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Introduction. An isoparametric hyper surf ace in a sphere is an
orientable submanifold of the sphere which has codimension 1 and
constant principal curvatures. Cartan was the first to study such
hyper surf aces e.g. [1]. The subject seems to have been forgotten till it
was revived by Nomizu, who published a survey on E. Cartan's theory
of isoparametric hyper surf aces [9]. Takagi and Takahashi applied results
of Hsiang and Lawson on orbits of codimension 1 to classify all homo-
geneous hyper surf aces in spheres [12], This classification includes the
description of all hypersurfaces with at most 3 distinct principal curva-
tures since Cartan had shown that all such hypersurf aces are homogene-
ous. In [7] and [8], Mϋnzner proved that the number g of distinct
principal curvatures of an isoparametric hypersurf ace in a sphere is 1,
2, 3, 4 or 6. Moreover, refining ideas of Cartan, he showed that each
such hypersurface is an open submanifold of a level surface of a homo-
geneous polynomial of degree g and characterized these polynomials by
two differential equations. Obviously, it remains to consider the cases
g = 4 and g = 6 and to classify the corresponding polynomials. Of course,
this would be superfluous if all isoparametric hypersurfaces in a sphere
were homogeneous. As mentioned above, for g = 1, 2, 3 all hypersurfaces
are homogeneous. However, there exist non-homogeneous examples. The
first non-homogeneous examples were found by Ozeki and Takeuchi [10],
[11]. They constructed two infinite series of non-homogeneous isopara-
metric hypersurfaces. Recently, Ferus, Karcher, and Mϋnzner found—
for g = 4—a new type of examples (constructed from representations of
a Clifford algebra) which includes all known non-homogeneous examples
and—with the exception of two manifolds — all homogeneous examples
[6], They even constructed infinitely many infinite series of non-homo-
geneous hypersurfaces.

In this paper we develop a new algebraic approach to isoparametric
hypersurfaces in spheres. We concentrate on the case g = 4, but the
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case g = 6 could be treated similarly.
We start with the observation that on a finite-dimensional Euclidean

vector space (F, < , •>) every homogeneous polynomial F:V^R of
degree 4 can be written in the form

F{x) = %{x9 x)2 - (2β)({xxx}9 x)

where {•••}: Vx Vx V-^V is a trilinear map (i.e., a triple system) satisfying

{xxXzXz} = {#<;(i)#<;(2)#σ(3)} for every permutation σ and

<{#?/2}, w) = (z9 {xyw}) for all x, y9 z9 w e V .

Such triple systems are called symmetric. If F is the polynomial
associated with an isoparametric hypersurface in the unit sphere of
(F, < , •», then the Cartan-Mϋnzner differential equations translate into
identities for the triple system (F, {•••}). Triple systems satisfying
these identities are called isoparametric triple systems. These definitions,
simple consequences and examples are contained in §1. We point out
that the homogeneous examples are in close relation to simple compact
Jordan triple systems of rank 2. A typical example here is V —
Mat (2, r; C), r ^ 2 with (A, B) = (1/2) trace (AB* + BA*) and

F{A) = 3<A, A}2 - (AAιA9 A) ,

{ABC} = ABιC + CB'A + BA'C + CA*B + AC'B + BC'A .

In §2 we consider Peirce decompositions of symmetric triple systems
relative to minimal and maximal tripotents. In the example F =
Mat (2, r; C) a minimal tripotent is E119 the usual matrix unit, and the
corresponding Peirce decomposition is the eigenspace decomposition of the
endomorphism A -> {EnEnA}. In the next section (§ 3) we compare our
method with the work of Ozeki and Takeuchi [10]. Using our setting
we derive a slightly improved version of one of their main results. In
§§4, 5 we introduce the main tool for our approach, Peirce decompositions
relative to orthogonal tripotents (el9 e2). We prove that an isoparametric
triple system (F, { }) always contains two orthogonal minimal tripotents
(eu e2) and that (eu e2) induce a Peirce decomposition of F:

" — ' 1 1 VΓ/ " 10 \& " 12 \I/ " 12 \L? V 22 \I7 * 20

In the example F = Mat (2, r; C) minimal orthogonal tripotents are
(En, E22). Putting F12 = 75 θ Vϊ2 the corresponding Peirce decomposition
can symbolically be written in the form

Vn
V =

V12 22

1 1 r-2
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The main result of this paper, Theorem 5.22, shows that a symmetric
triple system is isoparametric if and only if it has a vector space de-
composition V = F n 0 F 1 0 φ F ί 2 0 F r 2 0 F 2 2 φ V20 such that

(1) each element of Vllf V10, V22 and F20 is a scalar multiple of a
minimal tripotent

(2) each element of Vi9 Vΰ is a scalar multiple of a maximal tripotent
( 3 ) <{αJua?220?12}, {£10ff20ff12}> + ({xuX«βn}, {Xi&nXn}} = 0

( 4) there exist positive integers m19 m2 such that dim (Vn φ F10) =
m2 + 1 = dim (F22 φ V20) and dim V12 = 2rax.
This result replaces the quite complicated triple system identities by the
more useful notions of tripotents and Peirce decompositions, a well-known
tool in nonassociative algebra.

We will use the results of this paper to get detailed insight into the
algebraic structure of isoparametric hypersurfaces in spheres, i.e., into
isoparametric triple systems. In [2] we explicitly work out the Peirce
decompositions relative to tripotents from Vi3-. In [4] we thoroughly
investigate FKM-triples, the isoparametric triple systems associated with
the isoparametric hypersurfaces first defined in [6]. Finally, in [3] we
classify isoparametric triple systems which have a Peirce decomposition
with V10 = 0 = V20. Such triples are equivalent to triples satisfying
condition (A) of Ozeki and Takeuchi but not necessarily their quite
technical condition (B). We thus generalize the results of [10]. As it
turns out, every isoparametric triple system satisfying (A) is homogene-
ous or equivalent to an FKM-triple.

The authors express their thanks to the University of Virginia at
Charlottesville for its hospitality during their work on isoparametric
triple systems. The second-named author gratefully acknowledges the
support of the Deutsche Forschungsgemeinschaft.

1. The equivalence of isoparametric hypersurfaces in spheres with
isoparametric triple systems. In this section we show how to describe
isoparametric hypersurfaces in spheres with 4 distinct principal curvatures
by isoparametric triple systems and vice versa.

1.1. Throughout the paper let V denote a finite-dimensional real
vector space provided with a scalar product < , •>.

By definition, an isoparametric hypersurface in the (unit) sphere S*
of V is an oriented submanifold M of S* which has codimension 1 and
constant principal curvatures. Such hypersurfaces are studied in [1]-[12].
We state some of the results which will be used in the sequel. Let M
always denote an isoparametric hypersurface in S*.

(a) ([5, Proposition 6]). Let M have the distinct principal curva-
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tures λjL < < λ, with corresponding multiplicities mlt , mg. Then,
taking subscripts mod g, we have m* = mΐ+2. If g is odd, then all multi-
plicities are equal. Note that we have

(1.1) dim V = 2 + (gβXm, + m2) .

(b) ([7], see also [5, Theorem 10] and [10]). There exists a unique
maximal family ^~ — {Mt, t e( — 1,1)} of isoparametric hypersurfaces in
S* such that each Mt is closed in S* and M is an open submanifold of
Mr for some te ( — 1,1). Further, there exists a homogeneous polynomial
function F: V —> R of degree g such that the following equations hold

(1.2) <grad F(x), grad F(x)) = g\x, x}9'1

(1.3) ΔF{x) = (l/2)(m2 - mjg^x, x)9^1 .

Moreover, the maximal family ^~ is given by

(1.4) J^- = {Mt = F~\t) Π S*; t e (-1,1)} •

Conversely, for each homogeneous polynomial F: V -> JB satisfying
(1.1) to (1.3) with positive integers m1 and m2, the family ^ given by
(1.4) defines a maximal family of isoparametric hypersurfaces in S* with
g distinct principal curvatures and multiplicities mlf m2.

(c) ([8]). The only possible values for g are 1, 2, 3, 4 and 6.
(d) ([1]). If g ^ 3, then M is homogeneous.
(e) The homogeneous isoparametric hypersurfaces are classified in

[12].
According to (c)-(e) only the cases g — 4 and g = 6 remain to be

investigated. In this paper we begin the study of the case g = 4.
(f) Two maximal families ^ and ^ " of isoparametric hypersurfaces

given by the polynomials F& and l*y (according to (b)) are said to be
equivalent if there exists an orthogonal transformation φ: V^ -> V*- such
that FAφx) = ±F<r(x) for all xe V&.

1.2. We give a general procedure for attaching to every homogene-
ous polynomial of degree 4 a triple product on V and vice versa.

By definition, a triple product on V is a trilinear map { }: V x
F x V —> V. Generalizing the "left multiplications" of an algebra, we
define endomorphisms Γ(u, v) 6 End F by T(u, v)w : = {uv^}, u, v,w e V.
We sometimes write T(%): = Γ(u, u) for short.

Assume F: V-+R is a homogeneous polynomial of degree 4. There
exists a unique totally symmetric 4-linear form F:VxVxVxV-+R
which satisfies F(x9 x, x, x) = 3<x, x)2 — F(x), x e V. With F we define a
triple product j ^ o n V by the relation
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F(u, vf w, x) = (2/S)({uvw}F, x) , u, v, w, x e V.

The left multiplications of this triple product are sometimes denoted by
TF(u, v).

REMARK. It might seem more natural to define F such that

F(x, x9 x, x) = F(x) holds and to define {•••}? on V by the relation

F(u, v9 w, x) = ({UVW}F, X). However, for the homogeneous isoparametric

hypersurfaces with g = 4 we will see in 1.5 that the natural triple product

(induced by a compact Jordan triple system) has F(uf v, w, x) =

(2/S)({uvw}9 Xs). To preserve the fruitful analogy with the homogeneous

case, we define the triple product in the general situation using F

instead of F.

The main objects of this paper are isoparametric triple systems, i.e.,
a triple (V, < , •>, {• •}) where (V, < , •» is a finite-dimensional Euclidean
space and {•••} is a triple product on V (with "left multiplications"
T(u, v)) which has the following properties:
(ISO 1) {•••} is totally symmetric,
(ISO 2) <{xyz}, w) = (z, {xyw}),
(ISO 3) ({xxx}f {xxx}) - 9(x, x)({xxx}, x) + 18<a?, α;>3 = 0,
(ISO 4) there exist positive integers m1 and m2 such that

(a) trace T(x, y) = 2(3 + 2m1 + m2)(x, y)
(b) dim V = 2(1 + m, + m2).

If no confusion is possible, we write V or (V, {•••}) instead of
(Vt (•>*)>{'•"})• More generally we call a triple {•••} on V satisfying
only (ISO 1) and (ISO 2) a symmetric triple system. An easy computa-
tion shows

LEMMA 1.1. Let F: V —• R be a homogeneous polynomial of degree 4
and {- }F defined as above. Assume further that m1 and m2 are posi-
tive integers such that dim V = 2(m1 + m2 + 1). Then F satisfies (1.2)
and (1.3) with g — 4 if and only if

(a) ({xxx}F9 {xxx}F) — 9<x, x)({xxx}Ff x) + 18<&, x)3 = 0 and
(b) trace TF(x, y) = 2(3 + 2mλ + m2)(x, y) for all x, y e V.

Hence the polynomials describing maximal families of isoparametric
hypersurfaces with 4 distinct principal curvatures are in 1-1 corre-
spondence with isoparametric triple systems.

We note that F is determined by {• }F, F{x) = 3<#, x)2 —
(2IZ)({xxx}9 x).

1.3. A very important feature of isoparametric triple systems is
that they occur in pairs.



192 J. DORFMEISTER AND E. NEHER

LEMMA 1.2. Let (F, {•••}) be a symmetric triple system and define
{•••}' on V by

(1.5) {xyzγ = S((x, y>s + (y, z)x + (z, x)y) - {xyz} .

Then (F, < , •>, {• •}') is again a symmetric triple system. Further
{...}" = {...}. If F is the polynomial associated with (F, {•••}), then
the polynomial associated with (F, {•••}') is —F. If (F, {•••}) is an
isoparametric triple, then (F, { }') is also isoparametric with m[ = m2

and m[ = mx.

We call (F, < , •>, {•••}'), where {•••}' is defined in Lemma 1.3, the
dual triple system of (F, < , •>, {• •}) and abbreviate it by V. The left
multiplications in V are denoted by T\u, v). The dual triple system
naturally occurs when one translates the notion of "equivalence of
isoparametric hypersurfaces" into the language of triple systems (see
Lemma 1.3).

