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Introduction. An affine homogeneous convex domain Q in the n-
dimensional real number space Rn is said to be reducible if it is afflnely
equivalent to a direct product of affine homogeneous convex domains.
Otherwise, it is said to be irreducible. By using the characteristic
function cpQ of i2, we have a Riemannian metric gQ = Hessian of log <pQ

on 42, which is called the canonical metric of 42. The canonical metric
is invariant under the group G(Q) of all affine automorphisms of Q (cf.
[18], [16]).

With respect to the canonical metric, an affine homogeneous convex
domain is a reducible homogeneous Riemannian manifold if it is a reducible
convex domain ([16]). It is natural to raise the question whether the
irreducibility of a convex domain 42 implies that of the Riemannian
manifold (42, gQ) or not. A homogeneous convex cone is a special case of
an affine homogeneous convex domain. It is known that a homogeneous
convex cone in Rn(n ^ 2) is always reducible as a Riemannian manifold
([7], [15]). However, for affine homogeneous convex domains other than
homogeneous convex cones, the answer is affirmative. The main purpose
of the present paper is to prove this fact. After reviewing results of
[18] in §1 and preparing some lemmas in §2, we will prove the main
result in §3 (Theorem 3.1).

In §4, we will study Riemannian geometric relations between an
affine homogeneous convex domain 42 and the tube domain D{Q) over it.
It is known that the canonical metric of Q coincides with the metric
induced from the Bergman metric of D(Q) (cf. [6]). By using this and
a result of [3], we will prove that a tube domain D{Q) is irreducible
with respect to the Bergman metric if and only if 42 is an irreducible
convex domain (Theorem 4.4).

The Bergman metric of an arbitrary homogeneous bounded domain
in a complex number space is Einstein (cf. e.g., [5], [12]). In the case
of affine homogeneous convex domains, an elementary domain is the only
irreducible domain whose canonical metric is Einstein. This fact will be
proved in §5 (Theorem 5.1).
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In the present paper, the theory of affine homogeneous convex
domains and T-algebras developed by E. B. Vinberg ([18], [19]) plays an
important role, and also, the results obtained in [14]-[17] will be used.
The same terminologies and notation as those in the previous papers
will be kept.

1. Preliminaries. In this section, we will briefly recall the funda-
mental correspondence between affine homogeneous convex domains and
T-algebras due to E. B. Vinberg. The full description for them can be
found in [18].

Let 9* = Si^M^r %j be a T-algebra of rank r provided with an
involution *. We now employ the following notation:

ntj = dim %3- , nt = 1 + — £ nik

and

(1 £i,j£r),

where eu = 1 is the unit element of the subalgebra %t = R of 91.
General elements of %d will be denoted as xij9 yijf zij9 • • •, and also an
element x of 91 will be represented by the matrix x = (xt/)f where xi5

is the 91^-component of x. The unit element e of 91 is given by e = (8tj),
where 8iS means the Kronecker delta.

Let us define subsets T = T(H), V = F(9l) and X = X(9I) of 91 by

T = [t = (*«,)€«; tu > 0(1 ^ i£ r), tti = 0(1 ^ j < i £ r)} ,
V={tt*;teT} and X = {xeVl; x* = x} ,

respectively. Then the set V is a homogeneous convex cone in the real
vector space X and the set T is a connected Lie group acting linearly
and simply transitively on V.

We next define subsets To = T0(9t) and Xo = X0(9*) of 81 by

To = {t = (fa) e T; trr = 1} and Xo = {x = (xti) 6 X; ajrr = 0} ,

respectively. Let us put

(1.2)

If the rank of 91 is greater than one, then i2(9l) is an affine homogeneous
convex domain in the affine subspace Xo + e of the vector space X.
Moreover, To is a connected Lie subgroup of T acting simply transitively
on 42(91) as affine transformations by
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(«, tt*) 6 To X Q(S&) -> (8t)(8*)* G 0(81) .

Conversely, every affine homogeneous convex domain is affinely equivalent
to the domain Q(SH) given by means of a T-algebra 81.

