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0. Introduction. In this paper, we will consider the following
problem. Let S be a compact Riemann surface with nodes. Does there
exist a point in an augmented Schottky space representing the surface
S? We will give a complete answer to the problem. An answer to
special cases of the problem has been obtained by Sato [5]. Let <(G,)
be a fixed marked Schottky group and 5, a fixed basic system of Jordan
curves for (G,> (see §1 for the definition). Let S be a compact Riemann
surface with nodes and I a basic system of loops and nodes satisfying
the following assumption: The set 3’ of Jordan curves and points
induced from I is compatible with 5, and the pair (S, X) has Property
(A) (see §1 for the definitions). Under the assumption, there exists a
point representing S in the augmented Schottky space associated with 5.
In this paper, we will consider the problem in the general case without
the above assumption. The answer to the problem is affirmative, and
is stated in Theorem 3.

In §1, we will list notations and terminologies. In §2, we will
introduce the interchange operator which plays as essential role in
studying the question stated above, and in §3, we will explain illustra-
tively the operator by some examples. In §4, we will treat the problem
stated above. We will consider another problem in a forthcoming paper.
We give a point 7 in an augmented Schottky space, which represents a
compact Riemann surface S with nodes. Then for any sequence of points
{z,} in the Schottky space tending to the point 7, does the Riemann surface
S(z,) represented by z, converge to S as n — «?

1. Notations and terminologies. 1-1. In order to elliminate trouble
and expense in printing, we use alternatives to some notations in the
previous papers [4], [6]; for example, we replace ¥; and ¥(i,, %5, * -+, ©x) by
Cy+; and C(i, 4y, + -+, 1,), respectively. Throughout this paper, we let
(G,> be a fixed marked Schottky group of genus g = 2 generated by
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Aoy Aoy =0y Aot (G = (Ao, Aoy 0, Ay Let Gy, G g Cozy Copgios
<+ +; Gy gy Gy o, be defining curves of 4,,, A,., - - -, 4,,, respectively. Namely
they are mutually disjoint Jordan curves on the Riemann sphere ¢ =
C U {o} which comprise the boundary of 2¢-ply connected region w,, and
A, ; maps G,; onto C,,,; and A, ;(w,)Nw,= @ for each j=1,2, ---, g.
If mutually disjoint Jordan curves C,,, G, « -+, Cygy Cosgisy Congro ** s
Co,sy-3 ON C have the following properties (i) and (ii), then we call 5, =
{Cos, ** Cops Conginy **+y Cougs} @ basic system of Jordan curves for {(G,):
(i) Coopy; (3=1,2,---, 29 —3) lie in w, (ii) Each component of
o \Ui’ Cop4; 18 a triply connected planer domain. In particular, if a
basic system of Jordan curves 3, has the following property (iii), we
call 5, a standard system of Jordan curves for (G,>: (iii) For each i =
1,2, ---,gand j=1,2, ---,29 — 3,C,, and C,,,, lie on the same side of
CO,2g+i'

We let Co,i(x), CO,i(Z)y ) Co,i(k); CO,a+i’(1), Tty Co,g+i'(l) ang Co,j(l); Co,j(z), Tty
Co,imy Cogrirwy ***» Cogriry b€ the defining curves in 2, in the interior
and to the exterior to C,,,,;, respectively, where (1) < --- < (k) < g,
T < <D =g;, i) < - <jm) £ g, 7)< -+ < j'(n) < g. Then
we say that the curve C,,,,; gives a partition {i(1), ---, i(k), g + i'(1),
<, gDV, - -, J(m), g+35' L), - - -, g+ 5'(n)} of the set {1, 2, ---, 2g}.

1-2. Let a,(1=1,2 ---,9) and 7,;(j=1,2, ---, 29 —3) be the
images of C,; and C,,,,;, respectively, under the natural projection
II: 2AG) — 2(G)/G, = S,, where 2(G,) is the region of discontinuity of
G,. Then %, = {a,, ***, Qg Yoy ***) Yozg-s} 1S a basic system of loops
(resp. a standard system of loops) if S, is a basic system of Jordan
curves (resp. a standard system of Jordan curves) (see [4, pp. 155, 156]
for the definitions). We call X, the projection of 5, onto S,.

Cut the Riemann surface S, along the loops a,.,(t = 1,2, -+, g). We
denote by a;,; and ay,; the resulting two topological circles. We call
= A, * ) Aorng; Yoy * 5 Vog-s) the set of Jordan curves induced from
%, or simply the induced set from 3,. Each 7,; divides the set {as,,
Sty Qg Qogpry 0, oo} into two parts {ao.w, *+°, Qo) Qogrirw,
a('),ﬂ+i’(l)} and {a('),j(l)} ) a:J,j(m), al'),g+j’(1); ) al;,g-f—j’(n)}’ where (1) < --- <
k) =g, HN< - <D= i< - <jm) 29,5’ < -+ < F()=S
g. Then we say that v,; gives a partition {i(1), ---, i(k), g + '(1), - -,
g+ 7MYV {IQ), ---, g(m), g + 5’1), -+, g + 5(n)} of the set {1, 2, - - -, 2g}.
If each 7,;( =1,2, ---,29 — 3) gives the same partition as C,,,.;, we
say X is compatible with 5, and denote the fact by 3 ~ 3.

