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0. Introduction. In previous papers [12], [14] smooth actions of
special unitary (resp. symplectic) groups on a product of complex (resp.
quaternion) projective spaces have been studied. Here we shall study
smooth actions of symplectic group Sp(n) on certain product manifolds
and we shall prove the following.

THEOREM. Let X be a closed oriemtable manifold on which Sp(n)
acts smoothly and mon-trivially. Suppose n = 1T.

(i) Suppose X ~ P,(C) X P(C),1=b=a<2n, and a +b < 4n — 8.
Then a = 2n — 1 and X 1is equivariantly diffeomorphic to P,,_(C) xY,,
where Y, is a closed orientable manifold such that Y, ~ Py(C), and Sp(n)
acts naturally on P,,_,(C) and trivially on Y,.

(ii) Suppose X ~ P,(H) X P(C),1Za=n—-1,1<b<2n —1, and
20 + b < 4n — 4. Then there are three cases:

(@) a=mn—1and X is equivariantly diffeomorphic to P,_(H) x Y,,
where Y, is a closed orientable manifold such that Y, ~ Py(C), and Sp(n)
acts naturally on P,_.(H) and trivially on Y,

(b) b =2n — 1 and X is equivariantly diffeomorphic to P,,_(C) X Y,,
where Y, is a closed orientable manifold such that Y, ~ P,(H), and Sp(n)
acts naturally on P,,_ ,(C) and trivially on Y,,

() b=2n—1 and X is equivariantly diffeomorphic to (S x Y,)/Sp(1),
where Y; 18 a closed orientable Sp(1) manifold such that Y~ S*x P,(H),
Sp(1) acts as right scalar multiplication on S*~', the unit sphere of H",
and Sp(n) acts naturally on S* and trivially on Y, In addition,
F~8 x P,(C) and the induced homomorphism 1*: HNY,) — H*F) is
trivial, where F denotes the fixed point set of the restricted U(l) action
on Y, Conversely, if Y, satisfies the above conditions, then (S*~'xY,)/
Sp(1) ~ P,,_,(C) X P,(H) for 1=a<n— 2.

Throughout this paper, let H*( ) denote the singular cohomology
theory with rational coefficients. By X, ~ X, we mean H*(X,) = H*(X,)
as graded algebras. Denote by P,C) and P,(H) the complex (resp.
quaternion) projective n-space.
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1. Preliminary results. First we present the following two lemmas
which are proved by a standard method (cf. [6], [7], [11]). We shall give
an outline of the proof in the final section for completeness.

LEMMA 1.1. Suppose m=T. Let G be a closed connected proper
subgroup of Sp(n) such that dim Sp(n)/G < 8n. Then G coincides with
Sp(n — )X K (i =1, 2,8) up to an inner automorphism of Sp(n), where
K is a closed connected subgroup of Sp(i).

LeMMA 1.2. Suppose r =5 and k < 8r. Then an orthogonal non-
trivial representation of Sp(r) of degree k is equivalent to (v,)r @ 6°7*".
Here (v,)r: Sp(r) — O(4r) 18 the canonical inclusion, and 6° is the trivial
representation of degree t.

In the following, let X be a closed connected orientable manifold
with a non-trivial smooth Sp(n) action, and suppose » = 7 and dim X <
8n. Put

F,, = {xe X: Sp(n — i) C Sp(n), < Sp(n — ) X Sp(i)},
X, = Sp(n)F,, = {gx: g€ Sp(n), x€ F,} .

Here Sp(n). denotes the isotropy group at 2. Then, by Lemma 1.1, we
obtain X = X, U X, U X, U X,.

ProrosiTION 1.3. If X, is mon-empty, then X, is empty for each
1=k + 2.

PrOOF. This is proved essentially in [13], [14], but we give a proof
for completeness. Let us denote by F(Sp(n — j), X,;,) the fixed point set
of the restricted Sp(n — j) action on X,,. It is easy to see that
F(Sp(n — j), X;)) is empty for each j <i < n — 1. Suppose that X, is
non-empty and fix x€ F,,. Let o be the slice representation at x. Then
the restriction ¢|Sp(n — k) is trivial or equivalent to (v, )= 6* by
Lemma 1.2. Anyhow, a principal isotropy group of the given action
contains Sp(n — k — 1), and hence F(Sp(n — k — 1), X;,) is non-empty if
so is X,,. qg.e.d.

PROPOSITION 1.4. Suppose X = X, U Xpiny. If Xu and Xy, are
non-empty, then the codimension of each conmected component of F, in
X is equal to 4(k + 1)(n — k).

Proor. Fix xec F,,. Let ¢ and p denote the slice representation at
2 and the isotropy representation of the orbit Sp(n)x, respectively. The
restriction o|Sp(n — k) is equivalent to (v,_,)r P #° by Lemma 1.2 and
the assumption that X,,, is non-empty. On the other hand, po|Sp(n —k)
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is equivalent to k(v,_. )€ 6° by considering adjoint representations.
Hence (6 @ 0)|Sp(n — k) is equivalent to (k + 1)(v,_,)= @ 6°**. This shows
that the codimension of F,, at x is equal to 4(k + 1)(n — k). q.e.d.

COROLLARY 1.5. Suppose X = X, U X5. Then either X, or Xy is
empty.

REMARK. dim Sp(n)/Sp(n— k) x Sp(k)=4k(n—k) and X(Sp(n)/Sp(n —k)
Sp(k)) = ,C,, where X( ) denotes the Euler characteristic, and ,C, denotes
the binomial coefficient.