The Lie algebra t0 of To can be identified with the following sub-
space of 81:

{(tti) e 81; tti = 0 ( 1 ^ j <i^r) a n d trr = 0}

provided with the bracket relation [a, b] = ab — ba. By identifying the
tangent space of 42(21) at the point e with the vector space XQf we have
the following linear isomorphism:

Using this isomorphism and the canonical metric gQ{%) at the point ef we
have an inner product < , > on t0. With respect to this inner product,
the condition (eif e*> = 1 holds and the Lie algebra t0 is the orthogonal
direct sum of the subspaces 8l«(l ^ i ^ r — 1) an %d(l ^ i < j ^ r).

The connection function a and the curvature tensor R for the
canonical metric are given by the following formulas (cf. [8]):

OL» I Q ^ ^o ^ ̂ o >

(a(x, y), z) = — «[z, a;], i/> + <[«, y], x) + <[x, 2/], z» ;
(1.3) 2

i2: tQ x tQ x tQ —> t0 ,

#(&, 2/, 2) = -B(», V)z = a(x, a(y, z)) - a(y, a(x, z)) - a([x, y], z)

for all x, y, z e t0.
From now on, for an affine homogeneous convex domain, we will

consider exclusively the domain realized as the form (1.2) by means of a
T-algebra.

2. Some lemmas on irreducible domains. In this section, we
prepare some lemmas for later use. Let Q = Q(SH) be an affine homo-
geneous convex domain and a the connection function for the canonical
metric of Q. For every x e t0, we now define a linear operator Ax on te
by Ax(y) = a(x, y). Let us denote by s/ the subspace {Ax; xetQ} of gl(to).
Then it is known in [9] that the Lie algebra § of the holonomy group
for the canonical metric is equal to the smallest Lie subalgebra of gl(to)
such that R(x,y)e% for all x,yet0 and [ j < ^ ] c ^ . The homogeneous
Riemannian manifold (i2, gQ) is irreducible if and only if § is irreducible
as a set of linear operators on t0.

We first prove the following
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LEMMA 2.1. For an affine homogeneous convex domain Q, the holo-
nomy algebra § coincides with the Lie subalgebra of gl(to) generated by the
set S/. In particular, the Riemannian manifold (i2, gQ) is irreducible
if and only if s/ is irreducible on t0.

PROOF. Let §' be the Lie algebra generated by the set s*f. Then
by (1.3), we have R{x, y) e [ j< ^/\ + Jf and R{x, y) e ty for all x, yet0.
It is clear that the condition [sf, §'] c I)' is satisfied. Therefore,
Jjcf)'. On the other hand, from the condition Ae. = 0(1 <̂  i <; r — 1) (cf.
Lemma 2.1 of [16]), it follows that the equality Ax = Si^<i^r 4 ^ holds
for every x = (a^)et0. By [etf xi5\ = ( l /2i/^)^- and (1.3), we have R(ei9

x..) = ( - l/2i/nJAXij(l £i < j <; r) . Therefore, the equality A9 =
^ K i ^ r ( -2\ / 'n i )R(e i , xi5) holds, and hence, J%fa$. From these, it follows
that the Lie algebras fy and ^ are identical. q.e.d.

We now introduce the following condition (C) on a T-algebra SI of
rank r{r ^ 2):

(C) For every pair (i, j) of indices 1 ^ i ^ j ^ r — 1, there exists
a series of indices 1 <; iOf il9 • • •, ip ^ r — 1 satisfying the conditions i0 —
i9 iP = j cmd nix_lix ^ 0(1 ^ X ^ p).

We next prove the following

LEMMA 2.2. Let m 6e a^ ^/-invariant subspace of t0 containing the
subspace 9tyi /or som^ index j(l ^ j ^ r — 1). 1/ ^e condition (C) ftoMs,
f̂eê  tn = to.

PROOF. By using Lemma 2.2 of [14] and Lemma 2.1 of [16], we can
see that the following identities hold:

(2.1)

for l^i<j<k<ir. Therefore the condition nti ^ 0(1 ^ i < j) implies
31^ c tn and 9*̂  c m. Moreover, the condition njk ^ 0(i < k < r) implies
Slifc c m and Slfc& c m, and also, the condition njr ^ 0 implies 8tir c tn.
Hence, by using the condition (C), we have m = t0. q.e.d.

Similarly as in the above lemma, we can prove the following.

