CHARACTERIZATIONS OF S-DECOMPOSABLE OPERATORS ON A COMPLEX BANACH SPACE

Dedicated to the memory of the late Professor Teishirô Saitô

Kôtarô Tanahashi

(Received March 31, 1982)

Introduction. Several characterizations of decomposable operators have been found by Lange [2], Radjabalipour [4] and Tanahashi [6]. On the other hand, S-decomposable operators have been studied by Bacalu [1], Nagy [3] and Vasilescu [7], and we know that there are many similarities between decomposable operators and S-decomposable operators. This paper is a continuation of Tanahashi [6] and we show that S decomposable operators have characterizations similar to decomposable operators. For example, a bounded linear operator T on a complex Banach space X is S-decomposable if and only if $X_{T}(F)=X(T, F)$ and the operator T^{F} on $X / X_{T}(F)$ induced by T satisfies $\sigma\left(T^{F}\right) \subset\left(C \backslash F^{i}\right) \cup S$ for all closed sets $F \supset S$ in the complex plane C where F^{i} is the interior of F. This is a generalization of Radjabalipour [4] which is the case $S=\varnothing$, that is, T is a decomposable operator.

The author wishes to express his sincere thanks to the late Professor T. Saitô and Professor T. Yoshino for their kind suggestions and encouragements.

1. Preliminaries. An operator T means a bounded linear transformation on a complex Banach space X. Then there exists a unique maximal open set Ω_{T} in the complex plane C with the property that if $G \subset \Omega_{T}$ is an open set and if $f: G \rightarrow X$ is an analytic function such that $(z-T) f(z) \equiv 0$ on G, then $f(z) \equiv 0$ on G. Let $S_{T}=\Omega_{T}^{c}$ be the complement of Ω_{T} in C.

For an operator T and a closed set F in C, we denote $X_{T}(F)=$ $\left\{x \in X \mid\right.$ there exists an analytic function $f: F^{c} \rightarrow X$ such that $(z-T) f(z) \equiv x$ on $\left.F^{c}\right\}$, and for any set E in C we denote $X_{T}(E)=\bigcup\left\{X_{T}(F) \mid F \subset E\right.$ and F is closed\} (cf. [4]). These definitions are different from those of [1], [3] and [7]. But it is easy to show that if E contains S_{T}, then these definitions are equivalent.

Lat (T) is the lattice of all invariant subspaces of T and $T \mid Y$ denotes the restriction of T to $Y \in \operatorname{Lat}(T)$. For a closed set F in C, we denote
by $X(T, F)$ an invariant subspace of T such that (1) $\sigma(T \mid X(T, F)) \subset F$ and that (2) if $Y \in \operatorname{Lat}(T)$ satisfies $\sigma(T \mid Y) \subset F$, then $Y \subset X(T, F)$. Of course $X(T, F)$ may or may not exist, but if such an invariant subspace exists, then it is obviously unique. $Y \in \operatorname{Lat}(T)$ is called a spectral maximal space of T if $\sigma(T \mid Z) \subset \sigma(T \mid Y)$ implies $Z \subset Y$ for all $Z \in \operatorname{Lat}(T)$. We denote by $\mathrm{SM}(T)$ the family of all spectral maximal spaces of T. Then $X(T, F) \in \operatorname{SM}(T)$, and conversely $Y \in \operatorname{SM}(T)$ can be written $Y=$ $X(T, F)$ with $F=\sigma(T \mid Y)$. (cf. [3]).

Let T be an operator and $S \subset \sigma(T)$ be a closed set. A family of open sets $\left\{G_{1}, \cdots, G_{n} ; G_{0}\right\}$ is called an S-covering of $\sigma(T)$ if $G_{1} \cup \cdots \cup$ $G_{n} \cup G_{0} \supset \sigma(T)$ and $\bar{G}_{i} \cap S=\varnothing$ for $i=1, \cdots, n . \quad T$ is called S-decomposable if for every S-covering $\left\{G_{1}, \cdots, G_{n} ; G_{0}\right\}$ of $\sigma(T)$ there exists a system $\left\{X_{1}, \cdots, X_{n} ; X_{0}\right\}$ of spectral maximal spaces of T such that (1) $X=X_{1}+\cdots+X_{n}+X_{0}$ and (2) $\sigma\left(T \mid X_{i}\right) \subset G_{i}$ for $i=1, \cdots, n, 0$.

