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Introduction. The characterization of isometric immersions of
codimension 1 between hyperbolic spaces was proposed by Nomizu in [7],
where this problem is compared with the corresponding ones for space
forms of positive and zero curvature.

In [4], Ferus classified the umbilic-free immersions Hn —> Hn+1 sharing
a given relative nullity foliation To, which was determined by the
arbitrary choice of an orthogonal trajectory. As the leaves of To are
hyper spaces (complete totally geodesic hyper surf aces) in Hn, such a curve
will be enough to determine To uniquely but the converse is not true,
for two orthogonal trajectories of a hyperspace foliation need not be
related by a congruence (rigid motion of Hn). This paper offers a
classification of hyperspace foliations of Hn, up to congruence, which
includes non-smooth foliations too. Such generality is needed in the
study of immersions that may have umbilics (see [1]).

Basic results of Riemannian geometry assumed here will be found
in Kobayashi-Nomizu [6]. Several other facts, more specific of hyperbolic
geometry, were less readily available at least in the form needed here.
Sections 2 and 3 deal with this material. Preparation of those sections
was made easier by [2]. The author wishes to thank K. Nomizu for
suggesting the problem that originated this work and for a great deal
of further assistance and advice.

1. Notation and Terminology. We shall deal with smooth ( = C°°)
manifolds endowed with linear connections. Given such a manifold H, a
geodesic will be assumed to have the largest possible domain. Since H will
almost always be (geodesically) complete, a geodesic will then be a map

whose velocity vector is parallel. The set a{B) will be referred to as
the path of a. A (geodesic) segment is the image, under a geodesic, of
a finite interval whereas a (geodesic) ray is the restriction of a geodesic
to an interval of type (—°°,a] or [a, ©o). Unless otherwise stated, a
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ray has the domain R+ = [0, oo). We will use JR+ = (0, °°).
Given a vector Ze TH, the Z-ray is the ray r with starting velocity

Z. We write r(0) = Z. In particular, if a is a geodesic, its positive
ray is the <j(0)-ray and the negative one is the (—<7(0))-ray.

A complete auto-parallel hypersurface in H will be called a hyper-
space of H. If the connection is Riemmanian, auto-parallel is equivalent
to totally geodesic.

Let 7c:TH-^H be the tangent bundle of H. The map EXP =
(TT, exp): TH^> H x H will be called capital exponential map. Its domain
is actually smaller than TH if the connection is not complete. As usual,
expp: TPH->H is defined by restriction of exp.

A complete simply-connected Riemannian manifold of negative curva-
ture will be called an Hadamard manifold. In such a manifold, given
two points p and q, there exists a unique geodesic path through them.
We define a geodesic vpq by requiring that 7pg(0) = p and ypq(d(p, q)) = q.
Here d is the Riemannian distance so that 7pq has unit speed. The
capital exponential map of an Hadamard manifold H is a diffeomorphism
and so is expp for any pe H.

The symbols g, || ||, and d, respectively, will be reserved for the
Riemmanian metric, the associated norm, and the induced (Riemannian)
distance on M.

2. Hadamard Manifolds. Let H be an Hadamard manifold and let
pe H. Let a: R —• H be a unit-speed geodesic such that p £ a(R) and
let us define Q: R2 —> H by requiring that, for each ue R, Q(-,u) be the
unique geodesic such that Q(0, u) = p and Q(l, u) = o(u). We will call
the map Q the pencil over a with vertex p.

Let us write r(u) = d(p, o(u)). Then r > 0 and, since expp: TPH-+H
is a diffeomorphism, we may write:

Q(t, u) = exp (tr (u)Z(u))

where Z: R-^ Sp is a (smooth) curve on the unit sphere Sp = SPH of
TPH. Restricted to the open set where t ^ 0, Q is an injective immersion.
Indeed, if Q(t, u) = Q(t', u') with tt' ^ 0, then r(u)Z{u) = (t'/t)r(u')Z(uf)
and o{u') is in the path of Q(-,u). But so is a(u) and it follows that
u = v! and t — tr. Next we evaluate

ot

^ rZ))
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The partials Qt and Qu must be independent at a point of the form
(1, u) because p$o(R). But then Z and Z are linearly independent, (i.e.,
Z =£ 0) and it follows that Q* is non-singular for t =£ 0, as desired. For
the purpose of the next two lemmas let us establish the following
notation: KQ will be the Gaussian curvature of the surface Q(R+ x R)
or equivalently, the curvature of the induced metric on R+ x R. Also,
given a < b in R, we let Oh

a be the length of the curve Z (in S9) from
a to 6, i.e.,

rh

u)\\du .

LEMMA 2.1. Let a < b be given in R. For e > 0, let Qe be the
regular simplex obtained by restricting Q to the set {(t, u); a ^ u ti 6,
e/r(u) ^ t ^ 1}. Let <p, a, ft be the respective angles at p, o(a), a(b) of
the geodesic triangle determined by those three points. Then

lim ( KQdA = 0b
a + a + /3 - re

£-*0 jQ£

^ <p + a + fi — it

where dA is the element of area associated with the orientation induced
by Q£.

PROOF. The inequality part comes from spherical geometry. We
observe that <p is the spherical distance p(Z(a), Z{b)) whereas Oh

a is the
length of a curve in Sp joining those points.

For the equality part, we apply the Gauss-Bonnet theorem to the
simplex Qe. The only boundary segment that contributes to the geodesic
curvature term is the "fourth" one

8(u) = Q(6/r(u), u)

which is traversed in the opposite sense. We have

8(u) = Qu — (ef/r2)Qt

= (exp*)eir (eZ) .

In particular, Qt(s/r, u) is orthogonal to 8(u) for all u. Thus, the four
inner angles are n/2, a, /3, and TT/2. Therefore, we have

\ KQdA + k(e) = (a + j3 + n) — 2TT
J Q

where

k(s) = -\"g(Fu(d/\\H), -Qt/r)\t../rWdu
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with signs adjusted to take into account the orientations of Qe and 8.
Using the orthogonality of 8 and Qt once more, we transform the

integrand into

and, since QJr = exp* (Z), its covariant derivative is smooth everywhere
in R2, in particular, bounded in [0,1] x [a, 6]. Such a bound applies also
to the above integrand and it will enable us to use Lebesgue's dominated
convergence theorem. We have

8 ( e x p ^ ( Z ) r Z a g e^Q

11*11 ||(exp*).,(Z)|| \\Z\\

and we already observed that Z ^ 0. Similarly, we conclude that
Pu(Qt/r) converges to dZ/du = Z as e —> 0. Thus the integrand converges
pointwise to \\Z\\ and we obtain \imk(e) = —0b

a, as needed. Q

For the next lemma we will need the sectional curvature of H. We
let QK(t, u) be the sectional curvature of the plane section spanned by
Qt(t, u) and Q.(«, u).

