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0. Introduction. In this paper, we will consider the following
problem. Let S be a compact Riemann surface with nodes. Does there
exist a point in an augmented Schottky space representing the surface
S? We will give a complete answer to the problem. An answer to
special cases of the problem has been obtained by Sato [5]. Let <G0>
be a fixed marked Schottky group and ΣQ a fixed basic system of Jordan
curves for <G0> (see § 1 for the definition). Let S be a compact Riemann
surface with nodes and Σ a basic system of loops and nodes satisfying
the following assumption: The set Σ' of Jordan curves and points
induced from Σ is compatible with Σo and the pair (S, Σ) has Property
(A) (see § 1 for the definitions). Under the assumption, there exists a
point representing S in the augmented Schottky space associated with Jo-
in this paper, we will consider the problem in the general case without
the above assumption. The answer to the problem is affirmative, and
is stated in Theorem 3.

In § 1, we will list notations and terminologies. In § 2, we will
introduce the interchange operator which plays as essential role in
studying the question stated above, and in §3, we will explain illustra-
tively the operator by some examples. In §4, we will treat the problem
stated above. We will consider another problem in a forthcoming paper.
We give a point τ in an augmented Schottky space, which represents a
compact Riemann surface S with nodes. Then for any sequence of points
{τn} in the Schottky space tending to the point τ, does the Riemann surface
S(τn) represented by τn converge to S as n —> oo ?

1. Notations and terminologies. 1-1. In order to elliminate trouble
and expense in printing, we use alternatives to some notations in the
previous papers [4], [5]; for example, we replace ffJ and j(ilf i2, , iμ) by
C2g+j and C(ilf i2, •• ,i^), respectively. Throughout this paper, we let
<G0> be a fixed marked Schottky group of genus g ^ 2 generated by
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= \-̂  o,i> A 0 > 2 , * *, A 0 > f i r /. L e t C o > 1 , L>Otg+ι', O 0 ) 2 , G 0 > f l r + 2 ;

• •; COf,, C0t2g be defining curves of A0A, A0f2, , AOf,, respectively. Namely

t h e y a re mutual ly disjoint Jordan curves on t h e Riemann sphere C —

CΊj {00} which comprise t h e boundary of 2^-ply connected region ω0, and

AOfj maps C0>j onto C 0 ) ί 7 + i and AOfj(ωo) Γi ω0 = 0 for each j = 1, 2, ••-,#.

If mutual ly disjoint Jordan curves COιl, C0t2, - , C0t2g, C0t2g+lf C0ι2g+2, - ,

Co,4ff-3 on C have the following properties (i) and (ii), then we call Σo =

{C0)1, , C0t2g; Cΰt2g+lf , C0>ig_z} a δαsic system of Jordan curves for <G0>:

(i) C0>2g+j (i = 1, 2, , 2flr — 3) lie in α)0. (ii) Each component of

Φo\Ui=~ϊ3Co,2*+i is a triply connected planer domain. In particular, if a

basic system of Jordan curves Σo has the following property (iii), we

call Σo a standard system of Jordan curves for (Go): (iii) For each i =

1, 2, , e/ and j = 1, 2, f 2βr — 3, C0>i and C 0 > g + ί lie on t h e same side of

W e l e t C 0 | ί ( D , C0ti{2), , COfi{k), COιg+i>(1)f , C O ^ - H ' ^ ) a n d COfja), C0)j{2), ,

CΌ,i(m), Co^+i'α), "> C ô̂ +i'u) be the defining curves in 2^ in the interior

and to the exterior to CQ}2g+j, respectively, where i(l) < ••• < ί(k) ^ g,

i\l) < < i'(ί) ̂  flr; i(l)' < < i(m) ^ g, j'(l) < < i'(w) ̂  flr. Then

we say that the curve C0}2g+j gives a partition {ΐ(l), , i(k), g + i'(l),

• , flr+i'(ί)}Uίi(l), , i(m), ^ + /(1), , flr + i'(n)}of the set {1, 2, , 2^}.

1-2. Let αOii(i = l ,2 f ---,flr) and 7O f i(i = 1, 2, . , 2g - 3) be the

images of C0)i and C0t2g+j, respectively, under the natural projection

770: Ω(G0) —• Ω(G0)/GQ = So, where i2(G0) is the region of discontinuity of

Go. Then 2Ό = {α0>1, , ao,g; 7Ofl, , 70,2£_3} is a basic system of loops

(resp. a standard system of loops) if Σo is a basic system of Jordan

curves (resp. a standard system of Jordan curves) (see [4, pp. 155, 156]

for the definitions). We call Σo the projection of Σo onto SQ.

Cut the Riemann surface So along the loops aOti(i = 1, 2, , 0). We

denote by αίt< and αί ι ί 7 + ί the resulting two topological circles. We call

ΣΌ — {a[tU - , αj,2 f f; 70>1, , 70>2ί7-3} t h e set of Jordan curves induced from

Σo, or simply t h e induced set from Σo. Each Ύθtj divides t h e set {aΌ,19

• , αί,^, αί, σ + 1 , , a'0>2g} into two p a r t s {aΌtH1), , αί f<(fc), αί, f f + i, ( 1 ), ,

αί,ff+i'(i)} and {αί,i(1), , aΌ,j{m), a'0,g+jf{1), -—, aOtg+Jnn)}, where i( l) < ••• <

i(Λ) ^ 0, i '( l) < < i'(ί) ^ 0; i ( l ) < < i(m) ^ 0, i ' ( l ) < < j'(n)£

g. Then we say t h a t ΎQtj gives a partition {ϊ(l), •••, ί(k), g + ΐ ' ( l ) , •••,

βr + Ϊ'(Z)} U {i(l), , i(m), 0 + / ( I ) , - -, ff + i'(*)} of t h e set {1, 2, , 2g}.