Let F and W be symmetric triple systems. We call (F, {- -}v) and
(W, {' }w) isomorphic (as triple systems), if there exists an orthogonal
map φ: V —> W satisfying φ({xyz}v) = {φx, φy, φz}w for all x, y, ze V. We
say F and W are equivalent if F is isomorphic to W or to W, i.e., if
there exists an orthogonal map φ: F—>• 17 such that φ{xxx}v — {φx, φx, φx}w

or φ{xxx}γ = 9(x, x)φx — {φx, φx, φx}w. This is, obviously, an equivalence
relation.

LEMMA 1.3. Let S* and J7~ be two maximal families of isopara-
metric hypersurfaces in the unit sphere of V with g = 4t, let V^ and F̂ ~
be the corresponding isoparametric triple systems. Then S^ and ̂ ~ are
equivalent if and only if V^ and Vjr are equivalent.

PROOF. Let i<V and F^ be the polynomials describing £f and Jf
according to 1.1.(b). By definition Sf and J^~ are equivalent if and only
if there exists an orthogonal φ: V^ -* V^ such that F^(φx) = ±F^(x)
for all x e V&. But this is equivalent to S(x, x)2 — (2β)({φx, φx, φx}^-, φx) =
±(3<OJ, x)2 - (2β)({xxx}s,, x)) and therefore (by differentiation) to
9(x, x}x — 2φ~\{φx, φx, φx}^-) = ±(9<a?, x)x — 2{xxx}^). From this the
assertion easily follows.

1.4. We will use the defining identity (ISO 3) of an isoparametric
triple system in its linearized form. Linearization means that we replace
x by x + Xu for x, u e F, λ e R and equate the coefficients of the different
powers of λ in the resulting expression. In our setting linearization is
the same as differentiation. We use the abbreviation uv* for the linear
map w —• (w, v)u. We get
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(1.6) {xx{xxx}} - β(x, x){xxx} - 3({xxx}, x)x + 18<#, x)2x = 0 .

(1.7) 3T(x)2 + 2T(x, {xxx}) - 18<a>, x)T(x) - 3<α, {xxx}}Id

— 12(x{xxx}* + {xxx}x*) + 18<α, α>2/d + 72<α, z>a;a;* = 0 .

(1.8) T(x, u)T(x) + T(x)T{x, u) + T(x, {xxu})

— 6(x, u)T(x) - 6<>, ίu>Γ(α;, u) - 2

— 2(u{xxx}* + {a αja;}̂ *) — 6(aj{αjχu}* + {xxu}x*)

+ 12<α, »><», w>Id + 24<ί», u > ^ * + 12<OJ, X}(XU* + ux*) = 0 .

(1.9) 2T(x, u)T(x, v) + 2T(x, v)T(x, u) + T(u, v)T(x) + T(x)T(u, v)

+ T(v, {xxu}) + 2T(x, {xuv}) + T(u, {xxv}) -

— 12<a?, v)T(x, u) - 6<^, v}T(x) - 6<α;,

— 6({xxv}\ u)Id — §(u{xxv}* + {xxv}u*)

— 6(v{xxu}* + {xxu}v*) — 12(x{xuv}* +

, x)(u, v)Id + 24<#, u><ίc, v>Jώ + 24<^, v}xx*

+ vx*) + 24<x, v>(aju* + ux*)

+ uv*) = 0 .

(1.10) T(w, u)T{x, v) + Γ(a?, u)T{w, v) + Γ(w, v)Γ(a?, u) + Γ(a?f

+ T(u, v)T(x, w) + T(x, w)T(u, v) + T(v, {uwx}) + T(w, {xuv})

+ T(x, {wuv}) + T(u, {xwv}) - 6(x, u}T(w, v) - 6(w, u)T(x, v)

— 6<w, v)T(x, u) - 6(x, v)T(w, u) - 6<u, v>Γ(a;, w)

— 6<#, w)T(u, v) — 6({xwv}, u)Id — 6(u{a;iί;i;}* + {xwv}u*)

— 6(v{xwu}* + {ίctί;̂ }̂ *) — 6(w{xuv}* + {cc^vjtί;*)

— 6(x{wuv}* + {wuv}x*) + 12«a?, w)(u, v) + <w, u><a?, v)

+ <OJ, ^><t(;, v»7d + 12(uf v}(xw* + wa5*)

+ 12<w, u}(xv* + va;*) + 12<sc, u)(wv* + v^*)

+ 1 2 O , v)(xu* + u^*) + 12<w, x}(vu* + uv*)

<α;, v)(wu* + u^*) = 0 .

REMARK. Clearly, equations (1.7)-(1.10) are all equivalent to (1.6).
We list them here because we will use them frequently.

We will often consider symmetric triple systems. The failure of an
arbitrary symmetric triple system V to satisfy the identity (ISO 3) is
measured by the polynomial ^f: V-+V, where

(1.11) ^T(OJ) = {xx{xxx}} - 6(x, x){xxx} - 2>({xxx}, x)x + 18<a, x)2x .

Since ^^ is homogeneous of degree 5 there exists a uniquely determined
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t o t a l l y - s y m m e t r i c five-linear m a p ^\ F x F x F x F x V —> V s a t i s f y i n g
^?{x, x, x, x, x) = ^t(x), xeV. We will use the abbreviations ^f(x; u)
or ^?{x\ u, v) to denote ^f{x, x, x, x, u) or ^f(x, x, x, u, v) . We
now express the five-linear map by the triple product. Indeed, since
(1.7) to (1.10) are the successive linearizations of (1.6) we see that

(1.12) 5^T(#; u) = left hand side of (1.7) applied to u

(1.13) (10/3)^T(a?; u, v) = left hand side of (1.8) applied to v

(1.14) lQ^t(x) u, v, w) = left hand side of (1.9) applied to w

(1.15) 10^^(#, u, v, w, y) = left hand side of (1.10) applied to y.

LEMMA 1.4. Let V be a symmetric triple system.
(a) For xt e V, i = 1, , 6 we have

/or ever?/ permutation σe@6.
(b) Lei ^f' be defined for the dual system V in the same way as
is defined for V. Then ^t(x) — ̂ £\x) for all xeV.

PROOF, (a) We define the polynomial function h:V-> R, h(x) —
(x), x). Using (ISO 1) and (ISO 2) it is easy to see that dΛh{μ) =

), u) and d\h{u, v) = 6 5(^f(x; v), u). Since d2

xh(u, v) is symmetric
in u and v we get (^f(x; v), u) = {^f{x\ u), v) which easily implies (a),

(b) A straightforward computation shows {^t(x)f x) = {^f\x), x).
Since §^f(x) = grad h(x) we get (b).

1.5. We close this section by presenting all known examples of
isoparametric triple systems.

(a) Homogeneous isoparametric triple systems. An isoparametric
triple is called homogeneous if the corresponding isoparametric hypersur-
faces are homogeneous. We recall from [7] that an isoparametric hyper-
surface M of the sphere in the Euclidean space (V, < , » is called
homogeneous if there exists a group of orthogonal transformations of
(V, < > » which leaves M invariant and acts transitively on M. The
results of [12] show that every homogeneous isoparametric triple system
is equivalent to one of the following three types:

(a.l) Let F be R, C or H (the quaternions). We consider the real
vector space V — Mat (p, r; F) of p x r matrices with coefficients in F.
For x = (xid) 6 V define x = (βtj) where "-" is the canonical involution in
F. Then (x9 y) = (1/2) trace (xy* + xιy) is a scalar product on V and

(1.16) {xyz} = xψz + zψx + yx*z + zxιy + xzfy + yzιx
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is a totally symmetric triple system. It is isoparametric if p = 2 and
r ^ 3 in case F = iί, or r ^ 2 in case F = C, H.

(a.2) For K = R,C define 0(5; JT) = {a> e Mat (5, 5; JC); a' = -x}. It
is easy to check that 0(5; K) is closed under the triple product (1.16);
hence, the triple product (1.16) induces a triple system on 0(5; K) which
is isoparametric.

(a. 3) Let O be the division Cayley algebra over jβ and by Oc its
complexification. Since Oc is again a Cayley algebra it has a canonical
involution x —> x\ Every xeθc has unique decomposition x — a + ib with
α, 6 6 0. We define x — a — ϊb and consider V: = Oc 0 Oc as a real vector
space. The elements of V are written in the form x = (xlf x2) with
Xi e Oc. Then <#, y} = Re (&J/I + yλx[ + sc2̂ J + ^/2̂ ) is a scalar product on
V and {###} = βίaJxίcίfiBi + xλx2 â , ^2^2 + #1 ^ 2 ) defines, by linearization,
a totally symmetric triple on V. It can be shown that it is a homo-
geneous isoparametric triple system. Summing up what we have ex-
tracted from [9], we have the following list of all homogeneous isopara-
metric triple systems (up to equivalence):

V

Mat(2,r; JR), r^3
Mat(2,r; C), r^2
Mat(2,r;fl), r^2
0(5; R)
0(5; C)
(OC®O^)R

dim V

2r

4r

Sr

10

20

32

m i

1

2

4

2

4

6

r - 2

2r-3
4r-5

2

5

9

(b) Isoparametric triple systems of FKM-type. Let (V, < , •» be an

Euclidean space. Assume Po, , Pm, m ^ 1, is a Clifford system ([6, 3.2]).

If dim V — 2{m1 + m2 + 1) with m — m1 and a positive integer m2, then

r=0

defines an isoparametric triple system on V. The corresponding iso-
parametric hypersurfaces were first considered in [6].

2. Peirce decomposition relative to a single tripotent. Through-
out this section let V = (V, {•••}) be a symmetric triple system. We
introduce the notion of a tripotent of V and study its Peirce decom-
position.

2.1. As in §1.2 we associate to (F, {•••}) the polynomial F(x) =

3<z, xY - (2/3)<{α?α?α?}, a>.
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LEMMA 2.1. (a) The extremal points ceS* of F\ S* satisfy {ccc} e Re.
(b) Let ceS* with {ccc} = tec for some /ceR. Then the following

are equivalent:

(2) κe{3,6},
(3) F(c) = l (for tc = 2) or F(c) = - 1 (for K = 6).
(c) If F\S* is not constant and if ^f(c) = 0 for each extremal

point of F\S*, then F(S*) = [-1,1] and F~l(-1) Π S* are the points of
S* where F\S* is minimal and F~\ΐ)πS* are the points of S* where
F\S* is maximal.

P R O O F , ( a ) O b v i o u s l y , dx[F(x) - ζ ( ( x , x ) - 1 ) ] = 0 f o r a l l u e V i f
and only if 0 = dxF(u)-2ζ(x, u) = 12<s, x)(x, u)-(8/3)({xxx}, u)-2ζ(x, u)
for all ueV. This is equivalent with {xxx} = KX for some K6R.

(b) is straightforward.
(c) By assumption F(S*) = [a, β], a, βeR, a < β. Each point c

in F-\ά) Π S* or JF7"^^) Π S* is an extremal point. Then ^T(c) = 0,
whence JP(C) = ± 1 by (b). This implies a = — 1, β = 1.

For an element c e F with {ccc} = itc we define

F/c) = {x 6 F; Γ(c)a? = /*&, <a?, c> = 0} , μ e R .

Obviously, V = i ί c φ (®μeR Vμ(c)). From (1.5) we derive for <c, x> = 0
that {ccxY = 3x — {ccx}. Thus {ccx} = ^a; iff {cccc}' = (3 — JM)», i.e.,

(2.1) VLμ(c)=Vμ(c) for all //e/ϊ.

THEOREM 2.2. (a) Let ceV with <c, c> = 1 α^ώ {ccc} = 6c. Then
the following are equivalent:

(1) ^ ( c ; u) = 0 /or all ueV
(2) F - Λ c 0 F 2 ( c ) 0 F o ( c )
(3) yF = Λ β 0 ( y F ) i ( c ) Θ ( n . w .

/w ίfeis case, ^e Λave (V'\(c) = F2(c), (F')3(c) = 70(c).
(b) Lei 6 6 7 ^ΐίfe <e, e> = 1 a^ώ {eee} = 3e. Γfeeτι ίfee following are

equivalent:

(1) ^ T (e; u) = 0 /or all ueV

(2) 7 = Λe0 V.(β) Θ Vί(e)
(3) y = Λβ0(noWθ(n.(β).

7w ίfeis case, ^e Aave (V'\(e) = F3(e), (F')2(β) = Fx(e).
(c) Assume ίAere are positive integers m19 m2 such that dim V =

2(1 + mi + m2).
(1) Let c satisfy one of the equivalent conditions of (a). Then

trace T(c) = 2(3 + 2m, + m2) ίjf dim F2(c) = 2m, + m2 iff dim V0(c) = m2 + 1.
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(2) Let e satisfy one of the equivalent conditions of (b). Then
trace T{e) = 2(3 + 2m, + m2) iff dim V3(e) = rax + 1 iff dim VΊ(e) = 2ra2 + mx.

