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Introduction. An isoparametric hypersurface in a sphere is an
orientable submanifold of the sphere which has codimension 1 and
constant principal curvatures. Cartan was the first to study such
hypersurfaces e.g. [1]. The subject seems to have been forgotten till it
was revived by Nomizu, who published a survey on E. Cartan’s theory
of isoparametric hypersurfaces [9]. Takagi and Takahashi applied results
of Hsiang and Lawson on orbits of codimension 1 to classify all homo-
geneous hypersurfaces in spheres [12]. This classification includes the
description of all hypersurfaces with- at most 3 distinet principal curva-
tures since Cartan had shown that all such hypersurfaces are homogene-
ous. In [7] and [8], Miinzner proved that the number g of distinet
principal curvatures of an isoparametric hypersurface in a sphere is 1,
2,38,4 or 6. Moreover, refining ideas of Cartan, he showed that each
such hypersurface is an open submanifold of a level surface of a homo-
geneous polynomial of degree g and characterized these polynomials by
two differential equations. Obviously, it remains to consider the cases
g = 4 and ¢ = 6 and to classify the corresponding polynomials. Of course,
this would be superfluous if all isoparametric hypersurfaces in a sphere
were homogeneous. As mentioned above, for g = 1, 2, 3 all hypersurfaces
are homogeneous. However, there exist non-homogeneous examples. The
first non-homogeneous examples were found by Ozeki and Takeuchi [10],
[11]. They constructed two infinite series of non-homogeneous isopara-
metric hypersurfaces. Recently, Ferus, Karcher, and Miinzner found—
for ¢ = 4—a new type of examples (constructed from representations of
a Clifford algebra) which includes all known non-homogeneous examples
and —with the exception of two manifolds—all homogeneous examples
[6]. They even constructed infinitely many infinite series of non-homo-
geneous hypersurfaces.

In this paper we develop a new algebraic approach to isoparametric
hypersurfaces in spheres. We concentrate on the case g = 4, but the
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case g = 6 could be treated similarly.

We start with the observation that on a finite-dimensional Euclidean
vector space (V, (-, -)) every homogeneous polynomial F:V — R of
degree 4 can be written in the form

F(z) = ¥z, x)* — (2/3)<{wzx}, 2)
where {---}: V' x VX V—V is a trilinear map (i.e., a triple system) satisfying

{2,202} = {X, 1,80 %0 @} for every permutation ¢ and
Hxyz}, wy = <z, {xyw}) for all x,y,2, we V.

Such triple systems are called symmetric. If F is the polynomial
associated with an isoparametric hypersurface in the unit sphere of
(V, -, ->), then the Cartan-Miinzner differential equations translate into
identities for the triple system (V,{---}). Triple systems satisfying
these identities are called isoparametric triple systems. These definitions,
simple consequences and examples are contained in §1. We point out
that the homogeneous examples are in close relation to simple compact
Jordan triple systems of rank 2. A typical example here is V =
Mat (2, ; C), » = 2 with {4, BY = (1/2) trace (AB* + BA*) and

F(A) = 3(A, A* — (AA'A, A) ,
{ABC} = AB'C + CB'A + BA'C + CA'B + AC'B + BC'A .

In §2 we consider Peirce decompositions of symmetric triple systems
relative to minimal and maximal tripotents. In the example V =
Mat (2, ; C) a minimal tripotent is E,,, the usual matrix unit, and the
corresponding Peirce decomposition is the eigenspace decomposition of the
endomorphism A — {E,,E,,A}. In the next section (§3) we compare our
method with the work of Ozeki and Takeuchi [10]. Using our setting
we derive a slightly improved version of one of their main results. In
§§4, 5 we introduce the main tool for our approach, Peirce decompositions
relative to orthogonal tripotents (e, ¢,). We prove that an isoparametric
triple system (V, {.--}) always contains two orthogonal minimal tripotents
(e, ¢;) and that (e, e,) induce a Peirce decomposition of V:

V= Vu@ VIO@ Vl-;@ sz@ Vze@ Vzo .
In the example V = Mat (2, ; C) minimal orthogonal tripotents are
(B, Ey). Putting V, = VP V; the corresponding Peirce decomposition
can symbolically be written in the form
V: < Vll‘ VIZ' V10>}1
AN
1 1 r2
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The main result of this paper, Theorem 5.22, shows that a symmetric
triple system is isoparametric if and only if it has a vector space de-
composition V=V, PV, DB VLD Ve P V,,P V, such that

(1) each element of V,,, V,, V,, and V,, is a scalar multiple of a
minimal tripotent

(2) each element of V};, V}; is a scalar multiple of a maximal tripotent

(3) <{xux22w12}y {xwxzoxm» + <{xuwzox12}y {x10x22x12}> =0

(4) there exist positive integers m,, m, such that dim(V, P V,,) =
m, + 1 =dim (V,, D V) and dim V,, = 2m,.

This result replaces the quite complicated triple system identities by the
more useful notions of tripotents and Peirce decompositions, a well-known
tool in nonassociative algebra.

We will use the results of this paper to get detailed insight into the
algebraic structure of isoparametric hypersurfaces in spheres, i.e., into
isoparametric triple systems. In [2] we explicitly work out the Peirce
decompositions relative to tripotents from V,;. In [4] we thoroughly
investigate FKM-triples, the isoparametric triple systems associated with
the isoparametric hypersurfaces first defined in [6]. Finally, in [3] we
classify isoparametric triple systems which have a Peirce decomposition
with V,=0= V,. Such triples are equivalent to triples satisfying
condition (A) of Ozeki and Takeuchi but not necessarily their quite
technical condition (B). We thus generalize the results of [10]. As it
turns out, every isoparametric triple system satisfying (A) is homogene-
ous or equivalent to an FKM-triple.

The authors express their thanks to the University of Virginia at
Charlottesville for its hospitality during their work on isoparametric
triple systems. The second-named author gratefully acknowledges the
support of the Deutsche Forschungsgemeinschaft.

1. The equivalence of isoparametric hypersurfaces in spheres with
isoparametric triple systems. In this section we show how to describe
isoparametric hypersurfaces in spheres with 4 distinet principal curvatures
by isoparametric triple systems and vice versa.

1.1. Throughout the paper let V denote a finite-dimensional real
vector space provided with a scalar product (-, :).

By definition, an isoparametric hypersurface in the (unit) sphere S*
of V is an oriented submanifold M of S* which has codimension 1 and
constant principal curvatures. Such hypersurfaces are studied in [1]-[12].
We state some of the results which will be used in the sequel. Let M
always denote an isoparametric hypersurface in S*.

(a) ([, Proposition 6]). Let M have the distinct principal curva-
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tures A, < --- <\, with corresponding multiplicities m,, ---, m,. Then,
taking subseripts mod g, we have m; = m,,,. If g is odd, then all multi-
plicities are equal. Note that we have

(1.1) dim V = 2 + (g9/2)(m, + m,) .

(b) ([7], see also [5, Theorem 10] and [10]). There exists a unique
maximal family 9~ = {M,, te(—1, 1)} of isoparametric hypersurfaces in
S* such that each M, is closed in S* and M is an open submanifold of
M; for some te(—1,1). Further, there exists a homogeneous polynomial
function F: V — R of degree g such that the following equations hold

1.2) {grad F(zx), grad F(x)) = g%z, )"
(1.3) AF(z) = (1/2)(m, — m,)g*Cx, )" .
Moreover, the maximal family .7~ is given by

(1.4) I ={M,=F't)nS*;te(—1,1)}.

Conversely, for each homogeneous polynomial F: V — R satisfying
(1.1) to (1.3) with positive integers m, and m,, the family .7~ given by
(1.4) defines a maximal family of isoparametric hypersurfaces in S* with
g distinct principal curvatures and multiplicities m,, m,.

(¢) ([8]). The only possible values for g are 1, 2, 3, 4 and 6.

(d) (1. If g <3, then M is homogeneous.

(e) The homogeneous isoparametric hypersurfaces are classified in
[12].

According to (c)-(e) only the cases g =4 and g = 6 remain to be
investigated. In this paper we begin the study of the case g = 4.

(f) Two maximal families . and .7~ of isoparametric hypersurfaces
given by the polynomials F. and F. (according to (b)) are said to be
equivalent if there exists an orthogonal transformation ¢: V., — V. such
that F(¢x) = = F.(x) for all z¢e V.

1.2. We give a general procedure for attaching to every homogene-
ous polynomial of degree 4 a triple product on V and vice versa.

By definition, a triple product on V is a trilinear map {---}:V X
V x V— V. Generalizing the “left multiplications” of an algebra, we
define endomorphisms T(u, v)e End V by T(u, v)w:= {uvw}, u, v, we V.
We sometimes write T(u) := T(u, u) for short.

Assume F: V — R is a homogeneous polynomial of degree 4. There
exists a unique totally symmetric 4-linear form F: Vx Vx Vx V—R
which satisfies Fi(z, «, «, x) = 3{x, ) — F(z), xc V. With F we define a
triple product {---}; on V by the relation
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Fu, v, w, x) = (2/3){uvw}z, x) , u, v, w,ccV.

The left multiplications of this triple product are sometimes denoted by
Tw(u, v).

N REMARK. It might seem more natural to define F such that
F:'(x, z, ¢, ) = F(x) holds and to define {---}; on V by the relation
Flu, v, w, ) = {uow)z, ). However, for the homogeneous isoparametric
hypersurfaces with g = 4 we will see in 1.5 that the natural triple product
(induced by a compact Jordan triple system) has F(u, v, w, z) =
2/3){{uvw}, x). To preserve the fruitful analogy with the homogeneous
case, we deiﬁne the triple product in the general situation using F
instead of F.

The main objects of this paper are isoparametric triple systems, i.e.,
a triple (V, <., ->, {---}) where (V, (-, ->) is a finite-dimensional Euclidean
space and {---} is a triple product on V (with “left multiplications”
T(u, v)) which has the following properties:
(ISO 1) {---} is totally symmetric,
(IS0 2)  ayzl, wy = {7, {xyw}),
(ISO 3) Haxwx), {xxx}) — 9z, 2){xxx}, ) + 18{x, x)* = 0,
(ISO 4) there exist positive integers m, and m, such that

(a) trace T(x, y) = 2(3 + 2m, + m,){x, ¥)

() dim V = 2(1 + m, + m,).
If no confusion is possible, we write V or (V,{---}) instead of
(V, <, >, {---}). More generally we call a triple {---} on V satisfying
only (ISO 1) and (ISO 2) a symmetric triple system. An easy computa-
tion shows

.LEMMA 1.1. Let F: V — R be a homogeneous polynomial of degree 4
and {---}; defined as above. Assume further that m, and m, are posi-
tive integers such that dim V = 2(m, + m, + 1). Then F satisfies (1.2)
and (1.3) with g = 4 if and only if

(a) axxx}p, {xxx}ry — 9 x, o) {axxlyr, ) + 18{x, )°* = 0 and
(b) trace Tx(zx, y) = 28 + 2m, + m,){x, ¥y for all x,yec V.

Hence the polynomials describing maximal families of isoparametric
hypersurfaces with 4 distinct principal curvatures are in 1-1 corre-
spondence with isoparametric triple systems.

We note that F is determined by {--:}p F(®) = 8{x, 2)*—
2/3){{zwz}, x.

1.8. A very important feature of isoparametric triple systems is
that they occur in pairs.
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LemMA 1.2. Let (V,{---}) be a symmetric triple system and define
{---} on V by

(1.5) {xy2} = 3w, oz + (y, 2)x + {2, )y) — {*yz} .

Then (V, (-, >, {---}) 1s again a symmetric triple system. Further
{---}' ={---}. If F is the polynomial associated with (V,{---}), then
the polynomial associated with (V,{---Y) is —F. If (V,{---}) is an
isoparametric triple, then (V,{---}) is also isoparametric with m, = m,
and m; = m,.

We call (V, (-, ->,{--}), where {---} is defined in Lemma 1.3, the
dual triple system of (V,<{-, ->, {---}) and abbreviate it by V’. The left
multiplications in V' are denoted by 7"(u,v). The dual triple system
naturally occurs when one translates the notion of “equivalence of
isoparametric hypersurfaces” into the language of triple systems (see
Lemma 1.3).