LEMMA 2.2. Let a and b be as above and assume that one of them
is a point of minimum for r. Let £ be the corresponding value, i.e.,
f = dist (p, a(B)). Let 7] = inf {-QK(t, u); a ^ u ^ 6, 0 ^ t ^ 1}.

^ < TT/(2 + ft2) ,

borrowing notation from Lemma 2.1.

PROOF. We observe first that Qif ^ KQ [6, v. II p. 26]. Therefore,
with the notation of 2.1,

( -KQdA ^ T [ -QK\\Qt A Qu\\dtdu
JQ£ Ja Je/r(M)

tr*\\(exv*)trZ(Z)\\dtdu
Je/r{u)

and, since the curvature of H is negative, exp* is length non-decreasing.
Thus,

and, taking limits as e —> 0, we obtain

One of a, fi equals 7T/2 the other being positive. Hence



TOTALLY GEODESIC FOLIATIONS 319

7T/2 > (7}?/2 + l)0b
a > {7]f

as desired. •

For the next lemma we generalize the construction of Q, replacing
p with a geodesic z whose path does not meet that of a and requiring
that Q(0, u) — z(u) instead of p. Again r = \\Qt\\ depends only on u.

LEMMA 2.3. The function r: R-* R+ is strictly convex, i.e., r > 0.
In particular, it may have only one critical point, which is then its
minimum.

PROOF. Let us differentiate r2 = g(Qt, Qt) twice:

rr + r2 = g{F\Qt, Qt) + \\FuQt\\>

= g(R(Qu, Qt)Qu, Qt) + g(FtFuQu, Qt) + ||FttQt||
2 .

Bearing in mind that r and r are independent of t, we integrate with
respect to te [0, 1]:

rr = [ -QK\\Qt A Qu\\dt + ( ' ( l l ^ l l 2 - r(uf)dt .
Jo Jo

Here we use FUQU = 0 for t = 0 and t — 1. The first integral above is
positive because QK < 0 and the second one has a nonnegative integrand,
namely:

\\FuQt\\
2 ^ g(FuQt, QJrf

by Schwartz's inequality. It follows that r > 0. •

If L is a complete totally geodesic submanifold of H and piL,
there exists qe L which is closest to p because L is a closed subset of
H. Given any q' =£ q in L, consider a = yqq,. It is a curve in L so that
0 is a minimum point for d(p, &(-)). By Lemma 2.3, it is the unique
minimum. It follows that d(p, q') > d(p, q).

DEFINITION 2.4. With the above notation, the point q that realizes
dist (p, L) is called the foot of p in L.

REMARK 2.5. We can also conclude that the geodesic (path) through
p and q is the only one through p that is perpendicular to L. Indeed,
it is straightforward that if a path starting at p meets L orthogonally,
the point of intersection must be critical for the restriction of d{ •, p)
to L.

We mention next some results on triangles that are both well-known
and easy to prove [5, p. 73]. Let a, b, c, be the (lengths of the) sides
of a geodesic triangle and let a, /3, 7, be the respective opposite angles.
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Then we have the first law of cosines

c2 ^ a2 + b2 - 2ab cos 7

and, as an easy consequence, the second law of cosines

c ^ a cos ft + b cos a .

Moreover,

a + /3 + 7 <: 7z .

REMARK 2.6. Those inequalities yield the following result: if (xn)f

(yn) are sequences and p is a point in if, let Xn = 7^(0) and rw = 7^(0).
Assume that d(p, xn) —> °o but d(a?w, j/n) remains bounded as w -» °°. Then
ô(Xn, Yn) -* 0. Indeed, by the first law of cosines,

d(xn, yj ^ (d(p, xn) - d(p, yn)f
+ (1 - cos p(Xn, Yn))d(p, xn)d{p, yn)

and \d(p, xn) - d(p, yn)\ is bounded by d(xn, yn) whereas d(p, xn)d(p, yn)
becomes arbitrarily large. Therefore cos p(Xw Yn) -> 1 i.e., p(Xn, Yn)
converges to zero.

3. Asymptotes. Let us sharpen Lemma 2.3 as follows:

LEMMA 3.1. Assume that L is a complete totally geodesic submanifold
of H. The function dist (•, L) is convex, i.e., for any geodesic o: iJ —• H,
dist(tf(-), L) is a convex function on R.

PROOF. Let a be given and let a < b be real numbers such that
^(K 6]) D L = 0 . Let r: [a, 6] —>L be the geodesic segment such that
r(a) is the foot of a {a) in L and r(6), that of a(b). By Lemma 2.3, the
function r: [a, b]-+ R defined by r(u) = d(a(u), z(u)), is convex (and
smooth). Given te [0,1], define u as (1 — t)a + tb. Then

dist (<J(M), L) ^ r(u) < (1 - *)r(a) + tr(b)

so that we have convexity in [a, 6]. If a(R) f] L = 0 , we are done
while the case o(R) c L is trivial. The remaining case is a single element
intersection, say {(?(c)} where c is the point of minimum for the function
dist (<x(-), L). The later is continuous and, by the preceding argument,
convex on (— °°, c) and on (c, oo). Thus it is (globally) convex. •

DEFINITION 3.2. Let L and M be complete totally geodesic sub-
manifolds of H. We say that M is properly asymptotic to L if:

( i ) There exist peM, 0 =£ Xe TPM, and sequences (tn) in J?+ and
(<TJ of geodesic rays such that on(tn) e L and an(0) —• X.
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(ii) Lf]M= 0 .

The meaning of this definition will become clear in 3.4. Note that
we must have tn —> °o; if a subsequence of (tn) were convergent, then
the X-ray itself would meet L, contradicting (ii). We let a be the X-ray.
Let q be any point of L and let zn be the unit-speed ray starting at q
and going through 0n(tn). By picking a subsequence, if necessary, we may
assume that £n(0) converges in TqL. The limit defines a ray z in L. To
simplify the statement of the next lemma, let us assume that \\X\\ = 1
in Definition 3.2.

LEMMA 3.3. In the above notation, d(o(-)y r(-)) is bounded.

PROOF. Let a = d(p, q) and let t > 0. Then, for n large enough,
we have d(an(0), p) ^ 1 and tn ^ t. By Lemma 3.1, we have then

dist (an(t), zn(R)) ^ dist (<7n(0), zn(R)) ^ a + 1

because dist (p, Tn(R)) 5g d(p, q) = a. When w —> oo, we have aB(t)
so that dist (e(t), z(B)) ^ a + 1.

