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Abstract. This paper deals with continuous-parameter dyadic stationary
processes. A necessary and sufficient condition for such a process to assume
its spectral representation in terms of the generalized Walsh functions is
given. The representation plays an important role in the analysis of such
a process: we discuss laws of large numbers, sampling theorem, and the
relationship between the dyadic stationary processes with spectral densities
and linear dyadic processes.

The existence of a spectral representation shows the possibility of an
analysis of dyadic stationary processes similar to that of ordinary stationary
processes.

1. Introduction. In communication theory and systems engineering,
analysis of signals contaminated by random noise is very important. The
general problem is difficult; so it is usually preferable to restrict attention
to certain classes of signals.

Recently much attention has been paid to a class of signals that are
called dyadic stationary processes [7], [17], [19], [20], [22], [23]. Most
discussions, however, have confined themselves to the discrete-parameter
case. This is perhaps due to the difficulty arising from the discontinuity
of the Walsh functions, in terms of which the processes are represented.

Analysis of the dyadic stationary processes is most readily carried
out using the Walsh functions rather than the exponential functions
commonly used in the ordinary stationary processes. Many researchers,
among others Walsh [28], Fine [8]-[10], Chrestenson [6], Mogenthaler [18],
Paley [21], Self ridge [25] and Yano [29], have contributed to Walsh-Fourier
analysis, while dyadic calculus involving dyadic derivatives was developed
by Gibbs [11], [12], Butzer and Wagner [l]-[3], and Wagner [27].

In this paper we consider continuous-parameter dyadic stationary
processes. For their spectral representations, the theory of the generalized
Walsh functions is a necessity. In 2 we shall briefly state the definitions
and some properties of the generalized Walsh functions which are used
frequently afterwards. In 3 we introduce a continuous-parameter dyadic
stationary process and give the spectral representations of its covariance
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function and of the process itself. Laws of large numbers in the sense
of both weak and strong convergences are given in 4. A sampling
theorem is stated in 5. In 6 we introduce a continuous-parameter linear
dyadic process and characterize it as a dyadic stationary process with a
spectral density, and vice versa.

2. Preliminaries. In this section we consider the generalized Walsh
functions and their simple properties for later use.

2.1. DYADIC GROUP. Let ^~ be the field of formal power series

* = Σa»Cn (χne{0,1})

in which M = M(x) is an integer; the addition and the multiplication are
defined as follows: for Λ: = Σn** xnζ>\ V = Σ«a* Vnζn e

where L = min{M, N}, K = M + N, and zn = Σ*M^-N+U XkVn-k ([9]). Define
a neighbourhood of zero element 0 as the set of Λ: with xn = 0 (n ^ N)
for some fixed integer N. Endowed with this topology J^ becomes a
totally disconnected locally compact Hausdorff space. We denote the
additive group of ^~ by G and call it the dyadic group. Let Γ be the
dual group or character group of G. To each 7 e Γ there is a y e G such
that

(2.1) 7(x) = Ύ^xy)

holds for all x eG, where Ίx{z) = expfTrizJ. If y e G is given then Ύ(x)
defined by (2.1) is a character. The one-to-one correspondence thus
established between G and Γ is easily seen to be an isomorphism. Then,
on account of (2.1), we may identify Γ with G and, we denote (2.1) by
7(x) = (x,y), which is the value of the character y e G at x e G. For
further discussion, see Fine [9].

2.2. CORRESPONDENCE BETWEEN THE FUNCTIONS ON G AND R+, AND

THE MEASURES ON THEM. Let R+ = [0, ©o) and D+ be the set of dyadic
rationale on iϋ+\{0}. Define a mapping λ from G onto R+ by

x(x) = λ(Σ χnζ
n) - Σ χn2-n (xeG).

The image λ(x) represents a dyadic expansion of a positive number. The
dyadic rational assumes two representations, i.e., a finite and an infinite
expansions; hence the mapping λ is not injective. Let ^ — {x: x =
Σ#nC\ a?n = 1 (w2£Λf) for some M}. We shall always take the finite
expansion for a dyadic rational in D+. Then the restriction of λ on &°
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is one-to-one and onto R+, where $fc denotes the complement of g7. Its
inverse μ satisfies X(μ(x)) = x (x e R+) and μ(λ(jc)) = x (xe &c). Let us
define the addition x@y of xeR+ and yeR+ by the relation x0y =
\(μ(x) + μ(y)). For each real-valued function / on iϋ+ define the corre-
sponding function φ on G by

)) (x e ifc)

= lim sup φ{y) (x e if) ,
y-*χ

where the approach is over those y e gf \ For brevity we shall call φ
the G-extension of / and write the relation as φ~f. If / is continuous
so is φ, but not conversely.