Let V and W be symmetric triple systems. We call (V,{---};) and
(W, {-++}w) isomorphic (as triple systems), if there exists an orthogonal
map ¢: V — W satisfying ¢({xyz},) = {42, ¢y, ¢2}» for all x,y,2e V. We
say V and W are equivalent if V is isomorphic to W or to W, i.e., if
there exists an orthogonal map ¢: V — W such that g{xxx}, = {¢z, o2, 2}y
or ¢{xxx}, = e, xdéx — {¢x, éx, #x}». This is, obviously, an equivalence
relation.

LEMMA 1.8. Let & and 7 be two maximal families of isopara-
metric hypersurfaces in the unit sphere of V with g = 4, let Vo and V.-
be the corresponding isoparametric triple systems. Then & and 7 are
equivalent if and only if Vo and V., are equivalent.

ProOF. Let F. and F. be the polynomials describing & and 7~
according to 1.1.(b). By definition & and .7~ are equivalent if and only
if there exists an orthogonal ¢: V. — V., such that F.(¢x) = +=F.(x)
for all xe V.. But this is equivalent to 3<{x, x)*—(2/3){{gx, ¢z, sx}., x> =
+(8¢x, ) — (2/3){{xxx}s, ©)) and therefore (by differentiation) to
9z, xd)x — 207 '({px, o, dx}-) = (9 x, x)x — 2{xxr},). From this the
assertion easily follows.

1.4. We will use the defining identity (ISO 8) of an isoparametric
triple system in its linearized form. Linearization means that we replace
2 by  + au for @, u € V, A € R and equate the coefficients of the different
powers of A in the resulting expression. In our setting linearization is
the same as differentiation. We use the abbreviation uv* for the linear
map w — {w, v)u. We get
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(1.6) {xx{rzx}} — 6{x, x){xxr} — 3{xxx}, xDx + 18{x, xDx =0 .
a.mn 3T(x)* + 2T(w, {wxx}) — 18{x, x) T(x) — 3<{x, {xxx})Ild
— 12(x{xxw}* + {wox}e*) + 18{x, x)*Id + T2{x, x)xax* =0 .
(1.8) T(x, w)T(x) + T(x)T(x, w) + T(x, {xou}) + 1/3)T(u, {xxx})
— 6<x, u) T(x) — 6<x, ) T(x, u) — 2{{xxx}, uyld
— 2u{xxx}* + {wxcju*) — 6(x{rau}* + {rau}xr*)
+ 12{x, )<z, upld + 24{(x, uyxx* + 12{x, )(xu* + ux*) =0.
1.9) 2T (x, u)T(x, v) + 2T(x, v)T(x, u) + T(u, v)T(x) + T(x)T(u, v)
+ T(v, {waxu}) + 2T(x, {xuv}) + T(u, {zav}) — 12{=z, u) T(x, v)
— 12z, v) T(x, w) — 6{u, v)T(x) — 6{x, x> T(u, v)
— 6{xav}, uyld — 6(u{xxv}* + {wxaxviu*)
— 6(v{xzu}* + {xxulv*) — 12(x{xuv}* + {xuvla™)
+ 124z, x)<u, v)Id + 24<x, wy<{x, v)Id + 24{u, v)xx*
+ 244w, uy(xv* + va*) + 24<x, v)(eu* + ux*)
+ 12{z, x)(vu* + uv*) = 0.
(1.10) T(w, ) T(x, v) + T(x, u)T(w, v) + T(w, v)T(x, w) + T(x, v)T(w, w)
+ T(u, v)T(x, w) + T(x, w)T(u, v) + T(v, {uwz}) + T(w, {xuv})
+ T(z, {wuv}) + T(u, {zwv}) — 6<{x, u) T(w, v) — 6{w, u) T(x, v)
— 6<w, v) T(x, u) — 6<x, v) T(w, u) — 6<u, v) T(x, w)
— 6<z, w)T(u, v) — 6{{xwv}, upld — 6(u{zwov}* + {xwvju*)
— 6(v{zwul* + {xwulv*) — 6(w{zuv}* + {Fuviw*)
— 6(x{wuv}* + {wuvle*) + 12(Cx, wH<u, v) + {w, uy{zx, v)
+ L&, uylw, v))Id + 12{u, v)(xw* + wr*)
+ 12{w, uy(xv™ + va*) + 12{z, u)(wv* + vw*)
+ 124w, v)(xu* + uw™*) + 12{w, x)(vu* + uv*)
+ 12<x, v)(wu™* + uw*) = 0.
REMARK. Clearly, equations (1.7)-(1.10) are all equivalent to (1.6).
We list them here because we will use them frequently.

We will often consider symmetric triple systems. The failure of an
arbitrary symmetric triple system V to satisfy the identity (ISO 3) is
measured by the polynomial _#: V — V, where

(1.11) A (1) = {xx{ozx)} — 6{x, 2){xex} — 3{{xxx}, x)x + 18<x, 2)% .

Since _~ is homogeneous of degree 5 there exists a uniquely determined
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totally-symmetric five-linear map Z:V X V x V x V x V — V satisfying
A (¢, x, ¢, %, %) = _#(x), e V. We will use the abbreviations _#(x; u)
or #(x;u,v) - to denote _Z(x, x, x, x, u) or _Z (%, x, x, w,v) ---. We
now express the five-linear map by the triple product. Indeed, since
(1.7) to (1.10) are the successive linearizations of (1.6) we see that

1.12) 5_# (x; u) = left hand side of (1.7) applied to u

(1.13) (10/3)_# (x; u, v) = left hand side of (1.8) applied to v
(1.14) 10_# (x; u, v, w) = left hand side of (1.9) applied to w
(1.15) 10_#(x, w, v, w, y) = left hand side of (1.10) applied to .

LEMMA 1.4. Let V be a symmetric triple system.
(a) For w;eV,i=1,---,6 we have .

<%(x1’ Loy T3y X4y xb), x6> = <%(xa Wy Loy Loy Loy Lo (5)), xo(8)>

for every permutation o e S,.
(b) Let _#' be defined for the dual system V' in the same way as
A 18 defined for V. Then _#(x) = _#"(x) for all xe V.

ProOF. (a) We define the polynomial function h:V — R, h(x) =
(A (x), ). Using (ISO 1) and (ISO 2) it is easy to see that d h(u) =
6{_#(x), uy and d:h(u, v) =6 - 5{_Z(x; v), uy. Since d:h(u, v) is symmetric
in 4 and v we get {_7Z(x;v), uy = {#Z(x; u), v> which easily implies (a).

(b) A straightforward computation shows {(_#Z(x), 2) = {Z"'(), x).
Since 6_#(x) = grad h(x) we get (b).

1.5. We close this section by presenting all known examples of
isoparametric triple systems.

(a) Homogeneous isoparametric triple systems. An isoparametric
triple is called homogeneous if the corresponding isoparametric hypersur-
faces are homogeneous. We recall from [7] that an isoparametric hyper-
surface M of the sphere in the Euclidean space (V, {,)) is called
homogeneous if there exists a group of orthogonal transformations of
(V,<,>) which leaves M invariant and acts transitively on M. The
results of [12] show that every homogeneous isoparametric triple system
is equivalent to one of the following three types:

(a.1) Let F be R, C or H (the quaternions). We consider the real
vector space V = Mat (p, ; F) of p X r matrices with coefficients in F.
For x = (x,;) € V define ¥ = (Z,;) where “-” is the canonical involution in
F. Then {xz, y) = (1/2) trace (x* + F'y) is a scalar product on V and

(1.16) {xyz} = xy'z + 2y'c + YTz + 2Ty + 22’y + yz'x
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is a totally symmetric triple system. It is isoparametric if p = 2 and
r=3incase F=R, or r =2 in case F =C, H.

(a.2) For K = R, C define O(5; K) = {xeMat (5, 5; K); 2* = —a}. It
is easy to check that O(5; K) is closed under the triple product (1.16);
hence, the triple product (1.16) induces a triple system on O(5; K) which
is isoparametric.

(a.3) Let O be the division Cayley algebra over R and by O° its
complexification. Since O° is again a Cayley algebra it has a canonical
involution 2 — 2'. Every « ¢ O° has unique decomposition # = a + 7b with
a,be0. We define T = a — ib and consider V := 0° @ O° as a real vector
space. The elements of V are written in the form z = (x, x,) with
x, € 0°. Then {x, y> = Re (x.9; + ¥.% + x,¥: + ¥.%,) is a scalar product on
V and {xxx} = 6(x, Ty, + .7, - Xz, 2,705, + X, - T,x,) defines, by linearization,
a totally symmetric triple on V. It can be shown that it is a homo-
geneous isoparametric triple system. Summing up what we have ex-
tracted from [9], we have the following list of all homogeneous isopara-
metric triple systems (up to equivalence):

Vv dim V my Mo
Mat (2, r; R), r=3 2r 1 r—2
Mat 2, r; C), r=2 4r 2 2r—3
Mat (2, r; H), r=2 8r 4 4r—5
O(5; R) 10 2 2
0(5; C) 20 4 5
(0CPO°)r 32 6 9

(b) Isoparametric triple systems of FKM-type. Let (V, (-, -)>) be an
Euclidean space. Assume P, ---, P,, m = 1, is a Clifford system ([6, 3.2]).
If dimV = 2(m, + m, + 1) with m = m, and a positive integer m,, then

{rxx} = 3[(00, xHx + 22‘6 {P,x, x)P,x]

defines an isoparametric triple system on V. The corresponding iso-
parametric hypersurfaces were first considered in [6].

2. Peirce decomposition relative to a single tripotent. Through-
out this section let V= (V,{--:}) be a symmetric triple system. We
introduce the notion of a tripotent of V and study its Peirce decom-
position.

2.1. As in §1.2 we associate to (V,{---}) the polynomial F(x) =
3, x)* — (2/8){{wza}, x).
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LemMA 2.1. (a) The extremal points c € S* of F|S* satisfy {ccc} € Re.

(b) Let ccS* with {ccc} = ke for some ke R. Then the following
are equivalent:

(1) () =0,

(2) kef3, 6}

(38) F(e) =1 (for £ =38) or F(c) = —1 (for £ = 6).

(¢) If F|S* is mot constant and if _#(c) =0 for each extremal
point of F|S*, then F(S*) =[—1,1] and F*(—1) N S* are the points of
S* where F|S* is minimal and F~*(1)NS* are the points of S* where
F|S8* is maximal.

Proor. (a) Obviously, d,[F(x) — {({z,x2) —1)] =0 for all ueV if
and only if 0 = d,F(u)—2L<x, u) = 12{=, z){x, u) —(8/3){xxx}, u) —2{{x, u)
for all we V. This is equivalent with {zxxx} = k2 for some k¢ R.

(b) is straightforward.

(¢) By assumption F(S*) =|[a, 8], a, 3¢ R, @ < 3. Each point ¢
in F*a)NS* or F7(B) N S* is an extremal point. Then _#(c) =0,
whence F(¢) = 1 by (b). This implies « = —1, 8 = 1.

For an element ce V with {ccc} = k¢ we define
Vie) ={xe V; T(c)x = px, {x,¢) =0}, peR.

Obviously, V = Re® (@,.r V.c)). From (1.5) we derive for (¢, x) =0
that {ccx) = 3x — {ccx}. Thus {ccx} = pxiff {ccx} = (3 — px, i.e.,

2.1) Vi_ule) = Vule) for all preR.

THEOREM 2.2. (a) Let ce V with {c,¢c) =1 and {ccc} = 6c. Then
the following are equivalent:

(1) #Z(;uw) =0 for all ueV

(2) V=Re® Vi) D Vic)

(38) V'=Rc® (V")i(ec) D (V')(c)-
In this case, we have (V'),(c) = Vy(e), (V")(e) = Vie).

(b) Let ec V with {e,e) =1 and {eee} = 3e. Then the following are
equivalent:

(1) #Z(e;u)=0 for all ueV

(2) V=Re®Vie) D Vie)

(8) V' = Re® (V')ye) D (V')u(e).
In this case, we have (V') (e) = Vi(e), (V') (e) = V(e).