1-3. We drop the suffices “0” of G, C,.,sj, -+, for simplicity if
there is no confusion. In [5], we defined the cycle corresponding to «;
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as follows. Let Cy i, Copyiy =+ °, Coprey be a sequence of C,,,; in 3
each of which separates p, and p,,,, and which are arranged from p, to
g1y Where p, and p,,; are the repelling and the attracting fixed points
of 4,,;. Then the sequence (a;; Yiy, Vie, = *, Vi) Of elements in 3, was
called the cycle corresponding to «; in [5].

Here we will introduce cyecles with direction, which are -called
ordered cycles. As in [5], we construct the tree of 5, We represent
C; and C,,,; by using multi-suffices as in [6]. We first define the direction
e(= +1 or —1) of C,,,; from C, as follows. Let C,,.; = C(4,, 4, -+, 1x) (We
wrote Y(i,, %, * **, ix) for C(i,, 4, -, %) in [5]). If C,,,; is passed through
from C(iy, 1y, **, Gu_y) 10 C(iy, %y, *+*, B Tus,) ON the tree of 5, then we say
that C,,,; is passed through in the positive direction, and we denote
C.yr; by C3Y;. We write 7;* for the projection of Ci%;onto S,. If C,,;
is passed through in the direction opposite to the above, then we say
that C,,.; is passed in the mnegative direction, and we denote C,,; by

ai;. We write 7;' for the projection of Cgi;.

DEFINITION. We say C,,,; =C(1, 15, *+, 1x) (xesp. C;=C(Jy, Jop =+, o))
is behind Cyyyy = C(iy, 45y -+, 4,) if v < pand 4, =4(k=1,2, ---,v) (resp.
y<o and j,=1(k=1,2, ---,v)), and denote the fact by C,,, < C,,;
(resp. Cyyy < C;). Otherwise, we say that C,.; (resp. C,) is not behind
C,,+: and we denote the fact by C,,.; < Cyy; (resp. Cyyy & C)).

REMARK 1. 7; is a dividing loop if and only if either C,,,; < C, and
Ciprj < Cyiiy OF Gy £ Cp and Cyyyy £ Cyyy for each 1 =1,2, .-+, g.

REMARK 2. 3, is a standard system of Jordan curves if and only

if either C,,,; < C; and C,,,; < C,4;, or C,,,; < C,and C,,,; < C,,, for each
j=1,2 ---,29 —3 and for each 1 =1,2, -+, g.

We define the ordered ecycle corresponding to «; as follows. We
denote the shortest path from C; to C,,, on the tree of 2, by

3(1) 3(2) L. (e
(1) Ci, Citsw, Cirtie, » Citfiny Cour -

Here 6(1) (I =1,2, ---, k) are determined by d(l) = +1 or d(l) = —1 ac-
cording as C,,,; < C,,; or C,,; < C,. The projection

. ) AB(2) 3(k)
(2) (a3 72D, i, =+, Vith

of (1) onto S, is called the ordered cycle corresponding to «;, and is
denoted by L, ..
1-4. Example. We write (a, b, ¢, d) for a matrix

e o)
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Let A,, = (—3, 9 exp(dmi/3) — 1, 1, —exp(4mi/3)), Ao, = (3 exp(wi/3), 8, 1,
—3exp(2ri/3)) and A,; = (3 exp(bni/3), —9 exp(57i/3)—1,1, —3). Then
{Goy = Ay, Ay, Aysy is a marked Schottky group. Let C:|z —
3expri/3)] =1, C,: |z — 3exp(@ri/3)| =1,Cy: |z — 3| =1,C: |2 + 3] =1,
Cy: |z — 3exp(ni/3)] = 1, Cy: |2z — 3 exp(57i/3)| = 1, and let C,,, Cys, C,, be
as in Fig. 1. Then §, = {C,,, -+, Co; Cos, Cos, Coo} is a basic system of
Jordan curves for {G,>. We have a Riemann surface S, = 2(G,)/G, and
100DS o,y oy Xosy Yoy Yoy Yoo ON Sy as in Fig. 2. The tree of 5, is as
in Fig. 8. Identifying C,, and C,,,(i = 1, 2, 3) as in Fig. 3, we obtain
Fig. 4. We have three ordered cycles L,, = (,i; Vo1, Yo,2)y Los = (Qos;
Yo, Yo5) and Ly s = (@5 Vo3, Yo1), Which correspond to A,,, A,, and 4,
respectively, where we write 7, ; for 7} for simplicity.

1-5. Let I be a subset of {1,2, ---, g} and J a subset of (1,2, ---,

C
0,8 Co‘g

CO'7

FIGURE 1 FIGURE 2

Cos Coy

FIGURE 3 FIGURE 4
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29 — 3}. We denote by |I| and |J| the cardinality of I and J, respec-
tively. Let L, ;q), Lo @, ***» Lo i« be the complete list of cycles containing
v}, and let a,, be the “a-loops” contained in L,,(1 £ k <t), where t =
t(j) depends on j. We define the subset I(J) of (1,2, ---, g} by

IJ)={iefl1,2, ---, g}la,. is contained in L, ;4
for some k(1 <k <t(j)) and for some jeJ}.