A function / on R+ is said to be W-continuous at t βR+, if for every
ε > 0 there exists δ > 0 such that |/(ί©Λ) - /(ί)l < e whenever h < δ
(heR+). If / is PΓ-continuous at every teR+, then we call it simply
W-continuous. A continuous function is Ψ-continuous. A function / on
R+ is said to be W-positive definite, if it satisfies

Σ CtCjfiU 0 tj) ^ 0

for any positive integer n, any sequence of complex numbers {cj and
any sequence {ti}czR+ with μ(tt)+ μ(td) e £?c (i, j = 1, , n). The following
result states that the " ΐ^-properties" are natural candidates to replace
ordinary ones on the real lines [18].

LEMMA 2.1. (a) // / is W-continuousf and if f(t — ) — lim s ί ί/(s)
exists and is finite at any teD+, then its G-extension φ is continuous
on G.

(b) // / satisfies the conditions in (a), and f is also W-positive
definite, then its G-extension φ is positive definite.

(c) // φ is continuous on G, then the function f{t) — φ{μ{t)) is
W-continuous and f{t — ) exists and is finite at every dyadic rational
teD+.

(d) If φ is positive definite, then its counterpart f defined in (c) is
W-positive definite.

A measure a defined on &(G), consisting of all Borel subsets of G,
is decomposed uniquely into a usual measure, vanishing on all Borel
subsets of £f, and an unusual measure, vanishing on all Borel subsets of
^c. There is a one-to-one correspondence between usual measures on G
and measures on R+ such that

(2.2) a{A) = m(X(A f] &c)) {A e



488 Y. ENDOW

or

(2.3) m(A) = a(μ(A))

where m is a measure on &(R+) consisting of all Borel subsets of R+.
We denote the correspondence as a ~ m. The following result is obvious
[10].

LEMMA 2.2. (a) Ifφ~f and a ~ m, then

I φ(x)a{dx) = \ f(x)m(dx) .
J<? Jo

(b) In particular, if φ ~ f, then the Haar measure dx on G is
adjustable such that

\ φ(x)dx = 1 f(x)dx ,
J<? J O

where dx is the Lebesgue measure on R+.

We assume, in the sequel, that the Haar measure on G is always
adjusted as above.

2.3. DEFINITION OF THE GENERALIZED WALSH FUNCTIONS. NOW we

shall define the generalized Walsh functions following Fine [9]. For any
teR+, put

W(x, t) = (μ(x), μ(φ (x 6 R+) ,

and call {W(x, t): x e R+, t e R+} the generalized Walsh functions. If t e
R+ is an integer, then W(x, t) reduces to the ordinary Walsh function.
Because of this the functions so defined deserve the name. In the sequel
we simply call them "the Walsh functions" instead of "the generalized
Walsh functions".

The Walsh functions possess the following properties:

(2.4) \W{x,t)\ = l (xeR+,teR+);

[W(x,t)dt = 1 (0 ^x < 1) ,
Jo

(2.5) = 0 (1 ̂  x)

(2.6) W(x, t) = W(t, [x]) W(x, [ί]) (x, teR+),

where [x] denotes the integer part of x;

(2.7) W(x, t) W(y, t) = W(x φ y, t) (μ(x) + μ(y) e ^c) ,

= W{x@y-9t) (μ(x) + μ(y) e gf)

(2.8) W(\(x) - , ί) = <x, μ(t)) ( c e g 7 ) .
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By (2.6) the symmetric relation

W(x, t) = W(t, x) (ί, x e R+)

holds, so that relations similar to (2.7) and (2.8) on the second variable
are valid. The Walsh functions are T7-continuous, since at every (dyadic
rational) discontinuity xeD+, xζ&h > x for sufficiently small heR+, and
the Walsh functions are continuous on the right. The Walsh function
is considered to be the eigen function corresponding to the eigenvalue
teR+, of the equation

Df(x) - tf(x) = 0 ,

where D is the 'derivative' operator [l]-[3], [11], [12].

