Téhoku Math. Journ.
38 (1986), 371-378.

THE IRREDUCIBLE DECOMPOSITION OF AN AFFINE
HOMOGENEOUS CONVEX DOMAIN

TADASHI TSUJI AND SATORU SHIMIZU

(Received July 30, 1985)

1. Introduction. A convex domain not containing any affine line in
a finite dimensional real vector space is said to be affine homogeneous if
the group of all affine automorphisms of it acts transitively. In the
present note, an affine homogeneous convex domain is simply called a
homogeneous convex domain. A homogeneous convex domain is said to be
reducible if it is affinely equivalent to the direct product of homogeneous
convex domains of lower dimension; otherwise it is said to be irreducible.
It is known that every homogeneous convex cone is uniquely decomposed
into the direct product of irreducible homogeneous convex cones ([1], [T]).
The main purpose of the present note is to prove that this fact holds
for an arbitrary homogeneous convex domain. The proof is given in
§4 by means of the notion of clans due to E. B. Vinberg ([7]). Using
this, we can generalize results in [5], [6], [8] to the case of reducible
homogeneous convex domains, as we see in §5. The reader is referred
to [7] for details concerning the results on clans used in the present note.

2. Homogeneous convex domains and clans. We first recall the
notion of clans. A finite dimensional algebra & over the real number field
is called a clan if the following conditions are satisfied:

(1) a(be) — (ab)e = blac) — (ba)c for all a, b, ce$;

(2) There exists a linear form a on £ such that a(ab) = a(ba) for
all a,be® and a(aa) > 0 for all a = 0€g;

(8) For every ac@® the eigenvalues of the left multiplication
xel—aref are real.

Let 2 be a homogeneous convex domain in the real number space
R*. Then 2 admits a simply transitive triangular affine Lie group 7.
Let t be the Lie algebra of T and p any point of 2. Then the mapping
Det— D(p)e R" is a linear isomorphism. Therefore, for every acR",
we have a unique element D, et satisfying D,(p) = a. We denote by L,
the linear part of the operator D,. We now define a multiplication aAb
in R* by aAb = L,) and a linear form a on R" by a(a) = the trace
of L,. Then the algebra R" provided with the linear form « is a clan,
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which is denoted by %(2). Moreover, it was proved by Vinberg ([7,
Theorem 2, p. 368]) that the set of all homogeneous convex domains and
the set of all clans are in one-to-one correspondence (up to isomorphism);
the correspondence assigns to a homogeneous convex domain £ the clan
2R) of Q.

In the correspondence stated above, we can see that a homogeneous
convex domain 2 is affinely equivalent to the direct product of homoge-
neous convex domains £, and 2, if and only if the clan £(Q) is isomorphic
to the direct sum 2(R,) + 2(2,) of clans.

Let & be a clan. By an ideal of 8 we mean a two-sided ideal of 2.
A clan is said to be reducible if it is the direct sum of non-trivial ideals;
otherwise it is said to be irreducible. Then, it follows that a homogenous
convex domain is irreducible if and only if its clan is irreducible. Hence
for our purpose, it suffices to prove that an arbitrary clan admits a unique
decomposition into the direct sum of irreducible ideals.

We next recall a normal decomposition of a clan from [7, p. 374].
Let € be a clan provided with a multiplication A and let L, (resp. R,) be
the left (resp. right) multiplication by an element a of 8. We denote by
(, ) the canonical inner product in & defined by (a, b) = the trace of L.
Then & admits a direct sum decomposition (called a normal decomposition)
by subspaces

8= > 8;+ > & (rz2
1gisgsr—1 1Sisr-1
satisfying the following conditions:

(2.1) The direct summands &,; are mutually orthogonal with respect
to the inner product (,);

(2.2) &,=Re, 1 <£1=<r—1), where ¢; is an idempotent;

(2.8) The linear operators L,, and R,, are scalar operators on every
direct summand and they are given by

eAx,; = —“la-x,.,-, z,;0e;, =0 for all z,;,€8; A1=i<Jj=7);

e;Ax,; = —;—xi,», x08e; =x,; for all z,;€%; A=si1<j=r—1);

eAx;, = M, =0 for all x;,€%;, C+4,k).