PROOF, (a) By (1.12) we know that (1) is equivalent to (1.7), hence
to T(c)2 - 2T(c) - 24cc* = 0. Since T(c)\Rc = 6Id we get T(c)(Rc)L c
(JRc)1. Therefore the last equation is satisfied iff the restricted endomor-
phism satisfies the equation τ2 — 2r = 0, which is obviously equivalent
to (2). The statement (2)«(3) follows from (2.1).

(b) By Lemma 1.7.b we have ^4t{e\ u) — 0 iff ^f'(e; u) = 0. Hence
(b) follows from (a) applied to V and e instead of V and c.

(c) is a consequence of (a) resp. (b) and (ISO 4).

2.2. In this subsection we consider an element ce V with (c, c> = 1,
{ccc} = 6c and ^f(c; u) = 0 for all w e 7 . Then every cee F has a de-
composition

(2.2) x = αc© x2(c) 0 a?o(c)

with α e R and â  6 Vμ(c). When it is clear which element c is referred
to we simply write Vμ instead of Vμ(c) and xμ instead of xμ(c). It is
also convenient to introduce the abbreviation χoy := {xcy}, x,yeV. We
remark that o defines a commutative algebra on V. Prom the context
it will always be clear which element c is used to define χoy.

THEOREM 2.3. Let ceV, <c, c) = 1, {ccc} = 6c and ^?{c\ u) = 0 for

all ueV.
(a) ^(c; u,v) = 0 for all u,veV iff the following multiplication

rules hold for uμ, vμ e Vμ, μ = 0, 2:

(2.3) u0ov0 = 0

(2.4) u0ov2eV2

(2.5) u2ov2 = 2(u2f v2)c + (u2ov2)0.

(b) Assume ^^(c; w, v) = 0 /or αii u,veV. Then ^£{c\ u, v, w) = 0
/or αZZ u, v, w e V iff the following identities are satisfied for all

Uμ, Vμ,

(2.6)

(2.7)

(2.8)

(2.9)

wμe v

{uov{

{uov,

(v,
{u2v.

PROOF.

μ

Wθ}

,w2)

iw2}

>w2}

We

= 2«u0, 1

= n0 o (v0

= <Uo,V2

= 2«^2,1

- v2 o 0

choose 1

o w 2) + Vo

o 1ί?2>C + [

^2>^2 + <1

î , t; and

y0, Wo)u0 +

°(u0ow2)e

V2O(W2OUQ)

v2, w2)u2 +

w2o(u2ov2)

w in the

Oo, uo)vo) e Vic)

V2{c)

+ w2o(v2ouQ)]0 + {u0v

\ vU2* w2/ ^2/ ^2 \ 2

„ + {u2v2w2}0 e F2(c) 0

various eigenspaces

2w2}2

V,(c).

of Γ(β)
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and evaluate (1.8) and (1.9).

F o r a symmetr ic t r iple system V an element ceV w i t h t h e proper-

ties (c, c) = 1, {ccc} = 6c and ^f(c; u, v, w) = 0 for all u, v, w e V is
called a minimal tripotent. We recall from Theorem 2.2. a that the
condition ^(c; u, v, w) = 0 for all u, v, w e V implies the existence of
the decomposition V = Rc@ V2(c) φ V(c) which we call the Peirce decom-
position of V relative to c and the validity of the formulas (2.3) to (2.9)
which we refer to as Peirce multiplication rules. The decomposition
(2.2) is called the Peirce decomposition of x (relative to c) and the spaces
Vμ(c) are said to be the Peirce spaces of c.

REMARK 2.4. (a) The notion of a tripotent in a triple system is
analogous to the notion of an idempotent in an algebra. In many
important classes of algebras an idempotent induces a "Peirce decompo-
sition" of the algebra. Because of this we choose the name Peirce de-
composition also in the case of triple systems.

(b) If V is not only symmetric, but even isoparametric, then a
minimal tripotent of V is just an element c of V with <c, c> = 1 and
{ccc} = 6c. By (ISO 4) and Theorem 2.2.c we know in this case dim V2(c) =
2m2 + mλ > 0 and dim V0(c) = m2 + 1 > 0.

Let F be the polynomial associated to the isoparametric triple V
according to Lemma 1.1. Then (ISO 4) implies that F restricted to the
unit sphere S* of V is not constant. Therefore F~\ — 1) n S* are the
minima of F\S* by Lemma 2.1.c. Moreover, Lemma 2.1.c shows that
F~\~-1) Π S* is the set of the minimal tripotents of V. This justifies
the adjective "minimal".

It is known (see e.g. [5]) that the family of isoparametric hypersur-
faces described by F h a s exactly two focal manifolds, M__ = F~\ — l) Π S*
and M+ = F~\l) Π S*. Therefore the set of minimal tripotents of V
coincides with the focal manifold M_.

(c) To give examples of minimal tripotents we consider the iso-
parametric triple system Mat (2, r; F) as defined in §1.5.(a.l). We denote
by En the usual matrix units. Then each Etj is a minimal tripotent.
The Peirce spaces Vμ(ElS) are V2(EU) = {aEu\ a e F~} 0 FE2j φ ®kΦj FElk

where F~ denotes the orthogonal complement of 1 in F, e.g. R~ = 0,
and VoiEJ = ®kΦj FE2k.

(d) If c is a minimal tripotent of the symmetric triple system V,
every fe V0(c) with </, /> = 1 satisfies {///} = 6/by (2.6). In particular,
if V is isoparametric, every fe V0(c) with </, /> = 1 is a minimal
tripotent.

(e) The multiplication rules (2.4) and (2.8) are consequences of the
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remaining ones.

(f) Let c be a minimal tripotent of the symmetric triple system F.
From Theorem 2.3 it is clear that all triple products are known once
u0ov2, (u2°v2)0, {u0v2w2}2 and {u2v2w2}0 are known for all uμ, vμ. But
(u2 o v2)0 is determined by u0 ° v2 via (u2 o v2, u0} = (u2t u0 ° v2) and similarly
{u0v2w2}2 is determined by {u2v2w2}0. Hence all triple products are known
as soon as uQ o v2 and {u2v2w2}0 are known for all uμ, vμ, wμ e Vμ.

2.3. This subsection is the dual version of §2.2, i.e., we consider
an element e of the symmetric triple system V with <e, e> = 1, {eee} = 2e
and ^t{e\ u) — 0 for all ueV. Hence, by Theorem 2.2.b, we have a
decomposition V = Re 0 F3(e) 0 Fx(e) where F^e) = {x e F; T(e)z = /£&,
<β, α;> =0}. Correspondingly, each element x of V has a decomposition
» = cce 0 a?8(β) 0 %i(e). When no confusion is possible we often write Vμ

instead of Vμ(e) and xμ instead of xμ(e). As in §2.2, we introduce an
algebra " • " on V, depending on e, via the definition

a D v = {^2/}, χ,yeV.

THEOREM 2.5. Assume eeV, (e, e) = 1, {eee} = 3e α^ώ ^^(e ; u) = 0
for all u,veV.

(a) Then ^£{e\ ufv) = 0 for all u,veViff the following multipli-
cation rules hold for all uμ, vμ e Vμ, μ = 1, 3:

(2.10) UtΠvz = 3<u3, t;3>e

(2.11) M s D ^ e 7χ

(2.12) ux Π Vi = <^i, ̂ i>e + (ux Π Vi\

(b) Suppose ^^{e\ u, v) = 0 /or αZZ u, ^ e F. Tfee^ ^ ^ ( c ; u, v, w) = 0

/or αZi ^, v, w e V iff the following identities are satisfied for all

uμf vμ, wμ 6 Vμ

(2.13) {u,v3w5} = <u3, vB)w3 + (v3, w3)u3 + <w3, ̂ 3>v3 e F3(e)

(2.14) {u&iwά = 3<^3, Vs)^! — u3 Π (v8 D Wi) — ̂ 3 D (M8 D ^i) 6 Fi(e)

(2.15) {ttβ̂ Wi} = < !̂ • wlf us)e + 3<V!, w^uz

(2.16) {WiViWj = Wi D (Vi D Wx) + ^ D (Wi D Wi) + Wi D (Wi D Vi

PROOF. This can be proved in the same way as Theorem 2.3 or one

considers the dual system F ' and uses Theorem 2.3 for F ' and e.

An element e of a symmetric triple V satisfying <e, e> = 1, {eee} = 3e
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and ^t{e\ u, v,w) = 0 for all u, v, w e V is called a maximal tripotent.
If V is isoparametric, then, by Lemma 2.1.C, every maximal tripotent
is a maximum of F\S* where F is the polynomial associated to V. As
for minimal tripotents, the decomposition V = Re φ Vz(e) φ V^e) is said
to be the Peirce decomposition of V relative to e, the corresponding
decomposition of x e V is the Peirce decomposition of x relative to e, the
spaces Vμ(e) are called Peirce spaces, and the identities (2.10) to (2.16) are
referred to as Peirce multiplication rules. Analogous remarks as Remark
2.4.(b), (d), (e) and (f) apply in the case of maximal tripotents. Besides
these we have

REMARK 2.6. (a) It is easy to see that for a symmetric triple
system V the following are equivalent:

( i ) e is a maximal (resp. minimal) tripotent of V
(ii) e is a minimal (resp. maximal) tripotent of V.
(b) Examples for maximal tripotents of the isoparametric triple

system M(2, r; F) are {VΎy^E^ + Ekl) for {i, j} Π {&, 1} = 0 . The Peirce
spaces for e = ( i / l Γ ) " 1 ^ + E22) are

V&) = F~En φ F"#22 φ F(E12 - E21) φ ( 0 FElk φ
fc,ίέ3

where F~ is the orthogonal complement of 1 in F.
(c) Similarly to Remark 2.4.(f) one gets: Let e be a maximal

tripotent of the symmetric triple system V. Then all triple products
are known once v3 • v1 and {vλvxv^z are known for every vte F*.

2.4. In this subsection we define the subspace V°2(c) of V2(c) where
c is a minimal tripotent of the symmetric triple system V. If V is
isoparametric, every fe V2(c) with </, /> = 1 has essentially the same
Peirce decomposition as c. We point out that the results of this sub-
section are not used in §3.

The formulas (2.3), (2.4) and (2.5) imply that the algebra "o" defined
by χoy = {xcy} is determined by the operation of VQ(c) on V2(c). In case
V is isoparametric one can show that this operation is faithful.

In the general situation where c is a minimal tripotent of the
symmetric triple system V we introduce that part of V2(c) where the
operation of V0(c) is trivial:

(2.17) Vi(c) = {xe V2(c); V0(c) o x = 0} .

It will be convenient to have also the following abbreviation.

(2.18) Vξ(c):
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We give an example for Vi(c): Let V = Mat (2, r; F) as defined in
§1.5.(a.l). Using Remark 2.4.(c) it is easy to check that V°2{Ei5) = F"Etj

where F~ is the orthogonal complement of 1 in F.
In the following lemma we use the notation U Q W to denote the

orthogonal complement of W in the Euclidean space U.

LEMMA 2.7. Let c be a minimal tripotent of the symmetric triple
system V.

(a) If x\ 6 V°2(c), then x°2 °y = 0 for all yeVQ (Re φ V°2(c)).
(b) For every y e VQ(c), (y, y) = 1, we have

(c) If V0(c) contains a minimal tripotent, then

{uvw} = 2((u, v)w + (v, w)u + (w, u)v)

for all u,v,we Vl(c).
(d) We assume that V0(c) has a basis consisting of minimal tri-

potents. If ue Vf(c) is a minimal tripotent with dim V0(c) = dim V0(u),
then

VQ(u) = Vic) and V2(u) = (V2(c) 0 Be) θ Rn .

Moreover, {V0(c), u, V0(c)} = 0.

PROOF, (a) By the definition of V°2(c) we have x°2 ° V0(c) = 0, and for
y2eV2(c) we conclude (x°2°y2, z0) = 0 hence x°2oy2 = 2(x°2, y2)c by (2.5).
T h i s s h o w s (a) .

(b) B y (2.3) a n d (2.7) w e g e t T(y)c = yoy = 0 a n d T(y)u°2 = 2yo

(yoU°2) = 0.