Next, let z(tx) be the foot of a(t) in r(iJ). Then

d(a(t), r(t)) ^ a + 1 + d(r(^), r(t)) = a
and

I* - «J = \d(p, o(t))

so that d((7(t), r(t)) is bounded by 3a + 2. D

As a consequence of 3.3, we may assume in the definition (3.2) that
the points <7n(0) all coincide with p. Indeed, we may replace the original
sequence (an) with the sequence of rays going from p to the points z(ri).
We must still have convergence of the initial velocities to X by
Remark 2.6.

For the rest of this section, let us assume that the curvature of H
is bounded away from zero. Equivalently (by means of a scale factor),
we will assume K ^ —1.

PROPOSITION 3.4. Let L and M be complete totally geodesic disjoint
submanifolds of H. The following are equivalent conditions:

( i ) M is properly asymptotic to L.
(ii) There exists a goedesic o in M such that dist (o(t), L) —> 0 as

t —> °°.
(iii) dist (L, M) = 0.

PROOF, (i) *=> (ii) Let us consider a, r in L as in the preceding
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lemma. Let /3 = dist {p(R)9 r(JK)). Given 8 > 0, there exists a point 2
in z(R) such that dist (2, 0(R)) < 8. Let 2/ be the foot of z in o(R) and
let w, in turn, be the foot of y in z(R). Let Z = 7yz(0), IT = 7yM,(0).
Applying the second law of cosines to the triangle with vertices z, y,
and w, we obtain

d(y, w) ^ d(z, y) cos p(Z, W) .

I t then follows that cos p(Z, W) ^ 0/8.
Now let z'ez{R) and let 3/' be its foot in a(R). Let X ' = ^ ( O ) so

that X ' is the velocity vector of a at y. Further let Z' = 7yz>(0). Then
p(Z, X') = TV/2. Therefore,

p(X', Z') ^ TT/2 - ^(Z, ZO ^ 7T/2 - /o(Z, IT) - p(W, Zf)

and, by Lemma 2.2, p(W, Z') < n/{2 + /52) as long as d(y, w) ^ /9. Thus

( * ) p(X', Z') > 2 ( g ^ - cos- 03/a) .

Since d(^/, yf) and d(y, zf) can be arbitrarily large and d(z', y') is bounded,
it follows that p(X', Zr) can be made arbitrarily small (Remark 2.6).
Thus, the right hand side of (*) cannot be positive. This forces /3 = 0,
otherwise 8 could be chosen very close to /3 and cos"1 (0/8) would be as
small as needed to make positive the right hand side of (*). It follows
that dist (o-(iJ), L) = 0 as well. The proposed limit results now from
convexity.

(ii) =» (iii) Immediate.
(iii) => (i) Choose any pe M and let (xn) be a sequence in L such that

dist (xnf M) —• 0 as n-+ <*>. Let an be the unit-speed ray at p that goes
through xn and we may assume that (ffn(0)) converges to l e TpH, for
we can always pick a convergent subsequence. Since L does not meet
Mt (xn) cannot be bounded, so that £B—•<». If a is the X-ray, then
lim dist (<7(tn), M) = 0 so that indeed Xe TPM. •

The following result is now immediate:
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COROLLARY 3.5. If M is properly asymptotic to L, then L is properly
asymptotic to M. •

REMARK 3.6. During the proof of 3.4 we obtained:
(a) Given p and a as in 3.3, any qeL will be the starting point

of a ray z asymptotic to a. Consequently, the point p in the definition
is by no means unique; using 3.5 we see that any point in M will do.

(b) L and M are properly asymptotic if, and only if, they are disjoint
and each contains a geodesic path asymptotic to the other one.

(c) Zero distance may be replaced by boundedness in (ii) of Proposi-
tion 3.4.

We are now in position to introduce:

DEFINITION 3.7. Two complete totally geodesic submanifolds of H
are asymptotic if one of them contains the other, or if they are properly
asymptotic.

Thus, asymptoticity will be reflexive and symmetric as a relation
between complete totally geodesic submanifolds although not transitive,
as can easily be seen in H2.

In order to extend the notion of asymptoticity to rays we adopt a
different approach.

DEFINITION 3.8. Let a and z: [0, oo)^H be rays. We say that z
is asymptotic to a if dist(r(-), o(R)) is a bounded function.

We observe at once that the actual parametrizations of a and z are
irrelevant in the above definition. Also, the roles of a and z may be
reversed. If a and z have the same speed, then the requirement of the
definition is equivalent to the boundedness of d(a(-),z(-)), by 3.3. We
can also use the results of this section in a rather straightforward way
to obtain properties of the relation of asymptoticity on rays. In parti-
cular, if a and z are rays of the same speed, 3.4(iii) says that they are
asymptotic if, and only if, d(a(t), z(t)) tends to zero as t —> °°. It follows
that asymptoticity is an equivalence relation on the collection of geodesic
rays. Finally, we concatenate the two notions by declaring that a ray
G and a complete totally geodesic submanifold L are asymptotic if there
exists a ray in L asymptotic to a.

PROPOSITION 3.9. Let z be a geodesic ray in H. Given p in H, there
exists a unique unit-speed ray o starting at p and asymptotic to z.

PROOF. TO prove uniqueness, if a and a1 fulfill the above conditions,
then a is asymptotic to ax by transitivity. Since d(o(t), o^t)) is bounded
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for t —> oo9 we may invoke 2.6 to conclude that p(a(0)f (̂ (0)) is arbitrarily-
small. Thus (j(0) = (7x(0) whence ^ = a.

For existence, we let an = 7pr(n). Then, some subsequence of (tfj
will converge to some Xe TPH. Let £(0) = X •

PROPOSITION 3.10. Let o and z be nonasymptotic rays in H. There
exists a unique geodesic path S that is asymptotic to both a and z.

PROOF. By transitivity, we may replace a (or z) with an asymptotic
ray. Then we may use 3.9 and assume (7(0) = r(0). Without loss of
generality, we may also assume that both are unit-speed rays.

For each integer n*zl, let Sn be the geodesic path through o(ri)
and z(n) and let qn be the foot of p in Sn. By uniqueness of the foot (2.3)
qn is distinct from either o{n) or z(n). Note that this is also true—in
a simple way—when peSn (i.e., when a(0) = —£(0)). Thus, 7n = 7g%r(n)

is a well-defined unit-speed geodesic.
Since d(p, ?»(•)) is strictly convex, and since we have z{n) in the

positive ray of 7n, o(n) must be in the negative one. Again the case
(7(0) = £(0) should receive separate attention but it is simple. By 2.1,
we have

p{o{Q\ £(0)) < 2TT/(2 + oi)

where an = d(p, qn). Since G and z are non-asymptotic, the left hand
side is positive. Consequently, (an) is a bounded sequence. It follows
that 7n(0) has a subsequence converging to a vector X. It is a simple
matter to verify that the X-geodesic 7 will provide the desired path S.
The positive ray of 7 is asymptotic to z whereas the negative one is
asymptotic to a.