LEMMA 2.3.

(2.9) lim2-*( <JC, t)dt = 1 (x = 0) ,
n->oo JI{n)

= 0 (xΦO),

where I{n) = {t: X(t) < 2n).

We shall omitt the proof because it will be reduced, on account of the
property of the set ^ and the correspondence between the characters on
G and the Walsh functions on R+, to the special case of Lemma 2.4 below.

LEMMA 2.4. (a) If k is a positive integer, then

(2.10) lim λr\D(a; k) = 1 (x = 0)

= 0 (0 < x < 1) ,

where D(x; k) = "ΣιtZ}W(x, i) is the Dirichlet kernel.

(2.11) (b) lim R'1 {wix, t)dt = 1 (x = 0)
R->oo Jo

= 0 (xΦO).

PROOF, (a) For every integer k > 0, it is clear that k^Dφ, k) = 1.
For any fixed x > 0 there is an integer n such that 2~n 5j x < 2~n+1. For
any small ε > 0 there is an integer K > 0 for which 2nK~1 < ε. Any
integer k > 0 can be uniquely expanded in the form

k = 2ni + 2712 + + 2ra" , nx > n2 > > nv ^ 0 .

If k ^ K, and we agree to set D(x, 0) = 0, then

D(x; k) = D(x; 2m)D(2m; p) + W(2m, p)D(x; q) ,

where ί = max{i: % Ξ> w}, m = ni9 k = p2m + q, and 0 ^ q < 2m (cf. Fine
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[8]). Since D(x; 2m) - 0 and q < 2\ we have \D(x; k)\ < 2\ Hence,
k-'Dix; k) ^ 2nK~ι < ε.

(b) Now

S B /Γ[R] ΓR \

W(x, t)dt = B-H\ +\ )W(x,t)dt
= BrιD(x; [R])J(x, t) + R~ιW{x, [R])J(x, R - [R]) ,

S i

W(x, u)du. The second term tends to zero as R —> co
0

since both TΓ(a?, [β]) and J(x, R — [β]) are bounded. The result follows
from (a) and the value of J(x, 1), i.e., J(x, 1) = 1, 0 ^ a? < 1; = 0, I <* x (cf.
[8], [25]).

LEMMA 2.5. // (̂α?) o^ G is representable in the form

(2.12) φ(t) - ί (x, t)a(dx) ,

where a is a regular measure on G with finite total variation, then

(2.13) lim 2rn \ φ(t)(x, t)dt = a({x}) .
n-*oo Jl(n)

PROOF. Interchanging the integral signs gives

2-»ί 0(f)<x, ί>dί = ί a(dy)2~λ (y + *, ί>cίί ,
J/(TO) Jί? J/(n)

in which the inner integral multiplied by 2~n is bounded by 1. By Lemma
2.3 the integral on the left therefore converges to a({x}).

3. Dyadic stationary processes and their spectral representations.

3.1. DEFINITION OF DYADIC STATIONARY PROCESSES. A second-order
stochastic process {X(t), t e R+} is called a dyadic stationary process (DSP)
in the wide sense, if it has a constant mean and its covariance function

r(ί, s) = E[X(t) - EX(t)][X(s) - EX(s)] (t, s e R+)

depends only on the "difference" μ(t) + μ(s). Note that the dependence
is not on t 0 s but on μ(t) + μ(s). For simplicity we assume throughout
that EXit) = 0 (ί 612+). We shall define a function p by

(3.1) p(f 0 8) = r(ί, s) (/£(ί) + μ(s) e ^ c ) .

It is well-defined on JB+, since the mapping

{(ί, 8): μit) + μ(s) 6 ^ ) 9 (ί, s) -> ί 0 s G 12+

is onto and the difference /i(ί) + μ(s) depends on t 0 s if it belongs to
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if*. Then it is easy to see that the function p is TF-positive definite, and

(3.2) p(t)='p(t), \p(t)\£p(O),

and

(3.3) E\X{t) - X(s)|2 = 2[/0(O) - p(t Θ s)] (μ(t) + μ(s) e ^ c ) .