For $Y \in \operatorname{Lat}(T)$, let T^{Y} be the operator on X / Y induced by T. If $Y=X_{T}(F)$ for a closed set F in C, then we write T^{F} instead of T^{Y}. We denote by \hat{x} the image of $x \in X$ under the canonical mapping of X onto X / Y.

2. Main results.

Theorem. Let T be an operator and $S \subset \sigma(T)$ be a closed set. Then the following assertions are equivalent.
(1) T is S-decomposable.
(2) $X_{T}(F)=X(T, F)$ for all closed sets $F \supset S$ and $X_{T}\left(G_{1} \cup G_{0}\right)=$ $X_{T}\left(G_{1}\right)+X_{T}\left(G_{0}\right)$, where G_{1} and G_{0} are arbitrary open sets with $\bar{G}_{1} \cap S=\varnothing$ and $G_{0} \supset S$.
(3) $X_{T}(F)=X(T, F)$ and $\sigma\left(T^{F}\right) \subset\left(C \backslash F^{i}\right) \cup S$ for all closed sets $F \supset S$.
(4) If $G \supset S$ is open, then there exists $Y \in \operatorname{Lat}(T)$ such that $\sigma(T \mid Y) \subset \bar{G}$ and $\sigma\left(T^{Y}\right) \subset G^{c} \cup S$.

We need some lemmas for the proof of Theorem.
Lemma 1 ([3, Lemma 2]). If a closed set F contains S_{T} and $X_{T}(F)$ is closed in X, then $X_{T}(F)=X(T, F)$.

The proof of Lemma 2 is similar to [4, Theorem 2.10], hence we omit it here.

Lemma 2. Let $Y \in \operatorname{Lat}(T)$. If $\hat{x} \in X_{T^{Y}}(F)$ for a closed set F in \boldsymbol{C}, then $x \in X_{T}\left(F \cup \sigma(T \mid Y) \cup S_{T}\right)$.

The following was inspired by [7, Theorem 4.1].
Lemma 3. Let T be an operator and $S \subset \sigma(T)$ be a closed set. If
$X_{T}(H)=X(T, H)$ for all closed sets $H \supset S$, then $X_{T}(F)=X(T, F)$ for all closed sets F with $F \cap S=\varnothing$.

Proof. Let F be a closed set with $F \cap S=\varnothing$. Let $Y=X_{T}(F \cup S)$. Then $\sigma(T \mid Y) \subset F \cup S$. Since F and S are disjoint closed sets, by the Riesz decomposition theorem (see [5, Theorem 2.10]), there exist Y_{1} and Y_{0} in Lat $(T \mid Y)$ such that $Y=Y_{1} \oplus Y_{0}$ and $\sigma\left((T \mid Y) \mid Y_{1}\right) \subset F, \sigma\left((T \mid Y) \mid Y_{0}\right) \subset S$ where \oplus denotes the topological direct sum. We show first $X_{T}(F)=Y_{1}$. Let $x \in Y_{1}$. Since $(T \mid Y)\left|Y_{1}=T\right| Y_{1}$, we have $\sigma\left(T \mid Y_{1}\right) \subset F$, hence $(z-T)$ $\left(z-T \mid Y_{1}\right)^{-1} x \equiv x$ on F^{c}. Thus $x \in X_{T}(F)$. Conversely let $x \in X_{T}(F)$. Then there exists an analytic function $f: F^{c} \rightarrow X$ such that $(z-T) f(z) \equiv x$ on F^{c}. By [7, Proposition 2.2], $f(z) \in X_{T}(F)$ for all $z \in F^{c}$, hence x and $f(z)$ belong to $X_{T}(F \cup S)=Y$, and so $(z-T) f(z)=(z-T \mid Y) f(z)=x$ on F^{c}. We can write $x=x_{1}+x_{0}$ where $x_{i} \in Y_{i}$ for $i=1,0$. Let D be a Cauchy domain with boundary Γ such that $S \subset D$ and $\bar{D} \subset F^{c}$. Then,

$$
x_{0}=\frac{1}{2 \pi i} \int_{\Gamma}(z-T \mid Y)^{-1} x d z=\frac{1}{2 \pi i} \int_{\Gamma} f(z) d z=0
$$

Hence $x=x_{1} \in Y_{1}$. Thus $X_{T}(F)=Y_{1}$ and $X_{T}(F)$ is closed. Since $\sigma\left(T \mid X_{T}(F)\right)=\sigma\left(T \mid Y_{1}\right) \subset F$, it is easy to show $X_{T}(F)=X(T, F)$.