In this paper we assume that IDI(J). As in [5], we define sets
&,(5), 67'6 %), &1(5,) and &x(5,). We call the set &,5,) and &*))
the Schottky space with respect to 3, and the augmented Schottky space
associated with 3, respectively.

1-6. Let S be a compact Riemann surface without (resp. with) nodes.
We call the set ¥ ={a,, -+, @, 7y, + -+, Voy_s} of loops (resp. loops and
nodes) on S having the following property a basic system of loops (resp.
a basic system of loops and modes). Each component of S — Ui, a; —

227, is a planar and triply connected region of type [3, 0] (resp. [3, 0],
[2, 1], [1, 2] or [0, 8]), where a surface of type [m, n] means the sphere
with m disks removed and n» points deleted.

In the same way as in §1-2, we can define the following: The set
3 ={ag, - -, @y Tiy 00, Vogos) Of Jordan curves and points induced from
3 which is simply called the set induced from X; the partition by 7;;
compatibility of 3’ and 3, which is denoted by 3’ ~ 3.

If the pair (S, ) with 3’ ~ 3, has the following property, we say
that (S, 2) has Property (A) with respect to 3, (or simply Property (A)):
If v;€2 is a node, then a,c X are nodes for all ¢e I({j}), where I({j})
is the set defined in §1-5 with respect to 3.

2. The interchange operator.

2-1. Let <G, %, 2, and 3; be as in §1. Assume that 3; ~ 3. In
this section except in §§2-6, 2-7, we drop the suffices “0” of A,,, C,.
Co14y * +*» if there is no confusion.

Let 7;€ %, Let I{j}) = {3(1), 5(2), - -, J®ONIQ) < 5(2) < -+ < J(#)s
where t = ¢(j) depends on j. Then L ;u, Lo e, -, Lo, e is the complete
list of ordered cycles containing 7;:

- Y
Ly ;o) = (@505 Y, s Vi)

= e
Lo,:‘(z) = (aj(z), Viw, ’ 74(2),11(2))

........................

— Lz . 3
Ly, ji» = (@05 Vi, s YVioaw) s

where Yy muw = Yk =1,2, -+, ¢) and § of 7i, represent the directions
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of 7,, in L,, (cf. §1-3).

We define the interchange operator I (a;u, 7;) of a;u and 7; actin~g
on 3,. We denote by 3* = {C¥, ---, C¥; C,,, - -+, Ck_;} the image of 5
under I(a;uw,7;), where C} and Cp},, are defined as follows. Let
0(j(k), m(k)) be the direction of ¥;u muw I Lo jwm-

CaseE I. j(k) # 1, and 8(j(k), m(k)) = +1 (cf. Example 4 in §3). In
this case, we have always C,,,; < C, ;. C¥ and C},, are defined as
follows.

(1) Gy = Chu, Cfijn = Cyuy and Cflyy = A5h(Copyy)

(ii) CF = Aj,(C)(i # g + j(k)) (resp. C3i = Ajiy(Cyyr)) in the case of
Coyri < C; (resp. Cypyj < Coyyr)-

(ili) C¥ = C; (1 # j(k)) (resp. C%,, = C,,;) in the case of C,; £ C,
(resp. Cypij £ Copi)-

Case II. j(k) # 1, and 0(j(k), m(k)) = —1 (cf. Example 2 in §3). In
this case, we have C,,.; < C;4. We define C¥ and C},, as follows.

(1) Cfei = Crjurr Clijon = Cogy; and Cfyy = Aju(Cogys)-

(i) CF = A;(C) (i # j(k)) (resp. Ciis = A;(Ceyr) in the case of
Coyr; < C; (resp. Cyuyjy < Cyppr)-

(iii) C¥ =Cy(i # g + j(k)) (resp. C¥,, = C,,y,) in the case of C,,,; < C,
(resp. Cypj £ Cypr)-

CasE III. j(k) =1 (cf. Example 1 in §3). In this case, C,,,; <
Corin(=C,.1). 06(4(k), m(k)) is always equal to +1. C} and C},, are
defined as follows:

(i) Chij=0C, Cky = Cyy; and C}F = A7 (Cyyyy)- :

(ii) C¥ = A" (C)(i # g + 1) (resp. Cj = A7'(Cyyr)) in the case of
Ceyri < Cy(resp. Cyr; < Cypp)

(iii) Cf = Cy(i#1)(resp. C,, = C,,,,) in the case of C,,; < C(i # 1)
(resp. Cypyj & Cogur)-

2-2. We determine the direction ¢*(2g + I) of C%,, from C¥ in the
image ¥ of I, under I(a;u, ;) as follows.

Case I in §2-1. (i) €*(2¢9 + j) is equal to —1.