LEMMA 2.3. Let m be an ^/-invariant subspace of t0 containing the
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subspace %3- for some pair (i, j) of indices 1 ^ i < j ^ r satisfying
ni3 =£ 0. If the condition (C) holds and Q is not affinely equivalent to
a convex cone, then m = t0.

PROOF. By (2.1), (1 / i /^K - (l/i/%)(l - 5jr)e3em. Therefore, if
j = r, then the subspace 91̂  is contained in m. In this case, by Lemma
2.2, we have tn = t0. Now, we can assume that j ^ r — 1. If nkr = 0
for every index k(l <; k <; r — 1), then the domain Q is affinely equiva-
lent to a convex cone ([18], [16]). Hence, there exists an index
k(l ^ k <* r — 1) satisfying the condition nkr =£ 0. If & = j , then the
condition ni3njr =£ 0 implies wir ^ 0 (cf. [18] or (1.2) in [16]). Therefore,
we can assume that k ^ j . We now want to show that the subspace
S&kk is contained in tn. By the condition (C), there exist different
indices 1 <̂  iOf il9 • • •, ip <̂  r — 1 such that i0 = j , ip = k and nix_lix ^ 0
(1 ^ X ^ p). Using (1.3), (2.1) and the condition (l/l/w7)e< — (l]/nj)ese
tn, we have inductively that S l ^ ^ c t n for every \(1 ^ X ̂  p), where
(ij_i, ^) means (^_lf ^) or (i;, ^_i) in accordance with ix_± < ix or
ii < ^_i. Therefore, from (2.1) and the condition 9Ii'p_lfc'c m, it follows
that (l/V/'n~1)eip_1 — (1/l/iOe* is contained in tn. Again by using (2.1),
we have

= —x k r 6 tn

for every xkr 6 % r , and hence, sakr c tn. From this, it follows that the
condition AX]cr(xkr) = (l/2i/nfc)||a?fcr ||

2efce tn holds. Therefore, Sl^ctn. By
Lemma 2.2, we get tn = t0. q.e.d.

By (1.3), we can easily verify that the following formulas hold:

(2.2) (a(aijf x), bi3)

and

= 1 | 1 (1 - 8ir)(xii9 e>) -
2 \V n3-

(2.3) (a(aijf x\ et} = —y={ai

2vn
for all x e t0 and aijf bi3- 6 91^(1 ̂  i < j ^ r);

(2.4)

for all x e to and aiS e %3(1 ^ i < j ^ r — 1).
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By making use of the above formulas, we can prove the following

LEMMA 2.4. Let m be a non-zero jzf-invariant subspace of t0. / /
the condition (C) holds, then for an arbitrary index i(l ^ i S r — 1),
there exists an element xem such that the Ma-component of x is non-zero.

PROOF. Let us take a non-zero element yem and fix it. We first
suppose that there exists an index j(l <; j <I r — 1, j ^ i) satisfying
yj5 ^ 0. If an index I is smaller than j and satisfies nu =£ 0, then we
take a non-zero element atj e %5 and put z — Aaij(y) e m. By the formula
(2.2), we have

The condition yj3- ^ 0 implies yu =£ 0 or zu ^ 0. In the case where ztj ^
0, we put w = AH.(z) 6 tn. Then, by (2.3), wu ^ 0. If an index k satisfies
the conditions njk =£ 0 and j < k ^ r — 1, then by using (2.2) and (2.4)
we have similarly an element wem such that wkk =£ 0. Now, we take
different indices 1 fg iQ, il9 • • •, ip ^ r — 1 satisfying the conditions i0 = j ,
ip = i and nix_lix ^ 0(1 ^ X <̂  p). Then, by the above arguments, we have
elements aj(1), x{2), • • •, o;(p) in m such that x§x =£ 0(1 ^ \ ^ p). Hence,
putting x — x{p) we get xem such that xit ^ 0. We next suppose that
there exist two indices j and k(l <̂  j < k ^ r) satisfying the condition
1/yt =£ 0. Putting 2J = Ayjk(y) and using (2.3), we have zss = (V2,v/n'j)\\yjk\\

2ej^
0. By using the same argument as in the first case, we get a desired
element xem. q.e.d.

3. Irreducible domains. In this section, by making use of the
lemmas obtained in the previous section, we prove the main result of
this paper.

