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Introduction. In this series of works, we try to develop a construc-
tive theory mainly on special examples of elliptic second order operators
(and also, sometimes, hyperbolic operators) with very irregular coefficients
(for example, there can be Dirac measures along hypersurfaces in the
second order terms). Our aim is to compute as explicitly as possible,
examples of fundamental solutions and to show new phenomena which
occur in such situations. Our motivations come from various areas: first
in mathematical physics it is more important to have explicit models
than general theory; for example in this work, we have "explicit" for-
mulas for transmission of waves or of heat in one dimensional medium
with discontinuous indices; in the second paper of this series, we shall
also examine higher dimensional situations related to interface problems.
The second motivation is more mathematical; recently, Fukushima [2] has
developped a remarkable theory of Dirichlet integrals allowing rather
general coefficients and he constructed in the abstract manner stochastic
processes associated to them; unfortunately very few examples were given
apart from the usual Brownian motion although many natural examples
come from mathematical physics, engineering problems, analysis in several
complex variables, and even in algebraic topology. Our work will give
some examples in these various areas.

This first part studies the one-dimensional case; we first give
general motivation (coming from physics) to study operators of the type
c~2(x)d/dx(a~2(x)d/dx) and we also give two general methods of solution:
the spectral method in the self-adjoint case and the method of Green
functions in the general case. It is quite surprising that both methods
lead to very concrete results: we can write an explicit form of the
spectral measure as a series (which is not a perturbation series), provided
that c/a has a finite number of accumulation points of the set of dis-
continuities and log(c/α) is of bounded variation. The method is to reduce
everything to an infinite product of 2x2 matrices which can be done
explicitly; Chapter II gives example with piece wise constant coefficients
and Chapter III gives the formula for the infinite product.

In Chapter IV, we introduce, on a simple example, a new kind of
singular perturbation problem and we show that a limit of operators
with irregular coefficients is a rather subtle phenomenon. Finally, Chapter
V gives the same kind of formulas as in Chapter III but for radial 3-
dimensional problems.

CHAPTER I. Definition of operators with general coefficients and
their applications. The purposes of this introductory chapter are to give
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a motivation for the introduction of operators with irregular coefficients
arising in several problems of mathematical physics, to give a mathemati-
cal definition of these operators and finally to fix certain notations con-
cerning spectral resolution and Titchmarsh-Kodaira-Yosida theory.

1. Motivation coming from mathematical physics problems.
(a) Heat transfer in a general medium. We consider here the heat

transfer in a general medium in Rn (n — 1, 2, 3). The material constitut-
ing the medium is characterized at each point x by two coefficients: the
first is the specific heat c\x); its meaning is that when the temperature
at x increases by 1 degree then the heat in the material at that point
increases by 1 Joule. If T(x) is the temperature at x and Q{x) is the
heat at x, then

Q(x) = c\x)T{x) .

The second coefficient is the diffusion coefficient denoted by a~\x); its
meaning is that, at each point x, the flux of heat J is given by

a\x)

If V is a fixed volume with boundary S, and if there are no internal

sources of heat inside V, the variation in time dt of the quantity of heat

inside V is dt \ Q(x, t)dx and it is equal to the heat flux through S in
JV

time dt

([ J(x, t)-n(x)dS)dt

and we obtain the law of heat diffusion (Fourier's law)

A ί c\x)T(x, t)dx = \ -λ-VT{x, t) ndS
dt iv isa\x)

(n is the external normal to S, dS is the area element) and so we obtain

(1.1) I- \ c\x)T(x, t)dx - ( div(-l-V2Xaj, t))dx .
dt Jv iv \a\x) /

To derive this law (1.1) we have not assumed that a and c are continu-
ous coefficients; they may be discontinuous.

We shall suppose that the coefficients a and c are C1 and C° func-
tions respectively on subdomains of the domain of definition but they
can be discontinuous across a finite set of hypersurfaces in Rn and
their jump across these hypersurfaces are finite jumps. Let Dif D3 be
domains of the total domain where a and c are C1 and C° functions,
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respectively. Taking for V a small domain contained in Dt or contained
in Dj and denoting

α* = αU ct = c\D.

we obtain that Tt = T\D. satisfies the usual heat equation

ta

Let Si3 be the hypersurface separating Dt from D3; take for V a small
domain cutting Si3. Then (1.1) becomes

A(\ c\{x)Ti%, t)dx + ( c){x)T3(x, t)dx)

= lim(( div(-i—VΓΛa, t))dx + ( div(-i—VΓyίa;, t))dx

+ Km ( ( ί

where F£ = F — Γε and ,re is a tubular neighborhood of thickness ε
around Stί. If we integrate by parts the second member of this last
equation and if we take into account the equation (1.2) in each domain
Dif Dj we obtain the boundary condition

(1.3) 0 = -i-ίVΓΛs, ί) nt) + -^—{VT3(x, t) n3) ,

where nt and n3 are the external normal of Si3 pointing outwards Dt and
D3, respectively.

Moreover, we impose that T(x, t) is continuous everywhere.
(b) Wave transmission in a general medium. In wave transmission

we consider the equation

d2u
dt2 \a2(x)

where I/a is the velocity of the waves and we take c = 1. (But this is
not necessary in general).

(c) Schrodinger equation with variable effective mass. The
Schrodinger equation is

\—Vu(x)) + Vu
i dt \2m*(aO

where V is a potential function and m*(x) is the effective mass of the
particle at point x; this effective mass can vary from point to point if



DIRICHLET INTEGRALS WITH SINGULAR COEFFICIENTS 469

the particle travels in different media (for example in a crystal the mass
of the electron is not its usual mass).

2. Relation with the general theory of Dirichlet integrals. In the
case when c = 1, we can also consider the Dirichlet integral

( 1 . 4 ) I ( u , v ) = \ - ± - ± ^ ^ \ 4 ξ p
J a (x) k=i dxk dxk t JDidtix)*^ dxk dxk

This is a particular case of the theory of Dirichlet integrals with dis-
continuous coefficients [2]. The operator associated to this integral is
defined by

Lu = divf—i—Vu)
\α(#)2 /

and with the boundary condition (1.3) on D^Dβ. But the problem con-
sidered in n°l is more general than the one associated to a Dirichlet
integral, because it is not self-adjoint.

3. Definition of the operator L. We are looking for the solutions
of the Cauchy problem

(1.5) Ut "

where the notation L means

(1.6)

with the boundary conditions
(1°) u(x) is continuous everywhere
(2°)

(1.7) 4 - ^ ' *') + -ITT

on the surface of separation of D< and D3. We also have to specify
certain boundary condition on the surface of the domain of definition of
u or at infinity but they can be specified in L as a condition of type (2°)
or more general mixed conditions.

4. The one dimensional case: methods of solution. In the sequel
of this work, we shall mainly be interested in the one-dimensional case.
The notations introduced in this section will be used throughout our
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work. The real line is divided in intervals

h = — °° < h < h < * * < IN-I < IN = °°

In each interval [i^, ZJ = Ji we define α* and ct which are C1 and C°
functions, respectively, but they may have discontinuity at points lt.
The operator L is defined by

with boundary conditions

(1.9) u(l7) = u(lt)

(1.10) -JL- |^-) = -JL^ ΊΓW
a\{lj) dx cβ+iw) dx

We see that we must find the kernel of F(L) for a function F of a real
variable, for example

F(ζ) == exp(-ίf) , exp(±iίξ1/2) or exp(iίf) .

If we pose the problems as in Section 1. We have two methods to do
this.