REMARK. If dim X < 4n, then we see X = X,. In addition, if
H*(X) = 0, then X is equivariantly diffeomorphic to P,_,(H), P, ,(H) x S*
or P, _,(C), where Sp(n) acts naturally on P, ,(H), P,,_,(C) and trivially
on 8% So we assume dim X = 4n, in the following sections.

2. Cohomological aspects. Throughout this section, suppose that X
is a closed orientable manifold with a non-trivial smooth Sp(n) action,
n=Tand X =X, UX,,.

PRrROPOSITION 2.1. Suppose either X ~ P,(C) X P,(C),1£b=La<2n <
a+b=<4n-38, or X~P,(H)XP(C),1=a=xn—11=Zb<2n—1,
2n <20 + b < 4n — 4. Then X, is empty.

ProOF. Suppose that X, is non-empty. Let U be an invariant
closed tubular neighborhood of X, in X, and put E = X — intU. Let
1: B — X be the inclusion. Then ¢*: HY(X) — H'E) is an isomorphism
for each ¢t < 4n — 2, because the codimension of each connected component
of X, is 4n by Lemma 1.2. Put Y=ENF,. Then Y is a connected
compact orientable manifold with non-empty boundary oY, and Sp(1) acts
naturally on Y. There is a natural diffeomorphism E = (S*~*x Y)/Sp(1).
By the Gysin sequence of the principal Sp(l) bundle p: S*"*' X Y — E,
we obtain an exact sequence:

0 — HZk»—l(SML—-—l X Y) — H:’.k—4(E> — HZk(E) — H2k(S4n—1 X Y) — O ,

where 2k = dimY = dimX — (4n — 4). Hence we obtain rank H*(Y) —
rank H*(Y) = 1, by the cohomology ring structure of X. Considering
the homology exact sequence of the pair (Y,0Y) and the Poincaré-

Lefschetz duality, we obtain
rank H,0Y) < rank H,(Y) + rank H*"(Y) — rank H*(Y) < 0.
Therefore dY is empty; this is a contradiction. q.e.d.

In the remaining of this section, we assume X = X, = (" X
F,)/Sp(1), where F, is a closed connected orientable manifold with a
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natural Sp(1) action.

Here we describe certain situations which appear repeatedly in the
following. Let Y be a closed orientable Sp(1) manifold such that H*(Y) =
0. Put M = S xY, where Sp(l) acts as right scalar multiplication on
S+t Let T be a closed toral subgroup of Sp(1). Consider the following
commutative diagram:

MIT -2 M/Sp1)
(D —1) 1,[1 lnz
P, (C)—> P, (H),
where 7, w, are projections of fiber bundles with Y as the fiber, and
P, @ are projections of 2-sphere bundles. Since H*(Y) = 0, we can apply
the Leray-Hirsch theorem to the fibrations x,, #,. In particular, we see

H*(M/Sp(1)) = 0. By the Gysin sequence of the principal Sp(1l) bundle
»: M — M/Sp(1), we obtain an exact sequence:

(A) 0 — H(M) — H*M/Sp(1)) * H*(M/Sp(1)) &> H*(M)—0

for each 4, where g is the multiplication by e(p), the Euler class.

We regard S as the inductive limit of S**~! on which T acts naturally.
Let F denote the fixed point set of the restricted T action on Y. Con-
sider the following commutative diagram:

H"((S* x Y)/T) - H"(M/T)
(D — 2) lii lif
H'((8*|T) x F) == H"(P,,_(C) x F),
where 1, i, j, jr are natural inclusions. Since H*(Y) = 0, we see that
(cf. [5])
(1) <X is injective, j* is surjective and 4% is surjective for » >
dimY.

On the other hand, j%* is an isomorphism for = < 4n — 2, and hence
(2) 1f is injective for » < 4n — 2.

2-A. Now we consider the case X ~ P,(C) x Py(C).

PRrROPOSITION 2.2. Suppose X~P,(C)XP,(C),1<b=a<2n=a+b=
4n — 3. Then a =2n — 1 and F,, ~ S* X Py(C).

PrRoOOF. The cohomology ring is as follows.
H*(X) = Q[u, v]/(u**, v**"); degu = degv = 2.
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We can express e(p) = au’® + Buv + 7% a, B, 7€ Q, where p: S*"' X F,, —
X is the principal Sp(1) bundle. By (A4,), we obtain H'(F,) =0 and
hence H*7'(F,)=0 by the Poincaré duality, where 2k = dim F,, =
2(a + b — 2n + 2). Then by (A4,) we obtain an exact sequence:

0 — H*(X) & H*(X) & H*(F,) —0 .
By the ring structure of H*(X), we obtain
rank H*%X)=k—1,
rank H*(X) =k +1 (for k<b) and k for k=b+1).

Since F';, is a closed connected orientable 2k-manifold, we obtain k =
b+ 1 and hence a = 2n — 1. Next, we shall show e¢(p) = au?, @« = 0. By
definition, the Sp(1) bundle p is a pull-back of the canonical principal
Sp(1) bundle over P,_,(H), and hence e(p)" = 0. Thus we obtain ag = 0,
by considering the term %> 'v in the expression of e(p)". Suppose a = 0.
Then p*(u™') # 0 by (A4,,,), and hence dim F\, = 4n — 2. Thus we
obtain k=0 +1=2n — 1. By considering the term w"»" in the expres-
sion of e(p)", we obtain 8 = 0, and hence e¢(p) = Yv*. Then p*(u™ )= 0
by (A.). On the other hand H*(S*' x F) = 0, since H'(F,) =0 and
dim F',, = 4w — 2. This is a contradiction. Thus we obtain e(p) = au’® +
vv*, o #= 0. By considering the term #** ** in the expression of e(p)”,
we obtain aY = 0. Therefore we obtain e(p) = au’, @ # 0, and hence
F, ~ 8§ x P(C), by (A)). q.e.d.