For uniqueness, if 7 and /3 are unit-speed geodesies such that their
positive rays are asymptotic to z and their negative rays, to a, then
d(7(t), 0(R)) - > 0 a s ^ ± o o . By convexity, 7(/J) = 0(R). •

We close this section with a consequence of 3.3 and 3.4:

PROPOSITION 3.11. Let M and N be complete totally geodesic sub-
manifolds of H. If dist (M, N) > 0, then there exists a unique geodesic
path orthogonal to both M and N, to be called the common perpendicular
to M and N.

PROOF. Let d(M, N) = a. We claim that the set

A = {ye N; dist (y, M) ^ a + 1}

is compact. We need only prove that it is bounded. Assume, for con-
tradiction, that A is unbounded and fix x 6 M. Then there exist sequences
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(yn) in iVand (xn) in M such that d(yn, x) —> °° but d(a?n, g/J <̂  a + 1. Let
Fn = 7Xyn(0), Xn — T^JO). We may assume, using a subsequence, if
necessary, that (YJ converges to some Ye TXH. By 2.6, p(Xnf YJ-+0,
whence Ye TXM. It follows that M is asymptotic to iV, in violation of
the hypothesis a > 0.

Now A is clearly nonempty so that there exists qe A such that
dist (q, M) = a. Let p be the foot of q in ikf. Then q is, in turn, the
foot of p in N, and the geodesic path S through p and g is orthogonal
to both M and N.

It is clear that S is the only common perpendicular to M and N that
contains either p or g. Consider then p' ^ p in M and q' ^ g in JV. We
construct the geodesic quadrilateral with vertices p, q, qf, p', in this
order. It has one side in M and another in N. By the formula of
Gauss-Bonnet, the sum of internal angles must be strictly less than 2TC,
provided that the two sides not in either of M and N do not meet.
Since the angles at p and q add to TT, the side (segment) with endopoints
p' and qr cannot be perpendicular to both M and N. In the extreme
case where the segments meet, we have two triangles with a common
vertex. Again these triangles cannot have two right angles. This
proves uniqueness. •

Henceforth, H will denote an Hadamard manifold of dimension
greater than 1. A fe-dimensional foliation To of H is an integrable
distribution To of fc-dimensional subspaces or a rank k integrable sub-
bundle of the tangent bundle of H. It is not assumed to be smooth.
Therefore, integrability is meant in a most direct sense, namely: each
point of H is contained in a maximal manifold, called a leaf through
that point. A hyper space foliation is one whose leaves are hyper spaces
of H. In this case, the uniqueness of the leaf through each point is
automatic, regardless of smoothness or even any continuity hypothesis.

4. Limit Units. Let To be a hyperspace foliation of H and let us
choose a point p e H and a unit vector Yo e TPH such that Yo JL T0(p). Note
that YQ is one of two possible choices. Both Yo and p will remain fixed
throughout the discussion of this section. Let Lo be the leaf through
p. Then Lo determines two open half-spaces. Specifically, U will be the
component of H — Lo which contains exp (Yo) and io~ will be the other
one. Since Lo is complete and its complement has exactly two components,
it follows easily that each one of these components is a (geodesically)
convex subset of H.

If M is another leaf of To such JlfcJ0
+, the positive half-space m+
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determined by M is the one which does not contain Lo. If Mclo~, we
exchange "does" with "does not". Of course, the convention depends
upon Yo. On the other hand, it allows us to extend Yo to a unit vector
field Yx 1 To, parallel along each leaf, by requiring that expg(F) 6 m+, if q
is in a leaf M as above. We will use superscripts " + " and " —" to dis-
tinguish positive and negative half-spaces determined by a given leaf,
once Y is fixed as a reference.

Given M and m+ as above, we will often say that a set G is in the
positive side of M to mean Gcnx+. If, in addition, Gf is in the negative
side of M we will say that M separates G and G'.

PROPOSITION 4.1. Given a > 0, there exists a unique leaf La c U such
that dist (p, La) = a.

PROOF. We begin with uniqueness. Let L and M be distinct leaves
in the positive side of Lo. We may assume that L is in the negative
side of M, since L f] M = 0 . Thus, L separates LQ and M. Hence, the
perpendicular segment from p to M must meet L. It follows that there
exists qeL such that d(p, q) < dist(p, M), so that L is (strictly) closer
to p than M is. We conclude that there can be at most one leaf at
distance a from p, in the positive side of LQ.

For existence, let Da be the closed d-ball of radius a around p. Let
Di = Dar\H. If L is a leaf through a point #eD+, then 0 ^
dist (p, L) ^ a. Thus the set

{dist (p, L); L i s a leaf, L f] D^ ^ 0}

is non-empty and bounded by a. Let 6 be its supremum. We can be find a
sequence (6B) converging monotonically to 6, such that, for each n9 there
exists a leaf of TQ at distance bn from p. We let qn be the foot of p
in that leaf and, selecting a subsequence if needed, we assume that (qn)
converges to some q in the compact set Dj".

Fix an integer k > 0. For each n > k, d(p, qn) ^ d(p, qk) so that qn

cannot be in the negative side of the leaf M through qk. Consequently,
q is in the closed positive half-space of M. This means that dist (p, Lb) ̂ >
d(p, qk), where Lb is the leaf through q. Hence dist (p, Lh) ^ 6. But
q e Lb n 15T and clearly g g Lo. It follows that g must be inside Lb n ! #
whence dist (p, L6) = b.

Finally, suppose 6 < a. Then, we can find 6', 6 < 6' < a, and let
q' = 77pq(b'). If V is the leaf through q', let q' itself is evidence that
1/ and I/o are separated by Lb. Hence we have dist (p, L') > 6, a con-
tradiction. It follows that 6 = a and L6 is the promised La. •
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Henceforth, we assume that the curvature of H is bounded from
above by —1 as in §3. We recall that Sp is the unit sphere of TPH (p
and Lo remain fixed) and p stands for spherical distance. Note that Sp

is the boundary of exp"1 (A)-

THEOREM 4.2. There exists a unique vector X+ e Sp having the follow-
ing property: given a leaf Matf and any e > 0, there exists Ze Sp with
p(Z, X+) < e such that the Z-ray meets M, i.e., exp (tZ) e M for some
t > 0.

PROOF. For each i > 0 w e let qt be the foot of p in Lt (notation as
in 4.1) and let Xt = %qt(0). We will prove that l i m ^ Xt exists (in Sp).
Let

At = {Ze Sp; the Z-ray meets Lt) .