Proof of Theorem. We show the implications $(1) \Rightarrow(3) \Rightarrow(4) \Rightarrow$ $(2) \Rightarrow(1)$.
(1) \Rightarrow (3). Let T be S-decomposable. Then $S_{T} \subset S$ by [3, Lemma 4], and so $X_{T}(F)=X(T, F)$ for all closed sets $F \supset S$ by [3, Lemma 5]. We show $\sigma\left(T^{F}\right) \subset\left(C \backslash F^{i}\right) \cup S$ for all closed sets $F \supset S$. Let $z_{1} \in F^{i} \cap S^{c}$. Then there exists an open disc G_{1} with center z_{1} such that $\bar{G}_{1} \subset F$ and $\bar{G}_{1} \cap$ $S=\varnothing$. We can choose another open set G_{0} in C such that $z_{1} \notin G_{0}$ and $\left\{G_{1} ; G_{0}\right\}$ is an S-covering of $\sigma(T)$. Then there exist X_{1} and X_{0} in $\operatorname{SM}(T)$ such that $X=X_{1}+X_{0}$ and $\sigma\left(T \mid X_{i}\right) \subset G_{i}$ for $i=1,0$. We have only to show that $z_{1}-T^{F}$ is bijective. Let $y \in X$ be given. Then we can write $y=y_{1}+y_{0}$ where $y_{i} \in X_{i}$ for $i=1,0$. Since $z_{1} \in \rho\left(T \mid X_{0}\right)$, there exists $x=\left(z_{1}-T \mid X_{0}\right)^{-1} y_{0}$, and so $\left(z_{1}-T\right) x=y_{0}$. Hence $\left(z_{1}-T^{F}\right) \hat{x}=\hat{y}_{0}=\hat{y}_{1}+$ $\hat{y}_{0}=\widehat{y}$ because $X_{1} \subset X_{T}\left(G_{1}\right) \subset X_{T}(F)$. Thus $z_{1}-T^{F}$ is surjective. Let $\left(z_{1}-T^{F}\right) \hat{x}=\hat{0}$. Then $\left(z_{1}-T\right) x \in X_{T}(F)$. We can write $x=x_{1}+x_{0}$ where $x_{i} \in X_{i}$ for $i=1,0$. Since $\left(z_{1}-T\right) x_{1} \in X_{1} \subset X_{T}\left(G_{1}\right) \subset X_{T}(F)$, we have $\left(z_{1}-T\right) x_{0}=\left(z_{1}-T\right) x-\left(z_{1}-T\right) x_{1} \in X_{T}(F)$. Hence $\left(z_{1}-T\right) x_{0} \in X_{T}(F) \cap$ $X_{T}\left(\bar{G}_{0}\right)=X_{T}(F \cap \bar{G})$ because $S_{T} \subset S \subset F$ and $S \subset G_{0}$. Then there exists an analytic function $f:\left(F \cap \bar{G}_{0}\right)^{c} \rightarrow X$ such that $(z-T) f(z) \equiv\left(z_{1}-T\right) x_{0}$. By [7, Proposition 2.2], we have $f(\boldsymbol{z}) \in X_{T}\left(F \cap \bar{G}_{0}\right) \subset X_{T}\left(\bar{G}_{0}\right)$, hence $(z-T)\left(z_{1}-T \mid X_{T}\left(\bar{G}_{0}\right)\right)^{-1} f(z)=\left(z-T \mid X_{T}\left(\bar{G}_{0}\right)\right)\left(z_{1}-T \mid X_{T}\left(\bar{G}_{0}\right)\right)^{-1} f(z)=\left(z_{1}-\right.$ $\left.T \mid X_{T}\left(\bar{G}_{0}\right)\right)^{-1}\left(z-T \mid X_{T}\left(\bar{G}_{0}\right)\right) f(z)=\left(z_{1}-T \mid X_{T}\left(\bar{G}_{0}\right)\right)^{-1}\left(z_{1}-T\right) x_{0}=x_{0}$ on F^{c} be-
cause $x_{0} \in X_{T}\left(\bar{G}_{0}\right)$. This implies $x_{0} \in X_{T}(F)$. Then $x=x_{1}+x_{0} \in X_{T}(F)$, hence $\hat{x}=\hat{0}$. Thus $z_{1}-T^{F}$ is injective.
$(3) \Rightarrow(4)$. Let $Y=X_{T}(\bar{G})$ for all open sets $G \supset S$.
$(4) \Rightarrow(2)$. We show first $S_{T} \subset S$. Let D be an open set in C with $D \cap S=\varnothing$, and $f: D \rightarrow X$ be an analytic function such that $(z-T) f(z) \equiv 0$ on D. We have only to show $f(z) \equiv 0$ on D. We may assume D to be an open disc. Then there exists an open disc G with $\bar{G} \subset D$. Since \bar{G}^{c} is an open set containing S, there exists $Y \in \operatorname{Lat}(T)$ such that $\sigma(T \mid Y) \subset G^{c}$ and $\sigma\left(T^{Y}\right) \subset \bar{G} \cup S$. Then $\left(z-T^{Y}\right) \widehat{f(z)} \equiv \hat{0}$ on D. Since $D \cap \rho\left(T^{Y}\right) \neq \varnothing$, we have $\widehat{f(z)} \equiv 0$ on $D \cap \rho\left(T^{Y}\right)$, hence $\widehat{f(z)} \equiv \widehat{0}$ on D because $\widehat{f(z)}$ is analytic on D. Hence $f(z) \in Y$ on D, and so $(z-T) f(z) \equiv$ $(z-T \mid Y) f(z) \equiv 0$ on D. If $f(z) \not \equiv 0$ on D, then it is easy to show $D \subset \sigma_{p}(T \mid Y) \subset \sigma(T \mid Y) \subset G^{c}$ where $\sigma_{p}(T \mid Y)$ is the point spectrum of $T \mid Y$. This is a contradiction. Thus $f(z) \equiv 0$ on D.