Now we consider the Sp(1) action on F,, ~ S x P,(C). Let T be a
toral subgroup of Sp(1). Denote by F' the fixed point set of the restricted
T action on F,. Since X(F',) # 0, we see that F' is non-empty.

PROPOSITION 2.3. F ~ S° X P,(C).

Proor. Put Y = F,, in the diagram (D —1). Let tec H¥P,,,(C))
and we HYP,_,(H)) be the canonical generators such that ¢*(w) = ¢>. By
definition, 7}f(w) = e(p) = au®. Put w, = pfu), v, = p¥() and ¢, = 7).
We can apply the Leray-Hirsch theorem to the bundles x, w, in the
diagram (D — 1), and we obtain

H*(M|T) = Q[t,, w,, v.]/(ui", vi*, 8 — aui) , a+0.

Consider the diagram (D — 2) for Y = F,,. Let wu,, v, be elements of
H*(S” x F)/T) such that j*(u,) =, and j*(v,) =v,. Let t be the
canonical generator of H*S*/T) = H*P,,_,(C)). Then we can express

’ii(uz)_—‘tx‘ﬂ-}-lx‘ﬂ, i:(UZ):thO—l_ngl)
where f,, g, are elements of H*(F') for k = 0,1. Since
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Jrii(aws) = if (aui) = ¥ () = jr@* X 1),
we obtain ff = a™ and f, = 0. Moreover we see that f, is not constant,
and hence F is not connected. Since j¥iX(v:™) = 0, we obtain g, =0
and hence iX%(v,) =1 X g,. Then H*(F') is generated by two elements f,
and g,, because 1% is surjective for sufficiently large degree and H*((S* x
F,))|T) is generated by two elements u,, v, as a graded H*(S*/T)-algebra.
Let F', (resp. F,) be the union of connected components F, of F' on which
fo| F, is positive (resp. negative). Then H*(F,) is generated by only one
element ¢, | F, for s = 1, 2. Since ¥(v,) = 1 X g,, we obtain (g,| F,)*** = 0,
and hence F, ~ P,(C) for s = 1, 2, because X(F,) + X(F,) = X(F,) = 2b.
q.e.d.

We need the following.

LEMMA 2.4. Let S be a closed connected smooth Sp(l) manifold. Let
F be the fixed point set of the restricted T action on S, where T is a
closed toral subgroup of Sp(1). Suppose that codim F = 2 and F is not
connected. Then there is an equivariant diffeomorphism: S = Sp(1)/T X
F,, where F, is a connected component of F'.

PrOOF. Since codim F = 2, T is the identity component of a principal
isotropy group (cf. [9]), and hence there is an equivariant diffeomorphism:

S — F, = (Sp(1)/T x (F — F))[(NT/T) ,

where F), denotes the fixed point set of the Sp(1) action and NT denotes
the normalizer of T. Since codim F, > 2, S — F, is connected and hence
the orbit space of the NT/T action on F — F, is connected. Therefore
F has just two components and NT/T acts freely on F. In particular,
F, is empty and there is an equivariant diffeomorphism: F = NT/T X F..
Hence we obtain the desired result. q.e.d.

By Proposition 2.3 and Lemma 2.4, there is an equivariant diffeo-
morphism: F,, = Sp(1)/T X Y,, where Y, is a connected component of F.
Thus we obtain an equivariant diffeomorphism:

X=X, =(8""x Fu)/SpQl) = P,,_,(C) XY, .
Consequently we obtain the following.

THEOREM 2.5. Let X be a closed orientable manifold with a non-
trivial smooth Sp(n) action. Suppose n=7, X =X, U X, and X ~
POXPC),1=b=a<2n=a+b=<4n—3. Then a=2n—1 and X s
equivariantly diffeomorphic to P,,_,(C) X Y,, where Y, is a closed orientable
manifold such that Y, ~ Py(C).
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2-B. Next we consider the case X ~ P,(H) x Py(C).

ProposITION 2.6. Suppose X ~P,(H) X P,(C),1<a<n—1,1Zb<
2n —1,2n =20 + b < 4n — 4. Then either a =n — 1 and F, ~ P,(C),
or b=2n—1 and F, ~ S*x P,(H).

PROOF. The cohomology ring is as follows.
H*X) = Q[u, v]/(u*™, v**") ; degu =4, degv=2.

We can express e¢(p) = au + Bv* a, B€ Q, where p: S X F,, —» X is the
principal Sp(1) bundle. By definition, the Sp(1) bundle p is a pull-back
of the canonical principal Sp(1) bundle over P,_,(H), and hence e(p)" = 0.
Thus we obtain a@ = 0, by considering the term »°»*~** in the expression
of e(p)". On the other hand, we can prove e(p) = 0 by making use of
the exact sequence (A4;). Moreover we see, from (A4,), that if 3 = 0 then
a=n—1and F, ~P,C); if a =0 then b=2n —1 and F, ~ S* x
P,(H). q.e.d.

Now we consider the Sp(1l) action on F';,. Let T be a toral subgroup
of Sp(1). Denote by F' the fixed point set of the restricted T action on
F,. Since X(F,) # 0, we see that F is non-empty. We shall show the
following.