First method: the functional calculus for a self-adjoint L. Let us
suppose that c = 1 so that L is self-adjoint with respect to the Lebesgue
measure; L becomes a negative operator; let —k2 and u(x, ±k) be respec-
tively a generalized eigenvalue and the corresponding generalized eigen-
functions. By von Neumann theory, there exists a 2x2 matrix pu>(k) so
that

δ(x - 0) = Γ dk Σ u(x, sk)u*(y, e'k)pn>(Jc)
JO e,e' = ± l

pε$>(k) is the spectral matrix; it is hermitian and can be diagonalized; by
considering special linear combinations we can reduce pεε, to be δee>; then

(1.11) δ(x - y) = Γ u(x, k)u*(y, k)dk ,

and

(1.12) F(L)(x, y) = (°° F(~k2)u(x, k)u*(y, k)dk .
J

We want to find explicit expansion for the u(x, ±k).
Second method: method of Titchmarsh-Kodaira-Yosida for a general

L. This method applies for c & 1; let us assume that there exist m and
M such that
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0 < m g a , c ^ M < oo .

For λ in C — R~ we consider the problems

(1.13) (P±) (λ - L ) φ , λ) = 0 if x ~> ± oo .

Call tt±(α?, λ) the solution (supposed to be unique modulo constants); the
Green function is

(1.14) G(x, y; X) =

, X)

A

W(u_, u+)(x0)

. a>2(Xo)c2(y)u_(y, x)u+(x, X) (

W{u_, u+)(x0)
 K

where W(u_, u+)(x0) = (u_u+ - u'-.u+)x=Xo is the Wronskian of the two
solutions, and x0 is any point on R. Then for xeC - R_ and/eL2CR)n
C°(R), we can prove that

= (λ - L)-1/ = Γ G(x, y; X)f(y)dy
J-oo

7p-\ extG(x, y; χ)dx ,

satisfies (λ — L)u = f and ^->Oifα;->±oo.
The heat kernel pt(χ, y) is given by

(1.15)

where ]Γ\ is a contour in the complex λ plane around the negative real
axis (as in the figure).

Imλ

Reλ
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REMARKS. 1. Neither G(x, y, λ) nor pt(χ, y) are continuous in y in
general if the coefficients of the operators are not continuous.

2. The computations involved in the spectral resolution or in the
Titchmarsh-Kodaira method are very similar; we shall do them using a
statistical mechanics method (transfer matrix).

CHAPTER II. The case of piecewise constant coefficients.

1. Hypothesis and general formulas for the transfer matrix. We
shall assume the situation of Chapter I, n°6: namely l0 = — °o < ϊx =
0 < l2 < < lN_x < lN = oo and on each interval It — [l^, ΪJ, we suppose
that Ci and αέ are constants. We can always reduce ourselves to the
case ii = 0 and we can also assume that

h = U - 1)1

by refining the partition by the l/s. We denote also % = u\Xj. The two
eigenfunctions on /,- are exp(±ifcαJ cix) associated to the eigenvalue — k2

or exp(±λ1/2αj c^) associated to λ 6 C — R~ (determination λ1/2 > 0 if λ > 0).
We shall do the computation in the first case (it does not really matter
which case we take). We look for an eigenf unction u(x, k) such that

(2.1) Uj(x, k) = AjifyexpiikdjCjX) + By(A;)exp

The boundary conditions at ls can be written as

Aj+1 exv(ikaj+1cj+1lj) + Bj

( i + 1 s + 1 c j + ί l j ) - Bi+1exp(-ikaj+1cJ+1lJ))
aJ+ί

which can be rewritten as

(2.2)

where T3{k) is the 2x2 matrix:

(2 3) T' = ———— ί
3 2α i c y + 1 \*3 *4y

w h e r e *1 = (CLJCJ+1 + α^+iCjOβxpίΐfcία^Cj — a,j+1Cj+1)lj)

*2 = ( a ^ + 1 — α J + 1 c ί )exp( — ik(a3-Cj + αj+iCj+J/

*3 = (djC3 +1 — cij+1Cj)ex]y(ik((ijCj + ttJ +1c ί +1)Zί )

*4 = (α ic, + 1 + α i+1cy)exp( — iA
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DEFINITION. Tό(k) is the transfer matrix for momentum fc.

2. The self-adjoint case. Referring to formulas (1.11) and (1.12) we
need to compute integrals such as

(2.4) K(x, y) = Γ F(k2)u(x, k)u*(y, k)dk ,
J-00

where F(k2) denotes an even function of k2 for x, y in Iά and Il9 respec-
tively. Replacing uj and ut by their values (2.1) and using the fact that
F is even, we have

(2.5) K(x, y) = Γ F(ie)dk(C%\k)exv(ik(afl - aty))
J-oo

+ CjVWexvdkiajX + aty)))

for x e Is, y elt where Cjf(k) are called spectral coefficients and are

QT\k)
CftKk) = Aj(k)Bt(k)

Now we write the condition of spectral resolution (1.11), i.e., we take
ί Έ l , If x, y are in Ilt x — y can take any real value z and we must
have from (2.5) with j = I = 1 and F = 1

δ(z) = Γ
J_o

— y)) + C1

(

1

+)(fc)exp(ifcα1(^ + y)))
J —oo

so that

If now x is in Ix and y is in IN, we must have

0 — I /"/l Γ i * (ιr\&~vw( tiff n />* — /Ύ ' Ϊ / I I I f^(*r> f//* I Λ Y Π I i ic( rt Ύ* I /Ύ ' Ϊ / ^ M

J-oo

and because α^ + α ^ can take any real value, we deduce

(2.8) QP(k) = 0 .

Let us now define the following matrix

(2.9)

so that using (2.6)

( 2 β l 0 ) ττ,^*ττ,,.s ίC^(k)
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and also using (2.2), we obtain

Uj+1(k) = U0) <τm = UM *TM *TtQc) - *TM .

In particular,

(2.11) Um* Ut(k) = ( T U k ) • 5\(Λ))( Uf(k) U M W Ά ( k ) ••-*T,.M)

If we take in this formula N = j and 1 = 1 and if we take into
account the relations (2.7) and (2.8) giving C£\k) and CίP(k), we obtain
from (2.11) and (2.10)

(2 12) Γ ) f (k)T(k)l
( 2 < 1 2 ) [θ CtΛ-k)l T"-m Tm\C[i\k) aJ2π

This system of equations gives Cί5}(fc) and Qt\k). In particular,
UfifyUάk) is known and from (2.11) and (2.10), we know all the other
spectral coefficients, provided that we can perform the product of the
matrices Tά_λ Tx.

In the self-ad joint case, cά = 1 for any j and it is clear that

(2.13) det T3{k) = ^

so that Tj(k) = fi(fc)(αi+1/αi)
1/2 with det Tά = 1. Denote

Then

(2.15) TUk) Γi(fc) =

and for j = iV we deduce C from (2.10) as

i%)1/2 M?MN-NfNN = c ^ .
27Γ MJV
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3 The non self-ad joint case. In the non self-adjoint case, we define

u_fl(x, X) = expix^a&x)

so t h a t u_tl —> 0 if x —> — °°

u+)N(xt X) = exp(—x1 / 2aNcNx)

so that u+tN-+0 if x—> oo.

Then, we have again to compute u_fj(x, λ) and u+J(x, X)

u_tj(x, X) = A ί (

and so for j > 1,

(2 i6)

In particular, if we compute the Wronskian at oo, we have

W(u_, tt+)(oo) = -2aNcNX1/2AN .