() Assume there are positive imtegers m,, m, such that dim V =
21 + m, + m,).

(1) Let ¢ satisfy one of the equivalent conditions of (a). Then
trace T(c) = 2(8 + 2m, + m,) iff dim V,(¢) = 2m, + m, ¢ff dim Vy(¢) = m, + 1.
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(2) Let e satisfy one of the equivalent conditions of (b). Then
trace T(e) = 2(8 + 2m, + m,) iff dim Vy(e) = m, + 1 if dim V,(e) = 2m, + m,.

Proor. (a) By (1.12) we know that (1) is equivalent to (1.7), hence
to T(c)* — 2T(c) — 24¢cc* = 0. Since T(c)|Rc = 61d we get T(c)(Re)*
(Re)*. Therefore the last equation is satisfied iff the restricted endomor-
phism satisfies the equation z? — 2z = 0, which is obviously equivalent
to (2). The statement (2) = (3) follows from (2.1).

(b) By Lemma 1.7.b we have _#(e¢; u) = 0iff _#"(e; u) = 0. Hence
(b) follows from (a) applied to V' and e instead of V and ec.

(e) is a consequence of (a) resp. (b) and (ISO 4).

2.2. In this subsection we consider an element ¢e V with (¢, ¢) =1,
{ccc} = 6¢ and _#Z(c;u) =0 for all ue V. Then every x€ V has a de-
composition
(2.2) x = ac P x,(c) P xy(c)
with ¢ ¢ R and z.¢€ V.ic). When it is clear which element ¢ is referred
to we simply write V. instead of V.c) and x. instead of wz.(c). It is
also convenient to introduce the abbreviation zoy := {xcy}, x,yc V. We

remark that o defines a commutative algebra on V. From the context
it will always be clear which element ¢ is used to define xoy.

THEOREM 2.3. Let ce V, {¢,¢) =1, {cec} = 6¢ and _#(c;u) =0 for
all ueV.

(@) A#Z(c;u,v) =0 for all w,veV iff the following multiplication
rules hold for wu, v.eV, p#=20,2:

(2.3) Uyo ¥y = 0
(2.4) Ugov, € V,
(25> U0V = 2<u2, ’02>C + (u2°'u2)o .

(b) Assume #(c;u,v) =0 for all w,ve V. Then _#(c;u,v, w) =20
Jor all w,v,weV iff the following identities are satisfied for all
WUy Vg Wu € Ve ‘
(2.6) {ugvowe} = 2({tho, Vo)W + (Vo WPty + {Wo, U)¥o) € Vi(C)
(2.7 oWy} = Ugo (We0W,) + Vo0 (U0 w,) € Vy(e)
(2.8) {ueWs} = {toy Vo0 Wype + [V 0 (W0 Ug) + Wyo (v, 0 uo)lo + {ugv,w,},
(2.9) {uw,w,} = 2({ty, V)W, + Vs, W)Uy + Wy Up)Vy) — Uy © (V30 W,)g

— V0 (W0 Uy)y — Wy o (U 0 V,)y + {Uv,w,)o € Viy(e) D Vile) .

ProOF. We choose u, v and w in the various eigenspaces of T(c)
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and evaluate (1.8) and (1.9).

For a symmetric triple system V an element ¢e V with the proper-
ties {e,¢) =1, {ccc} =6¢c and _#Z(c;u,v, w) =0 for all u,v,weV is
called a minimal tripotent. We recall from Theorem 2.2.a that the
condition _#(¢c; u, v, w) =0 for all u, v, we V implies the existence of
the decomposition V = Re @ V,(¢) @ V(e) which we call the Peirce decom-
position of V relative to ¢ and the validity of the formulas (2.3) to (2.9)
which we refer to as Peirce multiplication rules. The decomposition
(2.2) is called the Peirce decomposition of x (relative to ¢) and the spaces
V.(c) are said to be the Peirce spaces of c.

REMARK 2.4. (a) The notion of a tripotent in a triple system is
analogous to the notion of an idempotent in an algebra. In many
important classes of algebras an idempotent induces a ‘“Peirce decompo-
sition” of the algebra. Because of this we choose the name Peirce de-
composition also in the case of triple systems.

(b) If V is not only symmetric, but even isoparametric, then a
minimal tripotent of V is just an element ¢ of V with <{¢,¢) =1 and
{ecc} = 6¢. By (ISO 4) and Theorem 2.2.c we know in this case dim V,(¢c) =
2m, + m, > 0 and dim V,(¢) = m, + 1 > 0.

Let F be the polynomial associated to the isoparametric triple V
according to Lemma 1.1. Then (ISO 4) implies that F restricted to the
unit sphere S* of V is not constant. Therefore F~'(—1)N S* are the
minima of F|S* by Lemma 2.1.c. Moreover, Lemma 2.1.c shows that
F-(—1)N S* is the set of the minimal tripotents of V. This justifies
the adjective “minimal”.

It is known (see e.g. [5]) that the family of isoparametric hypersur-
faces described by F has exactly two focal manifolds, M_ = F~*(—-1)N S*
and M, = F'(1) N S*. Therefore the set of minimal tripotents of V
coincides with the focal manifold M _.

(¢) To give examples of minimal tripotents we consider the iso-
parametric triple system Mat (2, »; F) as defined in §1.5.(a.1). We denote
by E,; the usual matrix units. Then each E,; is a minimal tripotent.
The Peirce spaces V.(E,;) are V(E,;) = {aE,;; ac F7} @ FE,;  @,.; FE,,
where F~ denotes the orthogonal complement of 1 in F, e.g. R~ =0,
and VD(Elj) = ek¢j FEzk-

(d) If ¢ is a minimal tripotent of the symmetric triple system V,
every fe Vi(e) with {f, f> = 1 satisfies {fff} = 6f by (2.6). In particular,
if V is isoparametric, every fe V,¢) with {f, f) =1 is a minimal
tripotent.

(e) The multiplication rules (2.4) and (2.8) are consequences of the
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remaining ones.

(f) Let ¢ be a minimal tripotent of the symmetric triple system V.
From Theorem 2.3 it is clear that all triple products are known once
Upo Vyy (UyoVy)yy {UWyw,}, and {w,w,w,}, are known for all w,, v, But
(Uy 0 v,), is determined by u,ow, via (u,ov, Uy = {U,, U,°v,» and similarly
{uw,w,}, is determined by {u,v,w,},, Hence all triple products are known
as soon as u,0v, and {u,v,w,}, are known for all u,, v,, w.e€ V,.

2.3. This subsection is the dual version of §2.2, i.e., we consider
an element ¢ of the symmetric triple system V with {e¢, ¢) = 1, {eee} = 3¢
and _#Z(e;u) =0 for all we V. Hence, by Theorem 2.2.b, we have a
decomposition V = Re@ Vy(e) P Vi(¢) where V() = {xeV; T(e)x = px,
(e, ¢y = 0}. Correspondingly, each element 2 of V has a decomposition
x = aeP x,(e) D x,(¢). When no confusion is possible we often write V.,
instead of V.(e) and z, instead of z.(e). As in §2.2, we introduce an
algebra “[]” on V, depending on e, via the definition

vy = {wey}, 2x,ycV.

THEOREM 2.5. Assume ecV, {(¢,e) =1, {eee} = 8¢ and _#(e;u) =0
Jor all u,ve V.

(@) Then _#(e;u,v) =0 for all u,veV if the following multipli-
cation rules hold for all w., v.€ V, p#=1,3:

(2.10) us [J 05 = 3us, v5)e
(2.11) us v, eV,
(2.12) w, v, = Uy, vpe + (u, o), -

(b) Suppose _#(e; u, v) =0 for all w,ve V. Then #(c;u, v, w) =0
Jor all w,v,weV iff the following identities are satisfied for all
Upy Vyy W € Vi

(2.13) {usvw5} = {Us, Vs)Ws + Vs, Wepts + {Ws, Us)V; € Vi(e)
(2.14) {uvsw,} = 3{us, voyw, — us [ (s [Jw,) — v, [ (us (] w,) € Vi(e)
(2.15) {uw,w,} = (v, ] w,, usye + 3<v,, wHu,
= [v, O (w; O ue) + w, [ (v, O ug)le + {usvywi}s
(2.16) fupw.} = u, (v, Jw,) + v, (w, dw,) + w, T (u, [ oy)
+ {www}s € Vi(e) PVy(e) .

ProoF. This can be proved in the same way as Theorem 2.3 or one
considers the dual system V’ and uses Theorem 2.3 for V' and e.

An element e of a symmetric triple V satisfying (e, e) = 1, {eee} = 3e
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and _#Z(e;u, v, w) =0 for all u,v, we V is called a mazimal tripotent.
If V is isoparametric, then, by Lemma 2.1.c, every maximal tripotent
is a maximum of F|S* where F is the polynomial associated to V. As
for minimal tripotents, the decomposition V = Re@ V(e) D Vy(e) is said
to be the Peirce decomposition of V relative to e, the corresponding
decomposition of x € V is the Peirce decomposition of x relative to e, the
spaces V.(e) are called Peirce spaces, and the identities (2.10) to (2.16) are
referred to as Peirce multiplication rules. Analogous remarks as Remark
2.4.(b), (d), (e) and (f) apply in the case of maximal tripotents. Besides
these we have

REMARK 2.6. (a) It is easy to see that for a symmetric triple
system V the following are equivalent:

(i) e is a maximal (resp. minimal) tripotent of V

(ii) e is a minimal (resp. maximal) tripotent of V.

(b) Examples for maximal tripotents of the isoparametric triple
system M(2, »; F) are (V' 2)"\(E,; + E,;) for {i, 5} N {k, 1} = @. The Peirce
spaces for e = (V' 2) Y(E, + E,,) are

Vie) = R(E, — E,) @ F(E,, + E,)
Vl(e) = F_En @ F—En @ F(Elz - E21) @ (kga FElk 69 FEzl)

where F~ is the orthogonal complement of 1 in F.

(¢) Similarly to Remark 2.4.(f) one gets: Let ¢ be a maximal
tripotent of the symmetric triple system V. Then all triple products
are known once v, [ ] v, and {v,v,,}, are known for every v,¢ V..

2.4. In this subsection we define the subspace Vi(c) of V,(¢) where
¢ is a minimal tripotent of the symmetric triple system V. If V is
isoparametric, every fe Vi(c) with {f, f> =1 has essentially the same
Peirce decomposition as ¢. We point out that the results of this sub-
section are not used in §3.

The formulas (2.3), (2.4) and (2.5) imply that the algebra “o” defined
by 2oy = {xcy} is determined by the operation of V,(c) on V,(c). In case
V is isoparametric one can show that this operation is faithful.

In the general situation where ¢ is a minimal tripotent of the
symmetric triple system V we introduce that part of V,(c¢) where the
operation of V(c) is trivial:

2.17) Vile) = {we Vy(e); Vie)ox = 0} .
It will be convenient to have also the following abbreviation.
(2.18) Vi(c) := Re @ Vie) .
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We give an example for Vi(c): Let V = Mat (2, »; F) as defined in
§1.5.(a.1). Using Remark 2.4.(c) it is easy to check that Vi(&,;) = F-E,;
where F~ is the orthogonal complement of 1 in F.

In the following lemma we use the notation US© W to denote the
orthogonal complement of W in the Euclidean space U.

LEMMA 2.7. Let ¢ be a minimal tripotent of the symmetric triple
system V. '

(a) If xte Vi(c), then xoy =0 for all ye VO (Re @ Vi(e)).

(b) For every ye Vi), {y,y) =1, we have

Vi) cVy(y) = {ve V, T(y)v = 0} .
(¢) If Vic) contains a minimal tripotent, then
{uvw} = 2({u, VYW + v, wHu + {w, uyv)

Jor all w, v, we Vi(c).

(d) We assume that V(c) has a basis consisting of minimal tri-
potents. If uwe VE(c) is a minimal tripotent with dim V(c) = dim Vy(u),
then

Viu) = Vile) and Vy(w) = (Vic) D Be) © Ru .
Moreover, {V(c), u, Vic)} = 0.