PROPOSITION 2.7. Ifa =m —1and F,, ~ P,(C), then the Sp(1) action
on Fy is trivial. If b=2n —1 and F, ~ S* x P,(H), then F ~ 8° x
P,(H) or F ~ S° X P,(C). Moreover the induced homomorphism i*: HF ) —
H*(F) 1s trivial.

Proor. Put Y = F, in the diagram (D — 1). Let te H¥P,,_.(C))
and we HYP,_,(H)) be the canonical generators as before. Then w¥(w) =
e(p) by definition. We see that e(p) = au, @ # 0 or e(p) = Bv*, 8# 0 in
Proposition 2.6.

Suppose first e(p) = au. Then a =n — 1 and F,;, ~ P,(C). We can
prove M/T ~ P,,_,(C) x P,(C), b < 2n — 2 by the Leray-Hirsch theorem,
and hence the T action on F, ~ P,(C) is trivial (cf. [12, Proposition
3.3]). Therefore the Sp(l) action on F, is trivial.

Suppose next e(p) = Bv*. Then b =2n—1 and F,, ~ S* x P,(H).
Put u, = p¥(u), v, = p¥(v) and ¢, = w¥(t). We can apply the Leray-Hirsch
theorem to the bundles x,, 7, in the diagram (D — 1), and we obtain

H*(M|T) = Q[t,, w,, v,]/(ui™, v}, i — v, B#0.

Consider the diagram (D — 2) for Y = F;,. Let wu, v, be homogeneous
elements of H*((S*x F,)/T) such that j*(u,) = u, and j*(v,) = v,. Let ¢t
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be the canonical generator of H*(S*/T)=H*P,,_,(C)). Then we can express

?:fo(uZ):thf:,-i—txfl—}—le;, 16(v) =t X g+ 1Xg,,
where f,, g, are elements of H*(F'). Since

JRE(BYY) = i (BvY) = () = Jr@* x 1),

we obtain g2 = 87! and g, = 0. Moreover we see that g, is not constant,
and hence F is not connected. Since j¥iX(ui™) =0 and a+1=n —1,
we obtain f, = 0 and hence i%(u,) = tXf, + 1 X f,. Let F, (resp. F},) be
the union of connected components F, of F' on which g,|F, is positive
(resp. negative). Then each element of H*((S* x F,)/T) for k> 4a + 2
is expressed as a polynomial of ¢ X 1 and ¢tx(f.|F,) + 1 x (f,| F,) with
rational coefficients for s = 1, 2, because H*((S* x F,)/T) is generated
by two elements u,, v, as a graded H*(S*/T)-algebra and <X is surjective
for k > 4a + 2. In particular, if f,| F, # 0, then we can express

gt X (il Fy) = Ejlcj(t X (fil F) + 1 X (L[ F))y@t x 1)t

for ¢;€ Q. Then we obtaine¢, = 0,¢, = 1and f,| F, = —c,(f.| F,)*. There-
fore
H*(F,) = Q[x,]/(x¢™); degz, =2 or 4,

because f¢tt =0 (k = 1, 2) and X(F)) + X(F,) = X(Fy) = 2a. If F,~ P,(H)
for some s, then F' ~ S° x P,(H) by Lemma 2.4. Thus we obtain F ~
S°x P,(H) or F ~ S° x P,(C). Finally we shall show that *: H*F,) —
H(F) is trivial for the case F ~ S° x P,(C). Consider the following
commutative diagram:

H(M|T) 2 H(F,)

o
HYP,,_(C) x F) 2 g(F),

where 1, 1, are natural inclusions and k,, k, are inclusions of typical fiber
of bundles over P,,_,(C). We see that kf(v,) generates H*(F,) and
i¥(v,) =t X g,, and hence *k}(v,) = k¥(t X g,) = 0. Thus <*: H¥F ) —
HYF) is trivial. q.e.d.
Suppose F' ~ S° x P,(H). Then by Lemma 2.4, there is an equivariant
diffeomorphism: F,, = Sp(1)/T x Y,, where Y, is a connected component

of F. Thus we obtain an equivariant diffeomorphism:

X =X, =" X Fy)/SpQ1) = P, ,(C) X Y, .

Consequently we obtain the following.
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THEOREM 2.8. Let X be a closed oriemtable manifold with a non-
trivial smooth Sp(n) action. Suppose n =7, X =X, U X, and X ~
PH)XPCh1l=a=n—1,1=5b=2n—-1,2n <20 +b=<4n—4. Then
there are three cases:

(@) a=mn—1 and X s equivariantly diffeomorphic to P,_,(H) X Y,,
where Y, is a closed orientable manifold such that Y, ~ P,(C),

() b=2n —1 and X is equivariantly diffeomorphic to P,,_(C) X Y,,
where Y, is a closed orientable manifold such that Y, ~ P,(H),

() b=2n —1 and X 1is equivariantly diffeomorphic to (S*~ X
Y,)/Sp(1), where Y, is a closed orientable Sp(l) manifold such that Y; ~
S*x P,(H), F ~ S" x P,(C) and i*: H(Y,) — H*F') s trivial, where F
denotes the fixed point set of the restricted T action on Y, Conversely,
if Y, satisfies the above conditions, then (S*"~' X Y;)/Sp(1) ~ P,,_,(C) X P,(H)
for a = n — 2.

PrROOF. It remains to prove the final statement in the case (¢). Let
Y be a closed orientable Sp(1) manifold such that ¥ ~ S* x P,(H), F ~
S° x P,(C) and <*: H(Y) — H*F') is trivial, where F denotes the fixed
point set of the restricted T action. We shall show (S** xY)/Sp(1) ~
P, (C)x P,(H)fora <n—2. PutM = 8""'xY. Consider the following
commutative diagrams as before:

7

M/T -2, M/Sp(1) F—" v
|
l"l | l’“ ) 1"1
P, ()P, _(H), P, (C) x F—5M|T .

