Tôhoku Math. Journ. 35 (1983), 261-265.

CHARACTERIZATIONS OF S-DECOMPOSABLE OPERATORS ON A COMPLEX BANACH SPACE

Dedicated to the memory of the late Professor Teishirô Saitô

Kôtarô Tanahashi

(Received March 31, 1982)

Introduction. Several characterizations of decomposable operators have been found by Lange [2], Radjabalipour [4] and Tanahashi [6]. On the other hand, S-decomposable operators have been studied by Bacalu [1], Nagy [3] and Vasilescu [7], and we know that there are many similarities between decomposable operators and S-decomposable operators. This paper is a continuation of Tanahashi [6] and we show that Sdecomposable operators have characterizations similar to decomposable operators. For example, a bounded linear operator T on a complex Banach space X is S-decomposable if and only if $X_T(F) = X(T, F)$ and the operator T^F on $X/X_T(F)$ induced by T satisfies $\sigma(T^F) \subset (C \setminus F^i) \cup S$ for all closed sets $F \supset S$ in the complex plane C where F^i is the interior of F. This is a generalization of Radjabalipour [4] which is the case $S = \emptyset$, that is, T is a decomposable operator.

The author wishes to express his sincere thanks to the late Professor T. Saitô and Professor T. Yoshino for their kind suggestions and encouragements.

1. Preliminaries. An operator T means a bounded linear transformation on a complex Banach space X. Then there exists a unique maximal open set Ω_T in the complex plane C with the property that if $G \subset \Omega_T$ is an open set and if $f: G \to X$ is an analytic function such that $(z - T)f(z) \equiv 0$ on G, then $f(z) \equiv 0$ on G. Let $S_T = \Omega_T^c$ be the complement of Ω_T in C.

For an operator T and a closed set F in C, we denote $X_T(F) = \{x \in X | \text{there exists an analytic function } f: F^{\circ} \to X \text{ such that } (z - T)f(z) \equiv x \text{ on } F^{\circ}\}$, and for any set E in C we denote $X_T(E) = \bigcup \{X_T(F) | F \subset E \text{ and } F \text{ is closed}\}$ (cf. [4]). These definitions are different from those of [1], [3] and [7]. But it is easy to show that if E contains S_T , then these definitions are equivalent.

Lat(T) is the lattice of all invariant subspaces of T and T|Y denotes the restriction of T to $Y \in Lat(T)$. For a closed set F in C, we denote by X(T, F) an invariant subspace of T such that $(1) \sigma(T|X(T, F)) \subset F$ and that (2) if $Y \in \text{Lat}(T)$ satisfies $\sigma(T|Y) \subset F$, then $Y \subset X(T, F)$. Of course X(T, F) may or may not exist, but if such an invariant subspace exists, then it is obviously unique. $Y \in \text{Lat}(T)$ is called a spectral maximal space of T if $\sigma(T|Z) \subset \sigma(T|Y)$ implies $Z \subset Y$ for all $Z \in \text{Lat}(T)$. We denote by SM (T) the family of all spectral maximal spaces of T. Then $X(T, F) \in \text{SM}(T)$, and conversely $Y \in \text{SM}(T)$ can be written Y =X(T, F) with $F = \sigma(T|Y)$. (cf. [3]).

Let T be an operator and $S \subset \sigma(T)$ be a closed set. A family of open sets $\{G_1, \dots, G_n; G_0\}$ is called an S-covering of $\sigma(T)$ if $G_1 \cup \dots \cup$ $G_n \cup G_0 \supset \sigma(T)$ and $\overline{G}_i \cap S = \emptyset$ for $i = 1, \dots, n$. T is called S-decomposable if for every S-covering $\{G_1, \dots, G_n; G_0\}$ of $\sigma(T)$ there exists a system $\{X_1, \dots, X_n; X_0\}$ of spectral maximal spaces of T such that (1) $X = X_1 + \dots + X_n + X_0$ and (2) $\sigma(T | X_i) \subset G_i$ for $i = 1, \dots, n, 0$.

For $Y \in \text{Lat}(T)$, let T^{Y} be the operator on X/Y induced by T. If $Y = X_{T}(F)$ for a closed set F in C, then we write T^{F} instead of T^{Y} . We denote by \hat{x} the image of $x \in X$ under the canonical mapping of X onto X/Y.