ProOF. (a) By the definition of Vi(¢) we have 250V (¢) = 0, and for
¥, € Vy(c) we conclude {x50y,, z,» = 0 hence x50y, = 2{a%, y,y¢ by (2.5).
This shows (a).

(b) By (2.3) and (2.7) we get T(y)e =yoy =0 and T(H)u = 2yo
(Youz) =0.

(¢) follows from (b) and (2.6) applied to the minimal tripotent
y e Vye).

(d) We write u in the form w = ac + u; and let ¥y be a minimal
tripotent of Viy(¢). Then T(u)y = a*T(c)y + 2auscy + T(u)y = 0 where
the last summand is zero because of (b) and (2.3) applied to y. This
shows V(¢) c V(u) and therefore V,(u) = V,(¢) by our assumption. Since
Viu) = VO (Ru® V,(u)) the second assertion follows. Finally,
{Vile), u, Vi(e)} = {Vo(w), u, Vi(u)} = 0 by (2.3) applied to u.

The assumptions of parts (¢) and (d) of Lemma 2.7 hold when V is
isoparametric:

COROLLARY 2.8. Let ¢ be a minimal tripotent of the isoparametric
triple system V.
(a) For all u,v, we Vi(c) we have
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fuvw} = 2(u, VYW + @, wiu + {w, u)v) .
(b) Let ue V¥(c) and {u,u) =1. Then
Viw) = Vi(e) and Vy(u) = (Vyc) D Rc) © Ru .
Moreover,
{(Vio)uVie)} =0.

In analogy to (2.17) and (2.18) we define
(2.19) Vile) = {xe Vie), x []Vi(e) = 0}
(2.20) VE(@e) = Re@® Vile) .

It is straightforward how to translate Lemma 2.7 and Corollary 2.8 to
the case of maximal tripotents.

3. Comparison with the work of H. Ozeki and M. Takeuchi.

3.1 A decomposition of a symmetric triple system relative to a
maximal tripotent as developed in § 2.3 also appears in [10], however in a
different setting. In this subsection we describe the procedure used in
[10] and identify the fundamental notions of [10]. This will help the
reader to translate the results of [10] into the language of triple
systems. Throughout §3.1 V denotes a symmetric triple system.

In [10] a point ¢ of the unit sphere S* of V is picked where the
restriction to S* of the polynomial F associated to V is maximal. In
case V is isoparametric, ¢ is a maximal tripotent. Therefore we will
assume in the sequel that e is a maximal tripotent of the symmetric triple
system V. Then one considers the map ¢ — F(te + x) where xe X =V O
Re. Obviously,

F(te + @) = fi(®) + tfi(@) + () + Ef(x) + /(@)

where f; is a homogeneous polynomial f;: X — R of degree 4 — j. It is
easy to see f,(x) = F(e) and f, = 0.

Using Theorem 2.2.(c) the following lemma becomes obvious (it is
essentially identical with [10, Lemma 5]).

LEMMA 3.1. The quadratic form f, = A = (1/2)d:F(e, e) can be written
as

fo@) = 2oy, @) — 3L, @)

where x,€ Vi) =Y and x,€ Vyle) = W. Moreover, dimY = 2m, + m,
and dim W = m, + 1iff trace T(c) = 2(8 + 2m, + m,).

In the sequel we assume that dimY = 2m, + m, and dim W = m, + 1.
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According to the procedure in [10] we now consider f, = B. Making
use of our abbreviation a []b = {aeb} we get

fi@) = d,Fe) = —(8/3){x, [, + 22, [ ] @ + @5 [ x5, @, + a5 .
Using (2.10), (2.11) and (2.12) it follows
3.1) filx) = =8, [, 2) for z=a,+2, =z;€ V).
Let (w$) be an orthogonal basis of W = V,(e¢). Then

(3.2) = [10, (3.7)] B(x) = fi(x) = 8 Eu'. D W5, T5)
where
(3.3) P, = —<{wi O, ) .

Finally, we consider f, = C. Since C is of degree 4 on X = V,(e) D
Vi(e) we may write

(8.4) = [10, (3.8)] C= hﬁ; G

where C, is the homogeneous part of degree h on W = V,(e) (and hence
of degree 4 — h on Y = V,(e)). Moreover, we define m, + 1 cubic forms
Qoy ***y qm, ON Y by

(3.5) = [10, (3.9)] C@) = 8 3 4,z w5 .
In the following lemma we identify the forms ¢ and compute the
explicit expressions for C, which are also contained in [10, Lemma 7].
LEMMA 38.2. The following formulas hold
(3.6) C, = F(x) = {x;, 2,)* — 2{(x, [ 2,); [ 2, ) = (&, £ )* — 2 Ea_‘, %

(3-7) 4o = (1/3)({&71:271&21}, w?>
(3.8) C, = 8w, [y, @, Oy — 6, 2,)<x,, @)
= 2 Y, {(grad p,, grad ps)<{ws, ) {wi, @) — 6<x, £,){Xs, T
(8.9) C.=0
(8.10) C, = (@, )" .
Proor. We expand C(x, + ;) = F(x, + x;) and collect the terms of
degree h in x;:
(*) F(x, 4+ a;) = F(x,) — &/3){x, w2}, ) + 6<x,, x1><033, L)
- 4<{x1w1x3}, xa> - (8/ 3)({3}3%:1:3}, x) + F(w,) .
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Using (2.16) and (2.12) we obtain C, = (&, x,)* — 2{(x, 1), [] @, 2.).
Since (2, [2,), = Ea AN L1y wiyw; we get CAREANEEMN x1> = Zcz De-

From (+) we derive C, = —(8/3){{zx.x.}, ) = —(8/3) X (w2}, ws)
{x;, wy, which implies (3.7).

Next, we conclude from (x) and (2.14) that C, = 8<x; [, 2, [ 2,) —
6<,, ,)<xs, Ts)-

Moreover, <&, [ @, @, (] ®,) = Sias {2, w5 s, wh) Cws (1w, wh [ ,).
Because grad p, = —2T(e, w?¥) we have (3.8).

Finally, (2.18) implies C, = —(8/3){{zsx:xs}, 2,) = 0 and C, = F(x,) =
8(w,, T5)? — (2/8){{wstss}, 25p = {5, 592 Thus (3.9) and (3.10) follow.

REMARK 3.8. As already mentioned in Remark 2.6.(c) the entire
triple system is determined by the functions V, X V, - V: (%, x,) — 2, [ 2,
and V, — V,;: a2, — {x,2,2,}, i.e., in view of (3.3) and (3.7) by the quadratic
forms (p,) and the cubic forms (g,). In [10, Theorem 1] Ozeki and Take-
uchi give a list of conditions on (p,) and (g,) Which are necessary and
sufficient for the corresponding triple system to be isoparametric. Rather
than just translating their result in the language of triple systems we
prefer to present a more direct proof of this result in the next sub-
sections. Thereby we also can derive a slightly improved version of [10,
Theorem 1].

In view of Section 5.5 we prefer to prove the theorem in §3.2 in
terms of minimal rather than maximal tripotents. In §3.3 we formulate
our results in terms of maximal tripotents and carry out the comparison
with [10].

3.2. In this subsection we consider a symmetric triple system V
and a minimal tripotent ¢ of V with corresponding Peirce decomposition
V=RcPV,PV, Theformula (2.6) is equivalent to saying that every
element fe V, with (f, f> =1 satisfies {fff} = 6f. In particular, if V
is isoparametric then f is a minimal tripotent. Since we want to
characterize isoparametric triple systems, a first step is to investigate
in general when every fe V, with {f, f) =1 is a minimal tripotent.

LEMMA 3.4. Let ¢ be a minimal tripotent of the symmetric triple
system V. Then every f e Vi) with {f, f) =1 is a minimal tripotent
off for all v,e V,, v,€ V, the following identities hold:

(@) T(vy, )*v, = Wy, Vo) T(w,, €)v,

(b) <vo°'02y T(v)v,) =0

(€) KT(w,)v,, T(wy, €)*ve) = 2{vq, Vo) {T(v:)Vs, Vo)

@) 3T (W)v, voy + 2{T(W)v;, T(v)ve) — 3{Vs, V)W, T(v;)v;)

—18¢v,, V) (v,, T(ve)v,) + 18wy, V) <{¥y, v,)* = 0.
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PROOF. By definition, f is a minimal tripotent if _#Z(f, f, u, v, w) =0
for all w, v, we V. We put h(zx, ¥y, 2, u, v, w) = {Z(x, ¥, 2, u, V), WH.
Then & is linear in each variable and totally symmetric. We say that
h is of type (ijk) if it is of degree ¢ resp. j resp. k in ¢ resp. v, resp. v,.
Clearly, 1 + j + k=6. It is also obvious that every fe V) with
{f, f> =1 1s a minimal tripotent iff all the expressions of type (ijk)
with £ = 2 vanish. Since ¢ is a minimal tripotent we already know
h(c, ¢, , y, 2, w) = 0. Moreover, {_#(v,), ) = 0 by (2.6) and Lemma 2.1.b.
Therefore we only need to consider the types (¢jk) where 0 < ¢ <1 and
2<k=<4. By (1.12) and (1.15) this can be done by using the identities
(1.7) and (1.8) and taking scalar products: For (1.14) we apply (1.7) for
x = v, to v, and take the scalar product with ¢: 0 = 3{T(v,)v,, Vo0 v,y +
2{T(We)Vo, Vo0 Voy — 18wy, Vo»{Vy0 ¥y, V.. Since v,0v, = 0 by (2.3), T(v,)v, =
6<v,, voov, by (2.6) and v,0v,e V, by (2.4), each of the three summands
vanishes. The remaining cases (123), (132), (042), (033) and (024) follow
similarly.

We will characterize when V satisfies (ISO 3), i.e., when _# =0 on
V.

LEMMA 3.5. Let ¢ be a minimal tripotent of the symmetric triple
system V. Then V satisfies (ISO 3) iff every fe Vi) with {f, f) =1
18 @ minimal tripotent and the following identities (a), (b) and (c) hold
Sfor all v;e V;:

(@) {v0,}, 00, =0

(b) <{'vz'vz'vz}y {vv0,)) = 6<")2; V) <{/U2’Uz'v2}, Vo)

(@ (A (v), v =0.

PrRoOF. We use the notation of the proof of the previous lemma.
Obviously, (ISO 8) is fulfilled iff A vanishes for all possible types (ijk).
But since ¢ is a minimal tripotent we know already that h is zero if
1 = 2. Moreover, h vanishes for (ijk) with k = 2 iff every f e Vi (¢) with
{f, f> =1 is a minimal tripotent. Hence the lemma follows if we can
show that ~ vanishes for all expressions of type (3jk) with 01 <1,
0k=<1, 14+ 35+ k=6, iff (a), (b) and (¢) hold. This is shown by
considering each type individually.

REMARK 3.6. Part (a) of Lemma 3.4 and (2.4) show that the linear
family of endomorphisms H(x,) := T(xs, ¢)|V.(e) has the property H(x,)* =
(&, 2o H(xs), i.e., {H(z,); xs€ V3} is a cubic space in the following sense:
Let (U, {-, -») and (V, {-, +)) be finite-dimensional Euclidean vector spaces
and H: U— End V a linear map satisfying (H(u)v, w) = (v, H(u)w) and
Hw)® = {u, wyH(u). Then H(U) is called a cubic space.



206 J. DORFMEISTER AND E. NEHER

LEmMMA 8.7. Let (V,<{-, ) and (U,<{-, +)) be finite-dimensional
Euclidean spaces and let H: U —End V be a linear map such that H(U)
18 a cubic space. Then for all uw,ve U:

(a) Hw)Hw)*+ Hw)*H(w) + Hw)Hw)Hw) = 2{u, v)HW) + {v, v) H(u).

(b) If dimU = 2, then trace H(u) = 0.

(¢) trace H(u)* = m{u, uy where m is an integer.

ProoF. (a) follows by linearization of H(u)® = {u, u)yH(u).

(b) Since dimU = 2 there exists a v € U with {», v> =1 and <{u, v> = 0.
Putting H, = Hw), H,= H(v), we get H,= H,H: + H:H, + H,H,H,,
hence trace H, = 8 trace H H? = 3 trace [(H,H. + H:H, + H.H H,)H?] =
9 trace H,H?, which implies (b).