If each 7Oiy(i = 1, 2, , 2g — 3) gives t h e same part i t ion as C0)2g+j, we

say ΣΌ is compatible w i th 2 0 and denote t h e fact by ΣΌ ~ Σo.

1-3. We drop t h e suffices " 0 " of COtt, C0f2g+j, •••, for simplicity if

t h e r e is no confusion. In [5], we defined t h e cycle corresponding to at
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as follows. Let C2g+H1), C2g+i(2), •• ,C2 ί H_ ί ( n be a sequence of C2g+j in Σo

each of which separates pt and pg+i, and which are arranged from pt to
pg+ίf where Pi and pg+i are the repelling and the attracting fixed points
of A0)i. Then the sequence (at; 7<(1), 7«2)> , 7<(l>) of elements in Σo was
called the cycle corresponding to at in [5].

Here we will introduce cycles with direction, which are called
ordered cycles. As in [5], we construct the tree of Σo. We represent
Ct and C2g+j by using multi-suffices as in [5]. We first define the direction
ε(= + 1 or — 1) of C2g+j from Cλ as follows. Let C2g+j = C(il9 i2, , iμ) (we
wrote 7(ii, i2, , v) for C(il9 i2t , v) in [5]). If C2g+j is passed through
from C(iίf i29 , v_i) to C(i:, i2, , iμ9 ίμ+1) on the tree of Σo, then we say
that C2g+j is passed through in the positive direction, and we denote
C2g+j by Ctg\ά. We write 7/1 for the projection of Ctβ+i onto So. If C 2 0 + i

is passed through in the direction opposite to the above, then we say
that C2g+j is passed in the negative direction, and we denote C2g+j by
CfgXj- We write 771 for the projection of C2~g+j.

DEFINITION. We say C2g+j = C(ix, i2, , iμ) (resp. C< = COΊ, j 2 , , jσ))
is behind C2g+ι = C(iJ, i2, , i[) if v <C μ and ifc = ̂ (A = 1, 2, , v) (resp.
i; < tf and j f c = iί(fe = 1, 2, , v)), and denote the fact by C2g+ι < C2ff+i

(resp. C2g+ι < Ct). Otherwise, we say that C2g+j (resp. Ct) is not behind
C2g+ι and we denote the fact by C2g+ι < C2g+j (resp. C2g+ι < C<).

REMARK 1. ys is a dividing loop if and only if either C2g+j < C{ and
C2ff+i < Cg+i, or C2ff+i < Ct and C2ί7+i < Cff+ί for each i = 1, 2, , ^.

REMARK 2. i?0 is a standard system of Jordan curves if and only
if either C2g+j < Ct and C2g+j < Cg+ί, or C2g+j < Ct and C2ff+i < Cff+i for each
j = 1, 2, , 2flr — 3 and for each i = 1, 2, , g.

We define the ordered cycle corresponding to α* as follows. We
denote the shortest path from C{ to Cg+i on the tree of ΣQ by

Here δ(l)(l = 1, 2, ••-,*;) are determined by δ(l) = + 1 or δ(Z) = - 1 ac-
cording as C2ff+Z < Cg+i or C2ff+i < Ct. The projection
/ n \ /Λ, . <yδ(l) <yδ(2) # # # ryδ(k)\

of (1) onto So is called the ordered cycle corresponding to ai9 and is
denoted by LOti.

1-4. Example. We write (α, 6, c, d) for a matrix( *)•
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Let Λ,i = ( - 3 , 9exp(4πi/3) - 1, 1, -exp(4ττί/3)), AQt2 = (3 exp(ττi/3), 8, 1,
-3exp(2ττί/3)) and A0f8 = (3 exp(5ττi/3), -9exp(5τri/3)-l, 1, - 3 ) . Then
<(τo> = (AQΛ, AQt2, A0>3> is a marked Schottky group. Let d:\z-
3exp(4τri/3)| = Ί , C2: \z - 3 exp(2ττί/3)| = 1, C3: | s - 3| = 1, C4: |s + 3| = 1,
C5: |« - 3 exp(7ri/3)| = 1, Cβ: \z - 3 exp(5ττi/3)| = 1, and let C0J, C0>8, C0t9 be
as in Pig. 1. Then Σo = {COfl> , C0,β; C0,7, C0f8, C0,9} is a basic system of
Jordan curves for (GQ). We have a Riemann surface So = Ω(G0)/G0 and
loops αOjl, α0>2, α0f8, %>,i, ̂ 0,2, ^o,3 on So as in Fig. 2. The tree of ΣQ is as
in Fig. 3. Identifying COfi and C0>3+i(i = 1, 2, 3) as in Fig. 3, we obtain
Fig. 4. We have three ordered cycles LQ>1 = ( α M ; 7Ofl, 70,2), L0,2 = (αo,2;
%~2, 7Of8) and L0>3 = (αo,3; 70~3, 70~l), which correspond to AOtU A0f2 and A0t39

respectively, where we write Ύ0>j for 70tί for simplicity.
1-5. Let I be a subset of {1, 2, , g] and J a subset of {1, 2, ,

FIGURE 1 FIGURE 2
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2g — 3}. We denote by \I\ and \J\ the cardinality of I and J, respec-
tively. Let Lθtj{1), L0,j(2), , LQtJ{t) be the complete list of cycles containing
7* , and let a0>k be the "α-loops" contained in L0>fc(l ^ k ^ t), where t =
t(j) depends on j . We define the subset I(J) of {1, 2, , g] by

I(J) = {i e {1, 2, , sr}|αo,i is contained in L0J{k)

for some ft(l ^ A; ̂  ί(j)) and for some j e J} .