(c) follows from (b) and (2.6) applied to the minimal tripotent

(d) We write u in the form u = ac + u°2 and let y be a minimal
tripotent of V0(c). Then Γ(w)i/ = a2T(c)y + 2<TO2

0°7/ + Γ(w?)2/ = 0 where
the last summand is zero because of (b) and (2.3) applied to y. This
shows V0(c) c VQ(u) and therefore VQ(u) = V0(c) by our assumption. Since
V2(u) = V Q (Ru © VQ(u)) the second assertion follows. Finally,
{V0(c), u, VQ(c)} - {VQ(u), u, V0(u)} = 0 by (2.3) applied to u.

The assumptions of parts (c) and (d) of Lemma 2.7 hold when V is
isoparametric:

COROLLARY 2.8. Let c be a minimal tripotent of the isoparametric
triple system V.

(a) For all u,v,we Vξ(c) we have
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{uvw} = 2((u, v)w + (v, w)u + (w, u)v) .

(b) Let u 6 Vξ(c) and (u, u) = 1. Then

V0(u) = V0(c) and Vt{u) = (V,(c) ® Be) © Rn .

Moreover,

{V0(c)uV0(c)} = 0 .

In analogy to (2.17) and (2.18) we define

(2.19) Vl(e) = {xe Vι{e)9 x D 7,(β) = 0}

(2.20) Vf(β) = Λe®7ί(β) .

It is straightforward how to translate Lemma 2.7 and Corollary 2.8 to
the case of maximal tripotents.

3. Comparison with the work of H. Ozeki and M. Takeuchi.
3.1 A decomposition of a symmetric triple system relative to a

maximal tripotent as developed in §2.3 also appears in [10], however in a
different setting. In this subsection we describe the procedure used in
[10] and identify the fundamental notions of [10]. This will help the
reader to translate the results of [10] into the language of triple
systems. Throughout §3.1 V denotes a symmetric triple system.

In [10] a point e of the unit sphere S* of V is picked where the
restriction to S* of the polynomial F associated to V is maximal. In
case V is isoparametric, e is a maximal tripotent. Therefore we will
assume in the sequel that e is a maximal tripotent of the symmetric triple
system V. Then one considers the map t —> F(te + x) where x 6 X = VQ
Re. Obviously,

Fife + x)= fo(x) + tfx(x) + ff2(x) + ?/,(&) + t'f,{x)

where fs is a homogeneous polynomial fά: X-+ R of degree 4 — j . It is
easy to see /4(cc) = F(e) and /8 = 0.

Using Theorem 2.2. (c) the following lemma becomes obvious (it is
essentially identical with [10, Lemma 5]).

LEMMA 3.1. The quadratic form /2 = A=± (l/2)d2

xF(e, e) can be written
as

f2(x) = 2«a? lf x,) - 3<α;3,

where xx 6 V^e) = Y and xz 6 Vz(e) = W. Moreover, dim Y = 2m2 + mx

and dim W = m, + 1 iff trace T{c) = 2(3 + 2mλ + m2).

In the sequel we assume that dim Y = 2m2 + mi αtiώ dim W = mx + 1.
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According to the procedure in [10] we now consider fx = B. Making
use of our abbreviation αQ& = {aeb} we get

fM = dxF{e) = -(8/3X0?! Da?i + 2xx D ^ + ^ D a8, »i + &

Using (2.10), (2.11) and (2.12) it follows

(3.1) f(x) = -8<# 3 Π a?i, «i> for a? = xz + xx , a?y e Vs(e) .

Let (wf) be an orthogonal basis of W = F3(e). Then

(3.2) = [10, (3.7)] B(αO = £(&) = 8 Σ P«<wf, ̂ s>

where

(3.3) p α = -<wfD«i f ί»i>.

F i n a l l y , w e c o n s i d e r f0 = C. Since C is of d e g r e e 4 o n l = VΊ(e)0
F3(β) w e m a y w r i t e

(3.4) = [10, (3.8)] C = Σ Ch
= 0

where CΛ is the homogeneous part of degree h on W = F3(e) (and hence

of degree 4 — h on F = VΊ(e)). Moreover, we define mx + 1 cubic forms

Qoy •",?»! on Γ by

(3.5) = [10, (3.9)] Cάx) = 8 Σ ^α<^3, ^?>
α=0

In the following lemma we identify the forms q and compute the
explicit expressions for Ch which are also contained in [10, Lemma 7].

LEMMA 3.2. The following formulas hold

(3.6) Co = F(xλ) = <a l f aO 2 - 2<fe Q «i)a D x» «i> = <»!, ^ > 2 - 2 Σ Pi

(3.7) gα = (l/SXfoίCΛ}, w3

α>

(3.8) C2 = 8<£cs Π * l f x8 D Xι> - 6<»!, *!><!«!„ *3>

= 2 Σ <grad p α j g rad pβ)(wS, x3}(wξ, x3) - 6<a?1, »i><a;,, *3>

(3.9) C3 = 0

(3.10) C4 = <x3, a;3>
2.

P R O O F . We expand C(x t + xs) = F{xx + x3) and collect t h e t e r m s of

degree h in ίc8:

( * ) Fix,. + x3) = Fix,) - (8/3)<{«,a!1a;Jf «3> + 6<as1, XxXx,, x3>

- 4<{x1a;1x3}> x3> - (8/3)<{x3x3x3}, xt>
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Using (2.16) and (2.12) we obtain CQ = (xlf a^)2 - 2<(α?1 Π Xi\ D Xι, &i>.
Since {xx Π Xi\ = Σ« (χi • χu wf>wf we get φ1 Π Xi\ D #i, «i> = Σ« Pi

From (*) we derive C, = - ( 8 / 3 ) < ^ A } , X5) = - (8/3) Σ« Φ Λ ^ J , wf>
(x3, wf), which implies (3.7).

Next, we conclude from (*) and (2.14) that C2 = 8<#3 • xu xz Π #i> —

6<a?i, » i><a? 8 > ^ 3 > .

Moreover, <α3 D «i, &8 • xx) = Σ«,iS <̂ 3, ^?> < 3̂, ^ί> < 3̂ D &i, wf Π »i>.
Because grad pβ = — 2Γ(e, wf) we have (3.8).

Finally, (2.13) implies C3 = -(8/3)<{^^^}, »i> = 0 and C4 = F(x3) =
3<x3, ^3>

2 - (2/3)<te*3}, x*> = < 3̂, α3>
2. Thus (3.9) and (3.10) follow.

REMARK 3.3. As already mentioned in Remark 2.6.(c) the entire
triple system is determined by the functions Vz x V1-*V1: (xs, xλ) -* xs D %i
and VΊ-+VΛ: Xi-+{x&iXjz i.e., in view of (3.3) and (3.7) by the quadratic
forms (pa) and the cubic forms (qa). In [10, Theorem 1] Ozeki and Take-
uchi give a list of conditions on (pβ) and (qa) which are necessary and
sufficient for the corresponding triple system to be isoparametric. Rather
than just translating their result in the language of triple systems we
prefer to present a more direct proof of this result in the next sub-
sections. Thereby we also can derive a slightly improved version of [10,
Theorem 1].

In view of Section 5.5 we prefer to prove the theorem in §3.2 in
terms of minimal rather than maximal tripotents. In §3.3 we formulate
our results in terms of maximal tripotents and carry out the comparison
with [10].

3.2. In this subsection we consider a symmetric triple system V
and a minimal tripotent c of 7 with corresponding Peirce decomposition
7 = Λ c φ 7 2 0 Fo. The formula (2.6) is equivalent to saying that every
element feV0 with </, /> = 1 satisfies {///} = 6/. In particular, if V
is isoparametric then / is a minimal tripotent. Since we want to
characterize isoparametric triple systems, a first step is to investigate
in general when every f e Vo with </, /> = 1 is a minimal tripotent.

LEMMA 3.4. Let c be a minimal tripotent of the symmetric triple
system V. Then every f e V0(c) with </, /> = 1 is a minimal tripotent
iff for all v0 e VOf v2 e V2 the following identities hold:

(a) T(v09 cfv2 = Oo, vo)T(vo, c)v2

(b) <v0oi;ϊ>Γ(i;2)t;o> = 0
(c) 3<T(<;2K, T(v0, c)2v2) = 2<v0, vQ)(T(v2)v2, v0}
(d) %(T(v2)

2vQ, v0) + 2(T(vo)v2, T(v2)v2} - 3<v0, vQ}(v2, T(v2)v2)
-I8(v2, v2)(v2, T(vo)v2) + 18<v0> vo)(v2, v2}

2 = 0.
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PROOF. By definition, / is a minimal tripotent if ^f(f9 /, u, v, w) = 0
for all u, v, w e V. We put h(x, y, z, u, v, w) = (^f(x, y, z, u, v), w).
Then h is linear in each variable and totally symmetric. We say that
h is of type (ijk) if it is of degree i resp. j resp. k in c resp. v2 resp. vQ.
Clearly, i + j + k — 6. It is also obvious that every / e V0(c) with
(f> /> = 1 is a minimal tripotent iff all the expressions of type (ijk)
with k ^ 2 vanish. Since c is a minimal tripotent we already know
h(c, c, xy y, z, w) = 0. Moreover, (^t(v0), x) = 0 by (2.6) and Lemma 2.1.b.
Therefore we only need to consider the types (ijk) where 0 <̂  i ^ 1 and
2 ^ k <̂  4. By (1.12) and (1.15) this can be done by using the identities
(1.7) and (1.8) and taking scalar products: For (1.14) we apply (1.7) for
x = vQ to v2 and take the scalar product with c: 0 = S(T(vo)v2t v0ov0) +
2(T(vo)vo, v,ov2) - 18O0, ^oX^o0^, <>• Since vo<>vo = 0 by (2.3), T(vo)vo =
6< ô, ̂ o>̂ o by (2.6) and vQov2e V2 by (2.4), each of the three summands
vanishes. The remaining cases (123), (132), (042), (033) and (024) follow
similarly.

We will characterize when V satisfies (ISO 3), i.e., when ^f = 0 on
V.

LEMMA 3.5. Let c be a minimal tripotent of the symmetric triple
system V. Then V satisfies (ISO 3) iff every f e V0(c) with </, /> = 1
is a minimal tripotent and the following identities (a), (b) and (c) hold
for all Vj e Vό\

(a) ({v2v2v2},v2ov2} = 0
(b) ({v2v2v2}f {v2v2v0}) = 6<X v2)({v2v2v2}, v0)
(c) <^r(v£), v2) = 0.

PROOF. We use the notation of the proof of the previous lemma.
Obviously, (ISO 3) is fulfilled iff h vanishes for all possible types (ijk).
But since c is a minimal tripotent we know already that h is zero if
i ^ 2. Moreover, h vanishes for (ijk) with k ^ 2 iff every / 6 V0(c) with
(f9 /> = 1 is a minimal tripotent. Hence the lemma follows if we can
show that h vanishes for all expressions of type (ijk) with 0 <: i <; 1,
0 ^ k ^ 1, i + j + k = 6, iff (a), (b) and (c) hold. This is shown by
considering each type individually.

REMARK 3.6. Part (a) of Lemma 3.4 and (2.4) show that the linear
family of endomorphisms H(xz): = T(xs, e) \ V^e) has the property H(x3)

s =
{xz,x^)H(x^), i.e., {H(xs);xΆe F3} is a cubic space in the following sense:
Let (U, < , •» and (V, < , •» be finite-dimensional Euclidean vector spaces
and H: U -> End V a linear map satisfying (H(u)v, w) = (vy H(u)w) and
H(uf = <w, u)H(u). Then H(U) is called a cubic space.
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LEMMA 3.7. Let (F, < , •» and (U, < , •» be finite-dimensional
Euclidean spaces and let H: ϊ7->End V be a linear map such that H(U)
is a cubic space. Then for all u,veU:

(a) H(u)H(v)2 + H{v)Ή(u) + H(v)H{u)H{v) = 2(u, v)H(v) + (v, v)H(u).
(b) // dim U^2, then trace H(u) = 0.
(c) trace H{uf — m(u, u) where m is an integer.

PROOF, (a) follows by linearization of H{uf = (u, u)H(u).
(b) Since dim £7^ 2 there exists aveU with (v, v) = l and (u, v) = 0.

Putting Hu = H(u), Hv = H(v), we get Hu = HuHl + HIHU + HvHuHυ,
hence trace Hu = 3 trace HuHl = 3 trace [{HuHl + H2

υHu + HvHuHv)Hl] =
9 trace HuHl, which implies (b).

(c) We can assume dimU ^ 2. For every ueU with (u, u) = 1 we
know that H{uf is an orthogonal projection. Therefore trace H{uf is
an integer. On the other hand u —> trace H(u)2 is a continuous function.
This implies (c).

The following lemma implies that in Lemma 3.4 we may substitute
), v2) = 0 for 3(T(v2)v0, T(v0, c)2v2) = 2<v0, vo)(T(v2)v2, v0).