2. Main results.

THEOREM. Let T be an operator and $S \subset \sigma(T)$ be a closed set. Then the following assertions are equivalent.

(1) T is S-decomposable.

(2) $X_T(F) = X(T, F)$ for all closed sets $F \supset S$ and $X_T(G_1 \cup G_0) = X_T(G_1) + X_T(G_0)$, where G_1 and G_0 are arbitrary open sets with $\overline{G}_1 \cap S = \emptyset$ and $G_0 \supset S$.

(3) $X_{T}(F) = X(T, F)$ and $\sigma(T^{F}) \subset (C \setminus F^{i}) \cup S$ for all closed sets $F \supset S$. (4) If $G \supset S$ is open, then there exists $Y \in \text{Lat}(T)$ such that $\sigma(T|Y) \subset \overline{G}$ and $\sigma(T^{Y}) \subset G^{\circ} \cup S$.

We need some lemmas for the proof of Theorem.

LEMMA 1 ([3, Lemma 2]). If a closed set F contains S_T and $X_T(F)$ is closed in X, then $X_T(F) = X(T, F)$.

The proof of Lemma 2 is similar to [4, Theorem 2.10], hence we omit it here.

LEMMA 2. Let $Y \in \text{Lat}(T)$. If $\hat{x} \in X_{T^Y}(F)$ for a closed set F in C, then $x \in X_T(F \cup \sigma(T | Y) \cup S_T)$.

The following was inspired by [7, Theorem 4.1].

LEMMA 3. Let T be an operator and $S \subset \sigma(T)$ be a closed set. If

 $X_{T}(H) = X(T, H)$ for all closed sets $H \supset S$, then $X_{T}(F) = X(T, F)$ for all closed sets F with $F \cap S = \emptyset$.

PROOF. Let F be a closed set with $F \cap S = \emptyset$. Let $Y = X_T(F \cup S)$. Then $\sigma(T|Y) \subset F \cup S$. Since F and S are disjoint closed sets, by the Riesz decomposition theorem (see [5, Theorem 2.10]), there exist Y_1 and Y_0 in Lat (T|Y) such that $Y = Y_1 \bigoplus Y_0$ and $\sigma((T|Y)|Y_1) \subset F$, $\sigma((T|Y)|Y_0) \subset S$ where \bigoplus denotes the topological direct sum. We show first $X_T(F) = Y_1$. Let $x \in Y_1$. Since $(T|Y)|Y_1 = T|Y_1$, we have $\sigma(T|Y_1) \subset F$, hence (z - T) $(z - T|Y_1)^{-1}x \equiv x$ on F^c . Thus $x \in X_T(F)$. Conversely let $x \in X_T(F)$. Then there exists an analytic function $f: F^c \to X$ such that $(z - T)f(z) \equiv x$ on F^c . By [7, Proposition 2.2], $f(z) \in X_T(F)$ for all $z \in F^c$, hence x and f(z) belong to $X_T(F \cup S) = Y$, and so (z - T)f(z) = (z - T|Y)f(z) = x on F^c . We can write $x = x_1 + x_0$ where $x_i \in Y_i$ for i = 1, 0. Let D be a Cauchy domain with boundary Γ such that $S \subset D$ and $\overline{D} \subset F^c$. Then,

$$x_{\scriptscriptstyle 0} = rac{1}{2\pi i} \int_{arGamma} (z - T | Y)^{- \imath} x dz = rac{1}{2\pi i} \int_{arGamma} f(z) dz = 0 \; .$$

Hence $x = x_1 \in Y_1$. Thus $X_T(F) = Y_1$ and $X_T(F)$ is closed. Since $\sigma(T | X_T(F)) = \sigma(T | Y_1) \subset F$, it is easy to show $X_T(F) = X(T, F)$.

PROOF OF THEOREM. We show the implications $(1) \Rightarrow (3) \Rightarrow (4) \Rightarrow (2) \Rightarrow (1)$.