(ii) e*(2g + 1) are equal to —1 for ! such that 7] are contained in
Ly ;4 (we denote the fact by v}e L, ;4) and C,y; < Cyppyye

(iii) Otherwise, ¢*(2g + [) are equal to +1.

Case II in §2-1. (i) ¢*(2g + J) is equal to +1.

(ii) e*(2g + 1) are equal to —1 for [ such that 7je L, ;4 and C,,,; <
Czy+l-

(iii) Otherwise, ¢*(2¢g + 1) are equal to -+1.

Case IIT in §2-1. ¢*2g+ 1)l =1,2, ---,29 — 8) are equal to +1.
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2-3. The following cases may occur for 3¥ when interchange opera-
tors are applied. Here for simplicity, we write C, and C,,,, for elements
C¥ and C., in 3¥, respectively.

Let 6(j(k), m(k)) be the direction of 7; = ;) muw In Lju-

Case I'. j(k) # 1, Cyy; < Ciuy, and 6(j(k), m(k)) = +1 (cf. Example 3
in §3).

Case II'. j(k) # 1, Cyyy; < Cyrjwy» and 6(j(k), m(k)) = —1 (cf. Example
5 in §3).

Case III'. j(k) =1 and 6(j(k), m(k)) = —1 (cf. Example 6 in §3).

For these cases, I(a;u,”7; are defined as follows. Namely if we
set I(a;u, 7j)(§0) =5 = Ct, -+, G Gy - -+, Ciis}, CF and Gy, are de-
fined as follows.

Case I'. (i) Cify; = Cyiim, Clan = Cypus and Ciijay = Aj(Cogis)-

(ii) C¥ = A,;4,(C)(z # j(k)) (resp. Cii = Aju(Cyyi)) in the case of
Cyyri < Ciresp. Cyij < Cypia)-

(ili) CF = C(t # g + j(k)) (resp. C,i = Cyyyy) in the case of Cyyy; £ C;
(resp. Cypij % Copur)-

Case I'. (i) C#.; = Cim, Gty = Cypus and Clijuy = A7in(Copss)-

(il) CF = A7b(C)(i # g + (k) (resp. Gy = A7in(Cyyy)) in the case
of C,,.; < Cyresp. Cyyj < Copyr).

(iii) CF = C(i # j(k)) (resp. C,, = Cyyyy) in the case of C,,; « C,
(resp. Cyyy £ Copya)-

Case III'. (i) C.; =C, Cr = C,,; and C}, = A7Y(C,,;)-

(ii) Cf = ATYC)( # g + 1) (resp. Ck,, = ATY(C,,41)) in the case of
Cyrs < C; (resp. Gy < Cogs)-

(iii) Cf = Cyi # 1) (resp. Ck,, = C,,y,) in the case of C,,,; £ C, (resp.
Cogri £ Cogi1)-

In the above cases, we determine the direction ¢*(2¢9 + 1) of Cj.,
from C¥ in 3¥ as follows. Let ¢(2¢ + I) be the direction of C,,, from
C, in 5,

Case I'. (1) &*(2g + j) is equal to +1.

(ii) &*(2g + 1) are equal to —e&(2g + ) for [ such that 7} e L, ;4 and
C2g+j < CZg+t'

(iii) Otherwise, ¢*(2g + ) are equal to ¢2g + 1).

Case II'. (i) &*(2g9 + j) is equal to —1.

(ii) €*(2g9 + ) are equal to —e(2g + 1) for [ such that 7}eL,;,
and ng+j < ng.H. '

(iii) Otherwise, ¢*(2g + 1) are equal to &(2g + ).

Case IIT". (i) €&*(2g + j) is equal to —1.

(ii) €*(2g + ) are equal to —e(2g + 1) for I such that 7} e L, ;4.
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(iii) Otherwise, ¢*(2g 4+ 1) are equal to e(2g + I).

The following cases may occur for 3* when interchange operators are
applied. We write again C, and C,,,; for elements C} and C}.; in S,
respectively. Let 6(j(k), m(k)) be the direction of V;uy,ma In Ljw.

Case I". j(k) # 1, Cyyyj < Coyjuy, and o(j(k), m(k)) = +1 (cf. Example
4 in §3).

Case II”. j(k) # 1, Cyy; < Cjuy and 6(j(k), m(k)) = —1 (cf. Example 2
in §3).

Case III”. j(k) =1 and o(j(k), m(k)) = +1 (cf. Example 1 in §3).

We note that Cases I, II, and III in §2-1 are contained in Cases I”,
II”, and III”, respectively. For these cases, I (a;u,?7;) are defined in
the same method as in §2-1. The direction ¢*(2g + I) of C%,, from Cf
in the image 3# are similarly determined as in §2-2. Namely we de-
termine €*(2¢9 + 7) as the same one as that in §2-2, and ¢*(2g + 1)(I # J)
by replacing +1 (resp. —1) in §2-2 by +e&(resp. —e) if the direction of
Cyys: from C, in 5 is e. From now on, we write Cases I, II and III for
Cases 1", II"” and III"”, respectively.