Clearly Xt e At for all * e R and, by Lemma 2.2, the diameter of At is no
larger than 2TT/(£2 + 2). Indeed, by that lemma,

At c {Ze Sp; p(Z, Xt)< n/(f + 2)}

so long as K^ —1.
Next, we observe that, if tf > t, then Lt separates Lo and Lt,. Thus,

any ray from p that meets Lt> must also meet Lt and this implies that
At,ciAt. Therefore, (At)t>Q is a nested system of compact subsets of Sp

with diameters tending to zero as t —> °°. It follows that D*>o At is a
singleton. Its element is, of course, limX* and we denote it by X+.

Let M and e > 0 be given. Then, we can find t > 0 such that
p(Xt, X+) < e and t > dist (p, M). It follows that the X rray meets ikf,
which separates Lo and Lt.

Finally, for uniqueness, let We Sp be such that p(X+, W) > 0. Then
we can certainly find t > 0 such that 4x < (f + 2)p(X+, W). If Z is any
vector in At, p(Z, X+) ^ p(Z, Xt) + p(Xt, X+) < 2x/(t2 + 2). It follows that
p(Z, W) > 27i/(t2 + 2). Hence W cannot have the required property. •

REMARK 4.3. During the proof of 4.2, we obtained: if we are given
ZteAt, for each teR, then Zt->X+ when £->oo. Equivalently, if
yteLt are given, then 7P1/t(0) —> X+ as t—>°o.

DEFINITION 4.4. We will call X+ the positive limit unit at p.
Similarly, we have a negative limit unit X~. Of course, the names
"positive" and "negative" depend on the choice of YQ.

PROPOSITION 4.5. Let qeHand let Mbe the leaf through q. Let Z+

be the positive limit unit at q. Then the X+-ray and the Z+-ray are
asymptotic.
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PROOF. We consider two cases. First, let us assume that the X+-
ray meets all leaves Lt for t > 0. In this case let the intersection be
{xn} for each Ln, n^l, and let Wn = 7^(0). For sufficiently large n,
Ln will be on the positive side of M. By Remark 4.3, Wn -»Z+ as
n —> °°. Thus Z+ defines a ray asymptotic to the X+-ray.

Second, let us assume that the X+-ray does not meet some leaf Lb

with 6 > 0. Then it cannot meet any Lt with t > b.
Let a be the X^-ray. Given integers n^ m ^ 6, we let X™ be the

point of intersection of Lm with the Xn-ray. Then, the sequence CXj)^
can be used to apply the definition of proper asymptoticity (def. 3.2) to
o(R) and Lm. From Proposition 3.4, we can obtain zmeLm such that
dist (zm, a(R)) < 1/m.

Let zm = 7qZm and let z be the Z+-ray. Then zm(0) —> Z+ as long as
dist (g, Lm) -^ oo. For each t > 0, we can find an integer m such that
d(q, zm) > t. Using the convexity of dist(rm(-), o(R)), we have:

dist (rw(«), o(R)) < dist (g, a{R)) + 1/m

^ d(p, q) + 1/m

for large enough m. Taking limits, we obtain:

dist

Thus r and a are asymptotic. •

Evidently, we can do the same with negative limit units at p and q.
In particular, if X+ and X~ coincide at p, all other points will have
coincident limit units. In the opposite case, there exists a unique
geodesic path S which is asymptotic to the X+-ray and to the X~-ray,
and this S is independent of the choice of p. In this situation,

DEFINITION 4.6. Any unit-speed geodesic having S for path will be
called a waist curve. If To admits no waist curve (the case X+ = X~)
we say that it is tight. We say that it is loose when it is not tight and
it has no leaf that contains S.

Thus, in a loose foliation, the waist path S (or any waist curve) is
transversal to all leaves (in particular it may fail to meet some of the
leaves.)

REMARK 4.7. During the proof of Proposition 4.5, we proved that if
the X+-ray fails to meet some leaf L in the positive side of Lo, then it
must be asymptotic to L.

5. Constant Curvature. We now restrict our attention to space
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forms. Specifically, in this section we will have H = Hn for some n > 1.
Then hyperspaces are plentiful. In fact, they can be obtained merely
by exponentiation of hyperplanes in tangent spaces.

Let us sharpen some of the results obtained in Section 2 while
studying the pencil Q over a unit-speed geodesic a with vertex p. We
have r(u) — d(p, o(u)) for u e R, and we assume that a(0) is the foot of
p in o(R). Bearing in mind that Qtt(0, u) — 0, we decompose the Jacobi
field Qu{-, u) according to tangential and normal components:

Qu = ta{v)El + m(u) sinh (tr(u))E2

where El = QJr and E2 is uniquely determined by: the frame {Elf E2} is
orthonormal and m(u) > 0, Vu. This frame along Q is defined on all of
R2 and parallel along each geodesic Q(-,u). Its orientation is consistent
with that induced by Q for t > 0.

To determine a, we differentiate g(Qt, Qu) = tar. Since V is symmetric
(torsion zero) and r2 = g{Qu Qt)f we have

ar = g(Qt, FuQt) = rr

so that a = f. For m, we use Qt _L E2;

g(FuE2, Ed = ^ ( F ^ 2 , Qf) = ~-g(VuQt, E2)r v

and, using again the symmetry of F, we arrive at:

g(PuE2, Ej) = - m cosh (tr) .

Now the vanishing of the acceleration of o yields:

[r — m2 sinh r cosh r = 0
[2mr cosh r + m sinh r = 0 .

We solve the second equation for m, recalling that r(0) = 0 and

where r0 = r(0). Solving the first equation,

r2 = 1 — s^n^2 ro
sinh2 r

or
(r sinh r)2 = cosh2 r — cosh2 r0

and then we obtain
cosh r = cosh r0 cosh u .
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To study the behavior of the frame {El9 E2} along the w-axis (i.e.,
at p), we let et = Et(0, 0), i = 1, 2,

and we define 6: R-> R by requiring that 0(0) — 0 and

£^(0, u) — cos 6{u)e1 + sin 6(u)e2 .

For t = 0 we have FJEi = m{u)E2 and then

cosh2 u smfe2 r0 + smh2

whence

\smh rj

LEMMA 5.1. Let L be a hyper space in H = Hn. Let piL and let
Xe SPH. Let q be the foot of p in L and let et = %q(0). Then the X-
ray meets L if, and only if, g(X, ex) > tanh (d(pf q)). The very same
ray is asymptotic to L if, and only if, the above inequality becomes an
equality.

PROOF. Let N be a complete totally geodesic surface tangent to el

and X (it is uniquely determined unless X = ±e±). Then L n N is a
geodesic path which we parametrize as a unit-speed geodesic a such that
(7(0) = q. Of course, the foot of p in a(R) is still q and the X-ray meets
L if, and only if, it meets a(R). But then, it meets a(R) if, and only
if, X is in the range of ^(0, •)• This range is defined by the equation
|tan0| < l/sinhr0, i.e., cos# > tanhro.