Let & be the clan of a homogeneous convex domain 2 and & =
Dsisisr18y + Dusisr_1%:, @ normal decomposition of 8. Then it is known
by [7] that Q is affinely equivalent to a convex cone if and only if 8 admits
a unit element. It is easy to see that such a clan is characterized by the
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condition &, = (0) A <i<r—1). Moreover, let V be the cone fitted onto
2 (cf. [7]). Then a normal decomposition of the clan &(V) is given by
8( V) = 2 81:.1' + 15251- 8t,a-+1 ’

1sisjsr

where &,,., =0) A1 <15 7).

3. Some Lemmas. In this section, we prove some lemmas needed
later. Let & be a clan. Then we take and fix a normal decomposition
of € by subspaces ;1 <i1<j<r—1)and &, 1 =<7 =<r—1). A general
element x of ¥ is written as

X = Z Lyij + Z Lir

1sisjsr—1 1gisr—1

according to the normal decomposition of & By using (2.2) and (2.3), we
have the following identities:

eA(whe;) = %x forall ze® (1<i<j=<r—1);
yAe; = y;; forall y= 3 @W,+¥,)e® A=j=r—-1);
1sisr—1

e;Az = %z,-, for all =z :1g§‘ 1zt,eﬂ A5 r—1).

Let I be an ideal of £ and define subspaces I,; of M by M,; =
IMNEL,;. Then, by using the above identities, we have M = >} <,cic . M,; +
Susisri M, (direct sum). Since dim ¥, = 1, the subspace I, is equal
either to (0) or to ¥,,.

We first prove the following:

LEMMA 1. (1) If M;;=28;; then M ;=2; and M;, = L, for j +1, k.
(2) If My;; = (0), then M, = (0) for j < k and M,; is equal either to
0) or to &; for 1 < j.

PrRoOF. (1) For any x,;€%,; and x;,€%; (2 < j < k), the identities
z,; = x,;Ae; and x;, = 2e;Ax; hold by (2.3), which imply the assertion.
(2) For every x;€8; (J <k), the formula z;Az; = (@, ©;)/(e; €;))e;
holds (cf. [7, p. 8376]). From this and the condition I;; = (0), we have
M, = (0). If M, =(0), then M,; = (0). If I, +# (0), then we have
M,; = 8; by Q). q.e.d.

Let us denote by I the index set {1,2, ---,7 — 1} of & Then a
subset I, of I is said to be admissible if the condition &,,., = (0) holds
for every pair (¢, j) of indices 7 and j satisfying 7€ I, and j¢ I, where
(e(3), €(5)) means (3, 7) or (7, ©) in accordance with ¢<j or j <1, respectively.
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It follows from definition that the complementary subset of an admissible
subset of I is also admissible. A subset of I is said to be ¢rreducible if
it does not contain any proper admissible subset.

LEMMA 2. The index set I is represented as I=I1U---UI, the
disjoint union of irreducible and admissible subsets I, (1 < a < p). This
decomposition is unique up to order.

ProOOF. For a pair (7, j) of indices ¢, j € I ,we define a relation ¢ ~ j
if there exists a sequence {i, 7, *-*, 1.} of indices in I such that ¢, = ¢,
in=J and 8, .y #(0) 2=k =m). Then it is easy to see that the
relation ~ is an equivalence relation in I, and that for every index 7 € I,
the equivalence class {jeI; j ~ 4} is irreducible and admissible. Conver-
sely, every irreducible and admissible subset is nothing but an equivalence
class. q.e.d.

For an ideal I of a clan ¥, we define a subset I(IN) of the index
set T by I(M) = {1eI; M,; = &;}. Then we have the following:

LEMMA 3. If a clan & is the direct sum of mon-trivial ideals I,
1 £ a £ p), then, the subsets I(M,) of I are admissible and satisfy the
condition I = ICR,)U - UI(IN,) (disjoint).

Proor. We first remark that & = I, + --- + M, is the orthogonal

direct sum with respect to the canonical inner product (,). Therefore,
the assertion follows from the condition (2.1) and Lemma 1. q.e.d.