We show next $X_{T}(F)=X(T, F)$ for all closed sets $F \supset S$. Since $F \supset S_{T}$, we have only to show that $X_{T}(F)$ is closed by Lemma 1. We may assume $F \subset \sigma(T)$. Let $G \supset F$ be any open set. Then there exists $Y \in \operatorname{Lat}(T)$. such that $\sigma(T \mid Y) \subset \bar{G}$ and $\sigma\left(T^{Y}\right) \subset G^{c} \cup S$. Since G^{c} and S are disjoint closed sets, by the Riesz decomposition theorem, there exist Z_{1} and Z_{0} in Lat $\left(T^{Y}\right)$ such that $X / Y=Z_{1} \oplus Z_{0}$, and we write $T^{Y}=U_{1} \oplus U_{0}$ with $\sigma\left(U_{1}\right) \subset G^{c}$ and $\sigma\left(U_{0}\right) \subset S$ where $U_{i}=T^{Y} \mid Z_{i}$ for $i=1,0$. Let $x \in$ $X_{T}(F)$ be given. Then there exists an analytic function $f: F^{c} \rightarrow X$ such that $(z-T) f(z) \equiv x$ on F^{C}. Hence we can write $\left(z-T^{Y}\right) \widehat{f(z)}=$ $\left(z-U_{1}\right) g_{1}(z) \oplus\left(z-U_{0}\right) g_{0}(z)=\widehat{x}_{1} \oplus \widehat{x}_{0}=\widehat{x}$ on F^{C} for $\widehat{f(z)}=g_{1}(z) \oplus g_{0}(z)$ with $g_{i}(z) \in Z_{i}$ for $i=1,0$. Since $\sigma\left(U_{1}\right) \subset G^{c}$, we can extend $g_{1}(z)$ analytically on $F^{C} \cup G=C$. And since $g_{1}(z)=\left(z-U_{1}\right)^{-1} \widehat{x}_{1} \rightarrow \hat{0}$ as $|z| \rightarrow \infty$, we have $g_{1}(z) \equiv \hat{0}$ by Liouville's theorem, and $\hat{x}_{1}=\hat{0}$. Hence $\hat{x}=\hat{x}_{0} \in Z_{0}$. Thus $\quad X_{T}(F) \subset \Pi^{-1}\left(Z_{0}\right)$ where $\Pi: X \rightarrow Z_{1} \oplus Z_{0}=X / Y$ is the canonical mapping. We show next $\Pi^{-1}\left(\boldsymbol{Z}_{0}\right) \subset X_{T}(\bar{G})$. Let $x \in \Pi^{-1}\left(Z_{0}\right)$ be given. Then $\hat{x} \in Z_{0}$, and so $\left(z-T^{Y}\right)\left(z-U_{0}\right)^{-1} \hat{x}=\hat{x}$ on $\rho\left(U_{0}\right) \supset S^{C}$. Hence $\hat{x} \in X_{T^{Y}}(S)$, and so $x \in X_{T}\left(S \cup \sigma(T \mid Y) \cup S_{T}\right) \subset X_{T}(\bar{G})$ by Lemma 2. Hence $X_{T}(F) \subset \Pi^{-1}\left(Z_{0}\right) \subset$ $X_{T}(\bar{G})$. Since $G \supset F$ is any open set and $S_{T} \subset S \subset F$, we have $X_{T}(F) \subset \bigcap$ $\left\{\Pi^{-1}\left(Z_{0}\right) \mid F \subset G\right\} \subset \bigcap\left\{X_{T}(\bar{G}) \mid F \subset G\right\}=X_{T}(F) . \quad$ Thus $X_{T}(F)=\bigcap\left\{\Pi^{-1}\left(Z_{0}\right) \mid F \subset G\right\}$ and $X_{T}(F)$ is closed.