In this paper we assume that / D / ( J ) . AS in [5], we define sets
®a(Σ0), δz J@,(£0), &9>

J(Σ0) and €*(Σ0).^ We call the set &g(Σ0) and €*(Σ0)
the Schottky space with respect to Σo and the augmented Schottky space
associated with Σo, respectively.

1-6. Let S be a compact Riemann surface without (resp. with) nodes.
We call the set Σ = {au •• ,α f f ;7 1 , •• ,72g_3} of loops (resp. loops and
nodes) on S having the following property a basic system of loops (resp.
a basic system of loops and nodes). Each component of S — U?=i a% ~~
Ui=~i3 Ίj i s a planar and triply connected region of type [3, 0] (resp. [3, 0],
[2, 1], [1, 2] or [0, 3]), where a surface of type [m, n] means the sphere
with m disks removed and n points deleted.

In the same way as in § 1-2, we can define the following: The set
Σ' = {a[, , a'2g; Ύlf , 72ff_3} of Jordan curves and points induced from
Σ which is simply called the set induced from Σ; the partition by 7/,
compatibility of Σr and Σo, which is denoted by Σf ~ ΣQ.

If the pair (S, Σ) with Σf ~ 2^ has the following property, we say
that (S, Σ) has Property (A) m£/& respect to Σo (or simply Property (A)):
If ijβΣ is a node, then ^eΣ are nodes for all iel({j}), where !({;/})
is the set defined in §1-5 with respect to ΣQ.

2. The interchange operator.

2-1. Let <G0>, ΣQf Σo and Σ[ be as in §1. Assume that Σ[ ~ Σo. In
this section except in §§2-6,2-7, we drop the suffices "0" of AOtt, Co,,,
Co 2g+i, » if there is no confusion.

Let Ύj e Σo. Let I({j}) = {j(l), j(2), , i(*)}(i(l) < i(2) < < i(ί)),
where t = ί(j) depends on j . Then L0,i(1), L0fy(2), *, LOfjω is the complete
list of ordered cycles containing Ίά:

-"o,i(ί) —

where 7i(Jfe,,m(Jfe) = 7/A; = 1, 2, ••-,«) and δ of 7 ^ represent the directions
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of 7 M in LOti (cf. § 1-3).
We define the interchange operator Ig(aj{k), y5) of aj(k) and yά acting

on Σo. We denote by J * = {Cf, , C£; C2*+1, , C4*_3} the image of Σo

under Ig(aj{k), ys)9 where Ct* and C^+ι are defined as follows. Let
δ(j(k), m{k)) be the direction of 7y(fc)fW(fc) in L0,i(/t)

CASE I. i(A) ^ 1, and δ(j(k), m{k)) = + 1 (cf. Example 4 in §3). In
this case, we have always C2g+j < Cg+j{k). Cf and C2g+ι are defined as
follows.

( i ) C2*+ί = Cj{k)9 Cg+j{k) = C2ί7+ί and C/[fc) = A7d)(C2flΓ+ί ).
(i i) Cf = A7i)(C1)(i ^ £ + j'(ft)) (resp. C,*+I = A7i>(C2,+ϊ)) in the case of

C2g+j < Ci (resp. C2,+y < C2ff+I)
(iii) Cf = Ct (ί^ j(k)) (resp. C2*+ι = C2g+ι) in the case of C2g+j < C,

(resp. C2,+ i < C2ί7+Z).

CASE II. j(k) Φ 1, and δ(j(k\ m(k)) = - 1 (cf. Example 2 in §3). In
this case, we have C2g+j < Cj{k). We define Cf and C2*+ι as follows.

( ! ) C2*+y = Cg+j(k)f C*+jik) = C2 f l r + J a n d C*(Λ) = Aj(Ie)(C2g+/).

(ii) Cf = AytwίC,) (i ̂  i(A )) (resp. C2*+z = Ai(Jfe)(C2ir+ι)) in the case of
C2g+j < Ct (resp. C2,+ i < C2,+ι).

(iii) Cf = Cli Φg + i(Λ)) (resp. C2*+* = C2|r+I) in the case of C2g+j < C,
(resp. C2g+j < C2ff+Z).

CASE III. j(k) = 1 (cf. Example 1 in §3). In this case, C2g+j <
Cg+j(k)( = Cg+1). δ(j(k),m(k)) is always equal to + 1 . Cf and C£+ ϊ are
defined as follows:

( i ) C2*,+i = Cu C*+1 = C2g+j and Cf = Aγ\C2g+j).
(ii) Cf = Ar^C.Xi Φ g + 1) (resp. C5+, = Ar^C^+O) in the case of

C2g+j < C,(resp. C2g+j < C2g+ι).

(iii) Cf = C ί(i^l)(resp. C2*+I = C2g+ι) in the case of C2ff+i < Ct(i Φ 1)
(resp. C2ff+i < C2α+I).

2-2. We determine the direction ε*(2g + I) of C2*+z from Cf in the
image Jo* of Σo under Ig(aHk)i y/) as follows.