If xelj, yeIN, we have by (1.14)

G(x, y, X) = α iVcΛΓ(A i(λ)exp(λ1/2α ic iίc) + B, (λ)exp(—X1/2aάcάx))

4. The particular cases N = 2 or 3: the self-adjoint case, (a) These
cases can be explicitly treated. We shall give the details only in the
self-ad joint case (all Cj = 1) and just give the result for the general case.
Also, we shall treat the case N = 3; we have lx = 0, and define l2 = I.

(b) We want to compute ClpQe) for 1 ^ i, j 5£ 3. First we have

where Λf2 = 2"1(α1α2)"1 / 2(α1 + α2), iV2 = (aλ - α2).

Then we have

where

1

l + &2)(#2 + α3)exp(i&£(α2 — α3))

— α3)exp(—i/cϊ(α2 + <h))]
—— [(αt — a2)(a2 + α3)exp(ίfeί(α2 — α3))
4(α1α2α3)

1 / 2
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+ (αx + a2)(at — a3)exp(—ikl(a2 + α3))]

and we have Cn\k) = aJ2π,

— α3)exp(—2ikla2)C(k)
2π Ms 2π (α1 + α2)(α2 + α3) + («! —α2)(α2 —α3)exp(—2i

Then, we need Qϊ\k) given by U2(k)*Ut(k)

IM} Nί\(aJ2π Q?(-k)
Uί(k) ϋi(fc) = ^(fc) ϋ?(fc) UM = (^K)

W Mj\Cίt\k) aJ2π

so that

=ί=l

π (αx + α2)(α2 + α3) + (αx ± α2)(α2 ± α<

Then we have also

C[t\k) = o ,

- ^ ^ [ ( α , + α2)(α2 + α3)exp(ifci(α2 - α3))
π

+ (αx — α2)(α2 — α3)exp( — ikl(a2 + αj)]" 1 .

We compute C 2̂

±}(fc) by using

- U*U 'T -U U T

so that

α2)(α2 + α3) + (ax ± α2)(α2 ± α3)exp(±2ifciα2)

+

"" (a, ± α2)(α2 ± α3) + (αx + α2)(α2 + α3)exp(±2ΐ/ciα2)
Then we also obtain

Qf(k) = ML(ΛI T α2)[(α1 + α2)(α2 + α3)exp(=Fifeί(α2 - α,))

π

+ (αx — α2)(α2 — α3)exp(±ifci(α2 + ^s))]"1

and finally C{

3t\k) is computed by

Ui(k) UM = ϋ?(fc) ϋi(fc) %(*;) «Γ£(fc)
0 \/ΛΓ.

0 Ck\-k)J\NΛ Mi
(aja,)1'
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2π 3 (αx — α2)(α2 — α3) + (αx + a2)(a2 + α3)exp(—2ikla2)

(c) Now we can compute the heat kernel using (1.12) or (2.5). We
introduce the function

(2.17) h(fi, ξ, C,ά) = — Γ e-k2teίkξ(l + Ce^Y'dk
2π J-°°

well-defined for \C\ Φ 1. It is a kind of ^-function. Denote

for j , I = 1, 2, 3, and also recall the usual formula

flf(t, ί) = (4πί)"1/2 exp(-£7(4t)) = - ^ Γ e"*Vwdfc .

Using (2.5) and the preceding values for the spectral coefficients we
obtain

pl^Kx, y) = axg{t, a,{x - y)) - a^'^hft, a,(x + y), K, - L )
&! + a2

- aι

a2~a"h{t1 a,{x + y)- L, K, -L) ,
tt2 + ^3

Pΐ'2\x, y) = 2 α, l ( l 2 fe(t, α ^ - α,», ̂ , - L )
aλ + α2

(2.18) piι κ(x, y) = 4 α g 2 t t 3 -Λ(t, α ^ - «32/ - ί(α, - <0
(α, + α2)(α2 + α3)

2>f'2)(a;, y) = a2h(t, a2(x - y), K, -L)

α > (

(θt + a2)(a2 + a3)
- a4α* " α8jfe«, α2(x + y)-L, K, -L)

(α2 + α3)

+ a2

ai~a*h(t, a2(x + y), iΓ, +L) ,
Λj + α 2

r\x, y) = 2 c t 2 α s fe(t, a2x - α,y - i(«2 - α.), X, -L)
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2α
2
α
3
(α

1
 - α

2
)

(a, + a2)(a2 + α8)

P? 8)(aj, y) = θβfl(ί, α3(α - ?/)) + α 3

( . α i " α 2 )fefe α3(α + y) + 2l(a2 - α8), K,

+ α 3 ^ 2 "" α3jfe(^, α8(a? + 2/) - 2ία3, K, -L) ,
(α2 + α3)

and here ίΓ = (αx — α2)(α2 — α3)/(α1 + a2)(a2 + α3) and L = +2la2.
(d) We now obtain t h e case N = 2 which is special case of JV = 3

for 1 = 0, a2 = α3. In t h a t case

h{t, ξ,C,L = 0) = g(t, ξ)

and the heat kernel is simply

Pi^ix, y) = aig(t, a,(x - y)) - a ^ ~ ^ g(t, at(x + y)) ,
at + a2

ίh2)(xf y) = 2aiQ/2 g(fi, axx - a2y) ,
ax + α2

VΪ2>2)(x, y) = α2βf(ί, α 2 (α -
(<&! + α 2 )

5. The particular cases N = 3 and 2: non self-adjoint cases. We
consider here the case N = 3 but with the c/s not necessarily 1, i.e., the
operator

(2.19) L = ( l l [ β < 0 ] + ±lί0<m<ίl + ± l ί ι < m ^
\cl c\ c\ I dχ\\ at
, 1T , 1r \d

α2 α' / dx

Then

%_(», λ) = expCλ^Cjα^) for a? < 0

u+(x, λ) = exp(—x m c s a Ά x) for a? > i .

We define

jAexp(λ 1 / 2 c 2 α 2 α) + £exp(--λ 1 / 2 c 2 α 2 a0 0 < x < I
% ~ (Cexp(λ1/2cα^) + Dexp(λ1 / 2cαα;) x > I

_ (G expO^c^a) + J ϊ e x p C - λ ^ α ^ ) a? < 0
U+ ~ (£rexp(λ1/2c2α2a;) + i^exp(-λ1/2c2α2α) 0 < x

We write the boundary condition at 0 and I for u±(x, λ) and we obtain
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E = - ί ~a*Cz + a Λ exp(-λ 1 / 2 ί(α 2 c 2 + ascs))

(2.20) * *

F = - 1 a*e* + β»c' exp(λ1/2*(α2c2 - αac8))
2 α3c2

exp(λ1/2Zα3c8)[(α2Cl - α l C 2)(α3c2 - α2c8)

xexp(-λ 1 / 2 ία 2 c 2 ) + (α2Ci + α1c2)(α2c3

Then

O m I/I " « " - l - ^ ' λ ) W + ( ^ ' λ ) ίf » ^
_ ΔCΛ±1 X

(2.22) G(», 2/, λ) =
if x^

For example, if we compute G(x, y, X) for x < y < 0 we have from (2.22)

G(a;, y, X) = (claJ(2cιX
mH))eχ-p(X1/2aιc1x){G eyφW'a&y)

+ T-Γ Λγτ^( _ _ "\ ^-1 ft & ij\\

= (α1c1/(2λ1/2))exp(λ1/2α1c1(a; - y))

+ α1c12-1λ~1/2(G/iϊ)exp(λ1/2α1c1(α; + y)) .