(1) \Rightarrow (3). Let T be S-decomposable. Then $S_T \subset S$ by [3, Lemma 4], and so $X_T(F) = X(T, F)$ for all closed sets $F \supset S$ by [3, Lemma 5]. We show $\sigma(T^F) \subset (C \setminus F^i) \cup S$ for all closed sets $F \supset S$. Let $z_i \in F^i \cap S^c$. Then there exists an open disc G_1 with center z_1 such that $\overline{G}_1 \subset F$ and $\overline{G}_1 \cap$ $S = \emptyset$. We can choose another open set G_0 in C such that $z_1 \notin G_0$ and $\{G_1; G_0\}$ is an S-covering of $\sigma(T)$. Then there exist X_1 and X_0 in SM (T)such that $X = X_1 + X_0$ and $\sigma(T | X_i) \subset G_i$ for i = 1, 0. We have only to show that $z_1 - T^F$ is bijective. Let $y \in X$ be given. Then we can write $y = y_1 + y_0$ where $y_i \in X_i$ for i = 1, 0. Since $z_1 \in \rho(T|X_0)$, there exists $x = (z_1 - T | X_0)^{-1} y_0$, and so $(z_1 - T) x = y_0$. Hence $(z_1 - T^F) \hat{x} = \hat{y}_0 = \hat{y}_1 + \hat{y}_0$ $\hat{y}_{_0} = \hat{y}$ because $X_{_1} \subset X_{_T}(G_{_1}) \subset X_{_T}(F)$. Thus $z_{_1} - T^{_F}$ is surjective. Let $(z_1 - T^F)\hat{x} = \hat{0}$. Then $(z_1 - T)x \in X_T(F)$. We can write $x = x_1 + x_0$ where $x_i \in X_i$ for i = 1, 0. Since $(z_1 - T)x_1 \in X_1 \subset X_T(G_1) \subset X_T(F)$, we have $(z_1 - T)x_0 = (z_1 - T)x - (z_1 - T)x_1 \in X_T(F).$ Hence $(z_1 - T)x_0 \in X_T(F) \cap$ $X_{_T}(ar{G}_{_0})=X_{_T}(F\capar{G})$ because $S_{_T}\subset S\subset F$ and $S\subset G_{_0}$. Then there exists an analytic function $f: (F \cap \overline{G}_0)^\circ \to X$ such that $(z - T)f(z) \equiv (z_1 - T)x_0$. By [7, Proposition 2.2], we have $f(z) \in X_T(F \cap \overline{G}_0) \subset X_T(\overline{G}_0)$, hence $(z - T)(z_1 - T | X_T(\overline{G}_0))^{-1} f(z) = (z - T | X_T(\overline{G}_0))(z_1 - T | X_T(\overline{G}_0))^{-1} f(z) = (z_1 - T | X_T(\overline{G}_0))^{-1} f(z)$ $T|X_T(\bar{G}_0))^{-1}(z - T|X_T(\bar{G}_0))f(z) = (z_1 - T|X_T(\bar{G}_0))^{-1}(z_1 - T)x_0 = x_0 \text{ on } F^c \text{ be-}$

cause $x_0 \in X_T(\overline{G}_0)$. This implies $x_0 \in X_T(F)$. Then $x = x_1 + x_0 \in X_T(F)$, hence $\hat{x} = \hat{0}$. Thus $z_1 - T^F$ is injective.

(3) \Rightarrow (4). Let $Y = X_T(\overline{G})$ for all open sets $G \supset S$.

 $(4) \Rightarrow (2)$. We show first $S_T \subset S$. Let D be an open set in C with $D \cap S = \emptyset$, and $f: D \to X$ be an analytic function such that $(z - T)f(z) \equiv 0$ on D. We have only to show $f(z) \equiv 0$ on D. We may assume D to be an open disc. Then there exists an open disc G with $\overline{G} \subset D$. Since \overline{G}° is an open set containing S, there exists $Y \in \text{Lat}(T)$ such that $\sigma(T|Y) \subset G^{\circ}$ and $\sigma(T^{\vee}) \subset \overline{G} \cup S$. Then $(z - T^{\vee})f(z) \equiv 0$ on D. Since $D \cap \rho(T^{\vee}) \neq \emptyset$, we have $\widehat{f(z)} \equiv 0$ on $D \cap \rho(T^{\vee})$, hence $\widehat{f(z)} \equiv \widehat{0}$ on D because $\widehat{f(z)}$ is analytic on D. Hence $f(z) \in Y$ on D, and so $(z - T)f(z) \equiv (z - T|Y)f(z) \equiv 0$ on D. If $f(z) \neq 0$ on D, then it is easy to show $D \subset \sigma_p(T|Y) \subset \sigma(T|Y) \subset G^{\circ}$ where $\sigma_p(T|Y)$ is the point spectrum of T|Y. This is a contradiction. Thus $f(z) \equiv 0$ on D.