If a ZλSP is such that

(3.4) E\X(t@h) -X(t)\2-+0 (t,heR+),

as h —• 0, then it is said to be TΓ-mβcm-ccmίiftMcms αί ί. If it is T7-mean-
continuous at every teR+, then we simply call it W-mean-continuous.

LEMMA 3.1. Let p be the function defined by (3.1). // a DSP {X(t),
teR+} is measurable (in the mean), then p{t) is continuous from the
right at t = 0.

The proof can be carried out similarly to that for the analogous
property of the covariance function of an ordinary stationary process.

LEMMA 3.2. The measurable DSP {X(t), t e R+} is W-mean-continuous
if and only if

(3.5) E\X(t®h)-X(t)\2-*Q ,

as h -• 0 with μ{t) + μ(h) e if.

PROOF. The "if" part is also obvious since by Lemma 3.1 and (3.3),
(3.5) holds, as h -* 0 with μ(t) + μ{h) e ifc.

EXAMPLE 1. Let Y be a random variable with zero mean and unit
variance. For a fixed xeR+, put

(3.6) X ( t ) = W(x, t ) Y ( t e R + ) .

Then the process {X(t), t e R+} so defined is a TF-mean-continuous DSP
since

EX(t) = 0

EX(t)X(ί) = W(x, t) W(x, s) = (μ(x), μ(t) + μ(s)) (ί, seR+) ,

and

E\X(t®h) - X(t)\2 = 2{l -W(x,t@h)W(x,t)} = 2{1 -W(x,h)}.

3.2. SPECTRAL REPRESENTATION OF THE COVARIANCE FUNCTION OF A

DSP. First we shall introduce the fundamental assumptions. Let {X(t)f

t£ R+} be a measurable DSP. Assumptions:
(A) It satisfies (3.5).
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(B) The limit EX(s)X(0) as s 11 exists and is finite at any t e D+.
(C) For every dyadic rational xeD+,

np(t)W(x-,t)dt = 0 .

THEOREM 3.1. Let r{t, s) be the covariance function of a measurable
DSP. In order that the covariance function is representable as

(3.7) r(ί, s) = [°W(x, t)W(x, s)m(dx) ,
Jo

where m is a unique non-negative finite regular measure on R+, it is
necessary and sufficient that it satisfies the assumptions (A), (B), and (C).

PROOF. (Sufficiency) It follows from Lemma 2.1 that the G-extension
7 of p defined by (3.1) is continuous and positive definite, since the
conditions (a) and (b) are satisfied by (A) and (B). Hence by Bochner's
theorem on positive definite functions on locally compact Abelian groups
[24], 7 has a representation of the the form

Ύ(t) = \ <x, t)a(dx) ,

where a is a unique non-negative finite regular measure on G. By
definition,

(3.8) p(t) = Ύ(μ(t)) = (J^c + $J<x, μ(t))a(dx) = J, + J2, say .

First we evaluate J 2. Since the Haar measure of ^ is zero, for every
integer n > 0

( ) < , t)dt = Γp(t)W(x~, t)dt ,
I{n) Jo

where xe& and λ(jc) = x. By (C) the last integral multiplied by 2~n

tends to zero as n-*°°. Hence an application of Lemma 2.5 gives

a({χ}) = 0(xeί?) and thus J 2 = 0. Next put m(A) = a(μ(A))
then

(3.9) p(t) = \™<μ(x\ μ(t))a(dμ(x)) = \~W(x, t)m(dx) .
Jo Jo

Thus

r ( ί s) = \~W(x, t 0 s)m(dx) = Γψ(a?, ί)T^(», s)m(dx) ,
Jo Jo

whenever jeι(ί) + jtι(s) e g70. In the case of μ(t) + μ(s) e g", by (A)
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r(t, s) = EX(t)X(s) = lim EX(t)X(s φ h)

= lim \°°W(x, t)W(x, s φ h)m(dx) = \™W(x, t)W(x, s)m(dx) ,
Λ—0 JO JO

where the approach is over those h with μ(s) + μ(h) e|fc. The last
equality is justified by the boundedness and TΓ-continuity of the Walsh
functions.