But from t h e transmission conditions and (2.20), (2.21)

2 V α2cx

and so

(2.23) A = _

Now using the contour integral (1.16) and performing the integral we
obtain

iM)(s, V) = αAflf(ί, αA(aj - »)) + ^ Γ
2 J-°

where we replace λ1/2 by +iξ in G/iT given by (2.23). With the same
function h given by (2.16) we obtain

(2.24) pίι 1}(α, y) = α ^ ί , ^ ( a ; - »))

Z^£λh{t, alGl(x + y), K, - L )
+ OA)
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+ ^ ( - " A + ^ f t f t alCl(x + y)~L, K, -L)
+

In the same manner we also obtain for x < 0 < I < y (case (1, 3))

(2.25) p?*\x, y) =
λ ( t , α A a

+ α2c3)

+ i(α 3 c 3 — a2c2), K, — L) .

Here
L = +2la2c2

V a2c± + αxc α3c2

In t h e case JV = 2, we obta in

(2.26) Pr\x, V) = αAflr(ί, αA(a - i/)) + a ^ a ^ ~ a ^ g(t, a^x + y))

(2.27) p?>2\x, y) - 2 o

(2.28) pi2'2)(x, y) = a2c2g(t, a2c2(x - y))

(2.29) pr\xf y) = 2aia*cl g(t, axcxy - a2c2x) .
ac + αc

REMARK. Compare pi2)1) and p]1>2); here they differ by the exchange
of x and y and αϊso by the exchange of c\ and c\ in the coefficient in front
of g due to the non self-adjointness of the operator. Moreover they are
not continuous (for example at 0): for example fix x < 0; then y -> pt(x, y)
is not continuous at 0 because

Pt(χ, 0-) - g(t, α l C l )

Pt(a5, 0 + ) = flr(ί, α l C l )

but if we fix y > 0, then a? -» pt(x, y) is continuous at x = 0.

CHAPTER III. The operator with general irregular coefficients.

1. Computing a finite product of transfer matrices. In Chapter II,
we defined the transfer matrix Tά{k) by formula (2.3) rewritten as
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(3.1) Tά{k) =

where Zx = 0, l5 = (j — 1)1 and

aό exp( — iklάθά))

σά = α ^ + α i + 1c i + 1

and det Γy = (αy+1Cy/αyCy+1); we rewrite (3.1) in the form

(3.3) Γ,

We have seen in Chapter II, n°2 that the most important object is the
product

of N matrices Γ, . Let

(3.4) f, = fj(k)

Then we have

( &N+fil_\ 1 Φ Φ
— I J -r^ -, r2 Γ^-^ i\^ N-i

It is clear from (3.4) that we can write

W, i BN

>iV+l,l -*i-Λ

and

/ -"-JV+l

\B*

which means

AN+1>1 = aN exv(iklNΘN)ANtl + βN i

B%+1A = βN exv(ίklNσN)AN>1 + aN

Define

(3.8) * + M



482 B . GAVEAU, M. OK AD A AND T. OK AD A

(3.9) Ύj = £i-

so that (3.7) becomes (recalling the definition (3.3) of θjf σj)

CN+1 = exp(-ifcί(AΓ- l)aN+1cN+1){exp(ikl(N - l)aNcN)CN

+ VN exp( - ίkl(N -

D%+1 = exy(ίkl(N - l)aN+1cN+1){iN exv(ikl(N - l)aNcN)CN

+ exτp(~ikl(N — 1)CMV)Z$} .

Now define

-δ^+i = eχiρ(-ikl(a2c2 + + aNcN))CN+1

F% exp(ΐfcί(αe + . . . + aNcN))D%+1

EN+1 = exp(-ίkl(N - l)aN+1cN+1){exv(ikl(N - 2)aNcN)EN

+ ιyNexv(—ίklNaNcN)exv(--2ίkl(a2c2 + + G^-
(O )

F$+1 = exv(ίkl(N - I)α^+Ic^+1){7^ exv(iklNaNcN)

x exp(2ί/bi(α2c2 + +

+ exp(-ίkl(N -
On this form, it is almost obvious to perform the product of the

matrices in a systematic way. The answer is that for ΛΓ ̂  2

xexpf-2ί/cϊ|Σ arcr - ^Σ arcr + - Σ αrcr()Ί
(3 13) \ I i i i ) / J

n = exv(ikl(N - 2)CMV)[Σ χ ^ ̂  Σ ^ ^ ϋ +i^ ' ' ' 7^i

x expί2ΐ&z| Σ ' αΛ - Σ αrcr + + Σ «rcr - a&lX] .

We can check this formula by replacing EN and F% given by (3.13)

in (3.12); we obtain

EN+1 = exv(-ikl(N - l)aN+1cN+1)[Σ ^ < J Σ ^^_χ ̂ 2 Λ ^

( C *2n *2n—1 *1 ") \

— 2ikl\^arcr — Σ ^Λ + •• — Σ a^r [)
I i l l )/

+ 7^ exp(—2ikl(a2c2 + + aNcN)) Σ Σ

\ ί i i ) / J
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but this is obviously of the type given by formula (3.13) for N + 1
instead of N and 1 ^ ix < < i2n <> N. In the same way, we also have

F%+1 = exv(ikl(N - l)aN+1cN+1)yrN exp(2ikl(a2c2 + + aNcN))

ί i l ; /

/ fhn+l *2n h \ \ ""I

xexpί 2ikl\ Σ ^r^r — Σ ^A- + + Σ a r^ r — ̂ I ^ M

which is again of the form (3.13) for N + 1 instead of N and 1 ^ it <

• < Wi ^ N.
Coming back to the definition of AN+1, BN+19 we see by (3.8) and

(3.11) that we have

(3.14) AN>1 = oti ' OLN^ exp(ikl(a2c2 + + a^.c^,))

x exp( - ikl(N - 2)aNcN)\ Σ Σ ^ ^ - x ' ^

( fhn hn-1 h \\~]

— 2lklί Σ ^r^r — Σ <M5r + — Σ ^r^r ) )
B%,ι = «i ΛΛΓ.! exp(—ikl(a2c2 + + α ^ c ^ ) )

x exv(ίkl(N - 2 ) α ^ ) Γ Σ Σ ^ ί 2 Λ + 1 ^

2ίfcϊί Σ <MV — Σ ^r^r + * # * + Σ α*A — ^A ) )

We also have the same algebraic formula for ik replaced by λ1/2.

2. The heat kernel for a general finite N. We write for xel5

u_j(xy λ) = Ay(λ)exp(λ1/2αyC^) + J?/λ)exp(—

w«fl(α?, λ) =
(o.lo)

w+,Xaj, λ) =

^ + > i ^(^, λ) = exp(—x1 / 2aNcNx) .

The for j > 1, by (2.16) (with ik = λ1/2)

and so

(o.lb)
BXλ) = (α3-c1/α1c i)

ι/22- ί + 1 (α ί c/α, _1c ί _1



484 B. GAVEAU, M. OK AD A AND T. OK AD A

and then for j < N

_ /0\ /DA (0

\EN) VI.

and

, exp( - ikljθj) - β3 exp( - ίkl3 σά)\

2aj+1c3 \—β. eχ^{ikl3σ3) a3 exτp(ikl3θ3)

so that we have to compute a backward product of the same type as
before.

If j < N, we have

(3.17) G«'m(x, y, χ)=~
X1/2c3ANtl

x {Ai}1 exip(x1/2a3c3x) + JB*,! exp( —

(rcall that in this notation x e I3, y elx

G{NtN)(x, y,x) = —
z

+ J5^)1exp(—x1/2aNcNx)} (for x < y)

and the heat kernel is given by

& KJΓ \*V, Uf ΛJJIΛ/ΛJ

REMARK 1. All Ajfl and Bftl are computed by (3.14) with ik changed
into λ1/2.

REMARK 2. For practical purposes these kernels are sufficient; some-
how, we have a source of heat at y e IN and an observer somewhere at
cc; it is reasonable to have sources outside the medium.