Case I in §2-1. (i) ε*(2g + j) is equal to - 1 .
(ii) ε*(2g + I) are equal to —1 for I such that 7Z

5 are contained in
LOJW (we denote the fact by y\ eLOfj{k)) and C2g+j < C2g+ι.

(iii) Otherwise, ε*(2# + ϊ) are equal to + 1 .
Case II in §2-1. (i) ε*(2g + j) is equal to + 1 .
(ii) ε*(2g + I) are equal to — 1 for I such that 7jeL0,y(*, and C2ί7+i <

(iii) Otherwise, ε*(2g + I) are equal to + 1 .
Case III in §2-1. ε*(2g + l)(l = 1, 2, , 2g - 3) are equal to + 1 .
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2-3. The following cases may occur for Σf when interchange opera-
tors are applied. Here for simplicity, we write Ct and C2g+ι for elements
Cf and C2*+ί in Σ*f respectively.

Let δ(j(k)f m(k)) be the direction of 7 i = 7i{Wfβl(ife) in LJ{k).
Case Γ. j(k) Φ 1, C2g+i < Cj{k), and δ(j(k), m(k)) = + 1 (cf. Example 3

in §3).
Case II'. j(k) Φ 1, C2g+j < Cg+j{k), and δ(j(k), m{k)) = - 1 (cf. Example

5 in §3).
Case ΠΓ. j(k) = 1 and δ(j(k), m{k)) = - 1 (cf. Example 6 in §3).
For these cases, Ig(aj{k), Ίό) are defined as follows. Namely if we

set I,(α i ( W > 7,)(fo) - ^o* = Cf, , C*; C2*+1, , C*_3}, Cf and C£+, are de-
fined as follows.

Case Γ. (i) C2*+ i = Cg+jιk), Cf{k) = C2g+j and C*+j{k) = Aj(k)(C2g+j).

(ii) Cf = Aj{k)(Ci)(ί Φ j(k)) (resp. C2%+ί = Ai(fc)(C2ff+z)) in the case of
C2ff+i < C,(resp. C2g+j < C2g+ι).

(iii) Cf = Cli Φg + j(k)) (resp. C*+ι = C2ff+ί) in the case of C2l7+i < C,
(resp. C2g+j < C2ff+0

Case II'. (i) C2*+i = Cj{k), C&, = C2,+ i and C*+y(Λ) = Ajtk)(C2g+j).
(ii) Cf = AjMC&i Φ9 + M)) (resp. C, +I = AjUC2g+ι)) in the case

of C2g+j < C/resp. C2g+j < C2g+ι).

(iii) Cϊ = C4(ΐ ^ i(ft)) (resp. C2%, = C2g+ι) in the case of C2,+ i < C,
(resp. C2g+j < C2α+I).

Case IIΓ. (i) C2*+i = Clf C* = C2ff+i and C*+1 - Aτ\C2g+j).
(ii) Cf = Ar1(Cί)(ΐ Φ g + 1) (resp. C2*+ί = ArXC2ff+I)) in the case of

C 2 0 + i < Ct (resp. C2g+j < C2g+ι).
(iii) Cf = Cli Φ 1) (resp. C2*+i = C20+ι) in the case of C2g+j < C* (resp.

C2σ+3 ^ C2g+t).
In the above cases, we determine the direction ε*(2g + I) of C2*+ί

from C* in j£0* as follows. Let ε(2g + I) be the direction of C2ff+ι from
d in J?o.

Case Γ. (i) ε*(2g + j) is equal to + 1 .
(ii) ε*(2g + I) are equal to — ε(2g + i) for Z such that ΎδιeLOiHk) and

C2ί/+y < C2g+ι.

(iii) Otherwise, ε*(2# + I) are equal to ε(2g + I).
Case IΓ. (i) ε*(2g + j) is equal to — 1.

(i i) e*(2g + I) are equal to -ε{2g + I) for I such that 7?eLO i i ( W

and C2ff+i < C2^+i.
(iii) Otherwise, ε*(2^ + i) are equal to ε(2g + i).
Case IIΓ. (i) ε*(2g + j) is equal to - 1 .
(ii) ε*(2# + I) are equal to — ε(2g + Z) for I such that 7?eZfO>/(*)
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(iii) Otherwise, ε*(2g + I) are equal to ε(2g + I).
The following cases may occur for Σ* when interchange operators are

applied. We write again C* and C2g+ι for elements C* and C2g+ι in Σ*f

respectively. Let δ(j(k), m(k)) be the direction of 7i(Λ),TO(fc) in Ljϋe).
Case I". j(k) Φ 1, C2g+j < Cg+Hk), and δ(j(k), m{k)) = + 1 (cf. Example

4 in §3).
Case IT. j(k) Φ 1, C2,+i < Cm and ί(j(A), m(ft)) = - 1 (cf. Example 2

in §3).
Case III". j(k) = 1 and δ(j(k), m(k)) = +1 (cf. Example 1 in §3).
We note that Cases I, II, and III in § 2-1 are contained in Cases I",

Π", and III", respectively. For these cases, Ig(ajik), 7,) are defined in
the same method as in §2-1. The direction ε*(2# + I) of C2*g+ι from C*
in the image Σ* are similarly determined as in §2-2. Namely we de-
termine ε*(2# + j) as the same one as that in §2-2, and ε*(2gr + l)(l Φ j)
by replacing + 1 (resp. —1) in §2-2 by +ε(resp. — ε) if the direction of
C2g+ι from Cλ in Σo is ε. From now on, we write Cases I, II and III for
Cases I", IT and III", respectively.