(¢) We can assume dimU = 2. For every ue U with (u, u) =1 we
know that H(u)? is an orthogonal projection. Therefore trace H(u)? is
an integer. On the other hand w — trace H(u)* is a continuous function.
This implies (c).

The following lemma implies that in Lemma 3.4 we may substitute
(A (0;), v,) = 0 for 3{T(v,)v,, T(vy, €)*v;) = 2wy, V) T(V:)Vy, o).

LEMMA 3.8. Let ¢ be a minimal tripotent of the symmetric triple
system V. We assume
(1) T(vy, €)*v. = {vy, v T(w,, €)v, and
(2) (A(W,),v) =0
Jor all v;e V;. Let feV, satisfy
(8) (fov,, Tw)f)> =0
for all v,e V. Then
(@) TW)f, T(f, e)v,y = 2{f, S, T(w)vy and
(b) trace T'(w,, f) =0
for all veV,.

ProoF. (a) We may assume {f, f>=1. Then the self-adjoint
endomorphism T(f, ¢)|V, has the eigenvalues *=1and 0: V,= AP BPH Z
where A ={acV, foa=a}, B={beV,, fob= —b} and Z = {ze Vy
f oz = 0}, correspondingly », =a + b + z for v,€ V,. From (3) we derive
0=<a—bf{a+b+2a+b+2 f}>). We expand this expression, col-
lecting terms of the same homogeneity in a, b and z:

0 = (f, {aaa} + 2 — ){aad} + 2{aaz} + (1 — 2){abb} + {azz}
+ (2 — 2){abz} — {bbb} — 2{bbz} — {bzz)) .

Since all the summands have different degrees, their scalar products
vanish individually, i.e.,
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(%) 0 = {f, {aaa}) = {f, {aab}) = {f, {aaz}) = {f, {abb})
= (f, {azz}) = (f, {b0b}) = <f, {bb2}) = (f, {b22}) .

We use (x) to simply 3(T(.,)f, T(f, ¢)'v,) = 8{TW,)f, a + b) = 3{f, {v,, v,
a + b)) = 3{f, 2{bza} + 2{azdb}) = 12{f, {abz}). Moreover 2{(f, T(v)v,y =
2{f, 6{abz} + {zzz}>. Therefore the two expressions are equal iff

(xx) 0 = <f, {222}

holds, which we prove now. We choose an orthonormal basis (w¢) of V,
in such a way that f = wi. Putting H, = T(wg, ¢)|V, we derive from
Lemma 3.6.a for a > 0 that {(H,?, z) = {(H{H, + HH; + HH,H)z, z) =
0. Obviously, (Hz, 2) =0, hence 0 = (x,02, 2) = (x,, 202) for every
2,eV, i.e., (202),=0. By (2.9) this implies T(z)z = 6<z, 2)z + {z2z},.
We now use (2) for =z, =2z and get 0 = 36z, 2)* + ({222}, {z22},) —
54(z, 2)° + 18{z, 2)* = ({#2z},, {#22},y). Thus {222}, =0, which clearly
implies (xx).

(b) From the Peirce multiplication rules for ¢ we get trace T(v,, f) =
trace(T(v, f)|V,). To compute trace (T(v,, f)|V,) we choose an orthonomal
basis (yf) of V, which is a union of orthonormal bases of 4, B and Z.
Then trace(T(v,, £)|V.) = s (Ui, {0of Y8} = 35 S, (yiyiv,}). Since every
summand in the last expression has at least degree two in a, b or z it
follows from (x) and (xx) that every summand is zero. This proves (b).

REMARK. The decomposition V, =A@ BP Z used in the proof of
Lemma 3.8 will be refined in the next sections.

We will now describe when a symmetric triple system satisfies (ISO 4).
The following preliminary result will be used later:

LEMMA 8.9. Let ¢ be a minimal tripotent of the symmetric triple
V with dimVyc) =2 and assume T(v, c)v, = {v,, Vo) T(v,, €)v, for all
v,€V,. Then

trace T(c, v) = 0 for every ve V with {v,¢c) =0.

PRrROOF. Since v =wv,+ v, with v;eV; it is enough to prove
trace T(c, v;) = 0. The Peirce multiplication rules show trace T{(c, v;) = 0
and trace T(c, v,) = trace T(c, v,)7,, Where m, denotes the orthogonal
projection of V onto V,. Because dim V, = 2 we can apply Lemma 3.7.b
to H(x,) = T(x,, ¢)|V, and get trace T'(c, v,) = 0.

LEMMA 8.10. Let ¢ be a minimal tripotent of the symmetric triple
system V and assume, in addition, for every v,eV,

T(v,, ¢)*vy, = (v, vo) T(v,, )V, .
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Then (ISO 4) is fulfilled iff there exist positive integers m,, m, such that
(@) dimV,=m, + 1, dim V, = 2m, + m,,
(b) trace (T(f,, ¢)*|V,) = 2m, for some f,e V, with {f, fy =1,
(¢) trace T'(w,, v,) =0 for all v;e V..

ProoF. By Theorem 2.2.c we know that (ISO 4b) and (ISO 4a) for
x = Y = ¢ is equivalent to (a). Therefore it remains to show that, if (a)
and the assumptions of the lemma hold, the conitions (b) and (c) are
equivalent to

(1) trace T(w,) = 2(8 + 2m, + my){v;, v;y for < =0,2,

(2) trace T(c, v;) = 0 = trace T(v,, v,), © = 0, 2.

Here the first part of (2) follows from Lemma 8.9 and the second
part is just (¢). To compute the trace of T(v,) we derive from the
Peirce multiplication rules T(v,)(tc + ¥, + Yo) = 2050 (Voo Yy) + 24V, Vo) ¥, +
4{v,, Yoyv,, hence trace T'(v,) = 2 trace (T(v,, ¢)|V,)* + 2{v,, v,y dim V, +
4{w,, vy = 2trace (T(v,, ¢)|V,)* + {v,, vop(2m, + 2 + 4). Therefore (1) holds
for 1 =0 iff trace (T(v,, ¢)|V,)* = 2m,{v,, ¥,y, Which is equivalent to (b)
by Lemma 3.7.c.

Finally, we have for T(v,): T(w,)(tc + ¥, + Yo) = 2{w,, Voytc + (v,0v,), +
2<'l]2, 7)2)1/2 + 4<'02, yz)”z — 20,0 (V,0Y5)y — Yo 0 (V,00,) + {vzvzyz}o + <?J2 °Y,, 'Uz>c +
2[v,0 (W0 Yo)], + {009}, Hence trace T(v,) = 2{v,, v,) + 2{v;, v,y dim V, +
4{v,, v,y — 2trace (T(v,, )z, T(v,, c)m,) — trace (T(c, (v,0v,))m,) + 2 trace
(m(T(w,, €)7,), Where «;, © = 0, 2, is the orthogonal projection of V onto
V.. In this sum trace (T(c, (v,ov,),)®,) = trace T(e, (v,ov,),) vanishes by
Lemma 3.9. Moreover, 2{v,, v,)[1 + dim V, + 2] = 2{v,, v.)[38 + 2m, + m,].
Therefore, in case ¢ = 2, (1) is equivalent to trace (T'(w,, ¢)7,T(v,, ¢)7,) =
trace (z,T(v,, ¢)’m,). Using orthonormal bases for V, resp. V, it is straight-
forward to show trace T(v,, ¢)x,T(v,, ¢)7, = trace 7, T(v,, ¢)’x,.

Putting together the previous lemmas, we can prove the following
characterization of isoparametric triple systems:

THEOREM 3.11. Let ¢ be a minimal tripotent of the symmetric triple
system V. Then V is isoparametric iff the following conditions hold:

(a) Ewery f e Vye) with {f, f) =1 is a minimal tripotent of V.
(b) <{vz’027)2}; V00 =0, v, e V,.
(¢) <./f(1)2), 'vz> =0, v,e V..
(d) There exist positive integers m,, m, such that

(1) dimV,=m,+ 1, dimV, = 2m, + m,

(2) trace(T(f, ¢)|V,)! = 2m, for some f,e V, with {f, foy = 1.

REMARK 3.12. By Lemmas 3.4 and 3.8 the conditions (a) and (c) of
Theorem 3.11 hold iff for all v,e V;, we have
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(a.1) T(v, ¢)*v, = vy, v,) T(v,, €)v;,

(a.2) <’Uo°’02, T(w,)v,) = 0,

(a.3) 3T ()"0, vo) + 2{T(Wo)vs, T(v)v,) — 3{Vy, Vo) <5, T(w)v,) — 18w,
V)V, T(W)vy) + 18{v;, 1)<V, v)* = 0,

(@ (T(@o) 'y T — 99Xy, o) <p, T(w)2,) + 18a;, 2,)° = 0.

Proor oF THEOREM 3.11. We have to show that (ISO 3) and (ISO 4)
hold iff (a) to (d) are fulfilled. By Lemmas 8.5 and 3.10 the theorem
follows if we can prove that (a) to (d) imply for all v,e V,

(1) Hvwvs, (vv0)) = 6{v,, v;) {{vv.22}, v, and

(2) trace T'(v,, »,) = 0.

Here the second assertion follows from Lemma 8.8 in view of Remark
38.12. To prove (1) we derive {{v,v,w.}, {V,0,0,}) = 6{w,, Vo)<V, {V,0,0,}) —
3w, 0 (V0 1,)0, {(V:0,0)) + 20,0305}, ¥20 (v,00,)), hence (1) is equivalent to

(1) 8w,0(v;00,),, {vvo}) = 2{v,0,05), v, 0 (V;00,)).

To prove (1) we linearize the identity (a.2) of Remark 3.12 in v, and
identity (b) in v,. We get

(2)’ <'Uo°’02, T(v)w,) + <wo°'02, T(v)v,y =0

()" 8{vavaws)o, 20wy + 2{{vyv05}, V2o wey = 0.

We now pick an orthonormal basis (wg) of V,. Then the left hand side
of (1)’ becomes using (2)" and (b) 33, (v,0 v, WE){v,0wE, {V,0,0,}) =
—38 s {Wy0v,, WiV, 0y, {V,0,wE}) = —3{T(v)(v;0,), D (v, 00, WEHWE) =
— 3T (,)(v:0v,), (V;°0:)0) = 2{{Vy0,:}0, ¥; 0 (V,°)).

REMARK. We point out that there always exists a minimal tripotent
in an isoparametric triple system (see Corollary 4.9). Therefore Theorem
3.11 can be applied to describe all isoparametric triple systems.

3.8 In this subsection we dualize the results obtained in §3.2, i.e.,
we state the results in terms of maximal tripotents. This will allow us
to make a comparison with [10].

THEOREM 3.13. Let V be a symmetric triple system and e a maximal
tripotent of V. Then V 1is isoparametric iff the following conditions
are satisfied:

(a) Every fe Vye) with {f, f) =1 is a maximal tripotent.

o) wow}, T)e) =0 for all v,eV,.

() (ZW),v) =0 for all v,e V..

(d) There exist positive integers m,, m, such that

(1) dimV,=m, + 1, dimV, = m, + 2m,
(2) trace (T(f;, )| V) = 2m, for some f;€ Vi(e) with {fs, f;) = 1.

ProoF. It is enough to show that the conditions (a) to (d) of
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Theorem 38.11 for the minimal tripotent ec V' are equivalent to (a), (b),
(e) and (d) of the theorem, which is straightforward to check.

As in Remark 38.12, we may express (a) and (¢) of Theorem 3.13
equivalently in terms of identities yielding the following theorem which
is proved in the same way as Theorem 3.13.

THEOREM 3.14. Let V be a symmetric triple and e a maximal tri-
potent of V. Then V is isoparametric iff the following conditions hold:

(@) T(v, e)*v, = (s, v:) T(vy, €)v,.

(b) <T('Ua; e)vu T(vl)v3> = 0.

(©) 3T (w) vy, vsp + 2{T(Ws)vy, T(v))vy) — 3<ws, v5)<W;, T(W1)v)) —
18w, v.)<v,, T(w)v,) + 18{w;, v5)<v;, v)* = 0.