LEMMA 3.8. Let c be a minimal tripotent of the symmetric triple
system V. We assume

(1) T(yOf cfv2 = (v0, vo)T(vo, c)v2 and
(2) C ^ > 2 ) , v2) = 0

for all Vj e Vό. Let f e Vo satisfy
(3) </o^2,T(t;2)/> = 0

for all v2 e V. Then
(a) Z(T(v2)f, T(f, c)2v2) = 2</, /></, T(v2)v2) and
(b) trace Γ(v2, /) = 0

for all v e V2.

PROOF, (a) We may assume </, /> = 1. Then the self-adjoint
endomorphism T(/, c)\V2 has the eigenvalues ± 1 and 0: V2 = 4 φ ΰ φ 2
where i = { α e F 2 ; / o α = α}, 5 = {δe7 2; /oft = - 5 } and Z={zeV2;
foz = 0}, correspondingly v2 = a + b + z for V2G F2. From (3) we derive
0 = (a — &, {a + 6 + z, a + b + 2, /}>. We expand this expression, col-
lecting terms of the same homogeneity in α, 6 and z:

0 = </, {ααα} + (2 - l){aab} + 2{aaz} + (1 - 2){abb} + {azz}

+ (2 - 2){α&z} - {&&&} - 2{&δz} - {bzz}} .

Since all the summands have different degrees, their scalar products
vanish individually, i.e.,
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( * ) 0 = </, {aaa}) = </, {aab}) = </, {ααs}> = </, {α66}>

= </, {azz}) = </, {6&6}> = </, {&&*}> = </, {δss}> .

We use (*) to simply 3<Γ(t;t)/, Γ(/ f c)2t;2> = 3(T(v2)f, α + δ> = 3</, {v2, v2,
α + 6}> = 3</, 2{bza} + 2{azb}) = 12</, {abz}). Moreover 2</, T(v2)v2) =
2</, 6{α&#} + {zzz}). Therefore the two expressions are equal iff

(**) 0 = </, {zzz})

holds, which we prove now. We choose an orthonormal basis (w") of V
in such a way that / = w°0. Putting Ha = T(w", c) \ V2 we derive from
Lemma 3.6.a for a > 0 that (Haz, z) = ((H0Ήa + HaJff0

2 + HJIaH,)z, z) =
0. Obviously, (Hoz, z) = 0, hence 0 = <>0 © 2, z) = < 0̂, ^ ° z> for every
α?oe Fo, i.e., (zoz)0 = 0. By (2.9) this implies T(z)z = 6<z, ^>^ + {«^}0.
We now use (2) for x2 = z and get 0 = 36<3, z>3 + ({zzz}0, {zzz}0} —
54<z, ^>3 + 18<«, 2;>3 = ({zzz}0, {zzz}0). Thus {^«}0 = 0, which clearly
implies (**).

(b) Prom the Peirce multiplication rules for c we get trace T(v2, f) =
trace(Γ(v2, /) | V2). To compute trace (T(v2, f) \ V2) we choose an orthonomal
basis (yξ) of V2 which is a union of orthonormal bases of A, B and Z.
Then trace(TK /) | V2) = Σ^ <tff, {̂ 2/]/f}> = Σ * </, {tff»ft;J>. Since every
summand in the last expression has at least degree two in α, b or z it
follows from (*) and (**) that every summand is zero. This proves (b).

REMARK. The decomposition F2 = i © 5 0 ^ used in the proof of
Lemma 3.8 will be refined in the next sections.

We will now describe when a symmetric triple system satisfies (ISO 4).
The following preliminary result will be used later:

LEMMA 3.9. Let c be a minimal tripotent of the symmetric triple
V with dim V0(c) ^ 2 and assume T(vQ, cfv2 = (v0, vQ) T(v0, c)v2 for all
ViβVi. Then

trace T(c, v) = 0 for every v e V with (v, c> = 0 .

PROOF. Since v = v2 + vQ with vά 6 Vj it is enough to prove
trace T(c, vά) = 0. The Peirce multiplication rules show trace T(c9 v2) =• 0
and trace T(c, v0) = trace Tie, vo)π2, where π2 denotes the orthogonal
projection of V onto V2. Because dim Fo ^ 2 we can apply Lemma 3.7.b
to H(x0) = T(xQ, c)\V2 and get trace T(c, vQ) = 0.

LEMMA 3.10. Let c be a minimal tripotent of the symmetric triple
system V and assume, in addition, for every vt 6 Vt

T(v0, cfv2 = (vQ, vo}T(vo, c)v2.
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Then (ISO 4) is fulfilled iff there exist positive integers mlf m2 such that
(a) dim Vo = m2 + 1, dim V2 = 2m1 + m2,
(b) trace (Γ(/Of cf\ V2) = 2mx for some /0 6 F o with </0, /0> = 1,
(c) trace T(v09 v2) = 0 /or αiί v4 6 Vt.

PROOF. By Theorem 2.2.c we know that (ISO 4b) and (ISO 4a) for
x =z y = c is equivalent to (a). Therefore it remains to show that, if (a)
and the assumptions of the lemma hold, the conitions (b) and (c) are
equivalent to

( 1 ) trace T(vt) = 2(3 + 2m, + m2)(vu v^ for i = 0, 2,
( 2 ) trace T(c, vt) = 0 = trace Γ(v2, v0), i = 0, 2.
Here the first part of (2) follows from Lemma 3.9 and the second

part is just (c). To compute the trace of T(v0) we derive from the
Peirce multiplication rules T(vQ)(tc + y2 + yQ) = 2vQo(vQoy2) + 2<X tfo>l/o +
4<>o, 2/oK, hence trace Γ(v0) = 2 trace (Γ(<v0, c) | V2f + 2<v0, vo> dim Vo +
4<Vo> Vo> = 2 trace (Γ(v0, c) | V2)

2 + <v0, t;0>(2m2 + 2 + 4). Therefore (1) holds
for i = 0 iff trace (Γ(v0, c)|F 2) 2 = 2m1<v0, vo>> which is equivalent to (b)
by Lemma 3.7.C.

Finally, we have for T(v2): T(v2)(tc + y2 + y0) = 2(v2, v2)tc + (v2<>v2)Q +
2<v2, v2>2/2 + 4<>2, y2)v2 - 2v2 o (v2 o 2/2)0 - y2 o (v2 o v2)0 + tel + < 2̂ ° »0, ^)c +
2[t;2 o (v2 o yQ)]0 + {v2ι;27/0}2. Hence trace T(v2) = 2<v2, v2> + 2<>2, t;2> dim F 2 +
4<ΐ>2, ̂ 2> — 2 trace (Γ(v2, c)π0T(v2, c)π2) — trace (Γ(c, (t;2 °t;2)0)π2) + 2 trace
(πQ(T(v2, c)2)π0), where π<, i = 0, 2, is the orthogonal projection of V onto
Vt. In this sum trace (T(c, (v2ov2)0)π2) = trace Γ(c, (ΐ>2

ov2)o) vanishes by
Lemma 3.9. Moreover, 2<-y2, v2)[l + dim V2 + 2] = 2<v2, #2>[3 + 2mx + m2].
Therefore, in case i = 2, (1) is equivalent to trace (T(y2j c)π0T(v29 c)π2) =
trace (π0T(v2, c)2πQ). Using orthonormal bases for Vo resp. F 2 it is straight-
forward to show trace T(v2, c)π0T(v2, c)π2 = tτ&ceπ0T(v2, c)2π0.

Putting together the previous lemmas, we can prove the following
characterization of isoparametric triple systems:

THEOREM 3.11. Let cbe a minimal tripotent of the symmetric triple
system V. Then V is isoparametric iff the following conditions hold:

(a) Every f e V0(c) with </, /> = 1 is a minimal tripotent of V.
(b) ({v2v2v2}9 v2ov2) = 0 , v2e V2.
(c) <^rθv2), v2) = 0 , v2e V2.
(d) There exist positive integers m19 m2 such that

( 1 ) dim Vo = m2 + 1, dim V2 = 2m1 + m2

( 2) trace (Γ(/o, c) | V2)
2 = 2mx /or some /0 6 Vo with </0, /0> = 1.

REMARK 3.12. By Lemmas 3.4 and 3.8 the conditions (a) and (c) of
Theorem 3.11 hold iff for all vte V< we have
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(a.l) T(v0, c)% = (v0, vo)T(vo, c)v2,
(a.2) (vQov2, T(v2)v0) = 0,
(a.3) 3<T(v2Yv0, v0) + 2(T(vo)v2f T(v2)v2) - 8<v0, t;0><t;2, Γ^t;,) - 18<t;2,

v2)(v2, T(vo)v2} + lS(v0, vo)(v2, v2y = 0,
(c) (T(x2γx2, x2) - 9(x2, x2)(x2, T(x2)x2) + 18<α2, x2)

3 = 0.

PROOF OF THEOREM 3.11. We have to show that (ISO 3) and (ISO 4)
hold iff (a) to (d) are fulfilled. By Lemmas 3.5 and 3.10 the theorem
follows if we can prove that (a) to (d) imply for all vt e Vt

(1) {{v2v2v2}, {v2v2vQ}) = 6(v2, v2)({v2v2v2}, v0) and
(2) trace T(v0, v2) = 0.

Here the second assertion follows from Lemma 3.8 in view of Remark
3.12. To prove (1) we derive ({v2v2v2}, {v2v2v0}} = G(v2, v2)(v2, {v2v2v0}} -
3(^2°fe°t;2)o, {v2v2v0}) + 2({v2v2v2}0, v2o(v2°v0)), hence (1) is equivalent to

( 1 ) ' Z(v2 o (v2 o vt)09 {v2v2vQ}) = 2({v2v2v2}0, v2 o (v2 o v0)).
To prove (1)' we linearize the identity (a.2) of Remark 3.12 in v0 and
identity (b) in v2. We get

( 2 ) ' <v0 o v u T(v2)w0) + (w0 o v2, T(v2)v0} = .0

(b)' 3({v2v2w2}Q, v2 o v2} + 2({v2v2v2}0, v2 o w2) = 0.

We now pick an orthonormal basis (w") of VQ. Then the left hand side
of (1)' becomes using (2)' and (b)' SΣia(viov2fwζ}(v2owζ9{vtvtv0}) =
- 3 Σ * <v2°v2i wSXvtoVθf {VMWS}} = S(T(v2)(v2ov0), Σα (v2ov2,

REMARK. We point out that there always exists a minimal tripotent
in an isoparametric triple system (see Corollary 4.9). Therefore Theorem
3.11 can be applied to describe all isoparametric triple systems.

3.3 In this subsection we dualize the results obtained in §3.2, i.e.,
we state the results in terms of maximal tripotents. This will allow us
to make a comparison with [10].

THEOREM 3.13. Let V be a symmetric triple system and e a maximal
tripotent of V. Then V is isoparametric iff the following conditions
are satisfied:

(a) Every f e Vz(e) with </, /> = 1 is a maximal tripotent.
(b) ({v^vj, T(vλ)e) = 0 for all vx e Vx.
(c) <^r(O, vt} = 0 for all v, e Vx.
(d) There exist positive integers m19 m2 such that

(1) dim Vz = mx + 1, dim V1 = mt + 2m2

(2) trace (Γ(/3, e) \ Vx)
2 = 2m2 for some /3 6 Vz(e) with </3, /3> = 1.

PROOF. It is enough to show that the conditions (a) to (d) of
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Theorem 3.11 for the minimal tripotent ee V are equivalent to (a), (b),
(c) and (d) of the theorem, which is straightforward to check.

As in Remark 3.12, we may express (a) and (c) of Theorem 3.13
equivalently in terms of identities yielding the following theorem which
is proved in the same way as Theorem 3.13.

THEOREM 3.14. Let V be a symmetric triple and e a maximal tri-
potent of V. Then V is isoparametric iff the following conditions hold:

(a) T(vtf e)% = <<y3, vz)T(v3, e)vx.

(b) <Γ(Va, e)vl9 T(vM> = 0.
(c) 3<Γ(t;1)

2t;3, v3) + 2<Γ(v 8K TfoM) - 3<v8f vz)(vly T f a K ) -
18<vlf vxχvlf T{vz)vύ + 18<i;8> v5)(vlf v,)2 = 0.

(d) <Γ(v1)β, Wvjvά = 0.
(e) <2Wt; l f vx} - 9(vlf ^ ( Γ d X ^> + 18<^, t;,)2 = 0.
(f) There exist positive integers ml9 m2 such that
(1) dim Vz = mx + 1, dim Fx = mι + 2m2

(2) trace (Γ(/8, β) | Fx)
2 = 2m2 /or some /3 6 78(e) ^iίfe </3, /8> = 1.