2-4. We define the interchange operator acting on Y, and X;. Let
af and 7} be the images of C} and Cj,;, respectively, under the natural
projection II,: 2(G,) — S,. We define the image 3} (resp. X&) of X, (resp.
3:) under I(a;um, Y;) by 2§ ={a¥, ---, a¥; v¥, -+, 7% _}(resp. as the set
induced from X with 3 ~ $¥). Furthermore ordered cycles L, which
are the images of L,, under I(a;u,";), are defined for the tree of I
with the direction determined in §§2-2, 2-3 in the same method as in
§1-3.

Let Lo m = (@jm; Yimw =% Yimaw)h = 1,2, --+ ). We denote by
0(i, 1) and 6*(¢, ) the direction of v,; in L ;4 and of 7¥; in Lg;,,, respec-
tively. Then we easily see the following.

THEOREM 1-1. (i) If o(4(k), m(k)) is equal to +1 (Cases I, 1" and III
in §§2-1, 2-3), then

* — ¥ . o~k *9 *+1
Lg i = (@fw; Viwr,mmsn * s Viamw Vid,me
%3 ) x4
Y, Ve * 0y Vi ,mu—1) s

where 0*(4(k), 1) = 0(J(k), 1)(z #= m(k)).
(ii) If 6(j(k), m(k)) is equal to —1 (Cases II, II' and III' in §§2-1,
2-3), then
Lo = (@ Trmar—is = T, Vimao »
Voo nhrs 7?(;)6,1.(1:)—1, Viornt—2 * s
Vi min 1) »
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where 0*(j(k), ) = 0(4(k), 1)(¢ # m(k)).

THEOREM 1-2. For h #k, (i) if 0(j(k), m(k)) = +1 (Cases I, T’ and
III in §§2-1, 2-3), then

* — * . o~k v, oyl x—98
L im = (@fmr; Yo * oy Yi,mi—1 Var,mm—1 »
*—3 =1 *—9 | x—d
c0 oy Yiteny Vit muos Viter,miy * %y Vit smer+1 0

Vimmmrts * s Vi) »
where 6*(i, 1) = (¢, 1)((4, 1) # (4(k), m(k))).
(i) If 8(4(k), m(k)) = —1 (Cases IIL, II' and III' in §§2-1, 2-3), then
L i = (@ Yo =+ s Vhoomar-sy Vi mmr »
ey Tm Viarmans Yo 0 Vi mar-1 »
Viarmmny * sy Vanam) o

where 8*(i, 1) = 6(1, 1)((3, 1) # (§(k), m(k))).

REMARK. (i) In Theorem 1-2, (i), L&;u is obtained with ¥}, e in
L, ;4 replaced by the sequence

Vid,mpr—1s ** % Vien1s Vitkr,muers Vil nikry Yich,nt-15 ** s Vi, meer+1 »
and then with an asterisk attached to every 7i.

(ii) In Theorem 1-2, (ii), L¢;u is obtained with 7}y wa in Lo
replaced by the sequence

3 3 +1 3
Vi, mr+1s *° %y Ti),ney Vi), m)y Tit,1 *° % 73"<k),m(lc)-1
and then with an asterisk attached to every 7i.

CONVENTION. For ---7¥vivi*v:---, we write ---viv]---. Namely we
eliminate viv;? from the sequence.

THEOREM 1-3. For an ordered cycle L,, = (a; T, ***, Vi) Which
does mot contain i, the image L¥, under I(a;u, V) 18 (@X; i, ) Vi),
where 8*(i(l)) = é¢ilNI =1, 2, -+, m).

REMARK. In Theorems 1-1 and 1-2, v}, = 7,,((4, ) # (4(k), m(k)),
Yime = Cim, aF = a(t # j(k)) and afu = Vig,mw = V5. In Theorem
1-3, af = a;, and 7}, =7l =1, 2, ---, n), and so I(a;u, 7;)(Lo:) = Ly,

2-5. We study the images Af,, -+, A, of A,,, -+, A,, respectively,
under I(a;u, 7;). Af, is defined as the word in 4,,, - -+, A, , which maps
C¥, onto C%¥,.; that is, A¥,(C¥) = C¥,... We easily see the following
from §2-1.

THEOREM 2. Let Af(i=1,2,---,9) be the images of A,, under
I(ajm, ;). Then
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(1) A&‘:z = AO,i in the case Of C2ﬂ+i { C,; a//nd ng.(.j { Cg.H;o
(2) In the case of Cyyp; < C; and Cyyyy < Coypyy
(1) A= Ajimdo,iAoiw of Coyri < Corimy
(ii) A3 = Aoyl Aiiw if Cyii < Ci-
(3) In the case of Cyy; < C; and Cyyyj £ C,uis
( i ) A(ti = AO,iAO,j(k) ?:f ng+j < Cg+j(k)i
A, A (1 # 3(k))
(ii) AYi = {40 ;m (1 = j(k), 0(3(k), m(k)) = +1)
Asim (i = 3(k), 0(3(k), m(k)) = —1)
if Cori < Cir-
(4) In the case of Cyy; < C,yy and Gy £ C,,
AimAo: (T # (k)
(i) Adi = {Ao;im (1 = j(k), 0(5(k), m(k)) = +1)
A (1 = j(k), 0(5(k), m(k)) = —1)
tf Cuors < Copims and
(11) A:,i = Ao,j(k)Ao,t "/f Cza+i < Cj(k)-

