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Introduction. Several characterizations of decomposable operators
have been found by Lange [2], Radjabalipour [4] and Tanahashi [6]. On
the other hand, S-decomposable operators have been studied by Bacalu
[1], Nagy [3] and Vasilescu [7], and we know that there are many
similarities between decomposable operators and S-decomposable operators.
This paper is a continuation of Tanahashi [6] and we show that S-
decomposable operators have characterizations similar to decomposable
operators. For example, a bounded linear operator T on a complex
Banach space X is S-decomposable if and only if X,(F)= X(T, F) and
the operator 7% on X/X,(F) induced by T satisfies o(T") c(C\F¥) U S
for all closed sets F>S in the complex plane C where F''is the interior
of F. This is a generalization of Radjabalipour [4] which is the case
S = @, that is, T is a decomposable operator.

The author wishes to express his sincere thanks to the late Professor
T. Saito and Professor T. Yoshino for their kind suggestions and
encouragements.

1. Preliminaries. An operator T means a bounded linear trans-
formation on a complex Banach space X. Then there exists a unique
maximal open set 2, in the complex plane C with the property that if
G c 2, is an open set and if f: G — X is an analytic function such that
(z—T)f(2 =0 on G, then f(2)=0 on G. Let S, = 2% be the complement
of 2, in C.

For an operator T and a closed set F' in C, we denote X,.(F) =
{x € X|there exists an analytic function f: F° — X such that (z — T)f(z) =«
on F°}, and for any set E in C we denote X, (E) = U{X,(F)|FcFE and
F is closed} (cf. [4]). These definitions are different from those of [1],
[3] and [7]. But it is easy to show that if E contains S,, then these
definitions are equivalent.

Lat(T) is the lattice of all invariant subspaces of 7' and T'|Y denotes
the restriction of T to YeLat(T). For a closed set F' in C, we denote
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by X(T, F) an invariant subspace of T such that (1) o(T|X(T, F))C F
and that (2) if YeLat(T) satisfies o(T|Y)C F, then Yc X(T, F). Of
course X(T, F') may or may not exist, but if such an invariant subspace
exists, then it is obviously unique. Y eLat(T) is called a spectral
maximal space of T if ¢(T|Z) co(T|Y) implies ZC Y for all Ze Lat (T).
We denote by SM (T) the family of all spectral maximal spaces of T.
Then X(T, F)eSM (T), and conversely YeSM (T') can be written Y =
X(T, F) with F = o(T|Y). (cf. [3]).

Let T be an operator and Sco(T) be a closed set. A family of
open sets {G, ---, G,; G} is called an S-covering of o(T) if G,U --- U
G,UGDo(T) and G;NS=@ for i=1,---,n. T is called S-decom-
posable if for every S-covering {G, ---, G,;G,} of o(T) there exists a
system {X|, ---, X,; X} of spectral maximal spaces of T such that (1)
X=X+:---+X,+X,and 2) o(T|X,)cG; for i =1, ---,n,0.

For YeLat (T), let T be the operator on X/Y induced by T. If
Y = X, (F) for a closed set F' in C, then we write T7 instead of T".

We denote by # the image of x e X under the canonical mapping of X
onto X/Y.

2. Main results.

THEOREM. Let T be an operator and S C o(T) be a closed set. Then
the following assertions are equivalent.

(1) T is S-decomposable.

(2) Xp(F)=X(T, F) for all closed sets FOS and X,(G,UG, =
XA(G) + Xo(G,), where G, and G, are arbitrary open sets with G,N S = @
and G,O 8.

(3) Xy (F)=X(T, F)and o(T")C(C\F*)US for all closed sets FDS.

(4) _If GDOS 1s open, then there exists Y eLat(T) such that
o(T|Y)cG and o(T*)cG°US.

We need some lemmas for the proof of Theorem.

LemMMA 1 ([3, Lemma 2]). If a closed set F contains S; and X (F)
is closed in X, then X, (F') = X(T, F).

The proof of Lemma 2 is similar to [4, Theorem 2.10], hence we
omit it here.

LEMMA 2. Let YeLat (T). If e X,»(F) for a closed set F' in C,
then xe€ X, (FUa(T|Y)USy).

The following was inspired by [7, Theorem 4.1].
LEMMA 3. Let T be an operator and Sco(T) be a closed set. If
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X.(H) = X(T, H) for all closed sets HD S, then X, (F) = X(T, F) for all
closed sets F with FnNS = @.