2-4. We define the interchange operator acting on Σo and Σ'o. Let
at and 7* be the images of Cf and C*g+jf respectively, under the natural
projection 770: Ω(G0) -> SQ. We define the image 2Ό*(resp. Σf) of Σo (resp.
ΣΌ) under Ig(aj{k), 7,0 by Σt =J«Γ, , α2*/; 7*, , 7*_3}(resp. as the set
induced from Σ* with Σf ~ Σ*). Furthermore ordered cycles L*if which
are the images of L0,t under Ig(aJ{k), Ίs), are defined for the tree of Σ*
with the direction determined in §§2-2,2-3 in the same method as in
§1-3.

Let LOfi(W = (α i ( W; 7 i (Wfl, , 7i(Wfn(W)(λ = 1, 2, , t). We denote by
δ(i, I) and δ*(i, I) the direction of yifl in LOtHh) and of Ύffl in L*j{h), respec-
tively* Then we easily see the following.

THEOREM 1-1. (i) If δ(j(k), m(k)) is equal to +1 (Cases I, Γ and III

in §§2-1,2-3), then

O,j(k) — \W'jUe)9 ^i(fc),m(ft)+l> t Jj(k),n(k)f 'j(k),m(k) >

where δ*(j(k), i) = δ(j(k), i)(i Φ m(k)).
(ii) If δ(j(k), m(k)) is equal to - 1 (Cases II, IΓ and III' in §§2-1,

2-3), then

L*
0,j(&) —
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where δ*(j(k), i) = δ(j(k), ϊ)(i Φ m{k)).

THEOREM 1-2. For h Φk, (i) if δ(j(k),m(k)) = + 1 (Cases I, Γ and
III in §§2-1,2-3), then

L* /,«* . rγ*δ . # . ry*δ ry*~δ

O,j{h) — \&j(h), 1j(h),l> t 'j(h),m(h)-lf > i(fc),m(fe)-l >

where δ*(i, I) = 8{i, l)((i, I) Φ (j(k), m(ft))).
(i i) If δ(j(.k), m(ft)) = - 1 (Cases II, IΓ awd ΠΓ in §§2-1, 2-3), then

L* δ 3 3

0,i(fe) —

where δ*(i, I) = ί(i f ϊ)((i, I) Φ (j(k), m(k))).

REMARK, (i) In Theorem 1-2, (i), L*j{h) is obtained with 7j ( W f m ( M in
L0>j{h) replaced by the sequence

and then with an asterisk attached to every 7f.
(ii) In Theorem 1-2, (ii), L*ίih) is obtained with 7J(WfW(W in L0,i(Λ)

replaced by the sequence

7 S ryδ ry + 1 ty/δ /-yδ

i(fe),m(fc)+l> , I3(k),n{k)9 7i(fc),m(fc), JHk),l9 * 9 <3(k),m(k)-l

and then with an asterisk attached to every Ί\.

CONVENTION. For Ί^WΊI , we write 7J7? . Namely we
eliminate 7£7;~3 from the sequence.

THEOREM 1-3. For an ordered cycle LOti = (α*; 7|(1), , 7ί(n)) which
does not contain 7j, the image L*ti under Ig(aj{k), Ύd) is (af; 7* ,̂, , 7*(ή)),
where δ*(i(l)) = ί(i(l))(I = 1, 2, , n).

REMARK. In Theorems 1-1 and 1-2, yftl = 7<f,((i, I) Φ (j(k), m(Λ)),
7*(fc)>m(fc) = α i ( fc), α?' = a,(i Φ j(k)) and α;{fc) = 7i(fc),m(fc) = 7,-. In Theorem
1-3, af = α, and 7i*(I, = 7<(l,(i = 1, 2, ••-,%), and so Iy(αi(Jfc), 7,0(1,0,*) = io f<.

2-5. We study the images Aftl, , AStβ of AOfi, , AQ>g, respectively,
under Ig(a5{k), 7d). A*yί is defined as the word in AOlU , A0,g which maps
C0*i onto C*g+i, that is, Afti(Cϊti) = Co*,+<. We easily see the following
from §2-1.

THEOREM 2. Let Aίti(i = 1, 2, , ff) 6β ίfee images of AOjί under
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( 1 ) A*i = AOti in the case of C2g+j < Ct and C2g+j < Cg+i.

( 2 ) In the case of C2g+j < Ct and C2g+j < Cg+i,

( l ) A*i = AO)j(k)AOtiAo>3 (k) if C2g+j < Gg+jίk),

( i i ) Ao*i = i4.o,i(&)-4o,î 4.o î(fe) i / C2g+3 < Cy(Λ).

( 3 ) J n the case of C2g+j < Ct and C2g+j < C^+i,

( i ) Άo,i = A 0 > ί A 0 | J (A;) v v2g+j <C

( i i ) - +1)
i - JW, δ(j(k), m(k)) = -1)

A0Mk) (i = j(k), δ(j{k), m{k)) = +1)

( 4 ) In the case of C2g+j < Cg+i and C2g+j < Cif

Ao,)(k)AOίi

( i ) Ao*, =

A:}(« (i = Λft), *(i(ft), m(ft)) = - 1 )

i / C2 ί / + i < Cg+j{k), and

(ii) Λ0*i = i4ofi(*)Λ,i i f Cig+j < Cjik).