As for asymptoticity, if it occurs, then the X-ray must be properly
asymptotic to a since p $ L. Thus we must have g(X, ej ^ tanh r0. On
the other hand, the very definition of proper asymptoticity (3.2) forces
the reversal of the inequality. •

Let To be a hyperspace foliation of an open subset G of H and let
J be an open interval. Let T:J-^G be a unit-speed geodesic segment
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transversal to To, that is, to the leaves of To. Given s e J, the leaf
L{s) through z(s) is completely determined by the unit vector Y(s)
at r(s) that is orthogonal to L(s) and such that g(Y(s), v(s)) > 0. We
have then a unit vector field along r from which all leaves of To that
meet z(J) may be recovered. To study the "covariant variation" of
Y along r, we introduce a generalization of the spherical distance p\ if
a,beJ, let

pr(Y(a), Y(b)) = p(Tt(Y(a)), rb
8(Y(b)))

for any se J. Here, r? stands for parallel displacement along v and the
choice of s is immaterial.

THEOREM 5.2. Le£ To, r, and Y be as above. Then,

lim SUp Pr(r(a), r(6)) ^ fl(r(ft) f (ft)) ̂
«-6 [6 — a\

PROOF. Let a ^ b be given in U and let again L{s) denote the leaf
through z(s). Let p = z(a) and let q be the foot of p in L(6).

Let a = 7gr(6) or, if q = r(6), choose any unit-speed geodesic a in L(6),
starting at g'. Let iNTbe the complete totally geodesic surface determined
by p and o. If we displace F(6) parallelly along a to Tgil, we end up
with a vector tangent to the segment from p to q. Thus 5̂ (6) must be
tangent to N.

Let Ut = d(g, r(6)) and let us consider the pencil Q over a, with
vertex p. We have a(u) = r(6) while Y(6) is a linear combination of the
vectors E2(ulf 1) and Ex(uu 1) = ±f(6) (± according to a < b or a > b).

Now we have a vector orthogonal to Y(b) in TT{h)N namely

ut) + miiii) sinh
and we know that g(Y,i) is positive. Therefore we can obtain an
explicit expression for Y(b). Indeed, rh

a(Y{b)) is the vector

F* = ±m1£
r
1(0, u,) - r
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where mL = m(ui) sinh (r(uL)) is just g(Y(b), £(&)). Let us assume a < b for
the other case is analogous. Then

g(Y*, Si) = mx cos 6(uj) + r(uj sin d(u^)
— cos (0(wi) — cos"1 mx)

and we observe that the inner angles of the triangle having p, q, and
r(6) for vertices are, respectively, 0(u^), sin"1?^, and TT/2. It follows
that 0(tti) ^ n/2 — sin"1 mi so that cos^m! ^ 0(t&i). Thus

1 P( Y*, d) = cos"1 mx - Ofa) .
Consider now Y{a) and let c = g(Y(a)9 d). Then c > 0 because g =

exp (ro^) is in the positive side of L(a). If c < 1, we can define a unit
vector X by

VI-C2 X
and X l F(a). The X-ray is in L(a)f which means that it does not meet
L(6). Thus g(X, ex) ̂  tahn r0 whence

g(Y(a), ej ^ sechr0 .

Of course, this inequality holds also when c = 1, i.e., when Y(a) — ex.
It is equivalent to L(a) PI L(6) = 0 - We apply now the triangle inequality
of the distance p;

pT(Y{a), Y(b)) ̂  cos"1 mx - 0(u^ + cos"1 (sechr0)

and, by use of the explicit expressions for 6 and r, the right hand side
becomes ^(6 — a), where

= tan"1 (m: sinh v) - tan"
m1 cosh v

which is a diflferentiable function such that ^(0) = m^ The proposed
inequality follows now from the definition of derivative. •

We observe at this point that hyperspace foliations have been defined
without many restrictions. In fact, a hyperspace foliation on a subset
G of H is merely a partition of G into hyperspaces: the leaves must be
disjoint and their union must be all of G.

COROLLARY 5.3. A hyperspace foliation on a subset G of H is neces-
sarily continuous (as a distribution).

PROOF. Given any qeG, let r be a unit-speed geodesic not in the
leaf through r(0) = q. Then z will be transversal to all of the leaves
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(although it may fail to meet some of them). If we define a unit vector
field Y as in 5.2, then g(Y, r) <£ 1 and it follows that Y is uniformly-
continuous. The orthogonal complements of the vectors Y(t) define a
continuous subbundle iz\B~* R of the pullback z*(TH) and, since z is an
embedding, we may (and will) identify B with a topological submanifold
of TH. Let E: B-+H be the restriction of the exponential map to this
submanifold; it maps the fibre over each te R diffeomorphically onto the
leaf L(t) through z(t) and, since the leaves are disjoint, B is injective.
Given a < b in R, the leaf L(a) determines half-spaces H where the ±
refers to Z(a), in the sense of Section 4; similarly, L(b) determines a
half-space pair If. The open set G = H n JjT is the (disjoint) union of the
leaves L(t), with a < t < b. Indeed, if ze G, the function q(Y(-)f %{.)M(0))
is continuous on [a, b] and its values on the endpoints have opposite
signs. Thus it must vanish at some point c in (a, 6), that is, zeL(c).
Setting TCXOE = iz defines izx\ E(B) -• R and it has just been proved that
^ ( ( a , b)) is the open set G. It follows that %x is continuous; in fact,
E(B) = TCT\R) is open in H. Now

E-1 = (EXP)-1O(TT1, identity)

and E maps B homeomorphically onto E(B). This proves the continuity
of To, as a subbundle of TH. •

LEMMA 5.4. Let L be a hyperspace of H and let piL. If a is a
ray in L, there exists a unique hyperspace M through p which is
asymptotic to both a and L.

PROOF. For uniqueness, suppose that Mx and M2 are hyperspaces as
specified and let z be the unit-speed ray starting at p and asymptotic to
a, so that z(R) c Mx D M2. We define a unit field Zt along z by requiring
that Zt 1 Mi and that Mt not separate L and exp (Zt), i — 1,2 (thus Zt

is parallel along r).
For each t > 0, let b = b(t) be the distance from z(t) to L and let

Zo = Z0(t) be the initial velocity of the unit-speed ray that starts at z(t)
and is perpendicular to L. Now observe that neither Mx nor M2 may
meet L as p ? L implies proper asymptoticity. Just as in the proof of
5.2, we have

p(Zi9 Zo) ^ cos"1 (sech 6) .

But then p(Zlf Z2) gets arbitrarily small as t —> °o because 6 -> 0, and
p(Zlf Z2) is constant by parallellism. We have then Zx = Z2 whence
M, = M2.