Proor. Let F' be a closed set with FNS = @. Let Y =X, (FUS).
Then o(T|Y)Cc FUS. Since F and S are disjoint closed sets, by the
Riesz decomposition theorem (see [5, Theorem 2.10]), there exist Y, and
Y, in Lat (T'Y) such that Y=Y, PY, and ¢((T|Y)|Y,)CF, o(T|Y)|Y,)CS
where € denotes the topological direct sum. We show first X, (F) = Y..
Let xe Y,. Since (TY)|Y, = T|Y,, we have o(T|Y,)C F, hence (z — T)
(z—T|Y)™™ =2 on F°. Thus xeX,(F). Conversely let ze X, (F).
Then there exists an analytic function f: F'* — X such that (z — T)f(z) =«
on F°. By [7, Proposition 2.2], f(2) e X,(F') for all ze F°, hence z and
f(z) belong to X (FUS)=1Y, and so (z — T'")f(z) = (# — T|Y)f(z) = 2 on
F°. We can write # = 2, + z, where z,€ Y, for 1 =1,0. Let D be a
Cauchy domain with boundary I such that Sc D and Dc F°. Then,

1 _ “ipdy — L =
5= Sr(z T|Y)edz = Sr foydz = 0 .
Hence # =x,€Y,, Thus X (F)=Y, and X, (F) is closed. Since

o(T|\XH(F)) =o(T|Y,)C F, it is easy to show X,(F') = X(T, F).

PrROOF OF THEOREM. We show the implications (1)= 8)= (4) =
(2) = (D).

(1)=(3). Let T be S-decomposable. Then S,c S by [3, Lemma 4],
and so X,(F') = X(T, F') for all closed sets FF'O> S by [3, Lemma 5]. We
show o(TF)c(C\F*)US for all closed sets FOS. Let z,¢ F*'NS°. Then
there exists an open disc G, with center z, such that G,c F and G, N
S = @. We can choose another open set G, in C such that z, ¢ G, and
{G;; G} is an S-covering of (7). Then there exist X, and X, in SM (T)
such that X = X, + X, and o(T|X,) G, for : =1,0. We have only to
show that z, — T7 is bijective. Let ye X be given. Then we can write
Yy =19, + Y, where y,€ X; for i =1,0. Since 2 € p(T|X,), there exists
=@ — T\ X)) Y, and so (, — T')x = ¥y,. Hence (3, — TM)Z = 4§, = §, +
%, = 9 because X, c X, (G,)c X, (F). Thus z — T* is surjective. Let
(2, — TM%x = 0. Then (2, — Thx e X,(F'). We can write = x, + x, where
z,eX, for ¢+ =1,0. Since (2, — T, e X, c X;(G) c X,(F'), we have
(2 —T,= @ — T)e — (2, — T)x, e Xp(F'). Henece (2, — T)x,e X;(F)N
X;(G,) = X (FNG) because S,cSc F and ScG, Then there exists
an analytic function f: (F N G,)° — X such that (z — T)f(z) = (2, — T)m,
By [7, Proposition 2.2], we have f(z)e X (FNG,)CX,(G,), hence
(2 — T)(z — T| XAG)'f(2) = (2 — T| Xp(G)(z — T Xe(G) ' f2) = (2, —
TIX:l'(Go))—I(z - T|XT(G0))f(Z) = (2 — T[XT(G0>)~1(z1 — T)x, = 2, on F° be-
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cause «,€ Xy(G,). This implies x,€ Xy (F). Then z =z, + x,¢ X (F),
hence # = 0. Thus z, — T¥ is injective.

(3) = (4). Let Y = X (G) for all open sets GO S.

(4) = (2). We show first S, S. Let D be an open set in C with
DN S = @, and f: D— X be an analytic function such that (z — T)f(z) =0
on D. We have only to show f(z) =0 on D. We may assume D to be
an open disc. Then there exists an open disc G with Gc D. Since G°
is an open set containing S, there exists YeLat(T) such that
o(T|Y)c G and o(T*)cGUS. Then (z— T)fz)=0 on D. Since
Dno(T*) + @, we have f/(;) =0 on DN p(T*), hence f@) =0 on D
because f@) is analytic on D. Hence f(z)e Y on D, and so (z—T)f(z) =
(—T|Y)f(2)=0 on D. If f(z) 20 on D, then it is easy to show
Dco,(T|Y)co(T|Y)c G where o,(T|Y) is the point spectrum of T'|Y
This is a contradiction. Thus f(2) = 0 on D.