(Necessity) The assumption (A) is obvious, since

E\X{t@h)~ X(t) |2 = Γ| W(x, tφh) - W(x, t) \2m(dx)
Jo

and the Walsh functions are ΫP-continuous.
Since lim8 τ t W(x, s) exists at every teR+,

EX(s)X{0) = [°W(x, s)m(dx) -> [°W(x, t-)m(dx)
Jo Jo

as s t ίι and hence (B) is proved. Next as for (C), let p(t φβ) = r(ί, s)
(μ(t) + μ(s) e &c), and define the G-extensions 7 ~ p and a ~ m respec-
tively; then

= \ (x, μ(t))a(dx)

so that for xeD+,

(3.10) 2-n[np(t)W(x-, t)dt = 2-λ2ny(μ(t))(x, μ(φdt
Jo Jo

= ( a{dy)2rn Γ<> + x, μ(t))dt (x e ϊf, X(x) = x) .
Jg-c Jo

Note that y Φ x in the last integral. Hence by Lemma 2.3 the inner
integral multiplied by 2~n converges to zero boundedly as n —• °°.

Now (3.7) can be rewritten as

(3.11) r(ί, 8) = \<μ(x), μ(t) + μ(s))m(dx) ,
Jo

which depends only on the difference μ(t) + μ(s). We shall call m the
spectral measure (distribution) of the DSP. It is obvious that m(R+) =
ί7|X(ί)|2 (teR+). If the spectral measure is absolutely continuous with
respect to Lebesgue measure, then its Radon-Nykodym derivative dm/dt
is called the spectral density of the DSP.

Let m be a non-negative finite regular measure on R+. Then there
exists a DSP which has m as its spectral measure. We shall illustrate
this by an example.
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EXAMPLE 2. Let Y be a non-negative valued random* variable with
a probability measure Pr{Γe£} = m(B)/m(R+) (Be^(R+)). Let Z be a
random variable independent of F and EZ = 0, 2£|Z|2 = m(R+). Define
X(t) = ZW(Y, t) (t 6 R+). Then EX(t) = 0 and

EX(t)XΓs) = E\Z\2W(Y, t)W(Y, s) = [°W(y, t)W(y, s)m(dy) .
Jo

REMARKS, (a) We shall introduce an equivalent definition of DSP's.
A second-order stochastic process is called a DSP, if it has constant mean
and its covariance function satisfies

(3.12) r(ί, s) = r(t®u,s® u)

whenever μ(t) + μ(u) e g"c and μ(s) + μ(u) e ^\ Then

r(ί, s) = r(ί 0 s, 0) (^(ί) + μ(s) G ĝ c) ,

and r(ί, 0) plays the role of |O defined by (3.1). The restrictions μ(t) +
μ{u) e ^ c and jtί(s) + μ(u) e &c are essential. If this is not the case, even
a simpler process as in Example 1 cannot be a DSP, since W(x, t@u) =
TΓ(», ί ) ^ ( ^ w) is not an identity (see (2.7)), and (3.12) does not hold for
some pairs (t, u) e R\. For ordinary stationary processes, on the other
hand, such a situation does not occur, because the exponential functions,
which are the counterpart of the Walsh functions, are continuous every-
where.

(b) In the discrete-parameter case Nagai [19] proved the spectral
representation theorems of a DSP (counter part of Theorems 3.1 and 3.2),
under the same condition as the ordinary (time-invariant) stationary
processes. It is, however, shown by Endow [7] that it also needs to
annex a 'smoothness' condition to the covariance function at jump points
of the Walsh functions.

3.3. SPECTRAL REPRESENTATION OF A DSP.

THEOREM 3.2. Let {X(t), t e R+} be a DSP. If its covariance function
has a representation in the form of (3.7), then

(3.13) Xit) = \°W(x, t)ζ(dx) (with prob. 1) ,
Jo

where ζ is an orthogonal random measure with Eζ(A) = 0 and Eζ(A)ζ(B) —
m(AΓιB) (A, Be&(R+)). Conversely, if a DSP has a representation in
the form of (3.13), then its covariance function is representable in the
form of (3.7).