We show next $X_T(F) = X(T, F)$ for all closed sets $F \supset S$. Since $F \supset S_r$, we have only to show that $X_r(F)$ is closed by Lemma 1. We may assume $F \subset \sigma(T)$. Let $G \supset F$ be any open set. Then there exists $Y \in \text{Lat}(T)$ such that $\sigma(T|Y) \subset \overline{G}$ and $\sigma(T^Y) \subset G^\circ \cup S$. Since G° and S are disjoint closed sets, by the Riesz decomposition theorem, there exist Z_1 and $Z_{\scriptscriptstyle 0}$ in Lat $(T^{\scriptscriptstyle Y})$ such that $X/Y = Z_{\scriptscriptstyle 1} \bigoplus Z_{\scriptscriptstyle 0}$, and we write $T^{\scriptscriptstyle Y} = U_{\scriptscriptstyle 1} \bigoplus U_{\scriptscriptstyle 0}$ with $\sigma(U_1) \subset G^c$ and $\sigma(U_0) \subset S$ where $U_i = T^{Y} | Z_i$ for i = 1, 0. Let $x \in$ $X_{T}(F)$ be given. Then there exists an analytic function $f: F^{c} \to X$ such that $(z - T)f(z) \equiv x$ on F^{c} . Hence we can write $(z - T^{y})\widehat{f(z)} =$ $(z - U_1)g_1(z) \oplus (z - U_0)g_0(z) = \hat{x}_1 \oplus \hat{x}_0 = \hat{x}$ on F^c for $f(z) = g_1(z) \oplus g_0(z)$ with $g_i(z) \in Z_i$ for i = 1, 0. Since $\sigma(U_1) \subset G^c$, we can extend $g_1(z)$ analytically on $F^c \cup G = C$. And since $g_1(z) = (z - U_1)^{-1} \widehat{x}_1 \to \widehat{0}$ as $|z| \to \infty$, we have $g_1(z) \equiv \hat{0}$ by Liouville's theorem, and $\hat{x}_1 = \hat{0}$. Hence $\hat{x} = \hat{x}_0 \in Z_0$. Thus $X_T(F) \subset \Pi^{-1}(Z_0)$ where $\Pi: X \to Z_1 \bigoplus Z_0 = X/Y$ is the canonical mapping. We show next $\Pi^{-1}(Z_0) \subset X_T(\overline{G})$. Let $x \in \Pi^{-1}(Z_0)$ be given. Then $\hat{x} \in Z_0$, and so $(z - T^{\scriptscriptstyle Y})(z - U_0)^{-1}\hat{x} = \hat{x}$ on $\rho(U_0) \supset S^c$. Hence $\hat{x} \in X_{T^{\scriptscriptstyle Y}}(S)$, and so $x \in X_T(S \cup \sigma(T \mid Y) \cup S_T) \subset X_T(\overline{G})$ by Lemma 2. Hence $X_T(F) \subset \Pi^{-1}(Z_0) \subset \Pi^{-1}(Z_0)$ $X_T(\overline{G})$. Since $G \supset F$ is any open set and $S_T \subset S \subset F$, we have $X_T(F) \subset \bigcap$ $\{I\!I^{-1}(Z_0)|F \subset G\} \subset \bigcap \{X_T(G)|F \subset G\} = X_T(F). \quad \text{Thus } X_T(F) = \bigcap \{I\!I^{-1}(Z_0)|F \subset G\}$ and $X_{r}(F)$ is closed.

We show $X_T(G_1 \cup G_0) = X_T(G_1) + X_T(G_0)$ for all open sets G_1 and G_0 with $\overline{G}_1 \cap S = \emptyset$ and $G_0 \supset S$. It is clear that $X_T(G_1 \cup G_0) \supset X_T(G_1)$, $X_T(G_0)$ and $X_T(G_1 \cup G_0) \supset X_T(G_1) + X_T(G_0)$. Conversely let $x \in X_T(G_1 \cup G_0)$ be given. Then there exists a closed set $F \subset G_1 \cup G_0$ and an analytic function $f: F^c \to X$ such that $(z - T)f(z) \equiv x$ on F^c . Then we can choose open