The homogeneous convex domain Q(n) in Rn(n ^ 2) defined by

(3.1) Q{n) = {{y\ y \ - - y yn) e Rn; t > Q/2)2 + (V3)2 + • • • + (yn)2}

is called the elementary domain of dimension n.

We now prove the following

THEOREM 3.1. Let Q be an a fine homogeneous convex domain which
is not affinely equivalent to a homogeneous convex cone. Then the follow-
ing conditions are equivalent:

(1 ) Q is an irreducible convex domain)
( 2 ) The condition (C) stated in §2 holds for the T-algebra 91

satisfying Q = 0(81);
(3 ) (Ji9 gQ) is an irreducible Riemannian manifold.
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PROOf. The implications (1) -> (2) and (3) -» (1) have been proved in
[17] and [16], respectively. So, it remains for us to prove that the
implication (2) —> (3) holds. We now suppose that the rank of the T-
algebra 9t is equal to two. If n12 = 0, then Q is affinely equivalent to
the cone of all positive real numbers. Therefore, the number n12 must
be positive and Q is affinely equivalent to the elementary domain Q(n12 + 1)
(cf. [18]). The elementary domain Q(n12 + 1) is a hyperbolic space form
of the sectional curvature — l/(2n12 + 4) ([16]), and hence, (42, gQ) is
irreducible. So, we can assume that the rank r of the T-algebra 31 is
greater than two. Now, let m be an arbitrary non-zero j^-invariant
subspace of t0. We first prove that m coincides with t0 in the case
where the condition niSnSr ^ 0 holds for some indices i and j(l <: i <
j ^ r — 1). By Lemma 2.4, there exists a;em satisfying xti ^ 0. Let
us take arbitrary elements aire%r and ajreWjr, and let us denote by
At and As the linear operators Aa.r and Aajr on t0, respectively. Then
by using Lemma 2.2 of [14] and Lemma 2.1 of [16], we get the following
equality:

(3.2) At(x) = ——(x i r , air)et - —7_<o;ii, e%)air

2vni 2v nt

+ — E (xkraTr - xkiair)2 ^

+ — E {airxt - xfkair) .
2 i<k<r

Similarly by using the condition (1.3) of [16] and the formulas (51), (52)
in p. 392 of [18], we have the following formulas:

- — 2 (xkiair)a% - — S (xfkair)afr
4 l^k<i 4 i<k<j

- — S ajr(afrxik) - —(airxfr)ajr ;
4 i<fc<r 4

(xiif e%)(a5rafr)air -
81/ n* 81/ nt

(3.3) A^A^A^A^a?)))) = i _ / (xtt, e^(aira%, a^af^ej .
I61/%%

Here, we take non-zero elements a^ e %j and ajr e SIir, and put air =
r. Then aira?r =*= 0. Hence, the conditions »w =̂ 0 and (3.3) imply
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that Wjj c m. Therefore, by Lemma 2.2, we have m = t0. We next
prove that m coincides with t0 in the case where the condition ntjnir = 0
holds for every pair (i, j) of indices l ^ i < j ^ r — 1. Since £ is not
affinely equivalent to a homogeneous convex cone and the condition (C)
holds, there exists a pair (i, j) of indices l<^i<j^r — 1 such that
the conditions ntinir =£ 0 and n i r = 0 are satisfied. By Lemma 2.4, there
exists an element xem satisfying xu =£ 0. By (3.2), we have

At(x) = —y==(xir, air>e, - —7=(xiif e^air e tn .
2vnt 2vn

If xir = 0, then %r c m . Hence, by Lemma 2.3, m = t0. If xir ^ 0, then
we take an arbitrary element atie %,. By Lemma 2.2 of [14] and Lemma
2.1 of [16], we have

i
A ( A (/y\\ //v» r§ \/"» C TTt

Hence, 81̂ - c m, and again by Lemma 2.3, we get m = t0. Therefore,
S/ is irreducible on t0, and by Lemma 2.1, the Riemannian manifold
(42, gQ) is irreducible. q.e.d.

Finally in this section, we remark that in the case of homogeneous
convex cones, the condition (C) was treated in [1].