PROOF. The first part of the statement is a direct corollary of a



DYADIC STATIONARY PROCESSES 495

more general result (cf. [13, p. 201]). The converse part is also clear,
since

and

EX(t) = \°W(x, t)Eζ(dx) = 0
Jo

r(t, s) = EX(t)X(ί) = \Ύw(x, t)W{y, s)Eζ(dx)ζ(dy)
Jo Jo

X(x, t)W(x, s)m(dx) .

Habib and Cambanius [14] defined a DSP as a special class of Walsh-
harmonizable processes; when the random measure ζ of a Walsh-harmon-
izable process is orthogonal, or, equivalently, when its spectral measure
is supported by the diagonal of R\, then it is called a dyadic stationary
process. They also stated that its covariance function has a form of

r(ί, s) = \~W(t 0 s, x)m{dx) .
Jo

It, however, must be modified as (3.7) since the equation

W{t,x)W{s,x) =W(t@8,x)

is not an identity (see (2.7)).

4. Laws of large numbers. Let {X(t)f t e R+} be a measurable DSP.
We adopt the assumptions (A), (B) and (C) in 3; hence it assumes the
spectral representations (3.7) and (3.13).

The stochastic integral

[x(t)dt (0 ^ a < b < oo)
Ja

exists in quadratic mean, since

For every R > 0,

E R-
l\BX{t)dt -

JO

m{dx) )dt = \/m(R+)(b - a)

ζ(dx)R-ι\*W(x, t)dt
O J o

, t)dt m(dx) .

By Lemma 2.4 the inner integral multiplied by JK"1 converges boundedly
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to zero for x Φ 0. Hence we obtain the following result.

THEOREM 4.1. Let the measurable DSP {X(t), teR+} satisfy the
assumptions (A), (B), and (C). Then the weak law of large numbers holds:

l.i.m. R-1 \RX(t)dt = ζ({0}) .
R-*oo JO

COROLLARY 4.1. Suppose that the conditions in Theorem 4.1 are
satisfied. Then a DSP is ergodic if and only if m({0}) = 0.

COROLLARY 4.2. Suppose that the conditions in Theorem 4.1 are
satisfied. Then a DSP is ergodic if and only if

\ p(t)dt = 0 ,
Jo

where p is the function defined by (3.1).

PROOF. Using (3.9), we obtain

(4.1) 2-n\2Λp(t)dt = [°m(dx)2-n[2nW(x, t)dt = [°2-nD(x; 2n)m(dx) .
J J J J

It follows from Lemma 2.4 that the last integral in (4.1) converges to
m({0}) as n-^ °°, and hence the conclusion follows from Corollary 4.1.

Next we consider the strong law of large numbers.

THEOREM 4.2. Let the real-valued measurable DSP {X(t), teR+}
satisfy the assumptions (A), (B), and (C). //

(4.2) ±k2m(I(-k))< - ,

then

lim R-1 \Rχ{t)dt = 0 (with prob. 1) ,
i?-κx> Jo

where I(-Jc) = [0, 2~*).

PROOF. We shall only check the convergences of the series

(4.3) Σ Pr{2-*S(2*) ^ ε/(k + 1)}

and

(4.4) Σ Σ '" i f Pr{2-* I S(2fc + (q + 1)2*) - S(2fe + q2p) \ ̂  e/(fc + 1} ,
k=lp=0 q=0

where
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S(a) = [aX(t)dt ,
Jo

since the proof parallels almost word-for-word the one, due to Verbitskaya
[26] in the ordinary stationary case. Now by Tchebychev's inequality
the series (4.3) converges if the series

(4.5) Σ2" 2 f c(/c + 1)2E
k0k=0

X(t)dt

converges. Rewriting

2 X(t)dt = Γ Γ r(u, v)dudv = (ΎΓ W(x, t)dt)2m(dx)
Jo Jo Jo \Jo /

= [°D\x; 2k)m{dx) = 22km(I(-k)) ,
Jo

we see that if (4.2) holds then (4.5) converges. Similarly (4.4) converges
if the following series converges:

(4.6) Σ Σ * Σ~2-2*(/b + l) 2 ΓΓr(2* + qV + u, 2k + q2p + v)dudv .
fc=lp=0 q=0 JO Jo

Noting that 2k ® q2p ®u = 2k + q2p + u and /̂ (2fc φ q2p) + jtί(%) eξ?c (k> p,
q < 2k~p, u < 2P), we have

S 2PΓ2P Γ2PΓ2P

\ r(2k + q2p + u, 2k + ^2^ + v)dudv = I I
o Jo Jo Jo

=22"m(/(-2))) .