Let te H¥P,,_,(C)) and we H*P,_,(H)) be the canonical generators such
that ¢*(w) = t. Because 7, m, are projections of bundles with Y as
the fiber and H**(Y) = 0, we can apply the Leray-Hirsch theorem and
we see that there is an element w,€ H*(M/Sp(1)) for k = 1, 2 such that
H*(M/Sp(1)) is freely generated by 1, u,, ul, - - -, ug, Uy, UsUs, WU, -+, UUF
as an H*(P,_,(H))-module, and u? = ¢nf(w) for some cc Q. Put v, =
pi(u,). Express if(v,) =t X g,+1XxX g, for some g,€¢ H¥(F). Then
0, = k¥(txXg, + 1Xg,) = i*k¥(v,) = 0, because 1*: H(Y) — H*F) is trivial.
Hence 4.*(v,) =t X g, and ¢ = g2. We see that g, is not constant and
¢ # 0, because i} is injective for each degree < 4n — 2 and v, w}(t) are
linearly independent in H*(M/T). Hence H*(M/Sp(l)) is generated by
U, U, as a graded algebra. Express if(v,) = X fy, +t X f, + 1 X f, for
some f;€ H*(F'). Let F, be a connected component of F' and put w, =
u, — dn¥(w), where d = f,| F,. Then H*(M/Sp(1)) is freely generated by
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wwi;0<1=<2n—1,0=j<a as a graded module, and
wst = c;winF(wt ), ¢;€Q .
=0

By definition, }pf(w,) =t X fi+1 X f, on H*(P,,_,(C) x F,), a direct
summand of H*(P,_,(C) X F). Since F, ~ P,(C), we obtain ifpf(wi*) =
0 on H*(P,,_,(C) x F,) and hence

0= jz:‘;,c:’(t X (fi|F) + 1 X (f| F))i(# x 1)*7 ,

Moreover we obtain f,|F, +# 0, because f,|F, and f,|F, generate the
graded algebra H*(F,) and F, ~ P,(C). Then we obtain ¢; =0 for j =
0,1, -+, & inductively, and hence w2 = 0. On the other hand, ! =
c"wy(w") = 0. Hence we obtain

H*(M/Sp(1)) = Qlu,, w,]/(ui", wi*); deg w, = 2, deg w, = 4.
Therefore M/Sp(1) ~ P,,_,(C) x P,(H). g.e.d.

3. Cohomology of certain homogeneous spaces. Let { be a quaternion
k-plane bundle and ¢, its complexification under the restriction of the
field. Its i-th symplectic Pontrjagin class e,l) is by definition [3, §9.6]

e8) = (—D)'e.i(Co)
where c¢,;({c) is the 2i-th Chern class. Denote by HP({) the total space
of the associated projective space bundle. Let ¢ be the canonical qua-

ternion line bundle over HP() and ¢ = ¢,(f). It is known that there is
an isomorphism:

3.1) H'BP©) = HB)1)/(S e OF)

where B is the base space of the bundle { (cf. [4, §3]).

We now consider the cohomology of V,./G = Sp(n)/Sp(n — 2) X G
for certain closed connected subgroups G of Sp(2). Let & be the canonical
quaternion line bundle over P,_,(H) and { its orthogonal complement,
that is, { is a quaternion (» — 1)-plane bundle over P,_,(H) such that its
total space is

EQ) = {(u, [v)e H* x P,_,(H):u L v}.

It is easy to see that HP({) is naturally diffeomorphic to V,./Sp(l) X
Sp(l). Since ¢ is a trivial bundle, we obtain ¢,({) = (—1)%e,(¢)*. By
definition, HP({) is naturally identified with a subspace of P, ,(H) X
P, (H). Let i: HP() — P,_,(H) x P,_,(H) be the inclusion. Then ¢ =
1*(¢ X 1). Hence by (3.1) there is an isomorphism:
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(3.2) H*(Vn,z/SP(l) x Sp(1)) = Q[u, ,v]/<un’ ; ui,vn—l—-i> ,

deg u = degv = 4, by the identification u = i*(1 X ¢,(&)), v = 1*(e,(&) X 1).
Let =: P,,_,(C) — P,_,(H) be the natural projection defined by

(Ue et U 0 e o2 0,) = (U + GV et U, + G,

where j is a quaternion such that 52 = —1 and jz = ZJ for each complex
number z. Then 7*(&) = n @ n*, where 7 is the canonical complex line
bundle over P,,_,(C) and n* its dual line bundle. Moreover 7*¢,(&) = ¢,(9)*.
We see that the total space CP(n*({;)) of the complex projective space
bundle is naturally diffeomorphic to V, ,/T* and there is a natural inclusion
1": CP(w*(¢c)) — P,,_,(C) X P,,_,(C), where T* is the standard maximal torus
of Sp(2). Then we obtain an isomorphism (cf. [4, §3]):

(3.3) HY (VT = Qls, 9] (o, Savy=)

deg x = deg y = 2, by the identification 2 = i"*(1 X ¢,(®)), ¥y = t"*(c,(n) X 1).
Let »:V,./Sp(1) x Sp(1) —»V,./Sp(2) be the natural projection and ¢,
be the canonical quaternion 2-plane bundle over V., ,/Sp(2).