3. Going to the continuum limit: the case of continuous coefficients.
We suppose now that a\x) and c\x) are functions which are constant
for x < 0 and for x > L. We denote these constants a_oof c_oo and α*,,
Coo, respectively. We discretize the segment [0, L] into JV subsegments
of length L/N = I and denote as usual

ii = ] - oo, 0[, • , J, = ](j - 2)1, (j - 1)11 • , I™ = ]L, oo[ .

We shall also assume that a and c are continuous functions with
bounded variation. We replace a and c in I3 by constant values a3 and c3 .

Fix x G Ij. We want to study the limiting behaviour of A3(X) and
B3(X) given by (3.16) when N-> oo, for j tending also to infinity such
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that xelj. Let us consider Ay(λ) first; since AJA is given by (3.14), we
see that A/λ) is the product of three factors:

(3.18) {flfiJw^

(3.19) exv(ikl(a2c2 + + αi_1ci_1))exp( — ikl(j — 2)αicJ ) .

(3.20) Σ Σ "fuJHn-i " ΎH
n^0 1^ 1 <.. < i 2 » ^ - l

( I" hn hn—1 *l 1 \

— 2ΪMJΣ ^ r ~ Σ «rCr + * * — Σ <M>rΓ )
I l l l ) /

We recall that

Here αx and cx refer to Λ = ]—°°, 0[ so they are equal to α_oo and c_oo.
α̂  and cy tend to a(x) and c(α?) respectively if a and c are continuous.

Now we also have:

ax ... <Xi-Λ 1 = / aiC2 + a2cx \ β # # / α i . 1 c i + α A - Λ g c

2 2 / α2c2 αy^Cy.! V 2α2c2 / V 2αJ cJ /

But

and the following finite product

TT / (ikCk+i + Uk+iCk \ TT Λ α f e n -- ak ck+ί — ck

2ak+ίck+1

converges to

Λm(da{x) ,
Jo V 2α(α)

\ = TT Λ _

V α(aj)c(aj) /

by the definition of the Riemann-Stieltjes integral with respect to a
bounded variation measure on the real line. In consequence the factor
(3.18) converges to (c_ooα(^)/α_ooc(x))1/2. We also see that the factor (3.19)

converges to expUk I a(ξ)c(ξ)dξ — ikxa{x)c{x)\ because (j — 2)L/N < x <

(j — ΐ)L/N and I = L/N. Concerning the sum (3.20), we note that

Ί = jβv, = cijCj+ι — dj+βj = cs+Jaj+ί —

In particular, we immediately see that each summand in (3.20) converges
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xexpfek [^ a(ζ)c(ζ)dή . ^Λ^λex^ίk \\(&c(ξ)dξ)

again by the definition of the Riemann-Stieltjes integral where we have
denoted V — c/a which is by our hypothesis a continuous function such
that

K=[° \d(\og φ)\ < - .
J-oo

Let us denote W(x) = I \d(\ogc/a)\ which is an increasing function tending
Jo

to K if x tends to L or w, Since |7y| is dominated by \log(ci+jaj+ί) —
log(Cj/<ij)\, we have always an estimate from above of each summand of
(3.20) by

Σ KJ |7,J ^ [dW(xJ [2n dW{x2n^) . [2dW(Xl)
l g i ! < — < t 2 n ^ ^ - l JO JO Jo

= W(x)2n/(2n)l ^ K2n/(2n)\ .

By the Lebesgue dominated convergence theorem for series, the sum
(3.20) tends as N—> oo to the infinite sum in n of the term (3.21). Thus

(3.22) Aj(x) -> ( f l(g)c-«Γexv(-ikxa(x)c(x))exv(-ik ["a(ξ)c(ξ)dξ)
\α_ooC(a;)/ \ Jo /

x Σ I' dV&ύ.exp(-2ifc Γ2" afs
nzo Jo 2 κ \ Jo

ifc y a(ξ)c(ξ)dζ\ .

We denote this limit by A(x, λ). In the same way

(3.23) Bj(x) -> (a^c-Λ1/2 exp(iJteα(aj)c(aj))exp(-ίk ['a(ξ)c
\α_ooC(α;)/ \ Jo

x Σ ("
n^O Jo

2i& \Xla(ξ)c(ξ)dξ) .

We denote this limit by B(x, λ).
The case where x > L, so that x e IN+2 is slightly special; we denote
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this case by A^x) and IL(λ). We have

Γ
so that

a(ξ)c(ξ)dξ)
/

x Σ j*
2 K

x exp(2ifc Γ 1 a(ξ)c(ξ)dζ(3 24) Λ= ( °° -00 1 exp(ifcLαoocoo)exp( - i Λ I a(ξ)c(ξ)dξ
\ α_ooCoo / \ Jo

x Σ
O

2ί& [Xla(ζ)c(ζ)dζ) .

Let us now take x < y and y > L. We choose j with x e I3; first if
x < L, we have

and going to the limit JV—»co, we obtain the Green function of the operator

(3.25) G(x, y, λ) - ^ ^ {
Q(X)

?, λ)exp(—x1/2a(x)c(x)x)}ex$(—X^a^CooV)

were A(x, λ) and J5(a5, λ) are the limits given by (3.22) and (3.23).
If L < x < y, then

(3.26) G(x, y, X) = - |

x B[™> x] exp(-X^O^J^)1 exp(-

where A(oo,\) and i?(°o, λ) are given by (3.24).
These are the Green function of

1 d ( 1
!(a;) d* \ α2(« da;



488 B. GAVEAU, M. OKADA AND T. OKADA

The heat kernel can be computed by the usual contour integral.

REMARK. We used the fact that the Green function GN(x, y, λ) for
the operator cm\x) (d/dx(a,N2(x)d/dx)) converges to the Green function
G(x, y, λ) when cN and aN tend to c and a respectively. But this fact
can be easily shown by routine argument of successive approximation.

4. The continuum limit: the case of discontinuous coefficients. We
suppose now that a\x) and c\x) are functions constant for x < 0 and
x>L and that they are functions of bounded variation such that they may
be discontinuous at a set which has only a finite number of accumulation
points. We define a/c at a point of discontinuity as the mean value of
their left and right limits, so that the equalities

a 2 \a a
are valid for each point. We have now to be extremely careful to com-
pute the limit of Ay(λ) and Bj(x) when j —> + oo is such that x e I,-. We
suppose that x is not a point of discontinuity: then, everything goes as
in the previous section concerning (3.20) and (3.21). But the problem is
the series in (3.14) at the points of discontinuity which are before x; if
such a point x0 appears in the interval Ik (k < j), we can refine the
partition so that this point is the upper extremity of Ik, i.e., (x0) =
ϊk+1f)ϊk; suppose now that ix — k in the series (3.14); then

ίx < < ii-i < k = %ι < iι+1 < •

7. = 7 = αfccfc+i —

where ak is the limiting value on the left and ak+1 the limiting value on
the right. But this is exactly

y =

a

But c/a having a discontinuity at x0, this is exactly the integral in
[Xo, Xo] of (2(c/a)(xQ))~1d(c/a) and we obtain formally the same expression
as in (3.22)

"1 a(ζ)c(ς)dξ)
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But the intermediate integrals are taken on the semi-open set [0, xt[
(because if k = i, for the same I and corresponds to a discontinuity,
then for V < I, the iv are different from i,).

The only remaining case is the case where the upper bound x of the
integral is itself a point of discontinuity. We can assume that the
partition in intervals is such that xeT3-f]Tj+1'

As we know that x-+G(x,y,X) is continuous, we can compute the
value for x' < x and let x' —>x~, for example.