Hence (4.6) reduces to

" Σ~Σ ( )
fc = l p=0 9=0 A = i p=0

= Σ2'w(/(-p)) Σ 2-"(k + lY ,
p=0 k=p+l

which is majorized by the series (4.2) with some multiplicative constant.

5. Sampling theorem. A sampling theorem for a sequency band-
limited (non-random) signal was proved by Maqusi [15], He also proved
there one for DSP's with spectral densities. Here we shall show a
sampling theorem for a sequency band-limited DSP with a spectral repre-
sentation.

A sampling theorem based on Walsh analysis techniques for not
necessarily sequency-limited (non-random) signals is constructed by Butzer
and SplettstoBer [4]. Habib and Cambanis [14] derived a dyadic sampling
representation for Walsh-harmonizable random signals.
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Let a measurable DSP {X(t), t e R+} satisfy the assumptions (A), (B)
and (C). Suppose also that m(A f)[N, <*>)) = 0 (Ae^(R+)), where m is
the spectral measure of {X{t), t e R+] and N is a positive integer. For
fixed teR+, we consider the Walsh function W(x, t) as a function of x
and expand it into the Walsh-Fourier series on [0, N):

W(x,t) ~^cnW(xN-\n) ,

where cn is the Fourier coefficient of W(x, t), i.e.,

cn = N-1 [NW(x, t)W(xN~ι, n)dx = N~λ Γ W(x, 1
Jo Jo

= N-1 NΣW(k, tφ nN-1)[w(x, t φ nN'^dx
4=0 Jo

= JV-'Aί Θ wiV-1; iV)J(ί φ nN'1,1) ,

where we use the scaling property,

W(xN-\ n) = W(x, nN'1) (a.e.) .

The partial sum

converges to W(x, t) on [0, N), since W(xt t) is of bounded variation and
continuous from the right on R+ (cf. Chrestenson [6]). Hence

( [ ] )

(5.1) . W(x, t) = lira sn(x) = N'1 Σ D(t φ kN'1; N) W{xN~\ k)

Therefore

(5.2) X(t) =
JO

= N-^Σ^DitφkN-1; N^WixN-1, k)ζ(dx)
k = [t~\N J θ

= ΛΓ-l(m i f ^ ( ί 0 kN-1; ^XikN-1) (t e R+) .

Thus we have the following.

THEOREM 5.1. Suppose that a measurable DSP {X(t)f teR+} satisfies
the assumptions (A), (B), and (C). // its spectral measure is sequency
band-limited, i.e., m(Af] [N, °o)) = 0 (A e ̂ ?(R+)) for some positive integer
N then (5.2) holds.

COROLLARY 5.1. If, in particular, N = 2n in Theorem 5.1 above,
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then

(5.3) X(t) = X([t2n]2'n) (t e R+) .

PROOF. This follows from the fact D(t 0 k2rn\ 2n) = 2n when t φ
k2-n < 2-nf ιem9 k = [ί2»]; = o otherwise.

The Corollary 5.1 shows that if a DSP is sequency band-limited, then
it may be considered to be essentially a discrete-parameter DSP.

6. Linear dyadic processes and DSP. Let η be a random measure
on &(R+) with Eη(A) = 0 and

Eη{A)rj(B) = σ2\ dx (A,
JAΠB

B e

For Φ(t) e L2(R+), define a stochastic process by the stochastic integral in
quadratic mean

(6.1) Γ(ί) = [°Φ(t φ s)η(ds) (ί e Λ+) .
Jo

We shall call such a process a linear dyadic process (LDP) [5], [16] and
[20]. We shall characterize LDP's. Let {Y(t)9teR+} be an LDP as
above. Let JA be the Walsh-Fourier transform of the characteristic
function XA(x) of the bounded set Ae^>(R+), i.e.,

, t)dx = [ W(x, t)dx .