We denote by <G0*> the marked Schottky group generated by A*19

ft>,2,-8) and τ0* = (ίo*fl, - -, tf,g, pftl9 , |O0*2ff_3) be the points in @,(f0) and
in &g(Σ$) corresponding to (GQ) and <G0*>, respectively. We define

vi)(τ) by Ig(aj(k), 7y)(r) = T*. We denote by mult(Λ.i) the multiplier
> 1 ) of AOtl.

COROLLARY. (1) t*ti = tOti in the case of Theorem 2, (1) and (2).
( 2 ) tfti = l/mult(Ao,iAo,i(fc)) in ίfee case of Theorem 2, (3) (i), and

ίfee case of Theorem 2, (3)(ii).

in the case of Theorem 2, (4)(i), and

t£t = l/mult(AOfy(Jfc,AM)

in ίΛe case of Theorem 2, (4)(ii).

2-6. Thus far we defined the interchange operator Ig(aj{k), Ί$) acting
only on the center of the Schottky space &g(Σ0). Here we extend the



AUGMENTED SCHOTTKY SPACES 567

operator to the whole space ®g(Σ0).
Let <G> = (Al9 , Ag) be a marked Schottky group. From now on,

we write Ig(j(k), j) for Ig(am, 7y). We define the operator Ig(j(k), j) on
<G> as follows. Suppose that

WW, Λ«Go» = <Af,lf , AO = <G0*> ,
where

(3) AZ^WIA^ ,^) (i = l,2, ...,ff)

are words in Ao>1, , AOfy. Then we define Ig(j(k), j) acting on <G> by

KM), Λ«G» = <Af, , A > = <G*> ,

where A? = W^Ax, , AJ(ΐ = 1, 2, , g) are the words obtained with
AOfl(l = 1, 2, " -, g) in (3) replaced by Aj.

Let τ and τ* be the points in &g(Σ0) and in &g(Σ£) corresponding to
<G> and <G*>, respectively. We define the operator Ig(j(k), j) acting on
®,(ΪQ) by I,(j(k), i)(τ) - τ*.

2-7. We give a compact Riemann surface S of genus g with or
without nodes, and a basic system of loops and nodes Σ = {αlf •••,«,;
Tj, , 72ff_3} on S such that one of the sets 2" = {a[, , α^; 7X, , 72ff_3}
induced from 21 is compatible with Σo. We define an ordered cycle Lt

with respect to Σ by replacing aOιi and 7o,z in the cycle L0>i by αf and
7j, respectively.

Suppose that /({j}) = {i(l), i(2), , j(t(j))} and that 7i(fc),m(fc) - 7y for
each ft = 1, 2, , ί(j). We define the operator Ig(j(k), j) acting on Σ by

UK®, 3)W = {«?, ,«?; 'yf, , U-.} = ^ * ,
where α? and 7* are defined as follows:

(1) In the case where a* and 7* are contained in L*{k)(k = 1, 2, ,
ί(Λ), Vί, = 7M((i, l)Φ{j(k), m(k))), yf{khm{k) = ai{k)faf = a^iΦJik)) and af{k) =
^0{k)ym{k) — 7 j .

( 2) Otherwise, αf = α* and 7f = 7Σ.
Let J* ' = {«*', , α2*'; 7f, , 72*_3} be the set induced from Σ* such

that 2*' ~ Ifr. Then we define the operator Ig(j(k), j) acting on Σf by

Let Lt = (at; 7j { 1 ), , 7ί ( ί ( < ) )). Suppose

Iα(ί(ft), 0)(LOίi) = (α0*,; 70*:, ,

Then we define Ig(j(k), j)(Lt) by

I,(i(ft)f i)(Ir4) = (αf; Tf1, •• f 7 ί i ( < ) ) ) >

where for each Z = 1, 2, , ί(i), δ of 7f3 is equal to δ of 70*j in Lfti.
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3. Examples. In this section, we explain the interchange operators
introduced in the previous section by some illustrative examples. We
take the example in §1-4. In this section, we drop the superscript
" + 1" of Ύt1 for simplicity.

EXAMPLE 1. Let Σ1 == {Cn, C12, , C16; C17, C18, CLQ} be the image of
Σo under the interchange operator Ig(aOtl, 7Of2). We set Φx = Ig{aOiU 70,2).
Let Σx = {an, a12, α13; 7 n , 712, 713} be the projection of Σt. Then we have
v i i — A0tι(C0f9), C12 = A^t{(C0t2), C 1 3 = C0 |3, Cu = C0,8, C 1 5 = C0 > 5, Clβ = CQtQ, C17 =

C0,7, C18 = Co,! and C19 = C0,9. Furthermore, we have Ln = Φγ(LQΛ) =
(α n ; 712, 7n), L12 = ΦάLoJ = (α12; 712, 7 n, 713), and L13 = Φ^Lo^) = (α13; 7ΓΛ
7U1). The tree of Σι and the curves of Σ1 on C are as in Fig. 5 and
Fig. 6, respectively. Setting Au = Φ1(A0,ί)(i = 1, 2, 3), we have An =
-^•0,1, Ά12 : :=: ^-0,2-^-0,1 a n d ^. 1 3

 = -AQ,3

C17

FIGURE 5 FIGURE 6

E X A M P L E 2. L e t Σ2 = {C21, C
21, C22, , C2β; C27, C28, C2e} b e t h e i m a g e of