The final thing is to obtain the limit in (3.18) or (3.19) in the
presence of points of discontinuity. Let us first suppose that x itself is
not a point of discontinuity and that x is in J,. First of all if there is
only a finite number of discontinuities xί9 , xr before x then by an
easy modification of the argument of Section 3

akck+1 + ak+1ck = / α-ooCoo \1/2a(xr)c(xt) + a(xt)c(xΓ)ί a(xt)c(xi) Y/2

V a(xr)c(xr)' 2a(xt)c{xΐ) V α(αξ")c(a£")'fc=i 2ak+1ck+1

x . . . x / a{xt)c{xi) γ / 2

 = / α , ^ Y/2

 π (c\, J a(xk)a(xt) V/2

V a(x)c(x) I V a(x)c(x) / Γ<. \ α / V c(a?r)c(a?ί) /

If there is an infinite number of such points which accumulate to x, the
only thing to check is that the infinite product

is convergent.
Put ξk = (c/a)(xk), ηk — (c/a)(xi), so that by our definitions, (c/a)(xk) = 1/2
(ξk + Vk) P u * also <5fc = Ύ]k — ffc (the jump at the discontinuity). Then
the logarithm of the general term of the product is log((£fc + ηk)/2) —
1/2logoff) = log(l + δk/2ζk) - l/21og(l + δk/ζk) = 0(δlζk

2). On the other
hand cΠog(c/α) is a bounded variation measure which implies that
Σ |log f]k — log£fc| = Σ |1°^(1 + δjξk)\ is finite, so that Σ \δjζk\2 < °°-
Hence the infinite product converges. If x is itself a point of disconti-
nuity, we obtain if xeIJΓITJ+I

\ 1 /O / \

π ^W
and in (3.19), we obtain

" N 1 / 2 π ( ^ -
where xk are the discontinuity points (we assume here that 0 is not a
point of discontinuity for simplicity).
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Finally (3.20) will not be changed and (3.21) will give

ex$( — ika(x~)c(x~)x) (recall x ̂  L) .

Now in the summation in (3.14), we compute the limiting value for
x' < x, xf e Ij and so the i2n (or i2n+1) is ̂  j — 1, and so at the limit when
N—> oo, we obtain

x exp(2i& Γ2""1 α(f)c(|)dί) ( •%ζr(x1)exΐ>(2ik ['a(ξ)c(ξ)dξ) .
\ Jo / J[o,»2[ 2V \ Jo /

Σ I

All these can be summarized in the following theorem.

THEOREM. Let a(x), c(x) be functions of bounded variation such that
d(c/a)/(c/a) is a bounded measure. We suppose that a and c are constants
in ]—°°, 0[ and ]L, °o[ and also that the set of discontinuous points of
a and c has only a finite number of accumulation points.

Then the Green function of the operator

L = _ 1 d ( 1 ( d\\
c\x) dχ\a\x)\dχ))

is given by G(x, y, λ) for y ^ L, x < y by the formulas

G(x, y, λ) = ~ 2x^°T(x){A{X' χϊeχv(χl/2φ-)c(χ-)x)

+ B{x, λ)exp(—λ1/2α(x~)c(ίc~)ίc)}exp(—λ1/2αooCool/) for x ^ L

and

G(a?,»,λ)=—^=lexp(ι/Y αooĈ α; - y)) + B

Λ^\ exp(-v/λΓα0Ocoa(α; + y))\

for L ̂  x ̂  y

with the following definitions

A(χ, λ) = (^I^)1/2exp(-i/λΓm(^-)c(χ-))exp(i/λΓ \* a(ξ)c(ξ)dξ)
\α_ooC(α;~)/ \ Jo /

xexp(2^("α(ίV(ί»)l Π ( i
\ Jo /J- *< \α
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B(χ, λ) =

x Γ Σ I r S < ^ W ^ P"+1 o,(ζ)c(ξ)dζ) \
Ln^Oj[o,a5[ 2V \ Jo / Jίθ,x2n+1ί

Σ t 4J-(x2Jexp(-2v/Γ Γ2" α(f)c(f)df) \
n̂ O J[0,L] 2V \ Jθ / J

xexp(2i/λΓ Γ2"-1 a(ξ)c(ξ)dξ) (
\ Jo / J[0,»2[

π f̂
<Λα

-00 =

x

x exp(2λ 1 / 2 Γ 2 B + 1 α
\ JO

where V(x) - 2~1((c/α)(x+) + (c/α)(a?-)).

REMARK 1. Clearly the case of piece wise constant coefficients is a
particular case of these formulas where dV is a pure jump measure (a
sum of Dirac masses); but we needed first to examine this case to deduce
the general case.

REMARK 2. This theorem can also be applied to the case where V
increases only on a set which is of Lebesgue measure 0, without being
piecewise constant (i.e., V is continuous).

5. Comments about the form of the Green function, (i) The
preceding theorem gives a series converging to the Green function; this
series is convergent provided that c£(logc/α) is a measure of bounded
variations and we have proved that it converges very rapidly because it
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is controlled by the series of sinh or cosh. Moreover, this series is a
resummation of the trivial perturbation series which does not converge
in general. The quantity which controls the convergence is only
d(log c/a).

(ii) The problem of transmission of heat or waves through one-
dimensional medium was posed to us by several physicists. In particular,
physicists are interested in propagation of waves in random media
(which means that a(x) and c(x) are random functions). There are two
main problems: the first one is to find the total transmission or reflexion
coefficients by the medium; or, equivalently, to find G(x, y, λ) for x and
y separated by the medium. The other problem is the inverse scattering
problem: namely to obtain information about the medium by measuring
the total transmission or reflexion coefficients, or by knowing G(x, y, λ);
explicit expressions for the Green function are interesting because they
give partial answers to these questions.

(iii) In higher dimensions, it is hopeless to find such explicit expres-
sions in general. On the other hand, using projection technique and
comparison theory, we can hope to obtain estimates for the Green
function by one-dimensional Green function (see Malliavin [7] and Debiard-
Gaveau-Mazet [1] for example).

CHAPTER IV. An example of singular perturbation: limit of opera-
tors with irregular coefficients. In this chapter, we give a new kind of
example of the singular perturbation theory and we examine the limit
behaviour of a sequence of operators with irregular coefficients. The
limit behaviour is rather complicated and depends strongly on the kind
of limit that we take.

1. An example of a sequence of operators and their heat kernels.
We shall take the following formal operators

+ I + I j ( ( l + I + \(4.1) L = ( [ β < 0 ] [o<β<π [ . > i ] j j ( ( [ e < o ]

and we shall suppose that the boundary layer 0 < x < I tends to 0 and
that a2 and/or c2 tend to +oo. We define μ and v by

(4.2) μ = *LHΛ , v = la2c2 .
a2 + c2

Recall from Chapter II, n°5 (formulas (2.24) and (2.25)) that then c, = c3 =
ax = a3 = 1, we have for x < y

PΪ'^x, y) = g(t, x-y) + μh(t, x + y, -μ\ -2v)
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- μh(t, x + y - 2v, -μ2, -2v)

493

Recalling the definition (2.17) of the function h, we can rewrite this
more explicitly as

(4.3) p?'»(x, y) = g(t, a> - Γ •)
- μ2e~2ίk"

dk

(4.4) p?*(x, y) = (1 - j
Formally we see that L tends to the operator d2/dx2. In fact, we

shall see at the end of this chapter that this conclusion is entirely
misleading and that we can have a great variety of cases.