We denote by (G¥> the marked Schottky group generated by Af,,
A:ﬂ, ) a’:a: <G:> = <A8’:1’ At’f% B Atta)' Let 7, = (tO,I’ “ory logy Qs "0y
Pozg—s) and TF = (t&, -+ -, t&,, P&, *+, Ofsu_s) be the points in Sy, and
in &,3%) corresponding to (G,> and (G¢), respectively. We define
L(a;w, 7;)(T) by I(a;w, 7;)(t)=1*. We denote by mult(4,,) the multiplier
Noi([ Mo, | > 1) of A,

COROLLARY. (1) t¢&;, =t,, in the case of Theorem 2, (1) and (2).
(2) & = 1/mult(4, A, ;w) tn the case of Theorem 2, (3) (i), and

2% (¢ = i(k))
{1/mult(Ao,iA&§-(m) (¢ # 5(k)
in the case of Theorem 2, (3)(ii).

Lo, (1 = j(k))
{l/mult(AE.i-(on,i) (1 # 3(k))
an the case of Theorem 2, (4)(i), and

t¥, = 1/mult(A, ;4 A4o,)
in the case of Theorem 2, (4)(ii).

2-6. Thus far we defined the interchange operator I (a;., 7;) acting
only on the center of the Schottky space @g(fo). Here we extend the

*
to,s

(3) &,
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operator to the whole space &,(3)).

Let {G) = <(4,, ---, A,) be a marked Schottky group. From now on,
we write I (j(k), j) for I(a;u, 7;). We define the operator I,(j(k), j) on
{G) as follows. Suppose that

L(j(k), HKG) = (A, -+, Ad) = (G,
where
(3) Aa‘:«;:Wi(Ao,n tt Ao,g) (i:]-y 2, Ty g)
are words in A4,,, ---, 4,,- Then we define I,(j(k), j) acting on {(G) by

I(i(k), HKGY) = (Af, ---, AF) = (G*),
where A¥ =W(A4,, ---,A)(t=1,2, ---, g) are the words obtained with
A (l=1,2 -+, 9) in (3) replaced by A,.
Let 7 and 7* be the points in &,3,) and in &,3¥) corresponding to
{G) and {G*), respectively. We define the operator I,(j(k), 7) acting on
&,(3y) by I(i(k), §)(z) = 7*.

2-7. We give a compact Riemann surface S of genus g with or
without nodes, and a basic system of loops and nodes 3 = {a,, - -, a,;
Yy, * ¢, Yoot o0 S such that one of the sets 3" = {af, - -+, asy; 7y, *+ ) Vog_s}
induced from Y is compatible with 5, We define an ordered cycle L,
with respect to 3 by replacing «,; and 7;, in the cycle L,; by «a; and
73, respectively.

Suppose that I({5}) = {4(1), §(2), - - -, 5(¢(5))} and that V;u mw = 7; for
each k =1,2, ---,t(j). We define the operator I,(j(k), j) acting on X by

L), )(2) = {af, -+, af; v, -, 758} = 3%,
where af and 7} are defined as follows:

(1) In the case where af and 7} are contained in L},(k=1,2, ---,
t(9), ¥ =73, D#G(K), m(k))), Viw,mmw = Qg af = a(i#§(k)) and afy, =
Yivr,miy = Ve

(2) Otherwise, af = a; and 7f = 7,.

Let 3* = {a}, ---, af’; 7¥, - -+, 7%_s} be the set induced from 3* such
that 3* ~ §¥. Then we define the operator I,(j(k), 7) acting on 3’ by
I(j(k), 5)(2") = 2*'.

Let L; = (a;; 7w, =+ *y Viewn). Suppose

Ia(j(k), j)(LO,i) = (as's; 73‘:;"; Tty 7::(3(1))) =Lg; .
Then we define I(j(k), 7)(L.) by
Ig(j(k), j)(Lz) = (a;‘; h/ika’ Tty ’Yi,’::(i))) ’
where for each I =1,2, ---, (i), 8 of v}’ is equal to 8 of 7¥ in Lg,.
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3. Examples. In this section, we explain the interchange operators
introduced in the previous section by some illustrative examples. We
take the example in §1-4. In this section, we drop the superscript
“+1” of v{* for simplicity.

