H = 6 and dim K = 9. Hence, (G', ίΓ') is
not pair wise locally isomorphic to (G2, S»0(4)).

The proof of Theorem II is thus completed.
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