2. The case where μ tends to 1. (a) The case where v tends to
a limit 0 < v0 < °o.
We examine pίί>z)(x, y) given by (4.4); because v0 is finite > 0 and μ2 —> 1,
this kernel is the integral of a function which tends to 0 pointwise; the
only problem is for k near πn/v0 for neZ. But on a small neighbor-
hood of such a ky we have

e~kH X~ t* : *IU!

and this is bounded by CerkH\ so by the Lebesgue theorem p{

t

ί>s)(x, y) —> 0.
On the other hand, if we examine the second term of p^Xx, y) we see
that

1 _ β-«*v

- μ2e~

and so

where μ—> 1, v-

-y)

In t h a t case L tends to d2/dx2 wi th t h e pure reflexion condition a t 0.

(b) The case where v —> °o.

We expand in series t h e denominator in t h e integral (4.4)

2π

1 -/

π

S CO

— oc

e~k *

t, x - y + l - v - 2mv) .

It is clear that this tends to 0 if v —> °o and 1. On the other
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hand, in the integral in (4.3) we have

o-2ikv
- e~

_ μ2e-2iku

and so

Pllfl)(x, y) -»ft(α? - y)

and we have the same conclusion as in (a).
(c) The case where v —> 0.

Let us examine pj l f 8 ); then

1 _ ^-.vw L ^ 1 - μ2

and the denominator is equivalent to 1 + vki/(l — μ). So if v/(l — J") —> 0,
then pf " -> ft(a? - 2/); if p/(l - /ι) -> oo, then p^B) -> 0; if v/(l - /£) -> λ0,
then

(4.5) pΓ'3)(x, y) - -i- Γ β-^/^l-dfc .
2π J-°° 1 + λô fc

We examine the integral term in pίlfl) (cf. (4.3))

1 - e~2ίku 2ikv ίkv
- l^2e-2ίfcι' 1 - ((1 - μ) - 1)2(1 - 2ikv) Λ-vkί + (1 - μ)

so if vl(l - μ) -> 0, then p<1>1} -> Λ(aj - y); if W(l - μ) -> °°, then pf

(1 ι)

Λ(» - 2/) + Λ(» + y)', if *V(1 ~ i") -^ λ0, then

(4.5)' p? « -> gt(x - y) + - L Γ β " * 1 ^ ^ .
27Γ J-» 1 —27Γ

3. The case where μ-+ μ0 with — 1 < μ0 < 1. (a) The case where
v tends to a limit 0 < v0 < oo. Then

(4.6) pl^ix, y) -> (1 - μ2

0)— Γ e^V^ -'-^/α - μle~^ki)dk
2π J-°°

and

(4.7) p ί 1 ' 1 ^ , 2/) -> ft(α - y) + -^[° \
2π J —

(b) If P -> 0, then p(

t

lf3)(xf y) -> flrt(cc — y) and pt

(1)1)(^, 2/) —> ft(α? — y).
(c) If v -> oo, then we again write

= Σ μ23'e'2vkij .
1 - .μV- 2 v f c ί ί s l ^



DIRICHLET INTEGRALS WITH SINGULAR COEFFICIENTS 495

Then in pluz) we obtain Σ~= o μ
2J9(t, x — y + I - (2j + l)v) which tends to

0 if p-> oo, so pΓ' 8 )->0.
In the same manner, we expand the denominator in the integral of

the second member of (4.3) and we obtain

(4.8) pi^ix, y) -> g(t, x - y) + μQg(t, x + y) .

4 The case where μ-> — 1. I t is similar to the case μ-*l.
(a) If v tends to a limit 0 < v0 < oo, then J>ί1>8ϊ(a;, y) tends to 0 and

pi1Λ) tends to g(t, x - y) - βr(ί, a? + 2/).
(b) If v tends to 00 9 then p,(1>8)(a?, 2/) tends to 0 and pi1>ι)(x, y) tends

to g(t, x - y) - 0(ί, a? + 1/).
(c) If v tends to 0, then

-J—H Λ +

If y/(l + /1) -^ 0, then 2>|1>3)(x, y) -> </(ί, x - y) and ^'-"(a;, y) -*
9(t, x - y);

If v/(l + ^) -* 00, then p?M(x, y)~*0 and plhl\x, y) -> g(t, x - y)-
g(t, x + y);

(4.9) If v/(l + μ) -* λβ, then

2ττ J-°° 1 + λô fc

PΪ1Λ)(x, y) -> Λ(» - y) - -A- \ β-fe2^ β eft .
2ττ J-« 1 /(λfc)

5 Conclusion. Let us take the family of operators L defined by
(4.1) and suppose that I tends to 0 and α2 and/or c2 tend to 00. Define
μ, v by (4.2).

Then the heat kernel qt(χ, y) (x < y) tends to the following situation:
(A) Suppose μ —> 1.

(a) If v —> vo> 0 < vQ ^ 00, then to a heat kernel with pure reflexion
at 0.

(b) If v -> 0 and
(1°) if v/(l - μ) ~->0, then to a free heat kernel on R;
(2°) if v/(l — μ) —> 00, then to a heat kernel with pure reflexion

at 0;
(3°) if iV(l - μ) -> λ0, then to the limits (4.5) and (4.5)'.

(B) Suppose μ-+ μ0 and — 1 < μ0 < + 1 .
(a) If v -> vo> 0 < v0 < + 00, then to the limits (4.6) and (4.7).
(b) If v—>0, then to the free heat kernel.
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(c) If v —• oo, then to the heat kernel with partial absorption at 0
and partial reflexion, the formula being (4.8).
(C) Suppose μ-+ — 1.

(a) If v —> v0, 0 < v0 ^ + °°, then to the heat kernel with absorption
at 0.

(b) If v -> 0 and
(1°) if v/(l + μ)->0, then to the free heat kernel;
(2°) if i;/(l + /*)—> °°y then to the heat kernel with absorption

at 0;
(3°) if iV(l + μ) ->λ0 (0 < λ0 < +oo), then to the limit (4.9).

In particular, we see that, the approximating operators L(ε) can be con-
servative, but the limit diffusion may not be conservative (when ε—>0),
for example in cases (B), (c); (C), (a); (C), (b), 2°; which seems surprising.

CHAPTER V. Diffusion operators with spherical symmetry in R\

1. Transfer matrix for a self-ad joint operator with piecewise con-
stant coefficients. In this chapter, we shall only consider a self-ad joint
operator in RB having a spherical symmetry around 0. If a? is a vector,
r = \x\ is its length. We begin with the case of piecewise constant
coefficients; formally the operator can be written as

(5.1) L = d i v ( ( Σ ^ I { ( i _

where dj are constant (and we can always assume that the spheres where
dj changes its value has radius (j — 1)1).

A generalized eigenfunction u(x, k) satisfies

(5.2) -λ-Auj = -k2n5 on (J - 1)1 < \x\ < jl or \x\ > Nl if j = N + 1

(5.3)

a) dr

1 duj+1

dr

where S(0, jl) is the sphere of centre 0 and radius jl and % = %|(
We consider only the case of radial functions uά{τ, k). Define

Uj(r, k) = Vj(r9 k)/r. Then on (j — 1)1 < r < jl, we have d2Vj/dr2 = —k2Vj
so that

(5.4) Vj(r, k) = Ai(fc)exp(iΛαir) + J5i(fc)exp(—ika^r) .

The second condition (5.3) becomes
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a)\dr Rj v|r«ii o}+1

so that if we take into account the continuity condition, then

Aj+ι exiρ(ikaj+1jl) — Bj+1 exp(—ikaj+1jl)

aό

+ ^τ(4 T
ιkjί\a,j+1 a}

The continuity condition is just

so that

(5.5)

with T3 being the following transfer matrix

~' 2a j

where

ίl =

ί2 =

ί3 =

U =

and det T3- = a3-+1/a3. We define α^ = α^ + α ί + 1 , /33 = α^ — α J + 1 and

(5.6) R3 = 2αyTy.