ExAMPLE 1. Let 5, ={C,, Cy, -, Cy; Cy, Cs, C} be the image of
S, under the interchange operator I,(a,, Y,,). We set @, = I,(a,,, 7.)-
Let 3, = {ay, Qu, 0tsj Vi, Vi, Vi) be the projection of 5,. Then we have
Cu = O—,i(Co,s), Clz = Ao—.i(Co,z), C13 = Co,a, Cu = Co,a, 015 = Co,a; Cm = Co,e; Cl7 =
Cor, Cs=0C,, and Cy, = C,,. Furthermore, we have L, = 0(L,,) =
(au; Y 12 711), L12 = Qx(Lo,z) = (am; Y12y Y1y 713), and {413 = @1(L0,3) = (aIS; 71_31;
v5). The tree of 5, and the curves of 3, on C are as in Fig. 5 and
Fig. 6, respectively. Setting A,; = 0,(4,,.)(1 =1, 2,8), we have A, =
Aoy Ay = Ao A, and 4, = Ao,a-

CIZ
FIGURE 5 FIGURE 6

ExaMPLE 2. Let 3, = {C,, Cy, -+, Cu; Cu, Ci, Co} be the image of
S;l under I(a, 7). We set @, = I(a,,, 7). Let Z; = {au, ata, Qus; Yoty Yooy
7,5} be the projection of 5,. Then we have C,, = C,;, C;, = Cy, Cos = A(Cr),
Cz4 = A13(Cl4)9 Czs = Axa(Cw), 020 = Cu, Cun = Cw; Cza = Cxa, Czo = Axs(Cw)- Fur-
thermore, we have L, = @,(Lys) = (az'; Vo, V') = (Qas; Vasy Vai')y Lin=0o(Ly) =
(Qtg13 Vasy 72:_, Ts') and Ly, = @y(Ly,) = (Qas; Yazy Vory Tao'y Yas) = (Oaz3 Vazy Yar)- The
tree of 2, is as in Fig. 7. Setting A,, = 0,(4,.)(t =1, 2, 3), we have
A21 = AISAIU A, = A A, and Azs = Az

ExAMPLE 3. Let 5, = {Cy, Cy, - -, Cis; Cur, Cs, Co} be the image of 5,
under I(atysy Vsa)- We~set @, = I (A, Ves)- Let 5; = {aa, s, Qss; Yoy Yooy Vas)
be the projection of ¥;. Then we have C,, = C,, Cy, = Cy, Css = Cyy, Cyy =
Ay(Cy), Cos = Cysy Cyy = Agy(Cyo), Cyp = Cyy, Cos = Cy3 and Cy = Cp.  Further-
more, we have Ly = @yLy) = (Qss; Vii'y Yas)y Ly = Po(Lipy) = (Aar; Voo, Vo1, Vai'y
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FIGURE 7 FIGURE 8

Yes) = (g1} Vasy Vas)y aNA Ly, = Dy(Lyy) = (s} Vegy V). The tree of 3, is as
in Fig. 8. Setting A, = 0,(4.)(¢t =1, 2,3), we have A4; = A,4,, A, =
A,, and A4, = A,.

EXAMPLE 4. Let 5, = {C,, Cq, * -+, Cu; Cu, Cis, Cis} be the image of 3,
under I(as, 7). Weset @, = I (ay, 7). Let X = {ay, Qw, Qs Yoy Vo, Ves}
be the projection of 3, Then we have C, = Cy, Cy = A5'(Cy), Cis =
Az(Cyg), Cy = Az'(Cy), Cp = Cas, Ce = Az(Cg), C = Aa—zl(cu); Ce = Cy, and
Cyp = A3 (Cy). Furthermore, we have L,, = @,(Ls) = (Quw; Va, Ye), Ly =
@4(1131) = (an; '74_21, 74_11; 743) and L4s = ¢4(L38) = (am; 74_11, ’743)- The tree of 2~4
is as in Fig. 9. Setting A, = 0,(4,)(1 =1, 2,3), we have A, = A3'4,,
Ay = Ay, and A, = AG'AA,,.

ExXAMPLE 5. Let 5, = {Cy, Cy, -, Cs; C, Cis, Cxo} be the image of 5,
under I(a,, 7,) and let Xy = {a, s, ds; Vs, Vi, e} be the projection of
5. We set @, = I (0, 7). Then we have Gy = G, Cy, = A54(Cy), Cx =

C44

FiGure 10
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C47, Cs4 = A4_31(C44), Cas = 045; Cse = A4—31(C47), Cm = C4a, Cas = Cw and C59 = A4_31(C49)-
Furthermore, we have Ly = @y(Ly) = (a5'; Vs Vo) = (Qsg; Vai'y Vi), Lisy =
Oy(Ly,) = (as; 7521, Yo'y Yas's Yoa) = (Qsi; V' Var)y Lisy = @y(Lisg) = (Qsz; Ysay Vsty Vo)
The tree of X, is as in Fig. 10. Setting A, = 0,(A4,) (1 =1, 2, 3), we
have A;, = AG'A,, A, = ALA,; and Ay, = AL

ExAMPLE 6. Let 5, = {C,, Cy, -, Cu; Cor, Cis, Cso} be the image of
S, under I(ay,,) and let 3, = {@, u, Qes; Vor, Yer, Ves} b the projection
of 5,. We set 0,= I(ay, 7). Then we have C,, = Gy, Cy, = A5'(Cy), Cos =
Cy, Cou = A5 (Cx), Cg = Css, Cos = A5i'(Cyo), Cor = Cui, Cs = Cy and Cy = A5'(Cy)-
Furthermore, we have 94(L;,) = (a3'; Yor, Yi2) = (A3 Yooy V"), Po(Lisp) = (oo
Z‘?Z’ Yoy Yiz'y Voo) = (Qazs Vo3, Yor) aNA D(Liyg) = (Qas; Very Ya' 7&'). The tree of
Y, is as in Fig. 11. Setting A, = 04(4;,) (: =1,2,3), we have 4, =
Ay, Ay = AyAs and Ay = Af'As.