REMARK 3.15. We recall from Remark 3.3 that Ozeki and Takeuchi
characterized isoparametric triple systems in [10, Theorem 1] by con-
ditions on the quadratic forms (pa) and the cubic forms (qa). Theorem
3.14 above is an improved version of their result. Indeed, using the
identifications of §3.1 it is easy to check the following dictionary for
the formulas in Theorem 3.14:

(a) <=> [10] (3-2), (3-3) and first equation of (3-1)
(b) <=> [10] (3-4) and (3-5)
(c) *=> [10] (3-9) and (3-10)
(d) ~ [10] (3-7)
(e)~[10] (3-8)
(f.l) is part of the assumptions in [10]
(f .2) <=> [10] part of the third condition in [10] (3-1).

We point out that the second equation of [10] (3-1) and [10] (3-6) are
superfluous and the third condition in [10] (3-1) is only needed for one a.

4. Orthogonal tripαtents. In this section we introduce the notion
of orthogonal tripotents and show that for isoparametric triple systems
orthogonal tripotents always exist. In §4.1 and §4.2, V is always a
symmetric triple system.

4.1. A subspace U of a triple system V with the property {UUU} c U
is called a subsystem of V. The following lemma in particular implies
that in an isoparametric triple system the subsystem generated by x is
at most 2-dimensional.
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LEMMA 4.1. Let V be symmetric triple system and xeV. We put
y : = {xxx}. If ^t(x) = ^f(x; y) = ^£{x\ y, y) = 0, then the vector space
Vx — Rx + Ry is a subsystem of V.

PROOF. We have to show {xxy}f {xyy} and {yyy} lie in Vx. First,
{xxy} e Vx because ^t(x) = 0. Thus T{x) leaves Vx invariant. By (1.11)
we know ^t(x; y) = 0 iff (1.6) applied to y holds. This implies {xyy} =
T(x, y)y 6 Vx. Since ^(x; yfy) = 0 we can use (1.7) for u = y and apply
it to y. Because we already know that T(x) and T(x, y) leave Vx

invariant, it easily follows that {yyy} e Vx.

THEOREM 4.2. Let V be a symmetric triple and assume for a fixed
xeV that ^t(x; u,v) = 0 for all u,veV. Then

[T(zl9 z2), T(z3, s4)] = 0 for all zi e Vx = Rx + R{xxx} .

P R O O F . We first define t h e odd powers of x by x2n+1 = T(x)nx, n ^ l

and p u t y = x\ We set a : = 6<a;, a;> and β : = 3<a;3, x) - 18<α, x}\ Then

^t(x) = 0 just means (*) χb = ay + βx. To prove t h e theorem it is

enough t o show (a) [T(x), T(x, y)] = 0, (b) [T(x), T(x, y)] = 0 and (c)

[T(x,y)T(y)] = 0.
(a) Using (1.7) the assertion (a) is equivalent to (**) [T(x)f xy* +

yx* — axx*] = 0 that is easily verified.
(b) Using (*) and (1.8) with u = y = x3 we see that (b) is fulfilled

if and only if T(x) commutes with -2aV* - 3(xxδ* + x*x*) + 12<a;, x3}xx* +
α(ίcίc3* + Λ*) = —2a{xy* + ?/α;* — axx*) — 2/3ίcα;* — 2τ/t/*. By (**) this
follows readily.

(c) By (1.7) for x and (b) we know 0 = [T(y), 2T(x, y) - 12(a?»* +
yx*) + 12αa;ίc*]. Hence (c) is equivalent to 0 = [T(y), axx* — (xy* — yx*)].
But Γ(»)a? = (α2 + /Q)» + aβx and Γ(»)» = α(α2 + 2β)y + /3(α2 + β)x; a
short computation gives the assertion.

Two tripotents elf e2 are called orthogonal if T(e^)e2 — 0 = T(e2)e1. This

is equivalent to the conditions e2e V0(ei) a n ( i e i e V0(e2). We add some

REMARKS, (a) If (elf e2) are orthogonal, then ex and β2 are minimal
tripotents by Theorem 2.2. Moreover, the elements e = \(eι + e2) and
e = x(e1 — β2) where λ = {VZY1 satisfy <e, e> = 1, {eee} = 3e, ^ ( e ; u, v) = 0
for all uyveV and <e, e) = 1, {eβe} = 3e, ^^(e; u, v) = 0 for all w , v e 7 .
Therefore they are in general "nearly" maximal tripotents. Of course,
e and e are maximal tripotents in case V is isoparametric.

(b) In the example V = Mat (2, r; F) considered in Remark 2.4.C,
two tripotents Eti and Ekl are orthogonal as soon as {i, j} Π {k, 1} = 0 .

Orthogonal tripotents always have a "common Peirce decomposition"
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which will be studied in the next section. The reason for this is

COROLLARY 4.4. If (elf e2) are orthogonal tripotents in a symmetric
triple V, then

βJf T(e2)] = [T(ti, T(eu e2)] = [T(e2)f Γ(βlf β2)] = 0 .

PROOF. We put x = et + 2e2. Then the corollary follows from
Theorem 4.2.

The following lemma shows that e2 e Fofo) or e1 e VQ(e2) for tripotents
βi already implies that ex and e2 are orthogonal.

LEMMA 4.5. Let V be a symmetric triple system.

(a) Assume c and f are minimal tripotents. Then, for μ = 0, 2,

feVμ(c) iffceVμ(f).

(b) Assume c and d are minimal tripotents. Then for tc = 3,1

d 6 Vκ(e) iff e e Vκ(d) .
PROOF, (a) Assume / e Vμ(c). Then <c, /> = 0 and therefore c has

a decomposition c = c2 + c0 with c5e Vs(f)t j = 0, 2. Thus <Γ(/)c, C> =
<2c2, c2 + co> = 2<c2, c2>. On the other hand <Γ(/)c, c> = <Γ(c)/, /> = μ.
Hence <c2, c2> = jte/2. From this the assertion follows easily, (b) is a
consequence of (a) by dualization.

4.2. In this subsection we study symmetric triple systems V satisfy-
ing (ISO 3), i.e., ^T(aO = 0 for all xeV.

Let Q Φ xeV. Then Lemma 4.1 implies that Vz, the subsystem of
V generated by x, is either one- or two-dimensional. In the first case, x
is a scalar multiple of a minimal tripotent by Lemma 2.1.b. In the
second case x is called regular. We note that for homogeneous isopara-
metric triple systems x is regular in our sense iff it is regular in the
sense of [12] §3. We have the following characterization of regular
elements:

THEOREM 4.6. Let Vbe a symmetric triple system satisfying (ISO 3).
Then xeV is regular if and only if there are orthogonal tripotents
eu e2eV and ateR with 0 < a^ < a2 such that x = aγex + α2e2. In this
case (el9 e2) and (al9 a2) are uniquely determined by x: if cu c2eV are
orthogonal tripotents and βlf β2eR with 0 < β± < β2 such that x = βfo +
β2c2, then Ci = et and at = βt for i = 1, 2.

PROOF. Let x be regular. By Theorem 4.2 we know that
{T(u, v)\ Vx; u, v e Vx} is a set of commuting self-ad joint endomorphisms
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of Vx. Therefore there exists an orthonormal basis (eu e2) of Vx such
that TiτήeiβRei for every ueVx. In particular, T^^eRβi implies
that each et is a tripotent (Lemma 2.1.b). Further, T(eu e,)e2 = T(el9 e2)ex e
Re1 Π Re2 shows T(e^)e2 = 0. Since also T(e2)e1 = 0, it follows that e19 e2

are orthogonal tripotents. We thus have x — aγeλ + a2e2 with orthogonal
tripotents e19 e2 and real numbers a19 a2. The rest of the proof is
straightforward.

COROLLARY 4.7. A symmetric triple system satisfying (ISO 3) con-
tains no nilpotent elements, i.e., T(x)kx = 0 for some keNimplies x = 0.

4.3. In this subsection we deal exclusively with isoparametric triple
systems.

THEOREM 4.8. The set of regular elements of an isoparametric triple
system V is open and dense.

PROOF. Assume the contrary. Then {xxx} •= tc(x, x)x with a fixed K

for all x e V. This leads to a contradiction to (ISO 4).

COROLLARY 4.9. There exist orthogonal tripotents in V.

A minimal decomposition of x e V is a representation x = aγeλ + a2e2

with orthogonal tripotents eu e2 and alf a2eR with α* ^ 0. We already
proved that every regular x e V has a minimal decomposition (Theorem
4.6), and obviously every scalar multiple of a minimal tripotent has a
minimal decomposition too. We even have

THEOREM 4.10. Every element of an isoparametric triple system has
a minimal decomposition.

PROOF. Let eeV be a maximal tripotent. By Theorem 2.2 there
exists an element ee V8(e) with <e, e> = 1. Then (2.13) implies that e
is a maximal tripotent. Furthermore, eeV3(e) by Lemma 4.5.b. A
straightforward coputation now shows that ex: = λ(e + e) and e2: = λ(e — e),
X = 2~1/2 are orthogonal tripotents with e = λfo + e2). This finishes the
proof of the theorem.

5. Peirce decomposition relative to orthogonal tripotents. In this
section we establish the Peirce decomposition of a symmetric triple
system relative to two orthogonal tripotents. We finish this section by
proving the main theorem of this paper characterizing isoparametric
triple systems by Peirce decompositions. Unless stated otherwise V will
always be a symmetric triple system.

5.1. We consider a symmetric triple system V with two orthogonal
tripotents (elf e2). By Corollary 4.4 we know [Tie,), T(e2)] = 0 and
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[T(el9 e2), T(et)] = 0, i = 1, 2. Hence the various Peirce spaces are invariant
under T(et) and T(el9 e2).

LEMMA 5.1. Let (el9 e2) be orthogonal tripotents of the symmetric
triple system V. Then

(a) Fofe) ίl Fofe) - 0
(b) T{eu e2)

2v = v for v e VM n V2(e2)
(c) Γ(β1,β,)κv2(β1)nv;(β t)) i = o.

PROOF, (a) Assume j/ e Vofo), <#, e2> = 0. Then T(e2)y = 2y by (2.6).
This implies (a).

(b) Since e2 e VΌfo) it follows from (2.7) applied to c = ex that 2?; =

(c) We note (F2fe) n F.fe))1 = VM1 + V.fe)1 = K(O + V0(e2). But
ΓCβx, β2)VoieJ = 0 by (2.3) for c = eλ. Similarly, T(eu e2)V0(e2) = 0.

We now define

V12(elfe2):= V2{e,) n F2(e2) .

Since T(el9 e2)
2 \ V12(el9 e2) — Id we have an ortogonal decomposition

V12(elf e2) = Vn(elf e2) 0 Vΰ(elf e2)

where ^ ( e ^ β2) = {x e V12(el9 e2); T(el9 e2)x = ±x}. It is sometimes con-
venient to use the abbreviation

yί2:= T(elfe2)y12 for yl2e V12 .

We obviously have g12 = y129 y\2 = ei/{2 for τ/12e F1 2, yε

12e V[2, ε = ± . By
Lemma 5.1.c the space V12(el9 e2)

L can be split up using only Γ(ex) and
T(e2). We further define

V ί i ί ^ ^ ^ V ? ^ ) for i = l , 2 .

VwCβ^e.)^ Vf(β<) = Λβ<0V?(β<) for i = 1, 2 .

We note that Lemma 2.7.b implies V2 (βj c F0(e2) and V2(e2) c yo(βi)» i n

particular V12(elf e2) 0 FΓife, β2) is an orthogonal sum. Its orthogonal
complement in V2(et) is

Vi0(el9 e2): = V2(e%) Q (V12(el9 e2) 0 Vΰ(el9 e2)) , i = 1, 2 .

The spaces defined above are called Peirce spaces relative to (el9 e2).
If it is clear which pair of orthogonal tripotents is referred to we simply
write Vij instead of Vi5{e19 e2). By construction we have

COROLLARY 5.2. The following sums are orthogonal:
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VoM = V22 0 F 2 0 , F0(e2) = F u 0 F10 .

REMARK 5.3. (a) In the example V = Mat (2, r; F) (see also Remark
2.4.c, (2.19) and Remark 4.3.b) we may choose (Ell9 E22) as orthogonal
tripotents. Their Peirce spaces are F10 = Φ3^ fc^r FElkf V20 = © 3<^ r FE2k9

V£ = F(E12 + E21), Vΰ = F(E12-E21), Vΰ = 'FΈii9 i = 1, 2, where as
usual F~ denotes the orthogonal complement of 1 in F.

(b) We often write V{2 if we want to treat the cases Fί2 and Vΰ
simultaneously. We denote by xiό the component of x in Vij9 xf2 is
defined similarly.