4. Tube domains. For an affine homogeneous convex domain 42 in
Rn, the domain D{Q) = {x + V — lye Cn; ye 42} is called the tube domain
over 42. In this section, we study Riemannian geometric relations be-
tween 42 and D{Q).

The group of all affine transformations:

x + V^ly e D(Q) -> {Ax + a) + V^lAy e D{Q) {A e G(42), a e Rn)

acts on D{Q) transitively. Therefore, D{Q) is holomorphically equivalent
to a homogeneous bounded domain in Cn, and there exists the Bergman
kernel function k: D{Q) x D{Q) - • C of D{Q). By using properties of the
Bergman kernel function (cf. Lemma 6.1 of [12]) and the characteristic
function g>Q of Q (cf. [18]), we can see that there exists a positive
number c satisfying

(4.1) h(z, z) = c{cpQ{y)f

for all z — x + V — lye D{Q). We now denote by gDl0) the Bergman
metric of D{Q), that is,

(4.*) 9D(Q)\%) = 6 2 J
dZOZ3
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for z = (z\ z\ • • •, zn)eD(D) (cf. p. 73 of [12]).
The following proposition is well known but for the sake of com-

pleteness, we give a proof here (cf. [6]).

PROPOSITION 4.1. For an a fine homogeneous convex domain Q in
Rn, the Riemannian manifold (42, gQ) is a totally geodesic submanifold
of the tube domain (JD(42), gD{Q)) by a natural imbedding o: ye Q —>

PROOF. By (4.1) and (4.2) we have

(4.3) gDm(z) = S

for all z = x + i/^lyeDiQ), zl = xl + V^-iy'il ^i^ri). Therefore, it
can be easily verified that o*gD{Q) — gQ holds on Q. We next consider
the following mapping

z: x + V^y e D{Q) -> -x + V

Using (4.3), we can see that z is isometric with respect to the Bergman
metric. Moreover, the set of all fixed points of r coincides with o{Q).
Therefore, (42, gQ) is a totally geodesic submanifold of (D(Q), gD(m) (cf- §8
in Chap. VII of [5]). q.e.d.

We now give a typical example of tube domains.

EXAMPLE 1([6]). Let 42 be the elementary domain in R\n ^ 2)
defined by (3.1). We consider the following holomorphic imbedding

0: D{Q) -> C", *(*) = (zl + ̂  S W , 4g=»", • • •, 4=f
\ 2 2̂ fĉ n ; / 2 v 2

for all 2 = (21, 2;2, • • •, zn)eD(Q). Then the image Q(D{Q)) coincides with
the domain {zeCn; y1 > X2^j2fci2}> which is holomorphically equivalent
to the open unit ball in C\ It should be noted that the domain D(Q)
can not be realized as a tube domain over a convex cone (cf. [3], [10]).

By using the above proposition we can prove the following.

THEOREM 4.2. An a fine homogeneous convex domain Q is Riemannian
symmetric with respect to the canonical metric if and only if the tube
domain D(Q) is Hermitian symmetric with respect to the Bergman metric.

PROOF. In order to prove the assertion, we can assume that 42 is an
irreducible domain (cf. Proposition 1.1 of [16]). Let (Q9 gQ) be Riemannian
symmetric. Then by Theorem 4.2 of [16], 42 is affinely equivalent either
to an irreducible homogeneous self-dual cone or to an elementary domain.
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The assertion in the first case was proved by Rothaus [11]. In the second
case, by Example 1, D(Q) is holomorphically equivalent to an open unit
ball. Therefore, (D(Q), gD[Q)) is Hermitian symmetric. The converse
assertion follows from Proposition 4.1. q.e.d.

We next consider the irreducibility of a convex domain and the tube
domain over it. For this purpose, we employ the notion of Siegel domains
from [2], [6] and [10].

Let X and Y be real vector spaces and Vo be a homogeneous convex
cone in X. Then a symmetric bilinear mapping F:Y xY-> X is called
a homogeneous V0-symmetric form if the following three conditions are
satisfied: (1) F(y, y) e Vo (the topological closure of Vo in X) for every
y e Y; (2) F(y, y) = 0 implies y = 0; (3) The subgroup of G( Vo) defined
by {AeG(V0); there exists BeGL(Y) such that AF(y,y) = F(By, By)
for all ye Y) is transitive on Vo.