LEMMA 3.4. The graded algebra H*(V,./Sp(2)) is generated by e,(&,),
e,(&,). The algebra is isomorphic to the subalgebra of Q[u, v]/(u®, D, u'v™ %),
consisting of symmetric polynomials.

PROOF. Since the fibration p is a 4-sphere bundle and H*Y(V,,/
Sp2)) = 0 (cf. [2, §26]), the homomorphism p*: H*(V,./Sp(2)) —
H*(V,,/Sp(1) x Sp(1)) is injective. Since p*(&,) = i*(¢ X &), we obtain

p*ex(éz) = i*el(E X E) =u+9,
10*62(52) = i*ez(é X E) = Uv .
Then the desired result is obtained by the Leray-Hirsch theorem.
q.e.d.

Let p.:V,,/T*—V,,/U2) be the natural projection and 7, be the
canonical complex 2-plane bundle over V,.,/U(2). Then we obtain the
following by the same argument as above.

LEMMA 3.5. The graded algebra H*(V,,/U(2)) is generated by c,(n,),
c,(My). The algebra is tsomorphic to the subalgebra of Qlz, y]l/(x™,
S atytnt), comsisting of symmetric polymomials.

LEMMA 3.6. The graded algebra H*(V,,/U1) x Sp(1)) is isomorphic
to the subalgebra of Q[x, y]/(x™, D x*y*"*7*), generated by «*, y.
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Proor. Consider the natural mappings

Voo T BV, U1) x Sp(1) % P (C) X P,_(H) .

We see that i} is surjective and pf is injective. On the other hand,
there are the following equations

pir(l X e(8) = 2*, pFif(e(n) X 1) =y.
Thus we obtain the desired result. q.e.d.

Here we state the following for later use.

PROPOSITION 3.7. Let G be one of T? U2) and UQ) x Sp(1). Let
w,;, w, be any mnon-zero homogeneous elements of H*(V,./G) such that
deg w, = 2k. Then w™' and w?™ are non-zero elements.

PrROOF. For G = T? we obtain the result from (3.3). For G = U(2)
or U(l) x Sp(1), we obtain the result from Lemmas 3.5, 3.6 and the
result for G = T ) q.e.d.

4. Finish of the proof. Throughout this section, suppose that
n =17 and X is a closed orientable manifold with a non-trivial smooth
Sp(n) action, and X ~ P,(C) X P,(C) for some a, b such that

1=b=a<2n=a+b=4n -3,
or X ~ P,(H) x Py(C) for some ¢, d such that
15¢c=n—-—1,1=d=2n—1 and 2n=2c+d<4n —4.
We shall show that X, and X, are empty sets.
ProposITION 4.1. X # X,,; k = 2, 3.

PrROOF. Suppose X = X,;,. Then there is an equivariant diffeo-
morphism: X = (Sp(n)/Sp(n — k)X F,)/Sp(k). In particular, we obtain
UX) = ,.CX(Fy). Looking at the Euler characteristic of X, we see that
k # 3. Thus only the following possibilities remain:

(a) dim F, = 8 X(F) = 8;(a,b) = 2n — 1, 2n — 3),

(b) dim F,, =6, X(Fy) =4; (¢,d) = (n —1,2n — 3), (n — 2, 2n — 1),

(¢) dim F,, < 4.

If dim F,) < 4, then X =V, ,/Sp(1) X Sp(1) or X =V, ,/Sp(2) X F, and
hence the case (c) does not happen by (3.2) and Lemma 3.4. In the cases
(a), (b) if the Sp(2) action on F', is transitive, then X=1V,,/T? V, ./ UZ2)
or V,,/U(1)xSp(1), and hence such cases do not happen by Proposition 3.7.

Consider the case (a). Since X(F,) # 0 and the Sp(2) action on F,,

is non-transitive, the restricted G action on F, has a fixed point, and
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hence the natural projection =,: (V,, x F,)/G —V, ,/G has a cross-section
s, where G =U(2) or U(1) x Sp(1). Consider the following commutative
diagram:

(Ve X Fo)IG =5 V,,/G

ls I

X = (V,. X Fo,)/Sp2) —> V,./Sp(2) ,
where 7, m,, p, ¢ are natural projections. We can express
e (&) = ax’ + Bxy + 1y 2, ye H(X), a, B,7€Q .

Moreover we can express s*g*x = put, s*¢*y = vt (¢, v € Q) for some non-zero
element te HV,,/G) because rank H*(V,,/G) =1 by Lemmas 3.5, 3.6.
Hence we obtain

p*e (&) = s*nipres,) = s*q* e (s) = ot’,

where d=ap’+Buv+7v:. Let i: Sp(2)/G —V, ,/G be the natural inclusion.
Then i*t = 0 and i*p*e,(¢,) = 0, and hence 6 = 0, because Sp(2)/G ~ P,(C).
Thus we obtain p*e,(&,) = 0; this is a contradiction to the fact that p*
is injective. Therefore, the case (a) does not happen.

Consider the case (b). Since the Sp(2) action on F', is non-transitive,
the identity component of an isotropy group is conjugate to Sp(1) x Sp(1)
or Sp(2). If the Sp(2) action on F, is trivial, then X =V, ,/Sp(2) x F,
and hence such a case does not happen by Lemma 3.4.

Suppose first that the Sp(2) action on F', has no fixed point. Denote
by F the fixed point set of the restricted Sp(1) x Sp(l) action on F|,.
Then we see that F' is a closed orientable surface with X(F) =4 and F
has at most two components. Therefore, X = (V,,/Sp(1) x Sp(1)) x S?,
and hence such a case does not happen by (3.2).