For existence, we again let z be the unit-speed ray starting at p and
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f(0)

asymptotic to a, hence, to L. By transitivity, o may be replaced at will
with any other ray in L that belongs to the same class of asymptoticity.
Thus we assume that a(G) is the foot of p in L, in order to simplify
notation. We again let Zo = ZQ(0) e Sp be the initial velocity of the cor-
responding perpendicular. Let AT be the complete totally geodesic surface
tangent to both ZQ and f(0). It must contain a(R) because there exists a
unique unit-speed ray in N starting at p and asymptotic to z. This ray
must be G because it is a ray in H as well and we can apply uniqueness
from 3.9.

We define M by stipulating that TPM is spanned by (TPN)L and f(0).
Then we already have z(R) c M so that we need only prove that M and
L are disjoint.

Given WeSpM, we write;

W = g(W, r(0))f(0) + WO

where Wo ± N. Then g(W, Zo) ^ g(z(0), Z0) ^ tanh (d(p, r(0))) so that the
T7-ray does not meet L. Thus Lf) M = 0. •

THEOREM 5.5. Let J be an interval, possibly infinite, and let
z: J —• H be a geodesic (segment). Let Z be a unit vector field along z
such that g(Z, z) > 0 and, for any be J,

lim sup P^a)> Z ( 6 ) ) ^ g(Z(b\ z(b)) .

Then, for any s ^ t in J, the hyperspaces of H orthogonal to Z(s) and
Z(t) are disjoint. Moreover, if J — R, the hyperspaces orthogonal to Z
extend to a unique foliation of H having z as waist.

PROOF. Let L{s) be the hyper space orthogonal to Z(s), for each seJ.
Let us assume, for a contradiction, that L(a^ D L(a2) =£ 0 for ax < a2

in J.
We consider first the two-dimensional case, in which the hyperspaces
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L(s) are but geodesic paths so that L{aY) fl L(a2) is necessarily a singleton
{y}. Let Bi be the segment between r (a j and y, i = 1, 2.

Now, given any se(aua2), L(s) separates r(ai) and r(a2). Thus, at
least one of L(s) f! Br and L(s) f] B2 is nonempty. Let its only element
be called y8. Since Z is continuous, ys is continuously dependent on s.
We let

A, = {s 6 (<*!, a2); y8 e Bt) , i = 1, 2 .

Then Ax and A2 are closed subspaces of (alf a2) whose union is the whole
interval. Thus, at least one of them, say A2, has nonempty interior.
We let b = sup A2. Unless b = a2, we have 6 e A2 and then 6 must also
belong to At. Thus L(b) contains y. The latter conclusion holds
(trivially) when b = a2 too.

Now there exists a strictly increasing sequence (bk) in A2 such that
&£ —> 6. For each fc, L(bk) runs from r(6fc) to a point in j?2. Thus it must

meet L{b) at a point between r(6) and y. In other words, L(bk) 0 L(b)
contains a point no farther from r(&) than is y.

Returning to the general case, we can choose y e L(a±) n L(a2) and
apply the preceding argument to the complete totally geodesic surface
determined by r and y. We obtain a sequence (bk) converging to beJ
such that bk < b for all k ^ 1. For this sequence, there exists a C > 0
such that dist (r(6), L(6fc) n 1/(6)) ^ C, for all fc.

To estimate pv(Z(b), Z(bk)) let us fix bk = a and let us invoke the
construction of Theorem 5.2. Here we have a unit vector X l Z(a) such
that the X-ray meets L(&) at a point whose distance from r(b) is no
larger than C. Thus

+«^ ^ /v \ ^ tanh C
tan p(X, ex) ̂  —-— .

miSinh (|6 — a\)

For convenience, let m0 = m^tanh C so that mo> m^ Then,
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q(X e ) > m o s i n h ( l & - a\)
9 i / l + m?sinh2(|6

and g(X, erf + g(Z(a), e,)2 ^ 1 so that

p(Z(a), ej ^ tan"1 (m0 sinh (|6 - a\))

and then, as in 5.2, we obtain

pT(Z(a), Z(b)) ̂  tan-1 (m0 sinh (|6 - o|)) - tan"1

Hhtan-1

Replacing a with 6fc and letting k —> 00, we obtain

|6 — £|

a contradiction that proves the first part.
For the second part, J = R and, just as in 5.3, we denote by

7t:B-^R the continuous subbundle orthogonal to Z in z*TH, while B is
identified with an open subset of TH and E: B -»if is the restriction of
exp to B. Given s e R, E maps the fibre over s onto the hyperspace
L(s) orthogonal to Z(s) and, by the first part of this proof, E is injective.
Keeping the notation l± for the half-space pair determined by L(a), we
conclude, as in 5.3, that E will map the foliation of B by fibres onto a
hyperspace foliation of E{B) and, if a < 6, ^-1(a, 6) will be mapped onto
an open set of the type li fl lr9 having L(a) U L(b) for boundary. The
full image E{B) is also open in H but, in general, that will be just a
proper subset of H.

Set p = r(0) and c8 = dist (p, L(s)), each s in i?. Then c8 increases
(strictly) with |s|. If cs is unbounded for s < 0 then cs —• ĉ  when s -> — 00
and, for each 7/6 ^ , there exists s < 0 such that d(p, y) < c8. Thus the
segment from p to y does not meet L(s) whence y e E{7t~l{ — 00 f 0)) and
lo c -E(5). Similarly, if c8 -> 00 as s -> + 00, then Zo

+ c ^(5). If both are
true, then E{B) is all of H and no extension of TQ is necessary.

Now assume E(B) =£ H. Then cs must be bounded on at least one
half of the real axis; say lim^ooC8 = ce R+. The feet of p in the leaves
within U form a bounded set and there exists a sequence (qk) in U such
that qk is the foot of p in the respective leaf, qk—>qeH, and d(p, #*) -> c.
As we pointed out above, c8 is monotone for s > 0 so that c > c,f Vs > 0.
Thus q$E(B) and we must find q in the boundary d{E{B)).

Let Y" be the only unit vector field orthogonal to TQ such that
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YoT = Z. Note that Y(qk)-*%q(c) because Y(qk) = %9k(d(p,qk)). If To

has an extension, continuity forces the hyperplane at q to be %q(cy.
Let M be the corresponding hyperspace and assume that E(B) D M
contains some point y. If b = d(g, i/), the sequence of geodesies <7A = 7 W

is such that tffe(0)e T0(A) and <jfc(0) —> %V(Q). Hence ok(b)->y and 7gl/(6)e
To(2/) so that the path of lqy is in the leaf through y contradicting
q$E(B).

By 4.7, we should also have M asymptotic to z. To prove it, we
let ak be the unit-speed ray from qk to z(tk), where tk = Tr̂ g*). Some
subsequence of (0k(O)) will converge to some vector in TqM which will,
in turn, define a ray a in M asymptotic to r.