(c) Peirce decompositions of the dual triple relative to the elements
(e = \(e1 + e2), e = X(e1 — e2))—see Remark 4.3.a—are considered in §5.5.

(d) The notation for the Peirce spaces is adapted from the analog-
ous decomposition of Jordan triple systems. In the case V = Mat (2, r; F)
it is known that V also carries the structure of a Jordan triple system. In
both structures—isoparametric triple system and Jorden triple system—the
notations for orthogonal tripotents and Peirce decompositions coincide.

By Theorem 2.2.b and Remark 4.3.a we know that V = Re 0 Vz(e) 0
V^e) for e = λ(ex + e2) and V = Re 0 Vs(e) 0 Vx{e) for e = x(eλ - e2). The
following lemma expresses these eigenspaces by the Peirce spaces of
(elf e2):

LEMMA 5.4. V8(e) = Re 0 V£, V&) - Vΰ 0 V10 0 Fr2 0 V22 0 F2C,

PROOF. For x = αex + ecu + a?10 + «S + x^ + /3e2 + x22 + ίc20 we compute
T(e)x = Zae^ + »π + x10 + 3ccJ + xΰ + 3/3e2 + cc2l + x2Q which establishes the
claim for the Peirce spaces relative to e. The assertion for VJβ) follows
analogously.

From Theorem 2.2.b we obtain

COROLLARY 5.5. If (elf e2) are orthogonal tripotents of the isopara-
metric triple system F, then

dimFi = dim Fr2 = m x > 0 and d i m ( F ΰ 0 F10) = d i m ( F ^ 0 F20) = m2>0 .

5.2. We impose now more conditions on the triple system F which
are satisfied in case F is isoparametric. This will enable us to establish
multiplication rules between Peirce spaces of orthogonal tripotents.

LEMMA 5.6. Let (elf e2) be orthogonal tripotents of the symmetric
triple system V and assume that each element of F n , F10, F22 and F20

is a scalar multiple of a minimal tripotent.
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(a) For i = 1,2 and u e Vu with (u, u) = 1 we have

dim Vμ(u) = dim Vμ(et) , μ = 0, 2 .

(b) For Xi e Vit9 i = 1, 2, and xl2 e F1 2 £/ιe following formulas hold

(5.1) Γfoto, = 2{xu Xi)x12

(5.2) Γ(a?!, x2)
2x12 = (x19 xϊ)(x*, »2>»i2

(5.3) Γ(«x, a^lVά = 0 .

PROOF, (a) Let u e F n , (u, u) — 1. Then (u9 e2) are orthogonal, in
particular [T(u), T(e2)] = 0. Moreover, (2.6) for c = e2 implies V0(e2) =
F π θ F 1 0 ciJuφF 2 (u) . Therefore V2(u) = (VnΘRu)φV10φV2(e2)Π V2{u),
and it suffices to show that dim (F2(e2) Π V2(u)) = dim F2(e2) Π F2(βi).

We know F2(e2) = (V2(e2) n V2{u)) φ (F2(e2) Π F0(u)) where V2(e) Π
F2(w) = {# e F2(e2), Γ(u, e2)

2£ = x} by (2.7). For α? 6 F2(β2) we get x e V2(e2) Π
V0(u) iff T(u% e2fx — 0, which is equivalent to T(u, e2)x = 0. Because
T(u, e2) F2(e2)c F2(e2) we conclude that H: F u -^EndF 2 (e 2 ), H(v)=T(v9 e2)\ V2(e2)
induces a cubic space on F2(e2). Therefore dim F2(β2) (Ί V2(u) = rank H(u) =
trace H(u)2 is constant by Lemma 3.7.C.

(b) Because of (a) we can apply Lemma 2.7.d for every XiβVu,
(%i, x*) = 1 and get V2(x^) Π V2(x2) = V12{el9 e2). In particular (5.1) follows.
The formulas (5.2) and (5.3) are implied by Lemma 5.1.

It is convenient to denote the algebra products induced by ex and e2

in the following manner:

x o y = [xe^y] , x,yeV, x*y = {xe2y} , x, y e F .

THEOREM 5.7. Let (e, e2) 6β orthogonal tripotents of the symmetric
triple system V such that each element of the Peirce spaces F n , F1 0, F2 2

and F2 0 relative to (el9 e2) is a scalar multiple of a minimal tripotent.
Then we have for all xίj9 yi5 e Vti

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

χΓi°yΓi --

| 2 = (χ'n

= 2<a;11, y.

F 2 2 + F 2 0 )

= 2<a;1 0 ( y :

/y» o /jy /^

*̂ 10 ίf20 *-

, 2/i2>(2e± -

u>βi

= 0

r 20

= 0

F12

^ e 2 )

x 2 2 *

X Γ 2 *

X 2 o *

•^20 *

X 2 0 *

!Ci2

2/^ =

( F 2 0

2/2o =

l/i2e

»π =

Wfoβ

*l/ί 2

+ F1 2H

= 2<x20,

F10

= 0

F12

= <«ί2

2/ 2 2 >e 2

- F 4-
'llt

VnXεt

• vj = o

?! + 2e2)
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(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(F2 2H

e2°(V

«ί2 ° Vή e

xί2°ί/2oe Fϋ'(]

r F 2 0 ) o ( F 2 2 + F 2 0 ;

r j-V 4-V Λ-V
11 ~ K 10 I " 22 * v 2(

5 F 2 O

:Fr 2

e

5 F 1 0

) = o
,)=o

Xa*

X12 *

» | 2 *

(Fu

«1*(

2/ΰe V

lίioe V

+ F10

F π +

11 Vj3 MO

r i l e

12 >37 * 20

) * ( F U + 7 J = 0

F10 + F22 + F20) = 0

PROOF. By symmetry we only have to prove the multiplication
rules for the algebra "o". Obviously, (5.4) follows from (2.6), (5.5) from
Lemma 2.7.a, (5.6) again from (2.6), (5.7) from (2.5) and (5.3), (5.8) also
from (5.3) and (5.9) from (2.4), (5.5) and (5.6).

To prove (5.10) we recall x&e V3(e) n VΊ(e) from Lemma 5.4. Because
e, e satisfy ^(e; u, v) = Q = ̂ (e; u, v) for all u, v e V we can apply (2.10)
to derive {#ί2e2/ί2} = 3<^+

2, y&)e, and (2.12) to derive fe+

2%ί2} = {xti, yti}e + z
for some z e V3(e) = Re 0 Vΰ- Because <{&5%5}, e) = (xi, {eey?2}) = 0 w e
actually have z e Vή- Since eλ = λ(β + e) we have proved α?£ o y+ =
(x?2, l/έ>(3λe + λβ) + 2; = <a?S, 1/5X26! + e2) + 2 for some z 6 Vΰ. But #ί2°
yieRe, + Fo(ex) by (2.5). Therefore z = 0. Similarly, xΐ2°yΪ2 =
{XΪ2, yΪ2)(2e1 - e2) follows.

Finally, (5.11) is implied by (2.5), (5.12) by (5.3) and (5.10), (5.13)
by (2.4), (5.5) and (5.10), (5.14) is just (2.4) and (5.15) follows from
Lemma 5.1.c.

REMARK, (a) In the case of the (homogeneous) isoparametric ex-
amples mentioned in §1.5 one gets sharper results only for the formulas
(5.11) and (5.13). More precisely, for these we get

(5.11)'

(5.13)' Xl2c

3 l/il e

5 2/ 2 O e

F r 2 ,
^ 1 0 f

Qϋ\2 ^ t / l 2 vΞ

• 1̂2 * 2/lO ^
y

These examples are closely related to Jordan triple systems. We there-
fore say that an isoparametric triple satisfying (5.11)' and (5.13)' for
each (resp. the) pair of orthogonal tripotents (el9 e2) is a triple with
Jordan composition (relative to (el9 β2)). For short, V is a triple of JC-
type (relative to (el9 e2)).

Another subclass of isoparametric triples are the triples of algebra
type. By definition, an isoparametric triple is said to be of algebra type
if there exist orthogonal tripotents elf e2 such that V10(el9 e2) = 0 and
V2o(elf e2) = 0. The triples of algebra type will be classified in a sub-
sequent paper [3].

(b) If the symmetric triple system satisfies (ISO 3), then every
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element of F0(c), c a minimal tripotent, is a scalar multiple of a minimal
tripotent, which follows from (2.6). In particular, the assumptions of
Theorem 5.7 are satisfied in this case.

We prove some more identities involving the algebra o and *.

LEMMA 5.8. With the assumptions of Theorem 5.7 we have

(5.16) x10 o y 2 0 = T(elf e2)x10 * y 2 0 ,

(5.17) (x1Q o y 2 0 t u 1 0 o v 2 0 ) = (xLQ * y i O f u 1 Q * v 2 Q )

(5.18) x10 o ( u 1 0 o <y20) = [x10 * (u10 * v20)]20

(5.19) [i/20 o (v20 o u lo)]2O = i/ao * (v20 * u10)

(5.20) (x{2 o j/iί , α;;2 o 2Γ2

ε> = <a?ί2 * 2/51, xU * »ΰβ>

(5.21) <{a?i1a?S2/il}, «il> = 3<αS, tfSX^l, ZΓ2> - 2<α>S*i/il, ̂  *%> .

PROOF. TO prove (5.16) we put c — e2 and have e, # 1 0 e V0(c), y20e
V2(e). Using (2.7) we get x10oy20 = βx * (χ10 * τ/20) + #lo*(ei*2/2o), but
e^i/ίo = 0 by (5.15). This proves (5.16). We remark that (5.17) follows
from (5.16) by the fact t h a t T(elf e2) is orthogonal on V12. By (5.17) we
know <#10 o (u10 o vj, y20) = <αj10 * (u10 * vj, y2Q). Hence [x1Q o (w10 o t;20)]20 =
[β10 * (u10 * v20)]20. But (5.7) and (5.9) show t h a t x10°(uίQov20) already lies in
F 2 0, whence (5.18). Interchanging " 1 " and " 2 " in (5.18) proves (5.19).
To prove (5.20) and (5.21) we first recall V12 = V2(eλ) Π F2(β2). Hence we
may use (2.9) to expand {xi9 x&, yτ2} for c = ex and also for c = e2. With
(5.10) and (5.11) we get {α£, a?έ, 2/Γ2} - 2<a?S, x£>yΰ = -2α;ί2o(α;1

+

2o2/Γ2)o(e)1 -
1/ΰ ° (»i+2 ° aJiΰotβi) + €boM = -2a?So(a?+o2/-) + <»έ, x&yΰ + αofe). Similarly
we get {ajj, a?i, 2/Γ2} - 2<a?S, α ί ) ^ ! = -2a?S*(a?S*i/1l) + Oί2, a?S>i/5 + αo(β2)
We now consider ({xix£>yΰ}, %> and easily derive (5.20) and (5.21).

5.3. Under the assumptions used in §5.2 we prove in this subsection
that V10 vanishes if and only if V20 vanishes. This in particular implies
that an isoparametric triple system is of algebra type relative to (eL, e2)
if V10(elf e2) = 0 or V20(eu e2) = 0.

THEOREM 5.9. Let (e19 e2) be orthogonal tripotents of the symmetric
triple system V such that each element of the Peirce spaces V119 V109 V21

and V20 is a scalar multiple of a minimal tripotent. Let (i, j) = (1, 2)
or (2,1) and assume eίoe Vi0, eί0 Φ 0. Then eiooVjo Φ 0 and ei0*Vjo Φ 0.

PROOF. It suffices to consider (i, j) = (2, 1). By definition, e2Q e V2(e2),
e20 ί Vΰ = {ye V2(e2); y * V0(e2) = 0}. Hence there exists x = xn + x10 e VQ(e2)
satisfying x*e20 Φ 0. But #π*e 2 0 = 0 by (5.8) and xlo*e2O Φ 0 follows. To
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prove xlo°e2O Φ 0 we apply (5.16) and use the fact that T(elf e2) is bijec-
tive on F1 2.

COROLLARY 5.10. Under the assumptions of Theorem 5.9 we have

Vio Φ 0 - V10oV2Q Φ 0 ~ F 1 0 *F 2 0 ^ Ό « F2 0 =* 0 .

PROOF. By (5.16) we have F 1 0 ° F 2 0 ^ 0 iff F 1 0 * F 2 0 ^ 0 and from
Theorem 5.11 we derive F1 0 Φ 0 <=> F1 0 ° F2 0 ̂  0 and F2 0 Φ 0 <=> F1 0 * F2 0 Φ 0.