(@ <(T(ve, T(w)v,y = 0.

(e) <T('l)1)2’l)1, ’01> - 9<vu v1><T(vl)v1) 7)1> + 18(’01, ’vl>2 = 0.

(f) There exist positive integers m,, m, such that

(1) dimV,=m, + 1, dimV, = m, + 2m,

(2) trace (T(f, e)|V.): = 2m, for some f,€ Vi(e) with {f,, foy = 1.

REMARK 8.15. We recall from Remark 8.8 that Ozeki and Takeuchi
characterized isoparametric triple systems in [10, Theorem 1] by con-
ditions on the quadratic forms (p,) and the cubic forms (g,). Theorem
3.14 above is an improved version of their result. Indeed, using the
identifications of §3.1 it is easy to check the following dictionary for
the formulas in Theorem 3.14:

(a) = [10] (8-2), (83-3) and first equation of (3-1)

(b) <= [10] (8-4) and (3-5)

(¢) = [10] (3-9) and (3-10)

(d) = [10] (3-7)

(e) = [10] (3-8)

(f.1) is part of the assumptions in [10]

(f.2) = [10] part of the third condition in [10] (3-1).

We point out that the second equation of [10] (8-1) and [10] (8-6) are
superfluous and the third condition in [10] (3-1) is only needed for one a.

4. Orthogonal tripotents. In this section we introduce the notion
of orthogonal tripotents and show that for isoparametric triple systems
orthogonal tripotents always exist. In §4.1 and §4.2, V is always a
symmetric triple system.

4.1. A subspace U of a triple system V with the property {UUU}c U
is called a subsystem of V. The following lemma in particular implies
that in an isoparametric triple system the subsystem generated by 2 is
at most 2-dimensional.
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LEMMA 4.1. Let V be symmetric triple system and xe V. We put
y:={xxx}. If #@) = _#@;y) = _#(;y,y) =0, then the vector space
V.= Rx + Ry s a subsystem of V.

ProoF. We have to show {xxy}, {xyy} and {yyy} lie in V,. First,
{xxy} e V, because _#(x) = 0. Thus T(x) leaves V, invariant. By (1.11)
we know _#(x;y) = 0 iff (1.6) applied to y holds. This implies {xyy} =
T(x, y)ye V,. Since _#(x;y,y) =0 we can use (1.7) for v = y and apply
it to y. Because we already know that T(x) and T(x,y) leave V,
invariant, it easily follows that {yyy}e V,.

THEOREM 4.2. Let V be a symmetric triple and assume for a fixed
xeV that #(x;w,v) =0 for all u,ve V. Then

[T(z,, 2,), T(2:, 2)] =0 for all z,€V,= Rx + R{zxx}.

Proor. We first define the odd powers of 2 by 2**' = T(x)"x, n =1
and put y = 2°. We set a:= 6{x, x) and B := 3{s*, ) — 18{x, ). Then
A (x) =0 just means () x*=ay + Bx. To prove the theorem it is
enough to show (a) [T(x), T(x,y)] =0, (b) [T(x), T(x,y)] =0 and (c)
[T(z, ) T(y)] = 0.

(a) Using (1.7) the assertion (a) is equivalent to (xx) [T(x), xy* +
yo* — azx*] = 0 that is easily verified.

(b) Using (x) and (1.8) with 4 = y = «* we see that (b) is fulfilled
if and only if T(x) commutes with —2x*x** — 3(xx™ + x’2*) + 12{x, 2*Hax™ +
a(xe®™ + x*x*) = —2a(xy* + yx* — axx™) — 28xx™* — 2yy*. By (xx) this
follows readily.

() By (1.7) for # and (b) we know 0 = [T(y), 2T(x, ¥) — 12(xy* +
yx*) + 12axx*]. Hence (c) is equivalent to 0 = [T(y), axe™* — (zy* — yx™)].
But T(y)z = (a* + B)y + apx and T(y)y = ala® + 2p)y + Ba@* + B)v; a
short computation gives the assertion.

Two tripotents e, e, are called orthogonal if T(e)e, = 0 = T(e,)e;. This
is equivalent to the conditions ¢,€ V,(e,) and e, € Vi (e,). We add some

REMARKS. (a) If (e, e,) are orthogonal, then ¢, and ¢, are minimal
tripotents by Theorem 2.2. Moreover, the elements e = \(e, + ¢,) and
& = \(e, — e,) where v = (1 2)7" satisfy <e, ) =1, {eee} = 8¢, #(e; u, v) =0
for all w,ve V and (¢, é) =1, {é¢é¢} = 3¢, #(€;u,v) =0forallu,veV.
Therefore they are in general “nearly” maximal tripotents. Of course,
¢ and & are maximal tripotents in case V is isoparametric.

(b) In the example V = Mat (2, r; F) considered in Remark 2.4.c,
two tripotents E,; and E,, are orthogonal as soon as {7, j} N {k, I} = @.

Orthogonal tripotents always have a “common Peirce decomposition”



212 J. DORFMEISTER AND E. NEHER

which will be studied in the next section. The reason for this is

COROLLARY 4.4. If (e, e,) are orthogonal tripotents im a symmetric
triple V, then

[T(e1)9 T(ez)] = [T(el)y T(eu 32)] = [T(ez); T(e,, 32)] =0.

PrROOF. We put « =e, + 2¢,. Then the corollary follows from
Theorem 4.2.

The following lemma shows that ¢,€ Vi(e,)) or e,€ V,(e,) for tripotents
e; already implies that e, and e, are orthogonal.

LEMMA 4.5. Let V be a symmetric triple system.
(a) Assume ¢ and f are minimal tripotents. Then, for p =0, 2,

feVue) tff ce Vu(f) .
(b) Assume ¢ and d are minimal tripotents. Then for £ = 3,1
de Vi) iff ec V. (d).

Proor. (a) Assume fe V.). Then <¢, f) =0 and therefore ¢ has
a decomposition ¢ = ¢, + ¢, with ¢;€ V;(f), j =0,2. Thus {T(f)c, ¢) =
{2¢y, ¢, + ¢,y = 2{¢Cy, ¢,y. On the other hand <{T(f)e, c) = {T(e)f, > = p.
Hence (¢, ¢,) = ¢/2. From this the assertion follows easily. (b) is a
consequence of (a) by dualization.

4.2. In this subsection we study symmetric triple systems V satisfy-
ing (ISO 3), i.e., .#Z(x) =0 for all xe V.

Let 0 #2¢ V. Then Lemma 4.1 implies that V,, the subsystem of
V generated by z, is either one- or two-dimensional. In the first case,
is a scalar multiple of a minimal tripotent by Lemma 2.1.b. In the
second case x is called regular. We note that for homogeneous isopara-
metric triple systems « is regular in our sense iff it is regular in the
sense of [12] §3. We have the following characterization of regular
elements:

TBEOREM 4.6. Let V be a symmetric triple system satisfying (ISO 3).
Then €V is regular if and only if there are orthogonal tripotents
e,e.cV and a,e R with 0 < o, < a, such that x = a,e, + aze,. In this
case (e, e,) and (a, a,) are uniquely determined by x: if ¢, c,e V are
orthogonal tripotents and B, B.€ R with 0 < B, < B, such that x = B¢, +
BaCy then ¢, = e, and a;, = B; for i =1, 2.

ProOF. Let x be regular. By Theorem 4.2 we know that
{T(u, v)|V,;u,ve V,} is a set of commuting self-adjoint endomorphisms
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of V,. Therefore there exists an orthonormal basis (e, ¢,) of V, such
that T(u)e;e Re, for every we V,. In particular, T(e)e; € Re; implies
that each ¢, is a tripotent (Lemma 2.1.b). Further, T(e,, e,)e, = T(e,, e,)e, €
Re, N Re, shows T(e)e, = 0. Since also T(e,)e, = 0, it follows that e, e,
are orthogonal tripotents. We thus have z = a,e, + a,e, with orthogonal
tripotents e, ¢, and real numbers «,, a,. The rest of the proof is
straightforward.

COROLLARY 4.7. A symmetric triple system satisfying (ISO 8) con-
tains no nilpotent elements, i.e., T(x)*x = 0 for some ke N implies x = 0.

4.3. In this subsection we deal exclusively with isoparametric triple
systems.

THEOREM 4.8. The set of regular elements of an isoparametric triple
system V 1is open and dense.

PrROOF. Assume the contrary. Then {xxx} = £{x, x)x with a fixed £
for all xe V. This leads to a contradiction to (ISO 4).

COROLLARY 4.9. There exist orthogonal tripotents in V.

A minimal decomposition of x€ V is a representation x = ae, + e,
with orthogonal tripotents e, ¢, and a,, @, € R with o, = 0. We already
proved that every regular x ¢ V has a minimal decomposition (Theorem
4.6), and obviously every scalar multiple of a minimal tripotent has a
minimal decomposition too. We even have

THEOREM 4.10. Ewery element of an isoparametric triple system has
a minimal decomposition.

PROOF. Let ec V be a maximal tripotent. By Theorem 2.2 there
exists an element é¢ V,(e) with (¢,€) = 1. Then (2.13) implies that é
is a maximal tripotent. Furthermore, e¢c V,(é) by Lemma 4.5.b. A
straightforward coputation now shows that e, := Ae + €) and e, : = \(e — &),
A = 272 are orthogonal tripotents with ¢ = \(e, + ¢,). This finishes the
proof of the theorem.

5. Peirce decomposition relative to orthogonal tripotents. In this
section we establish the Peirce decomposition of a symmetric triple
system relative to two orthogonal tripotents. We finish this section by
proving the main theorem of this paper characterizing isoparametric
triple systems by Peirce decompositions. Unless stated otherwise V will
always be a symmetric triple system.

5.1. We consider a symmetric triple system V with two orthogonal
tripotents (e, e;). By Corollary 4.4 we know [T(e,), T(e;)] =0 and
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[T(e, e,), T(e;)]=0, ¢ =1, 2. Hence the various Peirce spaces are invariant
under T(e;,) and T(e, e,).

LEMMA 5.1. Let (e, e, be orthogonal tripotents of the symmetric
triple system V. Then

(a) Vile) N Vie) =0

(b) T(eu e)’v =v for ve Vi(e) N Vyle,)

() T(31, )| (Vi(e) N Vy(e))t = 0.

Proor. (a) Assume ye Vi(e), {y, ¢,y = 0. Then T(e,)y = 2y by (2.6).
This implies (a).

(b) Since ¢, € V,(e,) it follows from (2.7) applied to ¢ = ¢, that 2v =
T(e)v = 2¢,0(e,0v) = 2T(e,, e,)™.

(¢) Wenote (Vi(e) N Vile))' = Vile)* + Vi(e)' = Vile) + Vile). But
T(e,, €,) Vi(e)) = 0 by (2.3) for ¢ = ¢,. Similarly, T(e, e,) V,(e,) = 0.

We now define

Vlz(el; ez) = V2(61) N Vz(ez) .

Since T{e,, e,)*|Vi,(e, ¢;) = Id we have an ortogonal decomposition

Vlz(eu 32) = V1+2(31, e,) EB V1_2(ely e)
where Vi(e, e,) = {xe Ve, e,); T(e, ¢;)x = +a}. It is sometimes con-
venient to use the abbreviation

?712 = T(eu ez)ym for Y. € V12 .

We obviously have 7, = ¥, 7 = ey for y.e Vi, yhe Vi, €= . By
Lemma 5.1.c the space V,(e, e,)* can be split up using only T(e,) and
T(e,). We further define

Vile, e):= Vi(e;) for 1=1,2.
Vii(ely 62) = VzK(ei) = Rei @ Vgo(ei) fOl‘ 7: = 1, 2 .

We note that Lemma 2.7.b implies VE&(e) c V,(e,) and Vi(e,) < V,y(e), in
particular V(e, ¢,) D Vile, ¢,) is an orthogonal sum. Its orthogonal
complement in V,(e,) is

Vile, €) 1= Vy(e) © (Vile, €) D Vile, &), i=1,2.