For every bounded set A e &(R+), define a random variable f by the
integral

ξ(A) = \~JΛ(Wdt) .
Jo

It is easily seen that ζ is an orthogonal random measure, since we have
by Parsevals relation (Selfridge [25]),

Eζ(A)ζ(B) = σ2[°JA(t)7^t)dt = σ2[°χA(x)ΊUά)dx - σ2 [ dx .
Jθ Jo JAΠB

We shall show that for every function / e L2(R+)f

(6.2) \~F(t)7](dt) = [°f(x)ξ(dx) ,
Jo Jo

where

F{t) = l.i.m. [*f(x)W(x, t)dx .
R-+ oo J o

First consider the simple function
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fix) = Σ akJAk(x) ,
k = l

where the Aks are bounded and disjoint sets belonging to &(R+). By
definition,

\~F(t)7}(dt) = ±ak \°°JAk(t)η(dt) = ± akξ(Ak) = \~f(x)ξ(dx) .
Jo * = i Jo * = i Jo

For every pair of simple functions / and g we may show that

= E[°f(x)ξ(dx)\~g(x)ξ(dx) ,
Jo Jo

where G(ί) is the Walsh-Fourier transform of g(x) in the L\R+) sense.
This relation can be extended to U(R+), since the set of all simple func-
tions is dense in L\R+).

Now we recall that Φ e L\R+) and its Walsh-Fourier transform φ is
also belongs to L2(R+). The application of (6.2) to Φ and φ therefore
gives

(6.3) Y(t) = \°°Φ(t φ s)η(ds) = [°W(x, t)φ(x)ξ(dx) .
Jo Jo

Put

ζ(A)= ί φ(x)ξ(dx) (Ae^(R+));
JA

then Eζ(A) = 0 and

Eζ(Ajζ(B) = σ>\ \φ(x)\2dx {A,
JAf)B

Hence, rewriting (6.3) as

(6.4) Y(t) =

we have the following result.

THEOREM 6.1. Let {Y(t),teR+} be an LDP in the form of (6.1).
Then it is a DSP in the form of (6.4) with the spectral density σ2\φ(x)\\
The representation (6.4) is unique.

We shall also assert the converse statement.

THEOREM 6.2. Let {X(t), t e R+} be a DSP with spectral density. Then
it is also an LDP.

PROOF. Suppose that
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X(t) = [°W(x,t)ζ(dx)
Jo

and

Eζ(A)ζ(B) = \ f(x)dx (A, B 6 &(R+)) ,
JAΓ)B

where / is the spectral density of {X(t), t e R+}. Let h be a measurable
function such that \h(x)\2 = f(x), so that heL\R+). Let ζ1 be a random
measure that is orthogonal to ζ, with

= 1 dx {A, Be&{R+)) .
JAΠB

Put

ξ(A) = \~XA(x)/h(x)ζ(dx) + \^lA{x)hί{x)ζ1{dx) ,
Jo Jo

where hλ(x) = 0 when h(x) Φ 0; = 1 when h(x) = 0, and l/h(x) is taken as
zero if h(x) = 0; then

Eξ(AjξΪB) = \~(XA(x)XB(x)l\h(x)\2)f(x)dx+ [°XA(x)<
Jo Jo

Define a random measure

37(A) = ["jΛxMdx) (A 6
Jo

then

Hence, noting that

X{t) = ί°°TF(a;, ί)C(d») = Γ ^ ί ^ t)h{x)ξ{dx)
Jo Jo

we have in the same way as (6.2)

X(t) = [°H(s)7](dsφt) = [°H(8®t)η(d8) ,
Jo Jo

where H is the Walsh-Fourier transform of h in the L\R+) sense.
The discrete-parameter counterparts of Theorems 6.1 and 6.2 are

shown by Nagai [19].

7. Summary. It is known that the (ordinary) mean-continuous
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stationary processes assume their spectral representations. Measurability
of the processes ensures their mean-continuity. The W-mean-continuity
of DSP's, however, requires not only measurability of the processes but
also the Assumption (A). Moreover, two supplementary assumptions (B)
and (C) are required in order to represent the DSP's by Walsh functions,
owing to the discontinuity of these functions. The exponentionl functions,
in terms of which the stationary processes are represented, are, however,
continuous everywhere. For DSP's the assumptions (A), (B) and (C) are
relevant to their spectral representations if detailed analysis of the pro-
cesses is to be implemented.
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