Conversely we have the following:

LEMMA 4. Let I, 1 < a < p) be admissible subsets of I such that
I=1U:--UI(disjoint). Then there exist unique ideals £, of L satis-
fying the conditions I(¥,)=I, L =a<p) and =8 + -+ + &, (direct
sum).

ProOF. The multiplication A in 8 satisfies the following relations
(cf. [7, the formulas (34)-(36), p. 376]):
A%, =0) (G #k1); 8,A8,C8, ¢ <j<k);
81::'A8kjcge(i)e(k) (i é j’ k é j) .

We now define subspaces &, of 8 by
(3'1) 80: = Z 2“ + E 8" (1 é (24 é p) .

8st,stel, 8cly

Then, by using these relations and the conditions (2.2), (2.3), we can see
that 8, is an ideal of the clan £ for every @ (1 < a < p). Since &,,.;, =
0) for eI, and jelsa + B), we have =8 + ... + 8, (direct sum).
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Clearly the condition I(8,) = I, holds for every & (1 < a < p). Moreover,
the uniqueness of 8, follows from Lemma 1. q.ed

Note that, for the ideal &, in the above lemma, the decomposition
(8.1) is a normal decomposition of the clan £, if we rename the indices
in L={p, -+ pa} < <p) by p,—k ALk=<s—1),r—s.
It follows from Lemmas 3 and 4 that a clan £ is irreducible if and
only if the index set I of & is irreducible (cf. [1], [5], [6]).

4. Irreducible decomposition. By making use of the lemmas obtained
in the preceding section, we can prove the following:

THEOREM 1. Ewery homogeneous convex domain s affinely decomposed
into the direct product of irreducible homogeneous convex domains. This
decomposition is unique up to order.

As was noted in §2, it suffices for the proof of the above theorem
to prove the following:

THEOREM 2. Ewvery clan is decomposed, uniguely up to order, into
the direct sum of irreducible ideals.

PrOOF. Let & be a reducible clan. Then, by Lemma 2, the index
set I of 8 is uniquely represented as I = I,U---UI,, the disjoint union
of irreducible and admissible subsets I, (1 < a < p). For the index
subsets I,, we have the ideals £, of £ defined by (8.1) and they satisfy
=8 + -+ + &, (direct sum) by Lemma 4. Moreover the ideal £,
is irreducible, since the index set I, is irreducible. Now, let & =
M, + --- + M, be another decomposition of € by irreducible ideals I,
1B =¢q. Then the sets I(IM;) are irreducible and admissible, and
they satisfy the condition I = I(IR)U --- UI(I,) (disjoint union) by
Lemma 3. Thus, by Lemma 2, the conditions p =¢q and {I, ---, I} =
{I(m), «« -, I(M,)} hold. Hence, by Lemma 4, the decomposition is unique
up to order. q.e.d.

5. Some results on reducible domains. Throughout this section, we
study reducible homogeneous convex domains exclusively. We first fix
notations. For a homogeneous convex domain 2, we denote by G(2) the
group of all affine automorphisms of 2. It is known that Q2 admits a
G(2)-invariant Riemannian metric which is called the canonical metric (cf.
e.g., [7], [4]). We denote by I(2) the group of all isometries of 2 with
respect to the canonical metric. For a topological group G, we denote
by G° the connected component of G containing the identity element.

We have the following by [4, Proposition 1.1] and [6, Theorem 3.1].
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THEOREM 3. Let Q2 be a homogeneous convexr domain. If the
1wrreducible decomposition of 2 contains no homogeneous convexr cones as
its components, then it coincides with the de Rham decomposition of Q
with respect to the camonical metric.

The irreducible homogeneous convex domain {(z, ,, - -+, x,) € R*; x, >
2+ oo+ + a2} (n =2) is called an elementary domain.

THEOREM 4. Let 2 be a homogeneous convex domain having neither
a homogeneous convex cone nor an elementary domain as its irreducible
components. Then I(2)° coincides with G(Q)°.

PROOF. Let 2 = 0Q,x:.-%x 2, be the irreducible decomposition of 2.
Then, by Theorem 38 and [2, Theorem 3.5, p. 240], we have I(Q)° =
I(Q)°x---xI(R,)°. By [5, Theorem 6.1], we see that the equalities
IR)° = GR,)° (1 £1 < p) hold. This implies I(2)° = G(R)°, since G(2)° =
G(R)°x -+ xG(R,)°. g.e.d.