Σ, u n d e r J f l(α 1 3, 7 n ) . We^set Φ2 = I f f ( α n , 7 n ) . L e t 2^ = {α21, α 2 2 , α 2 3 ; 72 1, 72 2,
723} b e t h e pro ject ion of Σ2. T h e n w e h a v e C21 = C n , C22 = C12, C2 3 = A1 3(C1 7),
C2i — A1 3(C1 4), C2 5 = -Ai3(C16), C2Q = C17, C27 = C l β, C2 8 = C18, C2 9 = A1 3(C1 9). F u r -
t h e r m o r e , w e h a v e L 2 3 = Φ2(L1B) = ( a s 1 ; 72 1, 72l

1) = (α 2 3 ; 72 3, 7,!1), L21=Φ2(LU) =
(α2i5 ^22, T21, 7211) a n d L 2 2 = Φ2(L12) = ( α 2 2 ; 7 2 2, 7 2 1, J22\ 72 3) = ( α 2 2 ; 7 2 2, 7 2 1 ). T h e

tree of Σ2 is as in Fig. 7. Setting A2ί = Φ2{Au)(i = 1, 2, 3), we have
Λ.2ι

 = = -A13-An, -A22 = J±ι%Λ.ι2 a n d .A23 = A 1 3 .

E X A M P L E 3. L e t Σ% = {C31, C32, , C3β; C37, C38, C39} b e t h e i m a g e of Σ2

u n d e r J f f(α 2 3, 72 3). We^set Φz = J α (α 2 8 , 72 3). L e t J?8 = {α8i, ocZ2, α 3 3 ; 73 1, 73 2, 733}
b e t h e pro ject ion of Σz. T h e n w e h a v e C3 1 = C21, C32 = C22, C3 3 = C29, C3 4 =
A2 3(C2 4), C3 5 = C26, C36 = A2 3(C2 9), C3 7 - C27, C3 8 - C2 8 a n d C39 = C2β. F u r t h e r -
m o r e , w e h a v e L 3 3 = Φ3(L2 3) = (α 3 3 ; τ 8 ΐ , 73 3), L 3 1 - Φ3(L2 1) = (α 3 1 ; 73 2, 731, 7S1,
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C33

%») = (au; %2, %*)> and L3 2 = Φ3(L22) = (α3 2; 732, 731). The t r e e of ΣB is as

in Fig . 8. Set t ing Azi = Φ3(A2i)(i = 1, 2, 3), we have Azι = A23A21, A82 =

A22 and A33 = A23.

E X A M P L E 4. Let Σ4 = {C41, C42, , C4β; C47, C48, C40} be t h e image of 2*3

under Ig(aZ2y 732). We set Φ4 = I,(α 3 2, 732). Let Σ, = {α41, α4 2, α 4 3; 741, 742, 743}

be t h e projection of Σv Then we have C41 = CS1, C42 = AΰXCS8), C43 =

^ ( C , , ) , C44 = A£(CU), C45 = C38, C4β = A5 ι(CM) f C47 = A£(Cn), C48 = C32 and

C49 = Λl^Cω). F u r t h e r m o r e , we have L4 2 = Φ4(L32) = (α 4 2; 741, 742), L41 =

Φ4(L31) = (α4 1; 751, 7S ι, 743) and L 4 3 = Φ,(L3S) = (α4 3; 7S ι, 743). The t r e e of Σ4

is as in Fig. 9. Set t ing A4i = Φ4(ASi)(i = 1, 2, 3), we have A41 = A£\A8i,

A42 = -A32 and A43 = -A32 A33A32.

E X A M P L E 5. Let JV = {Cβl, Cδ2, , C6β; C67, C58, C69} be t h e image of Σ4

under /,(««, 741) and let Σ6 = {α51, α 5 2, α 6 3; 7ΰ l, 7δ2, 7δ3} be t h e projection of

Σ» We set Φ5 = J f f(α4 3, 741). Then we have C61 = C41, Cδ2 = A^\C^, Cδ3 =

C49
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C*7> Cδi — Ά431(C44), Cδδ = C45, Cδβ = A^Ctf), Cδ7 = C43, C58 = C48 and Cδ9 = A^XC^).
F u r t h e r m o r e , we have Lβ 3 = Φ5(L43) = (as 1 ; 7M, 751) - (aδ 3; Tel1, 751), L5 1 -
Φ5(L41) = (a β l ; 75ΐ, 7iΊ\ 75\ 753) - (aB1; 751, 7Π1), L 5 ? = Φ5(L42) = (a5 2; 753, 751, 752).
The t r e e of Σδ is as in Fig. 10. Set t ing Aδi = Φ5(A4i)(i = 1, 2, 3), we
have AB1 = A^Ail9 Aδ2 = A42A43 and A53 = A^\

E X A M P L E 6. Let ΣQ = {C61, C62, , CQQ; C67, C68, C69} be t h e image of

Σδ under Ig(an, 751) and let I'e = {aβl, aβ2, a63; 761, 762, 763} be t h e projection
of S* We set Φ6 = I,(αB 1, 751). Then we have C61 = C57, C62 - A5"1

1(C52), C63 =
Q3, Cβi — Ά ^ C ^ ) , C65 = C55, C66 = AΓiXCββ), C67 = C51, C68 = C58 and CQ9 = ^4.^L

1(C59).
F u r t h e r m o r e , we have ΦQ{Lδι) = (α^ 1; 7β l, 7U1) = (α6 1; 762, 76"!1), Φ*(L62) = (α6 2;
762, 761, 751, 762) = (α6 2; 763, 761) and Φ6(L53) = (α6 3; 762, 751, 76~3