Suppose next that the Sp(2) action on F, has a fixed point. Then
we see that the fixed point set of the Sp(2) action is one-dimensional by
considering the isotropy representations. Let U be its closed invariant
tubular neighborhood and denote by F'’ the fixed point set of the re-
stricted Sp(1) x Sp(1) action on F, — intU. Then we see that F’ is a
compact orientable surface with X(¥’) = 4, F' has at most two components
and each component of F’ has a non-empty boundary. Such a case does
not happen, because X < 1for each compact connected orientable surface
with non-empty boundary. q.e.d.

PrOPOSITION 4.2. If X, is non-empty, then X, is empty.
ProoF. Suppose that both X, and X, are non-empty. Then X =
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X, U X, and codim F';, = 8n — 8, by Propositions 1.3, 1.4. Since dim X <
8n — 6, we obtain dim F',, = 0 or 2.

Suppose first that the Sp(1l) action on F|, is non-trivial. Then
dim F;,, =2 and X ~ P,,_,(C) X P,,_,(C). Considering the slice represen-
tation at a point of F',,, we see that the Sp(n) action on X has a codi-
mension one orbit, and hence X is a union of closed invariant tubular
neighborhoods of just two non-principal orbits (ef. [10]). Calculating the
Euler characteristics, we see that two non-principal orbits are P,,_,(C)
and V,,/T*. Since codim P,, ,(C) = 4n — 4 in X, the inclusion ¢:V, ,/T* —
X induces an isomorphism *: H*X)— H¥V,,/T*), and hence z™'#0 for
each non-zero element x ¢ H*X) by Proposition 3.7. This is a contradiction.

Suppose next that the Sp(l) action on F, is trivial. Considering
the slice representation at a point of F,,, we see that the codimension
of the principal orbit is equal to 1 + dim F,,, for the Sp(n) action on X.
There are just two cases:

(d) dimF, =0;(a,b) =(@2n —1,2n —3) or (2n — 2, 2n — 2),

(c,d)=(n —1, 2n — 2),

() dim F,, = 2; (a,b) = 2n — 1, 2n — 2).

Consider the case (d). The Sp(n) action has a codimension one orbit.
Calculating the Euler characteristics, we see that two non-principal orbits
are P,_,(H) and V,,/G, where G = U(2) or U(1) x Sp(1), and the possibility
remains only when X ~ P,_,(H) X P,,_,(C). Since codim P,_,(H) = 4n — 4
in X, the inclusion 4:V,,/G — X induces an isomorphism ¢*: H*(X) —
HYV,,/G), and hence x™' = 0 for each non-zero element xc H*(X) by
Proposition 3.7. This is a contradiction.

Consider the case (e). The isotropy group is Sp(n — 1) X Sp(1) at
each point of F,. Considering the slice representation at a point of
F,,, we see that the principal isotropy group is Sp(n — 2) X K, where
K is a closed connected 3-dimensional subgroup of Sp(2). Denote by G
the identity component of the normalizer of K in Sp(2). Then G is
conjugate to U(2) or U(1l) x Sp(1). Suppose that the restricted G action
on F, has a fixed point. Then the natural projection of (V,, X F,)/G
to V,./G has a cross-section. Since the inclusion i: X, — X induces an
isomorphism ¢*: H*(X) — H*(X,,) for k < 4n — 6, we obtain a contradiction
by the same way as in the proof of Proposition 4.1. Therefore the Sp(n)
action on X, has no singular orbit. Denote by T'* the standard maximal
torus of Sp(n). Since X,, = P,_,(H) X F,;, and the restricted T" action
on X, has no fixed point, we see that the fixed point set of the re-
stricted T action on X is diffeomorphic to » copies of F,,, and hence
XFy) =XX)n =4n — 2. Let U be a closed invariant tubular neigh-
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borhood of X, in X. Put E= X — intU, and E, = ENF,. Then E
is an equivariant deformation retract of X,, and E, is a compact
connected orientable 10-manifold. Moreover the Sp(n) action on 0F = oU
has only one isotropy type Sp(n — 2)x K, and its orbit space is diffeo-
morphic to F';,. We shall evaluate the number of connected components
of 0E. Let Sp(l) be standardly embedded in Sp(2). Considering the
Gysin sequences for sphere bundles

Sp(2)/Sp(1) — (V,. X Ey)[Sp(1) — K,
Sp(1) —’Vn,z X E(z) g (Vn,2 X E(z))/Sp(l) ’

we obtain rank H*((V,, X E,)/Sp(1)) < 2, rank H*((V,, x HE,)/SpQ1)) < 4,
and hence rank H(V,, X E,) < 6. Thus we obtain rank H°QE,) < T,
by the cohomology exact sequence of the pair (K, 0E,,) and the Poincaré-
Lefschetz duality for E,. Therefore the number of connected components
of 0F is at most seven, and hence the number of components of the
closed surface F, is at most seven. This is a contradiction to X(F',) =
dn — 2. : q.e.d.

Here we complete the proof of the main theorem stated in Intro-
duction, by combining Theorems 2.5, 2.8 and Propositions 4.1, 4.2, in view
of Section 1.

5. Proof of Lemmas. We shall give an outline of the proof of
Lemmas 1.1, 1.2. The method used here is essentially due to Dynkin [6]
(ef. [11, § 7).

ProoF or LEMMA 1.1. Let G be a closed connected subgroup of
Sp(n), and suppose dim Sp(n)/G < 8n. Notice that the inclusion i: G —
Sp(n) gives a symplectic representation of G.