For a homogeneous Vo-symmetric form F: Y x Y —> X, the real Siegel
domain

(4.4) Q(VQ, F) = {(x, y)eXxY;x- F(y, y)e Vo}

is an affine homogeneous convex domain. Let Xc (resp. Y€) be the
complexification of X (resp. Y). Then from the affine homogeneous convex
domain O(VQ9 F)t we can construct a homogeneous Siegel domain in Xc x
Yc as follows: Let Fc: F x F - ^ Xc be the Hermitian extension of F,
that is,

Fc(Vl + \Z=ly2, yz + V^ly,) = {F(yl9 yz) + F(y2, y,)}

+ V=l{F{y2, yz) - F(yl9 yA)} .

Then Fc is a F0-Hermitian form on Yc and the domain

(4.5) D(Vo, Fc) = {(z9 u)eXcx Vc; I m z - Fc(u, n)e Vo}

is a homogeneous Siegel domain of type II (cf. [10]).

LEMMA 4.3. For an affine homogeneous convex domain Q = Q(VOf F),
the tube domain D(Q) is holomorphically equivalent to the Siegel domain
D(VO,FC).

PROOF. Following Gindikin [2] we consider the holomorphic imbedding

0: (z, u) e D(Q) ->(z + ^Z±Fc(u, u\ -^=u) e Xc x Yc .

Then by (4.4) and (4.5) we can verify that 0 maps D{Q) onto D(VOf F
c).

q.e.d.
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We next give an example of a non-symmetric tube domain by making
use of the above lemma.

EXAMPLE 2. Let us consider the affine homogeneous convex domain

in the affine subspace {y = (ytj)e H(3, C); yzz = 1} of H(3,C), where
H+(p, C) is the cone of all positive definite elements in the real vector
space H(p, C) of all complex Hermitian matrices of degree p. Then Q
is realized as a real Siegel demain over the cone H+(2, C) by the following
symmetric bilinear mapping

F: C2xC>-> H(2, C\ F{yu y2) = h%y2 + ^ ) .
Lt

Using Theorem 4.2 and Lemma 4.3, we can easily show that the tube
domain D{Q) is holomorphically equivalent to the non-symmetric Siegel
domain given by (2.7.b) in p. 43 of [4].

Let D(V, F) be a homogeneous Siegel domain associated with a
homogeneous convex cone V and a F-Hermitian form F. Then it was
proved by Kaneyuki [3] that D(V, F) is irreducible with respect to the
Bergman metric if and only if the cone V is irreducible. Making use of
this and the results obtained above, we can prove the following

THEOREM 4.4. An affine homogeneous convex domain Q in Rn(n ^ 2)
is irreducible if and only if the tube domain D(Q) is irreducible with
respect to the Bergman metric.

PROOF. AS was noted above, the assertion was proved by Kaneyuki
[3] in the case of homogeneous convex cones. So, we may assume that
Q is not affinely equivalent to a homogeneous convex cone. Let 81 be a
T-algebra of rank r{r ^ 2) such that Q is affinely equivalent to the domain
i2(9l) defined by (1.2). Then by Theorem 3.1, Q is irreducible if and only
if the condition (C) holds for the T-algebra St. On the other hand, the
convex domain i2(9t) is realized as a real Siegel domain as follows: Let
9t0 be the subspace of SI defined by Sl0 = Sisusr-i %i> and let X(8t0) be
the subspace of all Hermitian elements in %. Furthermore, we put Y —

define a symmetric bilinear mapping

F.YxY-* Jf(Wo) by F(a, b) = A(a6* + 6a*)

for every a, be Y. Then by using results in Chap. Ill of [18], we can
see that the set
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Vo = ;r({tt*; te r(H) n («o + Be)}) = TT(F(81) n (X(3I0) +

is a homogeneous convex cone in X(%) and F is a homogeneous Vo-
symmetric form, where n is the projection of X(W) onto X(%). Moreover,
the real Siegel domain 42( VOf F) is affinely equivalent to i2(9l) (For the
notation, see also (1.1), (1.2) and (4.4).). Hence, by Lemma 4.3, the tube
domain D(Q) is holomorphically equivalent to the homogeneous Siegel
domain D(V0, Fc). On the other hand, according to Asano [1], the convex
cone Vo is irreducible if and only if the condition (C) holds for the T-
algebra 81. Therefore, from the result of [3] stated above, it follows that
the Siegel domain D( VOf F

c) is irreducible with respect to the Bergman
metric if and only if 42 is an irreducible convex domain. q.e.d.