We are now in a position to identify the Peirce spaces relative to
(Xn9 X22)\

THEOREM 5.11. Let (el9 e2) be orthogonal tripotents of the symmetric
triple V such that each element of the Peirce spaces F n , F1 0, F2 2 and F2 0 is
a scalar multiple of a minimal tripotent. Then the Peirce spaces rela-
tive to the orthogonal tripotents (xi9 x2) where xt e Vii9 (xi9 x{) == 1, are

Vu(xl9 x2) = Vu(eί9 e2) , i = 1, 2 , ViQ(xί9 x2) = F i0(e ly e2) , i = 1, 2 ,

PROOF. The Peirce spaces of (elf e2) are denoted by ViS. Because of
Lemma 5.6.a we can apply Lemma 2.7.d and conclude VQ{xt) = F0(e*),
V2(xt) = (V« θ Λxέ) © F<0 © F1 2. This in particular implies V12(xl9 x2) = F1 2

and Vn(Xi) c F^ φ F ί 0 . Therefore it suffices to show Vit(xlf x2) = F i O i.e.,
V2(Xi) = Fϊΐ θ -R(cCi). Without loss of generality we consider i = 1. Let
% = ttu + u10 6 F2

0(Xi). By definition of V2°(fici) we have 0 = {uXjV^} for
every t ; 2 0 eF 2 0 . But {nx^} = u*(x1*v20) + X!*(u*v20) by (2.7) and the
first summand vanishes by (5.3), moreover u1*v20 = 0. Thus 0 = ^ *
(ulo*v2O) where ulo*v2OeV12 by (5.9). Again (5.3) implies ulo*v2O = 0.
Since this is valid for all v2 0e F2 0 we conclude from Theorem 5.9 that
u10 = 0, whence u = une V2\x^ Π F n c F n θ Λa?lβ On the other hand we
have for every yx 6 F n and v22 e F2 2 that {i/1x1'y22} = 0 by (5.3) and for every
v20e F20 that {y^vj = y^(x^v20) + x^{y^vm) = 0, again by (5.3). This
implies Vu Q Rxt c VS(xt) and therefore we have equality.

REMARK 5.12. We point out that by Theorem 5.11 we now have at
our disposal the multiplication rules of Theorem 5.7 where βt is replaced
by suitable xt. This will be of great importance in the proof of
Theorem 5.20.

As a consequence of Theorem 5.11 we have the following characteri-
zation of F2°(c) in the case of isoparametric triple systems:

THEOREM 5.13. Let V be an isoparametric triple system and c, u
minimal tripotents of V. Then
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u e V?(c) ~ Vf (c) = Vf ( u ) « V0(c) = V0(u) « c 6 Vf (u) .

PROOF. By symmetry it suffices to show u e Vf (c) «=» Vf (c) = Vf (tt) <=>
V0(c) = Vo(u). Here Vf (c) = Vf (u) => u e Vξ(c) is trivial, and u e Vξ(c) =*
VQ(u) = V0(c) follows from Corollary 2.8.b. So it remains to show

(a) u 6 Vξ(c) « Vf (c) = Vf (u) and (b) V0(t0 = V0(c) =>ue Vf(c).
We put e : : = c and choose a tripotent which is orthogonal to elβ This
is possible because dim V0(βi) > 0. Now (a) follows from Theorem 5.11.

We assume VQ(u) = VQ{ex). Then u e VQ(e2) — Vu φ V10 by Lemma 4.5.a
where V̂ . denotes the Peirce spaces relative to (el9 e2). Moreover, 0 =
T(u)v20 = 2u * (u * ̂ 20) and thus u * v20 = 0 since Γ(u, e2) is symmetric. But
1̂1*̂ 20 = 0 by (5.3) and so ulo*v2O = 0. Because this holds for all v20e V20

we conclude w10 = 0 from Theorem 5.9, i.e., u = une Vu.

5.4 Although the results of this subsection are true in a slightly
more general situation, we restrict ourselves to simplify notation to the
case of a symmetric triple system V satisfying (ISO 3). Let (elf e2) be
orthogonal tripotents of V. Then, with λ = 2~1/2 the elements e = X(e1 + e2),
e : = x(eί — e2) are maximal tripotents of V. We have e e V8(e) and £ 6
V8(e). From Theorem 2.2 we derive that (e, e) is a pair of minimal
orthogonal tripotents in the dual system V defined in Lemma 1.2. In
this subsection we discuss the connections between the Peirce decom-
position of V relative to (e, e) and the Peirce decomposition of V relative
to (elf e2). It will be convenient to use the algebras

xΠv '•= {xey} , x,yeV, v£ly := {xey} , x, y e V .

The Peirce spaces relative to (el9 e2) will be denoted by Vi3- as usual.
The Peirce spaces relative to (e, e) will be denoted by V'tj. Where
necessary we write Viά{eu e2) and VJ/e, β) or (V% (e, e). We also use
V-(e) and V (e).

LEMMA 5.14. Assume the symmetric triple system V satisfies (ISO 3),
i.e., ^f(x) = 0 for all xeV. Then

(a) Vί(β)= V8(β) = Λ e e V £ ,
(b) V0'(e)= V3(β) = iJe0Vr 2 ,
(c) Vί2 = Vx(e) Π Vx(e) = Vπ 0 Vlo 0 Vr2 © V20 ,
(d) (V ' )S= VΓ20V2 O,
(e) (V%= V π 0 V l o .

PROOF, (a), (b) and (c) follow immediately from Theorem 2.2 and
Lemma 5.4. For (d) and (e) we compute: {eex[2}

f — —{e, β, αΰ + a1Q +
αϋ + α20} = — (αΰ + aw) + flS + α20 where we put a?ί2 = αΰ + α10 + a22 + α20

according to (c). This implies (d) and (e).
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LEMMA 5.15. Assume V satisfies (ISO 3). Then
(a) (VJ2{e) = {xe Fr2; x D Vi = 0}.
(b) For yΰ 6 Vΰ the following conditions are equivalent:
( 1 ) » 5 D V 5 = 0
( 2 ) »5<>VS = 0
( 3 ) »ϋ*VS = 0
( 4 ) yΰ * Fΰ = 0 = yΰ ° Fr2 and yΰ * F1 0 c F20, 1/5 o F2 0 c F1 0.

PROOF, (a) By definition, (V)l(e) = {xe V2\e); {x, e, Vi(e)}' = 0} =
Fx(e); a? Π V8(β) = 0} where we have used Theorem 2.2. We know

Vΰ 0 Vτ2 φ Vϊ2 0 7 l 0 Θ ^2o, <( VOΪ, K > = 0 and V3(e) = Re@ Vi.
Hence (V')l = {x e Vύi % D Vβ(e) = 0}. But $5 • β = 0 is always satisfied,
hence the assertion.

(b) Since yΰ D Xn = MVH ° »S + »ΰ * »S) a n d l/il ° »ί € Vέ φ F2 0, yΰ * a?S 6
Vπ + Vlo by (5.11) we see that (1) implies (2) and also (3). Now (5.20)
implies that (1), (2) and (3) are equivalent.

By (5.11) we always have yΰ D V£ c Fΰ + F1 0 + V^ + V20. Therefore
05 D Fί2 = 0 iff <7S, ys D (Fΰ + F1 0 + V5 + F20)> = 0. The multiplica-
tion rules (5.5), (5.7), (5.12) and (5.13) show that this equation is equiv-
alent to (4).

Interchanging e and e we get

LEMMA 5.16. Let V satisfy (ISO 3).

(a) (V')l(e) = {xe Vi; x D Fr2 = 0}.
(b) For yf2 6 Vΐ2 the following conditions are equivalent:

( 1 ) yΪ2 0Vΰ = o,
( 2 ) ί/ί2oFr2 = 0,
( 3 ) 2 / 5 * ^ = 0,
( 4 ) y& * Vn = 0 = 2/ί2 o Fϋ and y& * F1 0 c V20, yΐ2 o F20 c F1 0.

COROLLARY 5.17. Lei F satisfy (ISO 3). // Fΰ Φ 0 or Fr2 ^ 0 then

(F')Γi = 0 and (F')21 = 0 .

PROOF. Assume Vΰ Φ 0. Choose a?π ̂  0, an e Fΰ Then T(xrlf e2) is
injective on F1 2. Therefore a?π * 1/5 = 0 for i/^ e (F')ΰ and xΰ * 2/5 = 0 for
Vii e (F') 2 ! imply j/5 = 0 = j/S and the assertion follows. If V22ΦQ &
similar argument establishes the claim.

COROLLARY 5.18. Let V satisfy (ISO 3).

(a)
(b)
(c)
(d)



222 J . DORFMEISTER AND E. NEHER

REMARK. One can also dualize the results of §5.2 and §5.3, but
since one has as yet no precise description of F<Ό this dualization produces
few new results. We mention only the following immediate consequence
of (5.16):

LEMMA 5.19. Let V satisfy (ISO 3). Then

VXODVNCVS and F 1 0 Π F 2 0 c F r 2 .

5.5. In this final section we characterize isoparametric triple systems
among the symmetric triple systems by Peirce decompositions:

THEOREM 5.20. Let (elf e2) be orthogonal tripotents of the symmetric
triple system V. The Peirce spaces of (elf e2) are denoted by VtJ. Then
the following conditions are equivalent:

(a) V is isoparametric.
(b) (1) Every element of V119 V1Qf V22 and V20 is a scalar multiple

of a minimal tripotent.
(2) Every element of V& and Vΰ is a scalar multiple of a

maximal tripotent.
(3) For all xtj e Vi5 the following identity holds:

\{#11^22^12}, {#10^20^12// ~l~ \\#11#22#12/, {#10^20^20//

+ <{αj11a?20ί»S}> {a?i0a?22»il}> + Φ A t f i l } , {x^x^xίY) = 0 .

(4) There exist positive integers m19 m2 such that

dim (Vn Θ V10) = w2 = dim (V22 © VJ and dim V12 = 2m,.

PROOF. By definition, V is isoparametric iff (ISO 3) and (ISO 4) hold.
First we transform (ISO 3), i.e., ^f(χ) = 0 for all xeV. We introduce

the six-linear form h: Vβ —> JB, h(x, y, z, u, v, w) = (^?{x, y, z, u> v), w)
which is totally symmetric by Lemma 1.5.a. Clearly, ^t = 0 iff h = 0.
Also, h = 0 iff h(xf y, z, u, v, w) = 0, where (a?, y, z, u, v, w) has at least
degree two for one Peirce space, and h(xLl9 xm «S, »5, a;22, x20) = 0 for all
%a e Viά. Using Theorem 2.3 and Theorem 2.5 it is easy to see that the
first condition is equivalent to (bl) and (b2). Moreover, by (1.15), the
second condition holds if (1.10) for x = xn, u = α̂ i, v = x22, w = x20 and
applied to x1Q vanishes in the scalar product with xf29 i.e.,

0 =

~Γ \ 1*̂ 11*̂ 20*̂ 22/f 1*^12^10*^12// = '. -ti »

Because of (bl) and (b2) we can apply Lemma 5.6. In particular (5.3)
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implies {xnx22xiQ} = 0, i = 1, 2, whence the first and last term of R vanish.
Moreover, by Theorem 5.11 we can use all the multiplication rules
derived in Theorem 5.7 for (xl9 x2) since without restriction (xit, xu) — 1,
i = 1, 2. We thus get {{xnxjixi}f F12> = 0 and {x20x22x10} € V12t which forces
the second term to be zero. Similarly the fifth term vanishes. Moreover
{XnXnXio} £ V20, {x2Qx22xΓ2} £ V10, whence the third and ninth term is zero.
What remains from R is just (b3).

It remains to prove that under the validity of (ISO 3) the condition
(b4) is equivalent to (ISO 4). We first remark that (ISO 3) in particular
implies that every / e Vote) with </, /> = 1 is a minimal tripotent and
thus, by Lemma 3.4.a,

( * ) T(vQ, e^v, = (v0, vo)T(vQ, e,)v2

for all vQ e F22 0 V2Q and v2 e Vή 0 V10 0 V12. Hence we can apply Lemma
3.10 for c = ex. Putting fQ = e2 it remains then to show that trace
T(xOf x2) = 0 for xoe F 2 2 0 F20, x2e V2{e^). Without restriction we assume
(x0, xQ) = 1. Then x0 is a minimal tripotent and, by Lemma 3.9, it
follows that trace T(xOf x2) = 0 as soon as we know that dim V0(xQ) ̂  2.
The same argument as used in the proof of Lemma 5.6.a shows dim V0(x0) =
dim V0(e2), which is at least two by (b4).

We point out that Theorem 5.20 is a very convenient tool for the
investigation of isoparametric triple systems. It replaces a lengthy
identity by the shorter Peirce multiplication rules. Moreover, it shows
that (ISO 4) is actually only a condition on the dimensions of three
subspaces.
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