To complete the construction in U, we need to provide a leaf through
each point in the exterior of E(B) in U. Given such a point x, a leaf
through it should not meet M but it should be asymptotic to z if the
latter is to be a waist curve. Therefore, we need a hyperspace Mx

through x asymptotic to both M and z. By Lemma 5.4, Mx is uniquely
determined. We must now show that, if x, ye U — E{B) and Mx ^ My9

then Mx and My are disjoint.
Assume that Mx separates p and y (otherwise My separates p and x).

Then there exists a unique hyperspace M' through y which is asymptotic
to Mx and to z. Just apply 5.4 to Mx and the ray starting at x and
asymptotic to z. But then M' is also asymptotic to a and Mx separates
it from M. Thus Mr is asymptotic to M as well. It follows that
M' = ikfy so that My does not meet Mx. The construction is now
complete. It can also be applied to the negative side of LQ if neces-
sary. •

If we restrict z to a closed interval in the second part of the
preceding proof, we obtain:

COROLLARY 5.6. Let J = [a, 6] in 5.5. The hyperspaces L(s) are
the leaves of a foliation on a closed subset of H whose boundary is
L(a) U L(6). •

Let us fix a unit-speed geodesic r and a parallel orthonormal frame
v along z such that ven = z. We follow Kobayashi-Nomizu [6] in that
an orthonormal frame at p e H is a linear isometry from Rn to TPH,
where Rn carries the standard inner product which renders orthonormal
the canonical basis {elf • • •, en}.

Then, the unit fields Z along r satisfying the limit condition of
Theorem 5.5 are in one-to-one correspondence with the set C of curves
@ = (@\ . . . , pn) on S""1 such that /3n > 0 and, for all be R,
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< ^ ( 6 ) .
|6 — a\

In order to classify the loose hyperspace foliations on H according
to congruence, we need only consider those that have z for waist because
any geodesic path can be mapped upon z(R) by some isometry.

Now suppose that Z and W are unit fields along z satisfying the
conditions of 5.5. Then they define, via the construction of 5.5, loose
hyperspace foliations of H, having z for waist. If these foliations are
congruent, there exist ae R and an isometry / : H —> H such that, for all
teR, f(z(t)) = z(t + a) and f*Z(t) = W(t + a), so long as g(Z,i) and
g(W9 z) are positive. We observe then that / is uniquely determined by
a and the linear isometry (peO(n) such that v(t + a)°<p = f*°v(t); this
equation is independent of t because v is parallel. Since <p • en — en, we
need only consider the restriction o/r of ^ to Rnl = ( e j 1 .

We define an action of the group R x O(n — 1) in C:

((a, f) - /3)(s) = f - fi(8 + a)

where O(n — 1) is embedded in O(n) in the usual way, i.e., <f-en = en.
It follows that the classes of congruence of loose hyperspace foliations
are in one-to-one correspondence with the orbits of the above action on
C.

We complete the classification by proving that any two tight hyper-
space foliations are congruent as well as any two that are neither tight
nor loose. Consider first two hyperspaces L and M with respective half-
space pairs Vs1 and m* such that Len t " and Mczl+.

LEMMA 5.7. Assume L and M to be (properly) asymptotic and let
p e G = l+ fl nt~. Then, a hyperspace N through p separates L and M if,
and only if, it is asymptotic to both. Moreover, such an N is uniquely
determined by p. All such N define a foliation on G.

PROOF. If N separates L and M, then we must have dist (L, N) =
dist (N, M) = 0, because L and M are at distance zero from each other.
Thus N is asymptotic to both L and M. Conversely, if iVis asymptotic
to L and M, then it must be properly so because p & L\JM. Since peG,
N must separate L and M.

Let a be a ray in L asymptotic to M. If a hyperspace N separates
L and M, it separates a and M as well. Thus we have dist (a(R\ N) = 0
so that N is asymptotic to a. But then, the requirement that p be
contained in N = Np uniquely determines Np, according to Lemma 5.4.
To prove existence we will again invoke 5.4, taking Np to be the unique
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hyper space through p asymptotic to L and a. Let r be the ray starting
at p asymptotic to a and let p' e M. Then z is a ray in Np so that
there exists unique a hyperspace M' through p' asymptotic to Np and r.
But then M' is asymptotic to a and Np separates it from L so that M'
is asymptotic to L as well. From the uniqueness part of 5.4 it follows
that M' = M.

Finally, if q $ N, then Np separates q from either L or M. Let us
say L, for instance. Then the very last of the above arguments can be
applied with q replacing p' and Nq replacing M to show that L, Np, Ng,
are mutually asymptotic. Since q<£Np, we have Npf] Nq — 0 . •

Fix a point pc and a hyperspace Lc through pc. Let Xc be a fixed
unit vector tangent to Lc at pc. From Lemma 5.6, it follows that there
exists a unique hyperspace foliation TQ on H whose leaves are all
asymptotic to Lc and to the Xc-ray. In particular, the leaf through pc

is Lc. Now let TQ be a tight foliation of H and let us choose a point
pe H. Then the limit units X+ and X~ at p coincide with a single
vector X which must be tangent to the leaf L through p. By Remark
4.7, the leaf through any point q e H can be none other than the unique
hyperspace through q which is asymptotic to L and to the X-ray. It
follows at once that To is congruent to Tc. Indeed, any isometry of H
mapping X to Xc and T0(p) to Tc(pc) will serve the purpose of congruence.

For the "neither-tight-nor-loose" (NTNL) case, we choose a unit
vector Yc 1 Tc(pc) and let T' be the foliation that agrees with Tc on the
positive side of Lc while the leaves on the negative side are replaced by
the hyperspaces asymptotic to Lc and to the ( — Xc)-ray. Given any
NTNL foliation To, choose p in the waist path and choose a unit vector
Y orthogonal to T0(p). By Definition 4.6, the leaf L through p contains
the waist. Then the limit units X+ and X~ at p satisfy X+ = —X~ and
are tangent to L. Just as in the tight case, any isometry of if mapping
Y to Yc and I to I c , will be a congruence between TQ and I".

REMARK 5.8. In case the unit field Z of 5.5 is smooth, the limit
condition becomes \\F8Z\\ ^ g(Z, i). Now, given seJ, we have

f («) = g(Z(8), r(s))Z(s) + X

where X is some vector orthogonal to Z(s). Let Y be the unit field on
H which extends Z parallelly along each leaf. Since VXY — 0,

and it follows that | |F rr| | ^ 1 along r. But we can find a segment
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transversal to the leaves through any point of H. Thus the inequality
is valid on all of H. This result is due to Ferus [4, Thm. 2],
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