We show $X_{T}\left(G_{1} \cup G_{0}\right)=X_{T}\left(G_{1}\right)+X_{T}\left(G_{0}\right)$ for all open sets G_{1} and G_{0} with $\bar{G}_{1} \cap S=\varnothing$ and $G_{0} \supset S$. It is clear that $X_{T}\left(G_{1} \cup G_{0}\right) \supset X_{T}\left(G_{1}\right), X_{T}\left(G_{0}\right)$ and $X_{T}\left(G_{1} \cup G_{0}\right) \supset X_{T}\left(G_{1}\right)+X_{T}\left(G_{0}\right)$. Conversely let $x \in X_{T}\left(G_{1} \cup G_{0}\right)$ be given. Then there exists a closed set $F \subset G_{1} \cup G_{0}$ and an analytic function $f: F^{c} \rightarrow X$ such that $(z-T) f(z) \equiv x$ on F^{c}. Then we can choose open
sets D_{1} and D_{0} such that $\bar{D}_{i} \subset G_{i}$, for $i=1,0$, and $F \cup S \subset D_{1} \cup D_{0}$. And we can choose an open set D_{2} such that $S \subset D_{2}, \bar{D}_{2} \subset D_{0}$ and $\bar{D}_{2} \cap \bar{G}_{1}=\varnothing$. Since $G=\left(D_{1} \cap D_{0}\right) \cup D_{2}$ is an open set containing S, there exists $Y \in \operatorname{Lat}(T)$ such that $\sigma(T \mid Y) \subset \bar{G}$ and $\sigma\left(T^{Y}\right) \subset G^{c} \cup S$. Then $\left(z-T^{Y}\right) \hat{f}(\boldsymbol{z}) \equiv \hat{x}$ on \boldsymbol{F}^{C}. Since $\rho\left(T^{Y}\right) \supset G \cap S^{C} \supset D_{1} \cap D_{0}$, we can extend $\widehat{f(z)}$ analytically on $F^{C} \cup\left(D_{1} \cap D_{0}\right)=\left\{\left(F \backslash D_{1}\right) \cup\left(F \backslash D_{0}\right)\right\}^{C}$. Hence we can write $\hat{x}=\widehat{x}_{1}+\widehat{x}_{0}$ where $\hat{x}_{i} \in X_{T^{Y}}\left(F \backslash D_{j}\right)$, for $i \neq j$, by [4, Theorem 2.3]. Hence $x=x_{1}+x_{0}+y$ for some $y \in Y$. Then by Lemma $2, x_{1} \in X_{T}\left(\left(F \backslash D_{0}\right) \cup\right.$ $\bar{G})$, and so $x_{1} \in X_{T}\left(\bar{D}_{1}\right)+X_{T}\left(\bar{D}_{0}\right) \subset X_{T}\left(G_{1}\right)+X_{T}\left(G_{0}\right)$ by [4, Theorem 2.3]. Similarly $x_{0} \in X_{T}\left(\left(F \backslash D_{1}\right) \cup \bar{G} \subset\left(X_{T}\left(G_{0}\right)\right.\right.$ and $y \in Y \subset X_{T}(\bar{G}) \subset X_{T}\left(G_{0}\right)$. Thus $x \in X_{T}\left(G_{1}\right)+X_{T}\left(G_{0}\right)$ and $X_{T}\left(G_{1} \cup G_{0}\right) \subset X_{T}\left(G_{1}\right)+X_{T}\left(G_{0}\right)$.