Suppose first that the representation 4 is reducible, that is, there is
a positive integer k such that k < #/2 and G is contained in Sp(n—k) x
Sp(k) up to an inner automorphism of Sp(n). Then

2kn < 4k(n — k) < dim Sp(n)/G < 8n .

Hence we obtain k£ < 3. Let p, (resp. p,) be the natural projection of
Sp(n — k) x Sp(k) onto Sp(n — k) (resp. Sp(k)). We obtain dim Sp(n — k)/
0.(G@) < 8n — 4k(n — k), because

dim Sp(n — k)/p.(G) < dim(Sp(n — k) x Spk))/G < 8n — 4k(n — k) .

SUBLEMMA. Suppose ».(G) = Sp(n — k) and 2k <n. Then G =
Sp(n — k) X K for some closed subgroup K of Sp(k).

PrROOF. Let G’ be the kernel of the homomorphism p,|G. Then
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p,(G") is a positive dimensional normal subgroup of Sp(n — k) = p,(G),
and hence »,(G') = Sp(n — k), because Sp(n — k) is simple. Therefore
G = Sp(n — k) x K for some closed subgroup K of Sp(k). q.e.d.

We can assume that the inclusion %,: p,(G) — Sp(n — k) is irreducible.
Here we assume that the representation i: G — Sp(n) is irreducible and
dim Sp(n)/G < 8n (i.e. dim G > 2n* — Tn) for n = 4. In addition, suppose
dim Sp(n)/G < 32 for n =6, dim Sp(n)/G < 16 for » =5 and dim Sp(n)/G < 8
for n = 4. We shall show that G = Sp(n) under the above condition.
This is the final step of the proof of Lemma 1.1.

Denote by ic: G —U(2n) the complexification of the quaternion re-
presentation ¢. If 4. is reducible, then

2n — Tn < dim G < dimU(n) = n?,

and hence » < 6. But dim Sp(6)/U(6) = 42 > 32, dim Sp(5)/ U(5) = 30 > 16
and dim Sp(4)/U4) = 20 > 8. Therefore i is irreducible. Since i.(G) is
contained in SU(2n), we see that G is semi-simple.

Suppose that G is not simple. There are closed normal subgroups
H,, H, of G and irreducible representations r;: H; —»U(n;) such that the
tensor product 7, @ 7, is equivalent to icp, where n = nm,, n; = 2 and
p: H X H,—G is a covering projection. Since i, has a quaternion
structure, we can assume that (cf. [1, Proposition 3.56]) », has a real
form and 7, has a quaternion structure. In particular,

dim G = dim H, + dim H, < dim O(n,) + dim Sp(n,/2) < n}/2 + n? .

Then we obtain n < 8. This is a contradiction. Therefore G is simple.

Put » = rank G, and denote by G* the universal covering group of
G. Denote by L, ---, L, the fundamental weights of G*. Then there
is a one-to-one correspondence between complex irreducible represen-
tation of G* and sequences (a,, - -, a,) of non-negative integers such that
a,L,+ ---+a,L, is the highest weight of a corresponding representation
(cf. [6, Theorems 0.8, 0.9]; [8, §21.2]). Denote by d(a,L, + --- + a,L,)
the degree of the complex irreducible representation of G* with the
highest weight a,L, + --- + a,L,. The degree can be computed by
Weyl’s dimension formula (cf. [6, Theorem 0.24, (0.148)-(0.155)]; [8, §24.3]).
Notice that if a,=a; for 1=1,2 --- #», then d(a,L, + --+ + a,L,) =
d(a;L, + --+ + arL,) and the equality holds only if a, =a; for 7=
1,2 .- 7.

If G is an exceptional Lie group, then G* has no complex irreducible
representation of degree 2n for each % such that dim G > 2n® — Tn.
Therefore G is a classical Lie group.
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Suppose G* = SU(r + 1), r=1. Then dimG ="+ 2r, and r =
rank G < rank Sp(n) = n. Hence we obtain n < 8 by the inequality

2P —Mm<r+2r<n + 2n.

The possibilities remain only when (n, ») = (8, 8), (7, 7), (6, 6), (6, 5), (5, 5),
(5, 4), (4, 4), (4, 3) or (4,2). We see that there is no possibility, by the
value dim Sp(n)/SU(n) for m <6 and the fact that SU(» + 1) has no
complex irreducible representation of degree 2r for each » = 4.

Suppose G* = Spin(r), r = 5. Since dim G < dim Sp(n), we obtain
2n —8)2n —4) — 12 < r(r — 1) <2n(@2n +1). Thus we obtain » =2n — 3,
2n — 2,2n — 1 or 2n. By Weyl’s formula, we see that Spin(2n — 1) for
n = 5, Spin(2n — 3) and Spin(2n — 2) have no complex irreducible re-
presentation of degree 2n, Spin(2n) has only one complex irreducible
representation pf, of degree 2n for n =5, Spin(8) has just three
complex irreducible representations p§, 4 and 4; of degree 8, and
Spin(7) has only one complex irreducible representation 4, of degree 8.
But oS, 4f, 45 and 4, have real forms, and hence they have no quaternion
structure.

Suppose G* = Sp(r),3 < r < n. Then we obtain » =% — 2or n — 1.
But Sp(r) has no complex irreducible representation of degrees 2r + 2
and 2r + 4.

This completes the proof of Lemma 1.1.

Proor OF LEMMA 1.2. By Weyl’s formula, we see that there is no
complex irreducible representation of Sp(r) of degree < 8r except for
the natural inclusion (,)c: Sp(r) - U(2r). This fact assures the desired
result. q.e.d.
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