C63
FicURE 11

4. Uniformization. 4-1. Let (G,), 3, and S, = 2(G,)/G, be a fixed
marked Schottky group, a fixed basic system of Jordan curves, and the
compact Riemann surface of genus g without nodes, respectively, as in
§1. Let S be a compact Riemann surface of genus g with nodes and
let ¥ ={ay, -+, a,; 7, -, Voy_s} be a basic system of loops and nodes on
S such that all nodes on S are elements of X. Let 2’ = {a;, -, a2,; Vo
<+, Y,_s} be one of the sets induced from 3. We choose a basic system
of loops 3, = {ay, =+, @y} T, = °, Viog—s} With o, = (1 =1,2, -+, g) on
S, such that one of the sets 37 = {ay, ---, alsp; Yy =+, V1,2-s) induced
from X, is compatible with 3’, which is similarly defined as in §1. Then
we easily see the following.

PROPOSITION 1. There is a basic system of Jordan curves 3, = {Cy.,
Copzy * 5 Copngt Choogary =+ +y Ciugs} Jor {G,) satisfying the following conditions
()-@i): (1) &, ~ 31, and (i) H(Cioys) = 1,3 =1,2, -+-, 29 — 8), where
IT is the natural projection from 2(G,) onto S,.
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4-2. Let L;,, L;,, -+, L;,; be the complete list of ordered cycles
containing 7' or v;' with v;eX. We let 74, Y@, <+, Vi be the
complete list of nodes {v;} in 2.

Step 1. (1) Suppose that there are ie{l,2, ---, t(j(k))} and ke
{1,2, - -+, r} such that ;4 in L, , is a loop. For example, let a;y mu
be the loop, which is identical with «,,, for some i(1)e{1,2, ---, g}. We
denote the images of 3,3’ and 3, under I,(i(1), j(1)) by X, 2\ and 5,
respectively. Then we note that I,(i(1), 5(1))(7;u) is a loop and I,(i(1),
J))a;) is a node.

(2) Suppose that all a;u, (t=1,2, -, t(Jk); k=1,2, ---,r) are
nodes. Then the pair (S, 3) has Property (A).

Step 2. In the case of Step 1, (1), the complete list of nodes {7}
with 7, €2, IS Viw, Yiws ***y Vim- Let L (i =1,2, ---, t(j(k), 1)) be
ordered cycles containing 73, with respect to 3, for £k =2,38, ---, r.

(1) Suppose that there are 1e{1, 2, ---, t(j(k), 1)} and k€{2, 3, ---, 7}
such that ;4 , is a loop. For example, let a o ne be the loop, which
is identical with a,, for some 4(2)e{l, 2, ---, g}\{i(1)}. We denote the
images of 3, 3}, and 5, under I,(i(2), j(2)) by 2, 3, and ¥, respectively.
We note that I,(i(2), 5(2))(7;) is a loop and I,(i(2), j(2))a.e) is a node.

(2) Suppose that all a;, (1 =1,2, -+, t(jk), 1)); k=2,8, .-+, r) are
nodes. Then the pair (S, Y,,) has Property (A).

Step 3. We continue the same procedure as above, and finally we
find a number s(=<#) such that the following (i) and (ii) are satisfied: (i)
Let 3, 3, and $,1=1,2, ---,s) be the images of o, 21 and Sl,l_l,
respectively, under the interchange operator I,(i(l), j(l)), where 2%, , , =
33, , =3 and 5,,, =23, for I=1. Then for each 1 =1,2, ---,s,
L,(i(D), 3(D)(V;w) is aloop. (ii) For any j(k) (k =s + 1,8 + 2, - -+, 7), @4
(w=1,2, ---,t(jk),s + 1)) in L;,,, are nodes, where L, , are cycles
containing 73, with respect to X,.

We write 3* and 3f for 3, and 3, respectively. Then the pair
(S, *) has Property (A). From Steps 1 through 3, we have the following.

PROPOSITION 2. Given a compact Riemann surface S of genus g(g = 2)
with nodes and a basic system of loops and modes 3 on S such that all
nodes on S are contained in 3, then a finite number of interchange
operators can be applied to 3 so that the resulting basic system of loops
and modes 3* is such that the pair (S, 3*) has Property (A).

4-3. From Propositions 1 and 2 above, and [5, Theorem 2], we have
the following.

THEOREM 3. Let S and I be as im Proposition 2. Let 3, be a basic
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system of Jordan curves raised from 3 as in Proposition 1. Let 3¥ be
the basic system of Jordan curves raised from 5, by application of the
interchange operators in Proposition 2. Then there exists a point in
the augmented Schottky space with respect to 3¥ which represents the
Riemann surface S.
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