 $\mathbf{264}$

sets D_1 and D_0 such that $\overline{D}_i \subset G_i$, for i = 1, 0, and $F \cup S \subset D_1 \cup D_0$. And we can choose an open set D_2 such that $S \subset D_2$, $\overline{D}_2 \subset D_0$ and $\overline{D}_2 \cap \overline{G}_1 = \emptyset$. Since $G = (D_1 \cap D_0) \cup D_2$ is an open set containing S, there exists $Y \in \text{Lat}(T)$ such that $\sigma(T|Y) \subset \overline{G}$ and $\sigma(T^Y) \subset G^c \cup S$. Then $(z - T^Y)\widehat{f}(z) \equiv \widehat{x}$ on F^c . Since $\rho(T^Y) \supset G \cap S^c \supset D_1 \cap D_0$, we can extend $\widehat{f(z)}$ analytically on $F^c \cup (D_1 \cap D_0) = \{(F \setminus D_1) \cup (F \setminus D_0)\}^c$. Hence we can write $\widehat{x} = \widehat{x}_1 + \widehat{x}_0$ where $\widehat{x}_i \in X_{T^Y}(F \setminus D_j)$, for $i \neq j$, by [4, Theorem 2.3]. Hence $x = x_1 + x_0 + y$ for some $y \in Y$. Then by Lemma 2, $x_1 \in X_T((F \setminus D_0) \cup \overline{G})$, and so $x_1 \in X_T(\overline{D}_1) + X_T(\overline{D}_0) \subset X_T(G_1) + X_T(G_0)$ by [4, Theorem 2.3]. Similarly $x_0 \in X_T((F \setminus D_1) \cup \overline{G} \subset (X_T(G_0) \text{ and } y \in Y \subset X_T(\overline{G}) \subset X_T(G_0)$. Thus $x \in X_T(G_1) + X_T(G_0)$ and $X_T(G_1 \cup G_0) \subset X_T(G_1) + X_T(G_0)$.

 $(2) \Rightarrow (1).$ Let $\{G_1, \dots, G_n; G_0\}$ be any S-covering of $\sigma(T)$. Then we can choose an S-covering $\{D_1, \dots, D_n; D_0\}$ of $\sigma(T)$ such that $\overline{D}_i \subset G_i$ for $i = 1, \dots, n, 0$. Then $X \subset X_T(\sigma(T)) \subset X_T(D_1 \cup \dots \cup D_n \cup D_0) = X_T(D_1) + X_T(D_2 \cup \dots \cup D_n \cup D_0) = \dots = X_T(D_1) + \dots + X_T(D_n) + X_T(D_0) \subset X_T(\overline{D}_1) + \dots + X_T(\overline{D}_n) + X_T(\overline{D}_0)$. Since $D_0 \supset S$, we have $X_T(\overline{D}_0) = X(T, \overline{D}_0)$ by the assumption. And since $\overline{D}_i \cap S = \emptyset$ for $i = 1, \dots, n$, we have $X_T(\overline{D}_i) = X(T, \overline{D}_i)$ for $i = 1, \dots, n$ by Lemma 3. Hence $X = X(T, \overline{D}_1) + \dots + X(T, \overline{D}_n) + X(T, \overline{D}_0)$. This implies that T is S-decomposable.

REMARK. Lemmas 1 and 2 hold for all closed linear operators on a complex Banach space. Then can Theorem be extended to all closed linear operators?

References

- I. BACALU, S-decomposable operators in a Banach space, Rev. Roum. Math. Pures et Appl. 20 (1975), 1101-1107.
- [2] R. LANGE, Equivalent conditions for decomposable operators, Proc. Amer. Math. Soc. 82 (1981), 401-406.
- [3] B. NAGY, Closed S-decomposable operators, Annales Univ. Sci. Budapest, Sectio Math. 22-23 (1979-1980), 143-149.
- [4] M. RADJABALIPOUR, Decomposable operators, Bull. Iranian Math. Soc. 9 (1978), 1L-49L.
- [5] M. RADJAVI AND P. ROSENTHAL, Invariant subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [6] K. TANAHASHI, A characterization of decomposable operators, Tôhoku Math. J. 34 (1982), 295-300.
- [7] F.-H. VASILESCU, Residually decomposable operators in Banach spaces, Tôhoku Math. J. 21 (1969), 509-522.

Tohoku College of Pharmacy Komatsushima, Sendai, 983 Japan