We show next X, (F)= X(T, F) for all closed sets FF>S. Since
F>S,;,we have only to show that X,(F) is closed by Lemma 1. We
may assume Fco(T). Let GO F be any open set. Then there exists
Y eLat (T).such that ¢(T|Y)cG and o(T*)cG°US. Since G° and S are
disjoint closed sets, by the Riesz decomposition theorem, there exist Z,
and Z, in Lat (TY) such that X/Y = Z, @ Z,, and we write T¥ = U, D U,
with ¢(U,) c G° and ¢(U,) S where U, = T"|Z, for : =1,0. Let ze
X.(F) be given. Then there exists an analytic function f: F'¢ — X such
that (z — T)f(z) =« on F° Hence we can Write/\ (z — TY)j{(\z) =
(2 — U)g,(2) D (= — Up)g(2) =2, D% =% on F° for f(z) = g.(2) D 9,2)
with g,(2)e Z, for 1 =1,0. Since ¢(U)cG° we can extend g,(z) analyt-
ically on F° UG C. And since g,(z) = (z — U,)~ xl-»O as |z| — oo, we
have g¢,(2) = 0 by Liouville’s theorem, and %, = 0. Hence & = 2, € Z,.
Thus X, (F)c II"NZ,) where II: X —Z @ Z,=X/Y is the canonical
mapping. We show next 77%(Z,)c X,(G). Let xe I *(Z,) be given. Then
ZeZ,andso (z— T")z—U,)"'# =% on p(U,)D>S°. Hence % e X,»(S), and
80 € X, (SUa(T|Y)US,) C X,(G) by Lemma 2. Hence X, (F)cIl™¥(Z,)C
X,(G). Since GO F is any open set and S, cSc F, we have X, (F)c N
{I(Z,)|FcG}c N{XA(G)FCG} = Xy(F). Thus X,(F)=N{I*Z,)|FcG}
and X,(F) is closed.

We show X, (G,UG,) = X,(G) + X,(G,) for all open sets G, and G,
with G,NS = @ and G,D8. It is clear that X (G, UG,) D X(G.), X(G,)
and X,(G,UG,)DX,(G) + X,(G,). Conversely let z ¢ X,(G,UG,) be given.
Then there exists a closed set FcG,UG, and an analytic function
i F°— X such that (z — T)f(z) =« on F°. Then we can choose open
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sets D, and D, such that D,cG;, for ¢ =1,0, and FUScD,UD,
And we can choose an open set D, such that Sc D, D,cD, and
D,NG,=@. Since G=(D,ND)UD, is an open set containing S,
there exists Y e Lat (T) such that ¢(T|Y)c G and o(T¥)c G°US. Then
(2 — TY)f(z) =% on F° 8Since po(T*")DGNS°DD, N D, we can extend
f/(;) analytically on F°U (D, N D)) = {(F\D,) U (F\D,)}°. Hence we can
write # = %, + &, where %, € X,»(F'\D,), for i # j, by [4, Theorem 2.3].
Hence x=x,+x,+y for some ye Y. Then by Lemma 2, x, ¢ X;,((F\D,)U
G), and so x, e Xy (D) + X.(D,) C Xo(G,) + X.(G,) by [4, Theorem 2.3].
Similarly «,e X, (F\D,) UG c (X;(G,) and ye Y c X;(G) c X;(G,). Thus
x e Xp(G) + X(Gy) and Xi(G, U G,) C Xi(G) + Xi(Gy).

2)=@1). Let {G, ---, G,; G;} be any S-covering of ¢(T). Then we
can choose an S-covering {D,, ---, D,; D,} of ¢(T) such that D,c G, for
1=1,+--,m,0. Then Xc X,(¢o(T))c X,(D,U---UD,UD,) = XnD,) +
X,(D,U---UD,UD,) = -+ = X;(D,) + + -+ + Xn(D,) + Xo(D,) € Xo(D,) +
«oo + X;(D,) + X(D,). Since D,OS, we have X,(D,) = X(T, D,) by the
assumption. And since D,NS =@ for i =1, ---, n, we have X,(D,) =
X(T,D,) for :=1,---,n by Lemma 8. Hence X = X(T,D,) + --- +
X(T, D,) + X(T, D,). This implies that T is S-decomposable.

REMARK. Lemmas 1 and 2 hold for all closed linear operators on a
complex Banach space. Then can Theorem be extended to all closed
linear operators?
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