The spaces defined above are called Peirce spaces relative to (e, e,).
If it is clear which pair of orthogonal tripotents is referred to we simply
write V,; instead of Vi,(e, e,). By construction we have

COROLLARY 5.2. The following sums are orthogonal:
V= Rel@ VH@ VwGa V12@R62@ V?z@ V20 ’
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Vie) = Ve @V, @ Vs, 1=12,
Vo(e1) =V, @ V2o ’ Vo<ez) = Vu @ on .

REMARK 5.8. (a) In the example V = Mat (2, »; F) (see also Remark
2.4.c, (2.19) and Remark 4.3.b) we may choose (K, E,) as orthogonal
tripotents. Their Peirce spaces are V,, = @s<i<r FEyy Vo = @s<isr FE,,,
Vy=FE%,+ E,), Vyo=F&,—E,), Vi=FE, i=1,2, where as
usual F~ denotes the orthogonal complement of 1 in F.

(b) We often write V%, if we want to treat the cases Vi, and Vj
simultaneously. We denote by x,; the component of z in V,; xzi is
defined similarly.

(¢) Peirce decompositions of the dual triple relative to the elements
(e = \e, + e,), € = (e, — ¢,))—see Remark 4.3.a—are considered in §5.5.

(d) The notation for the Peirce spaces is adapted from the analog-
ous decomposition of Jordan triple systems. In the case V = Mat (2, »; F)
it is known that V also carries the structure of a Jordan triple system. In
both structures—isoparametric triple system and Jorden triple system—the
notations for orthogonal tripotents and Peirce decompositions coincide.

By Theorem 2.2.b and Remark 4.3.a we know that V = Re® V,(e) D
Vi(e) fore = N\e, + ¢,) and V = Ré P V, (&) P V,(é) for & = \(e, — ¢,). The
following lemma expresses these eigenspaces by the Peirce spaces of
(eu e,):

LEMMA 5-4- V3(e) = Ré @ Vl-;, Vl(e) = :rl @ VIO @ Vl_z @ V2_2 @ V2C’

Vi(€) = Re@ Vg, Vi(€) =ViPV,,D V3 D Va D Vi

ProOF. For & = ae, + x5, + ®, + 2% + 25 + Be, + 5 + ©,, We compute
T(e)x = 3ae, + x5 + @, + 3 + 25 + 3Be, + x5 + x,, Which establishes the
claim for the Peirce spaces relative to e. The assertion for V,(é) follows
analogously.

From Theorem 2.2.b we obtain

COROLLARY 5.5. If (e, e,) are orthogonal tripotents of the isopara-
metric triple system V, then

dim Vi =dim Vg =m, >0 and dim (V; P V) =dim (Vo P V) = m, > 0.

5.2. We impose now more conditions on the triple system V which
are satisfied in case V is isoparametric. This will enable us to establish
multiplication rules between Peirce spaces of orthogonal tripotents.

LEMMA 5.6. Let (e, e,) be orthogonal tripotents of the symmetric
triple system V and assume that each element of V., Vi, Vi, and V,
18 a scalar multiple of a minimal tripotent.
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(a) For i =1,2 and ue V, with {u, u) =1 we have
dim V,(u) = dim V,(e,) , r=202.
(b) For z,e Vy i =1,2, and x,€ V), the following formulas hold

(6.1) T(x ), = 2{%;, LT,
(5.2) T(x,, )2, = {2, )X, T,)%,
(5.3) T(w, )|V =10.

Proor. (a) Let ueV,, {(u,uy =1. Then (u,e,) are orthogonal, in
particular [T(u), T(e,)] = 0. Moreover, (2.6) for ¢ = e, implies V,(e,) =
Vu® Vi Ru@®Vy(uw). Therefore Vy(u) = (V,©Ru)DV.,,DVie)N Vy(u),
and it suffices to show that dim (V,(e,) N V,(w)) = dim V,(e,) N Vy(e,).

We know Vy(e,) = (Vyle) N Vi(w) D (Vile) N Vo(u)) where Vi(e) N
Vy(u) = {x € Vy(e,), T(u, e,)’x = x} by (2.7). For xze V,(e, we get xe Vy(e,) N
Vo(u) iff T(u, e,))x = 0, which is equivalent to T(u, e,)x = 0. Because
T(u, e,) Vi(e,)  V,(e,) we conclude that H: V,,—End V,(e,), Hv)= T(v, e,)| V,(e.)
induces a cubic space on V,(¢,). Therefore dim V,(e,) N Vy(w) = rank H(u) =
trace H(u)? is constant by Lemma 8.7.c.

(b) Because of (a) we can apply Lemma 2.7.d for every z,¢ Vi,
{wy, 2y =1 and get Vy(x) N Vy@,) = Ve, e,). In particular (5.1) follows.
The formulas (5.2) and (5.8) are implied by Lemma 5.1.

It is convenient to denote the algebra products induced by e, and e,
in the following manner:

xoy = {wey}, x,yecV, xxy = {we,y}, x,yeV.

THEOREM 5.7. Let (e, e,) be orthogonal tripotents of the symmetric
triple system V such that each element of the Peirce spaces Vi, Vi, Vi
and V, relative to (e, e,) 18 a scalar multiple of a minimal tripotent.
Then we have for all x;;, y;;€ Vi;

(5.4) Tao¥n = 2&h, Ye,  Ta*Yn = 2(Tu, Yn)e

(5.5) Tno(Vig+ Vig+ Vo + Vi) =0 Tu*(V + Ve +Vy+Vy) =0
(5.6) Lo Yy = 2{X1, Yoye: Dao* Yoo = 2{Lagy Yno) s

(5.7) oY € Vi  Xpx¥Yn€ Vi

5.8) TpoYy, =0 LTog* Yy = 0

(5.9) Tyo Yy € Vi Tio* Yy € Vi

(6.10) &, oy, = (wh, YL (2e, + €6,)  whxYi, = (X, Yiy(€e, + 2¢,)
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(6.11) ThoYn€ Va®Vy  ahxyne ViV,
(5.12) Thoyn€ V' Xpxyne Vi*
(513) 150 Yz € Ve @ Vi L5 * Yy € Ve EB Vzo

(514) (sz + Vzo) ° ( sz + Vzo) =0 (Vu + Vm) * ( Vu + Vw) =0
(5.15) €0 (Vy+ Vig+ Vi + Vi) =0 e*x(Vy+ Vi + Vyu+ Vy) =0.

ProOF. By symmetry we only have to prove the multiplication
rules for the algebra “-”. Obviously, (5.4) follows from (2.6), (5.5) from
Lemma 2.7.a, (5.6) again from (2.6), (5.7) from (2.5) and (5.3), (5.8) also
from (5.3) and (5.9) from (2.4), (5.5) and (5.6).

To prove (5.10) we recall x5, € Vy(e) N V,(é) from Lemma 5.4. Because
e, ¢ satisfy _#(e; u, v)=0=_##(¢; u, v) for all u, v V we can apply (2.10)
to derive {zeys} = 3{xs, yihye, and (2.12) to derive {xhéysh} = {xh, yihé + 2
for some z¢ V,(é) = Re@ V5. Because {{xiéys}, e) = (&, {eéy;})) = 0 we
actually have ze V;. Since ¢ =\ + €) we have proved zhoyh =
(@, Yy (Bne + N6) + 2z = (s, Yny(2e, + €,) + z for some ze V;. But o
Y€ Re, + Vie) by (2.5). Therefore z = 0. Similarly, ahoys =
&5, Yny(2e, — e,) follows.

Finally, (5.11) is implied by (2.5), (5.12) by (5.83) and (5.10), (5.13)
by (2.4), (5.5) and (5.10), (5.14) is just (2.4) and (5.15) follows from
Lemma 5.1.c.

REMARK. (a) In the case of the (homogeneous) isoparametric ex-
amples mentioned in §1.5 one gets sharper results only for the formulas
(5.11) and (5.18). More precisely, for these we get

(5.11) ThoYn€ Ve,  oh*xyne Vi,
(513)' XhoYp€ Vi, X * Yy € Vi »

These examples are closely related to Jordan triple systems. We there-
fore say that an isoparametric triple satisfying (5.11)’ and (5.18)" for
each (resp. the) pair of orthogonal tripotents (e, e, is a triple with
Jordan composition (relative to (e, e,)). For short, V is a triple of JC-
type (relative to (e, e,)).

Another subclass of isoparametric triples are the triples of algebra
type. By definition, an isoparametric triple is said to be of algebra type
if there exist orthogonal tripotents e, e, such that V,(e,e) =0 and
Vule, e;) = 0. The triples of algebra type will be classified in a sub-
sequent paper [3].

(b) If the symmetric triple system satisfies (ISO 3), then every
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element of V,(¢), ¢ a minimal tripotent, is a scalar multiple of a minimal
tripotent, which follows from (2.6). In particular, the assumptions of
Theorem 5.7 are satisfied in this case.

We prove some more identities involving the algebra o and =.

LEMMA 5.8. With the assumptions of Theorem 5.7 we have

(5.16) X100 Yoo = T(€y, €)%10* Yoo »

(5.17) {210 © Yagy Uso © Vyop = Lo * Yoy Uso* Voo
(5.18) L10° (Uyo © Vap) = [210% (Ugo * Vo) |ao
(5.19) (Y200 (Va0 Uig) Loy = Yoo * (Va0 * Uso)
(5.20) (@hoyz', Bho2n®) = (TL*Yn', Th* 25"

(5.21) Hadwtysl, 2y = 8wh, 5 {Un, 26y — 2{xH*Yn, Th*25n) .

PrROOF. To prove (5.16) we put ¢ = ¢, and have e, x,€ V,(c), Y€
V(o). Using (2.7) we get &,0Yy% = % (@y0*Ys) + Tio* (€% Yao), but
e, %Y, = 0 by (5.15). This proves (5.16). We remark that (5.17) follows
from (5.16) by the fact that T(e, e, is orthogonal on V,,. By (5.17) we
Know @00 (Uyo© Vo), Yoo) = (B0 * (Uso * Vo), Yoo+ Hence  [&0 (40 Vo) oo =
[@10* (U0 * V30)]5. But (5.7) and (5.9) show that x,, 0 (u,0v,) already lies in
V. Wwhence (5.18). Interchanging “1” and “2” in (5.18) proves (5.19).
To prove (5.20) and (5.21) we first recall V,, = V,(e) N Vy(¢;). Hence we
may use (2.9) to expand {x;, x5, ¥z} for ¢ = ¢, and also for ¢ = ¢,. With
(5.10) and (5.11) we get {w, o, yn} — 24ah, vH)Yn = —2xh o (X5 ° Yo, —
Yo (@hoTh)owy + aole) = —2xho (whoyn) + <wh, #5)Yn + ae). Similarly
we get {xf, o, yu} — 2{@, o)Ye = —2wh* (@hxyn) + @k, THYR + ale,).
We now consider {{x:2;¥5}, 22y and easily derive (5.20) and (5.21).

5.8. Under the assumptions used in §5.2 we prove in this subsection
that V,, vanishes if and only if V,, vanishes. This in particular implies
that an isoparametric triple system is of algebra type relative to (e, ¢,
if Vi(e, e) =0 or Vzo(ex, e,) = 0.

THEOREM 5.9. Let (e, e,) be orthogonal tripotents of the symmetric
triple system V such that each element of the Peirce spaces V,, Vi, Vi
and V, 18 a scalar multiple of a minimal tripotent. Let (3, j) = (1, 2)
or (2,1) and assume e, € Vyy, e, #0. Then e,oV; # 0 and e, *V;, + 0.

Proor. It suffices to consider (i, j) = (2,1). By definition, e, € V,(e,),
en2 Vi = {ye Vye,); yxVy(e,) = 0}. Hence there exists x = x,, + x,,€ Vi(e,)
satisfying x+e,, = 0. But z5xe, = 0 by (5.8) and x,,*e,, # 0 follows. To
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prove x,,0e, = 0 we apply (5.16) and use the fact that T(e, e,) is bijec-
tive on V.

COROLLARY 5.10. Under the assumptions of Theorem 5.9 we have
Ve#0=V,oVy#0=V xVy 0=V, #0.

Proor. By (5.16) we have VoV, #0 iff V, *xV, # 0 and from
Theorem 5.11 we derive V,, # 0= V0V, % 0 and V,, # 0= V,,*V,, = 0.