$(2) \Rightarrow(1)$. Let $\left\{G_{1}, \cdots, G_{n} ; G_{0}\right\}$ be any S-covering of $\sigma(T)$. Then we can choose an S-covering $\left\{D_{1}, \cdots, D_{n} ; D_{0}\right\}$ of $\sigma(T)$ such that $\bar{D}_{i} \subset G_{i}$ for $i=1, \cdots, n, 0$. Then $X \subset X_{T}(\sigma(T)) \subset X_{T}\left(D_{1} \cup \cdots \cup D_{n} \cup D_{0}\right)=X_{T}\left(D_{1}\right)+$ $X_{T}\left(D_{2} \cup \cdots \cup D_{n} \cup D_{0}\right)=\cdots=X_{T}\left(D_{1}\right)+\cdots+X_{T}\left(D_{n}\right)+X_{T}\left(D_{0}\right) \subset X_{T}\left(\bar{D}_{1}\right)+$ $\cdots+X_{T}\left(\bar{D}_{n}\right)+X_{T}\left(\bar{D}_{0}\right)$. Since $D_{0} \supset S$, we have $X_{T}\left(\bar{D}_{0}\right)=X\left(T, \bar{D}_{0}\right)$ by the assumption. And since $\bar{D}_{i} \cap S=\varnothing$ for $i=1, \cdots, n$, we have $X_{T}\left(\bar{D}_{i}\right)=$ $X\left(T, \bar{D}_{i}\right)$ for $i=1, \cdots, n$ by Lemma 3 . Hence $X=X\left(T, \bar{D}_{1}\right)+\cdots+$ $X\left(T, \bar{D}_{n}\right)+X\left(T, \bar{D}_{0}\right)$. This implies that T is S-decomposable.

Remark. Lemmas 1 and 2 hold for all closed linear operators on a complex Banach space. Then can Theorem be extended to all closed linear operators?

References

[1] I. Bacalu, S-decomposable operators in a Banach space, Rev. Roum. Math. Pures et Appl. 20 (1975), 1101-1107.
[2] R. LaNge, Equivalent conditions for decomposable operators, Proc. Amer. Math. Soc. 82 (1981), 401-406.
[3] B. Nagy, Closed S-decomposable operators, Annales Univ. Sci. Budapest, Sectio Math. 22-23 (1979-1980), 143-149.
[4] M. Radjabalipour, Decomposable operators, Bull. Iranian Math. Soc. 9 (1978), 1L-49L.
[5] M. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
[6] K. Tanahashi, A characterization of decomposable operators, Tôhoku Math. J. 34 (1982), 295-300.
[7] F.-H. Vasilescu, Residually decomposable operators in Banach spaces, Tôhoku Math. J. 21 (1969), 509-522.

Tohoku College of Pharmacy
Komatsushima, Sendai, 983
Japan