Combining Lemma 4.3 and Theorem 4.4 with the result of [3] used
in the above proof, we have, the following

COROLLARY 4.5. Let Q be an affine homogeneous convex domain
which is affinely equivalent to a real Siegel domain 42( Vo, F) associated
with a homogeneous convex cone Vo and a homogeneous V0-symmetric form
F. Then Q is irreducible if and only if Vo is irreducible.

5. Einstein convex domains. It is known that the Bergman metric
of an arbitrary homogeneous bounded domain in Cn is Einstein (cf. e.g.,
[5]). In this section, we determine all affine homogeneous convex domains
whose canonical metrics are Einstein.

Let S be the Ricci tensor for the canonical metric of an affine
homogeneous convex domain Q = 42(81). Then S is given as follows (cf.
e.g., [5]):

(5.1) S:toxto-+R ,

S(x, y) = trace of the linear mapping: z e t0 —> R(z, x)y e t0 .

The canonical metric of 42 is Einstein if and only if there exists a
constant number c satisfying the equality S = c{ , > on t0 x t0.

By using Lemmas 1.1 and 2.2 of [14] and the formula (1.3), we can
easily see that the following identities hold:

[et, x] = - ^ L ( £ * * < - £ xik) (1 ^ i ^ r - 1)

and

R(x, e%)ej = A , xtj (1 <: i < j <: r — 1)
Wntn5

for every xet0. Therefore, by (5.1) we have
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(5.2) S(et, ej) = } nif (1 £ i < j £ r - 1) .
4vnn

Several conditions for an affine homogeneous convex domain in order
to be affinely equivalent to an elementary domain are known. Using
them, we can state the following

THEOREM 5.1. For an irreducible affine homogeneous convex domain
Q in Rn(n ^ 2), the following conditions are equivalent:

(1) The canonical metric gQ of Q is Einstein;
( 2 ) Q is affinely equivalent to the n-dimensional elementary domain;
(3) (42, gQ) is an irreducible Riemannian symmetric space;
(4) The sectional curvature of (Q> gQ) is a negative constant;
(5) The sectional curvature of (42, gQ) is strictly negative;
(6) (42, gQ) admits an infinitesimal non-affine isometry;
(7) The tube domain over Q is holomorphically equivalent to the

open unit ball in Cn.

PROOF. The implications (2) «-> (3) and (2) —> (4) have been proved in
[16], and (2) «-> (5) is due to Shima [13]. The proof for (2) «-> (6) can be
found in [17]. The implication (4) -> (5) is trivial. For (2) —• (7), see
Example 1 in §4. The implication (7) —> (5) follows from Proposition 4.1.
We prove the implications (1) <-» (2) here. Now, we suppose that the
condition (1) holds. Then, by the conditions (5.2) and (ei9 e,} = 8ijf we
can see that nid — 0 is satisfied for every pair (i, j) of indices 1 <g i <
j ^ r — 1. Since Q is an irreducible convex domain, the condition (C) is
satisfied (cf. [1] and Theorem 3.1). Thus, the rank of the T-algebra 2t
satisfying the condition i2(8t) = Q must be equal to two. If nL2 = 0, then
Q is affinely equivalent to the cone of all positive real numbers and the
dimension of Q is equal to one. Hence, n12 must be positive and Q is
affinely equivalent to the elementary domain Q(ri), where n = n12 + 1
(cf. [18]). Conversely, we suppose that the condition (2) holds. Then
(@t ffa) is a hyperbolic space form of the sectional curvature — l/(2n + 2)
([16]). Therefore, (42, gQ) is Einstein (cf. e.g., [5]), and hence, the con-
dition (1) holds. q.e.d.

By using the above theorem, we can easily verify the following

COROLLARY 5.2. Let Q be a reducible affine homogeneous convex
domain. Then the canonical metric of Q is Einstein if and only if Q
is affinely equivalent either to a direct product of elementary domains
of the same dimension or to a direct product of the half-lines of all
positive real numbers.
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