1). The t r e e of
1 6 is as in Fig . 11. Set t ing A6i = Φ6(A5ί) (i = 1, 2, 3), we have Aβl =

" 5 1 ) " 6 2 r = " 5 2 " 5 1

4. Uniformization. 4-1. Let <G0>, l 0 and So = Ω(G0)IG0 be a fixed
marked Schottky group, a fixed basic system of Jordan curves, and the
compact Riemann surface of genus g without nodes, respectively, as in
§1. Let S be a compact Riemann surface of genus g with nodes and
let Σ = {alf - - , ag; Ύl9 , 72σ_3} be a basic system of loops and nodes on
S such that all nodes on S are elements of Σ. Let 2" = {a[f , α2ί7; 7 l f

• , 72ff_3} be one of the sets induced from Σ. We choose a basic system
of loops Σ, = {an, , αi,; 7 l l f , 7lj2ff_3} with aH = aQi(ί = 1, 2, , 0) on
So such that one of the sets Σ[ = {αύ, , a[t2g; 7n, , 71)2ff_3} induced
from Σ1 is compatible with 2", which is similarly defined as in §1. Then
we easily see the following.

PROPOSITION 1. There is a basic system of Jordan curves Σ1 — {COtlf

C0>2, , C0i2g: Clt2g+1, - , Cltig_3} for (Go) satisfying the following conditions
(i)-(ii): (i) Sx - Σ[, and \iϊ) Π(C1>2g+j) = 7 l f i ( i = 1, 2, - -, 2g - 3),
/7 is ίfeβ natural projection from Ω(G0) onto So.
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4-2. Let Ljyl, Ljt2, , L i ) ί ( i ) be the complete list of ordered cycles
containing 7J1 or 771 with 7seΣ. We let 7 i (1), 7 i (2), , 7 i ( r ) be the
complete list of nodes {7J in 2\

Step 1. (1) Suppose that there are i e{l, 2, , t(j(k))} and fte
{1, 2, , r} such that ad{k)ti in I/i(fc)>ί is a loop. For example, let α i ( 1 ),m ( 1 )

be the loop, which is identical with ai{1) for some i(l) e {1, 2, , g}. We
denote the images of Σ, Σf and ! \ under Ig(i(l), i(l)) by 2Ή, Σ'n and 2^,
respectively. Then we note that Ig(i(l), i(l))(7 i (1)) is a loop and /ff(i(l),
i(l))(«td)) is a node.

( 2 ) Suppose that all aj{k)fi(i = 1, 2, , ί (i(ft)); ft = 1, 2, -, r) are
nodes. Then the pair (S, Σ) has Property (A).

Step 2. In the case of Step 1, (1), the complete list of nodes {7j
with ΎtβΣn is 7 i (8) f 7 i (3), •• , 7 i ( r ) . Let L i ( W f <(i = 1, 2, , ί(j(ft), 1)) be
ordered cycles containing 7j(fc) with respect to Σn for A; = 2, 3, , r.

( 1 ) Suppose that there are i e {1, 2, , ί(i(ft), 1)} and A; e {2, 3, , r}
such that a3'{k)ti is a loop. For example, let αϋ ) ( 2 ) j T O ( 2 ) be the loop, which
is identical with am for some i(2)e{l, 2, , flr}\{ΐ(l)}. We denote the
images of Σn, Σ'n and Σn under I0(i(2), j(2)) by Σ12, Σ[2 and J 1 2, respectively.
We note that Ig(i(2), i(2))(7i(2)) is a loop and Iff(i(2), j(2))(am) is a node.

( 2 ) Suppose that all aj{k)fi(i = 1, 2, , t(j(ft), 1)); ft = 2, 3, , r) are
nodes. Then the pair (S, Σn) has Property (A).

Step 3. We continue the same procedure as above, and finally we
find a number s ( ^ r ) such that the following (i) and (ii) are satisfied: (i)
Let Σlh Σ'u and Σn(l = 1, 2, , s) be the images of Σltl_lf Σ'^^ and Σltl_lf

respectively, under the interchange operator Ig(ί(l), j(l)), where Σltl_λ =
Σ, Σ[Λ_λ = Σ' and Σ^ = Σ± for I = 1. Then for each 1 = 1,2, , s,
I9W), J(l))(Vnn) is a loop, (ii) For any j(k) (ft = s + 1, s + 2, , r), α i ( fc) f1 l

(u = 1, 2, , ί(i(ft), s + 1)) in Ly(fc)f« are nodes, where Lj{k)tU are cycles
containing lδ

j{k) with respect to Σs.
We write J * and Σ* for 2ΊS and ^ l β , respectively. Then the pair

(S, 21*) has Property (A). From Steps 1 through 3, we have the following.

PROPOSITION 2. Given a compact Riemann surface S of genus g{g Ξ> 2)
with nodes and a basic system of loops and nodes Σ on S such that all
nodes on S are contained in Σ, then a finite number of interchange
operators can be applied to Σ so that the resulting basic system of loops
and nodes Σ* is such that the pair (S, Σ*) has Property (A).

4-3. From Propositions 1 and 2 above, and [5, Theorem 2], we have
the following.

THEOREM 3. Let S and Σ be as in Proposition 2. Let Σx be a basic
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system of Jordan curves raised from Σ as in Proposition 1. Let Σ* be
the basic system of Jordan curves raised from Σ1 by application of the
interchange operators in Proposition 2. Then there exists a point in
the augmented Schottky space with respect to Σ* which represents the
Riemann surface S.
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