We are now in a position to identify the Peirce spaces relative to
(xlll x22>:

THEOREM 5.11. Let (e, e,) be orthogonal tripotents of the symmetric
triple V such that each element of the Peirce spaces V,,, Vi, V, and Vy is
a scalar multiple of a minimal tripotent. Then the Peirce spaces rela-
tive to the orthogonal tripotents (x,, x,) where x,€ V,, {x,, x;) =1, are

Vii(xly x,) = Vii(ely e), 1= 1, 2, Vio(xu x,) = Vio(eu €), 1= 1, 2,
Vm(xly xz) = Vm(eu 62) .

Proor. The Peirce spaces of (e, e¢,) are denoted by V,;. Because of
Lemma 5.6.a we can apply Lemma 2.7.d and conclude Vi (x,) = V(e,),
Vi) = (V,, © Rx,) DV, P V,,. This in particular implies Vi, (x, x,) = V,,
and Vi)V, @D V,. Therefore it suffices to show V(x, x,) = V,, i.e.,
Vix) = V,,© R(x;). Without loss of generality we consider ¢ = 1. Let
U= U, + Uy € Vi(x;). By definition of VJ(x;) we have 0 = {uxv,} for
every v,¢€ Vy. But {uxw,} = ux(@,*xv,) + €, % (u*xv,) by (2.7) and the
first summand vanishes by (5.8), moreover u,*v, = 0. Thus 0 = x,*
(Uyo*Vy) Where u,*xv,€ Vy, by (5.9). Again (5.8) implies w,0*v, = 0.
Since this is valid for all v, e V,, we conclude from Theorem 5.9 that
U, = 0, whence u = u, € V@) NV, CV,© Rx,. On the other hand we
have for every y,¢ V, and v,, € V,, that {y,2.v,,} = 0 by (5.3) and for every
¥y € Vi that {y,0,v,} = Y.+ (@, % vy) + &% (Y, xvy) = 0, again by (5.3). This
implies V;; © Rx, < Vi(x;,) and therefore we have equality.

REMARK 5.12. We point out that by Theorem 5.11 we now have at
our disposal the multiplication rules of Theorem 5.7 where ¢, is replaced
by suitable x,. This will be of great importance in the proof of
Theorem 5.20.

As a consequence of Theorem 5.11 we have the following characteri-
zation of VY(c¢) in the case of isoparametric triple systems:

THEOREM 5.13. Let V be an isoparametric triple system and ¢, u
minimal tripotents of V. Then
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ue Vif(e) = Vi'(e) = Vi¥(w) = Vi(e) = V() = ce Vi(w).

ProOF. By symmetry it suffices to show uwe VE(c) = VE(c) = VE(u) =
Vie) = Vy(u). Here VE(c) = VE(u)= ue V&(c) is trivial, and u € Vi(c) =
Vy(u) = Vy(e) follows from Corollary 2.8.b. So it remains to show

(@) ueVie)=Vie) = Viw) and (b) Vi(u) = Vic)=ue Vi)
We put ¢, :=c¢ and choose a tripotent which is orthogonal to ¢,. This
is possible because dim V,(e,) > 0. Now (a) follows from Theorem 5.11.

We assume Vy(u) = Vi(e,). Thenue Vi(e,) = V,,P V,, by Lemma 4.5.a
where V,; denotes the Peirce spaces relative to (e, e,). Moreover, 0 =
T(u)vy = 2u* (U *v,) and thus v,y = 0 since T(u, e,) is symmetric. But
Uy, *V, = 0 by (5.8) and so u,*v,, = 0. Because this holds for all v,, € V,,
we conclude u,, = 0 from Theorem 5.9, i.e., u = u,, € V,,.

5.4 Although the results of this subsection are true in a slightly
more general situation, we restrict ourselves to simplify notation to the
case of a symmetric triple system V satisfying (ISO 3). Let (e, ¢, be
orthogonal tripotents of V. Then, with » =272 the elements ¢ = A(e, + ¢,),
€ := \(e, — e,) are maximal tripotents of V. We have ec V,(é) and ée
Vie). From Theorem 2.2 we derive that (e, €) is a pair of minimal
orthogonal tripotents in the dual system V'’ defined in Lemma 1.2. In
this subsection we discuss the connections between the Peirce decom-
position of V"’ relative to (e, &) and the Peirce decomposition of V relative
to (e, e,). It will be convenient to use the algebras

c[Jy:={vey), z,yeV, ov[ly:= by}, o,yecV.

The Peirce spaces relative to (e, e,) will be denoted by V,; as usual.
The Peirce spaces relative to (e, é) will be denoted by Vi;, Where
necessary we write Ve, e,) and Ve, ) or (V'),e, é). We also use
Vi(e) and V;(é).

LEMMA 5.14. Assume the symmetric triple system V satisfies (ISO 3),
1.e., #Z (@) =0 for all xe€ V. Then

(@) Vi(e) = Vie) = RED V3,

(b) V@) = Vy@é) = Re® Vi,

@ Vie=VenV@)=ViDV.DVa® Vs,

@ (V= Va®Vy,

(e> (V')l_z = V1_1 @ VIO .

PROOF. (a), (b) and (c) follow immediately from Theorem 2.2 and
Lemma 5.4. For (d) and (e) we compute: {eéxl)' = —{e, &, ag + a, +
ax + 0%} = —(ag + ay,) + an + a, where we put «, = a; + a, + an + ay
according to (¢). This implies (d) and (e).
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LEMMA 5.15. Assume V satisfies (ISO 3). Then

(@) (V'i(e) ={xe VsV =0}

(b) For ype Vi the following conditions are equivalent:

(1) »:0VE=0

(2) YuoVi=0

(8) Yu*xVi=0

(4) Ya*Vai=0=yz°V; and yu* Vi, C Vi, YuoVyC V.

Proor. (a) By definition, (V')i(e) = {x e V.(e); {x, ¢, Vi(e)} = 0} =
{xe Vie);x[]Vse) =0} where we have used Theorem 2.2. We know
Vie) = ViD Ve @ Va® Ve Vi ((V'), Vi) =0 and Vi(e) = ReD V5.
Hence (V'); = {xe Vu; o []Vi(e) = 0}. But xz[]é = 0 is always satisfied,
hence the assertion.

(b) Since y; [ ok = Mynoxh + Y*ah) and ypoxi € Va® Vi, yn*ah e
Vi + V, by (6.11) we see that (1) implies (2) and also (3). Now (5.20)
implies that (1), (2) and (3) are equivalent.

By (6.11) we always have y; [ VL Vi + Vo + Vi + V. Therefore
ye O VE=0iff (V9O (Vo + Vie+ Vi + Vy)) =0. The multiplica-
tion rules (5.5), (5.7), (5.12) and (5.13) show that this equation is equiv-
alent to (4).

Interchanging ¢ and é we get

LEMMA 5.16. Let V satisfy (ISO 3).

(@) (V")e) ={xe Vel Vi =0}

(b) For yie Vi the following conditions are equivalent:

(1) »:0Ve=0,

(2) ylt° 2= 09

(8) wyuxVe=0,

(4) yl‘;*Vl_l =0= ylt°V2_2 and ylt*vmcvm, yl-;°V20CV10-

COROLLARY 5.17. Let V satisfy (ISO 3). If V;# 0 or Vi # 0 then

(Vhia=0 and (V=0

Proor. Assume V; # 0. Choose z;; = 0, 2, € V;. Then T(xj, ¢,) is
injective on V,,. Therefore x;*y, = 0 for y; e (V'); and z;*y5; = 0 for
yhe (Vs imply y; =0 = y; and the assertion follows. If V;+#0 a
similar argument establishes the claim.

COROLLARY 5.18. Let V satisfy (ISO 3).
@ (Vhu={xeVgaoVi=0L

(b) Vi= VO (V')

€ (V)z={xe VizoV; =0}

d) Vo=V (V)
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REMARK. One can also dualize the results of §5.2 and §5.3, but
since one has as yet no precise description of V}, this dualization produces

few new results. We mention only the following immediate consequence
of (5.16):

LEMMA 5.19. Let V satisfy (ISO 3). Then
Vo OVuc Vi and Vi[1V,CVi.

5.5. In this final section we characterize isoparametric triple systems
among the symmetric triple systems by Peirce decompositions:

THEOREM 5.20. Let (e, ¢,) be orthogonal tripotents of the symmetric
triple system V. The Peirce spaces of (e, e,) are denoted by V,;. Then
the following conditions are equivalent:

(a) V 1s 1soparametric.

(b) (1) Ewvery element of V., Vi, Vo and V, is a scalar multiple
of a minimal tripotent.

(2) Ewvery element of Vi, and V, is a scalar multiple of a
maximal tripotent.
(8) For all ;€ V,; the following identity holds:

o @n@in}, {020}y + (L2025}, {20200}
+ {@u@ ), {X%n2sn)) + {Zuta®s}, {@.%225)) = 0.
(4) There exist positive integers m,, m, such that
dim (Vi @V, =m,=dim (VP V,) and dimV, =2m,.

ProoF. By definition, V is isoparametric iff (ISO 3) and (ISO 4) hold.

First we transform (ISO 3), i.e., .Z(x)=0for allze V. We introduce
the six-linear form h: V®*— R, h(x,y, 2, u, v, w) = {A#Z (%, Y, 2, U, V), W)
which is totally symmetric by Lemma 1.5.a. Clearly, .Z =0 iff h = 0.
Also, h =0 iff h(x, y, 2, w, v, w) = 0, where (z,y, 2, , v, w) has at least
degree two for one Peirce space, and h(wx,, 2., %5, Z5, o, €) = 0 for all
x;;€ Vi;. Using Theorem 2.3 and Theorem 2.5 it is easy to see that the
first condition is equivalent to (bl) and (b2). Moreover, by (1.15), the
second condition holds if (1.10) for = x,,, u = &5, ¥ = X, W = 2, and
applied to x,, vanishes in the scalar product with x5, i.e.,

0 = ({wpomrh}, (002000} + (0,255}, {X20@0i0}) + {2u®n@i0}, (2T}
+ (@i}, (Bu@n®i)) + (@utu@h), {Bun®i0}) + (Buai), (i)
+ {@uta @}, (€220256)) + {Buim@e), {€2020)) + {Zun®e), {€u20205])
+ o}, {Z22l}) =: R .

Because of (bl) and (b2) we can apply Lemma 5.6. In particular (5.3)
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implies {x, 2%} = 0, ¢ = 1, 2, whence the first and last term of R vanish.
Moreover, by Theorem 5.11 we can use all the multiplication rules
derived in Theorem 5.7 for (x,, #,) since without restriction (=, z,,> = 1,
1 =1,2. We thus get {{x, 225}, Viy = 0 and {z,x,.x,} € V,,, which forces
the second term to be zero. Similarly the fifth term vanishes. Moreover
{2, @020} € Vigy (@005} € Vi, Whence the third and ninth term is zero.
What remains from R is just (b3).

It remains to prove that under the validity of (ISO 8) the condition
(b4) is equivalent to (ISO 4). We first remark that (ISO 3) in particular
implies that every fe V,(e,) with (f, f) =1 is a minimal tripotent and
thus, by Lemma 3.4.a,

(%) T(vo, ), = <vo, 'Uo> T(vo, )V,

forallv,e V, @ Vyand v,e Vi PV, D V... Hence we can apply Lemma
3.10 for ¢ = e, Putting f, =e, it remains then to show that trace
T(x,, x,) = 0 for x,€ V,, @ Vo, x,€ Vy(e,). Without restriction we assume
{x,, 2,y = 1. Then 2, is a minimal tripotent and, by Lemma 3.9, it
follows that trace T(x,, x,) = 0 as soon as we know that dim V(z,) = 2.
The same argument as used in the proof of Lemma 5.6.a shows dim V(x,) =
dim V,(e,), which is at least two by (b4).

We point out that Theorem 5.20 is a very convenient tool for the
investigation of isoparametric triple systems. It replaces a lengthy
identity by the shorter Peirce multiplication rules. Moreover, it shows
that (ISO 4) is actually only a condition on the dimensions of three
subspaces.
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