In the rest of this section, we show that the theorem and proposi-
tions in [3] remain valid for a homogeneous convex domain having no
homogeneous convex cones as its irreducible components. In the following,
we use the same notation as in [3].

PROPOSITION 1. Let Q2 be a homogeneous convex domain and V the
cone fitted onto Q. If the irreducible decomposition of Q2 contains no
homogeneous convex cones as its components, then V is trreducible.

PrROOF. Let 2 = 0Q,%x---x 8, be the irreducible decomposition of Q.
For simplicity, we assume that p = 2. The proof in the case p =3 is
similar to that in the case p = 2. Fors =1, 2, let &(Q,) = Xi<icjzr, &P +
Dizizr, 1S4y, be a normal decomposition of the clan £(2,) corresponding to
the homogeneous convex domain 2,. In view of the proof of Lemma 4
in §3 and the remark after it, we can see that a normal decomposition
of the clan 2(Q) = 8L, + &R, (direct sum) is given by &)=
Zléiéiér—lgﬁ + Dlisigr B (r =1+ 1, — 1), where

Y (A=2i=j=<nr -1
0 (A=si=sr-1,n=jsr-1
8i.j: 81(,11'1 (léiérl—lyjzr)
W msisjsr-lLk=i-nrn+1l=57—r+1)
2,(‘2')2 mn=sisr—-1Lj5j=rk=1i—r +1).

As was stated in §2, a normal decomposition of the clan (V) is given
by &(V) = DsisisrSy + leigrgt,r+1’ where 8, ,,, =(0) 1 =9=<7r). We now
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put n; = n; = dim &;. By assumption, 2, and 2, are not affinely equi-
valent to a homogeneous convex cone. Hence, there exist indices & and
lsuwchthat 1=k =<r,—1,n=1=<r-1,n,+#0 and n,, #0. Since 0,
and 2, are irreducible, for every pair (i, j) of indices with1 <1 <5<,
there exists a sequence {i, 4, - -, %,} of indices satisfying the conditions
1=sw=r(k=q9,%=1%1%=J,andn, , #0@=k=¢q). Therefore,
the index set of ¥(V) is irreducible, and hence, V is irreducible (see also
[1]). q.e.d.

By using Proposition 1 stated above and the same argument as in
the proof of [3, Proposition 2], we have the following:

PROPOSITION 2. Let 2 be a homogeneous convex domain in R" having
no homogeneous convex cones as its irreducible components. If a subgroup
G of G(Q) acts on Q transitively, then the centralizer of G in the group
of all affine transformations of R" is trivial. In particular, the center
of G 1is trivial.

We next prove the following:

LEMMA 5. Let 2 be a homogeneous convex domain having no homo-
geneous convex cones as its irreducible components. If a conmected Lie
subgroup G of I(2) acts on 2 transitively, then the center of G is trivial.

ProOF. Let 2 = 2,%x---x 2, be the irreducible decomposition of 2.
Then, by Theorem 3, we have I(2)° = I(2,)° X ---xI(2,)°. Since G is
connected, we see that GCI(R2)°. Let m, be the natural projection of
I(2)° onto I(R,)° and put #,(G) = G,. Then the center of G is a subgroup
of C(G,)x ---xC(G,), where C(G,) is the center of G,. Hence, we have
only to show that C(G,) is trivial. Since G acts on £ transitively, we
see that G, is a Lie subgroup of I(2,) acting on £, transitively. There-
fore, our assertion follows from [3, Corollary 2]. q.e.d.

In view of the proof of [3, Theorem], we have the following by
Lemma 5.

THEOREM 5. Let M be a homogeneous Riemannian manifold whose
universal covering 1s isometric to a homogeneous convexr domain Q
endowed with the canonical metric. If the irreducible decomposition of
2 contains mo homogeneous convex cones as its components, then M is
simply conmected, that is, M itself is isometric to 2.

REMARK. In Lemma 5, if the irreducible decomposition of 2 contains
neither a homogeneous convex cone nor an elementary domain as its
components, then the assertion of the lemma follows immediately from
Proposition 2 and Theorem 4.
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