Then

/ r l r2\
(5.7) Λ i i Q

where

rl - expdkβjjVaJl + —
ijkl
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r2 = + ^
i/cjί

r3 = exvdka JDβh - -A- Sί_)

r4 = W ^ &
llΰjί

We have to compute the product

\U &) iV IV— 1 1 I T - J * Ay.

so that

J = B'\BiJ
AN+lfl = exj>(-iklNaN+1)\exv(iklNaN)aJl + ^77

+ exv(-iklNaN)βN(l + _

aNaN+1

iklN aNaN+1

We define as in Chapter III

(5.10) AN+1A = αx α^Ctf+1 , β^+1>1 = «!-•• aNDN+1 , 7^

and then

EN+1 = exp(—ifci(ax + + a^CV+i ,

F^+i = exp(ifci(«i + +

We obtain

dNaN+ι

l))exp(-2iH(α 1 + + αΛΓ_1))7Λr

aNaN+1

(5.12)

aNaN+1
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+ exp(-iW(iyr - l)aN)(l - - ί - β« )FN\ .
\ iklN aNaN+1 / J

The formulas for solving (5.12) are of the same type as those found
in Chapter III; namely we obtain

(5.13) EN = exp(-ikl(N-l)aJ Π (l+-^-τ P i ) + Σ Σ
Li=i \ τklj α^-4

π (i + J--A-W
< \ τklr arar+1 /

αr) Π (l--
arar+

xexpf~2iHUαr) Π (l + -^ ^—)
\ r=i /i2<» <i3\ iklr arar+1 /

-2« Σ αr) Π
%klr arar+1

(5.14) ίV = βxp(ΐW(ΛΓ-l)αw)Σ Σ Π

x( 1 —

x expl — 2ikl Σ &r) ?y +1( 1 J2ί±1 )

Π ( 1 - - 7 Π — —

To check that this is the correct solution, we have to substitute EN

and FN in (5.12) by those given in the preceding formulas. We then see
that we obtain the same formulas as (5.14) but for EN+1 and FN+1.

We then have from (5.10) and (5.11)

/ijV +1,1 — " i Oί>N VX\j\lK>i>\u,i πr ~r (IN)) ̂ N-^I

(5.15)
*?• — . /y . . . /v Λ γ nf _ _ Λ //•/( /γ I . . . I /if i j I/1

X>jV"+l 1 — W-i tXjV" ^ «» lr \ ί'Λ/t'\kt*Ί i Π^ U/ffJJ±' V̂"-f i

and so

Δ (Jbi * * U'^
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(5.16) 2V T
a, - - - aN I si s2

2N αx aN

where

si = exp(iM(βi + + aN))EN+1

s2 = exp(ifci(α! + + aN))F%+1

sS = exp( —iklidi + + aN))FN+1

s4 = exp(—iH(αx + + aN))E%+1 .

2. Spectral resolution for a self-adjoint operator with piecewise
constant coefficients. We must now compute a spectral resolution of
identity for L. Because we are on a half line R+, each eigenvalue —k2

for the v function is non-degenerate and there is only one v(k, r): we
must find v such that

(5.17) δ(r - r') = Γ v(k, r)v*(k, r')dk
Jo

We can also suppose that v is a real function, so that

(5.18) Af = Bά .

Let us write (5.17) for r, r' > Nl; then r — r9 can take any positive
or negative value and we must have

S oo

dk{AN+1 exiρ(ίkaN+1r) + A£+1exp( — ίkaN+1r)}
0

1r f) + AN+1 eχ p(ikaN+1r')}

rr) .

This gives

(5.19)

2 Γ
Jo

+ i

dk\AN+1\
2 cos k

Jo

ft (η/»

Afcjein

r')

ka

foo

+
Jo

Moreover, we have v(k, 0)=0 because u(k, r) = v(k, r)/r has to be regular
at r = 0, so that

(5.20) A? = - A .

Now if we want to find a kernel K(fl, rr) of some function F(L) between
0 (the center of symmetry) and r', we take

(5.21) K(0, r') = lim Γ F(-k2) v^9 r ) J^Alldk
r-*0 Jo f t

f ' JO 5 5 °
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2a f°°
= —- I Fί—k^ίkAiiAjexpiika/r) + Af exp(—%ka/r ))dk ,

r Jo

if (j - 1)1 < rf ^ iL But by (5.5) and (5.8)

•" "T"* 1 /T7 /T7 A77 / -*•

* I - ίNίN-l ' • • i l l
iV+1 / \ ^ - 1 /

and by (5.16)

AN+1 =
2^αx α^

Taking the modulus we have by (5.19)

(5.22) 1AJ = (g£±ΛV2 2 " α i ' " α ^ — ί——: and argΛ = ^-
^ ftyt / « i α ^ l-C'jy+i ^iv+il ώ

because Ax = —A?

(5.23) A™ = ( ^ ± i )

and more generally

- Ff)A,

so that
aN+ί 2iNΓα1 - -« α y Jg y - Ff

a, --- aN 4ττ αx aN

+ + «y_i))

(5.24)

(5.25) A,AN+1 = -^f±i 2 ^ ' ' ' α ^ g ^ - g - ^ exp^Kα, + + aN)) .
4τr α x aN \EN+1 - F%+1\

2

So, putting together formulas (5.21), (5.24) or (5.25) and the values
of Ej and Fo given by (5.13) and (5.14), we have an explicit representa-
tion of the spectral measures of L and of the functional calculus for L.

3. Spectral resolution for a general self-adjoint operator (continuous
coefficients). We shall now assume that L is of the form

(5.26) L =

where a\x) is, first of all, a continuous function that we suppose to be



502 B. GAVEAU, M. OKADA AND T. OKADA

constant for \x\ > L. As in Chapter III, we divide the ball of radius L
in small corona

/. = {(j _ 1)1 < \x\ < ji} where I = L/N

and call IN+ί = {|a?| > L}. We take an approximation of a\x) by piecewise
constant functions in each Ij in an obvious manner. Fix an x with
\x\ < L and choose j such that x e I5 so that j ^ N. We first look at
the behaviour of

tti fly-i = (αi + a2)(a2 + α8) - (α,--! + αy) _ ή Λ + (αfe - ak^2 + α8) - (α,--! + αy) _ ή Λ
~1(a1 a^ ) A=2 \

which leads to

(5.27) exp(So" " i f) = (αW/α(0))V2

Again we have

(5.28) exp(ifci(«i + + α^J) -> expufc I α(f)df J , aN+1 = αoo .

Now £,- and i^, are given by (5.13) and (5.14) in which

(5.29) e-ikh--i)aj _+ e-ίk*a(z) because jl ^ x

(5.30) Π(1 + ^ —)

+ J _ ^r-gr+Λ _^ eχpΛ J_ f ̂
iklr arar+1 / V ί f c J o ,

Π

Then, the structure of (5.13) is rather elementary. Define the kernel
for y < x by

(5.31)

V Jo

Then we obtain

(5.32)

and the corresponding formula for
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(5.33) F, -> e ^ ' ' Σ (V(s , dx2n+1) [
n^O Jo Jo

503

Then, if \x\ > L,

(5.34) EN+1->e-

>

and

(5.35) FN+1

Let us now look at

(5.36) E; -Ff = β-

x

ί
έlJθ

— ί̂ 7* appearing in AλAj in (5.24).

ί
ik Jo

*(»„ da?,.,)

iA; Jo ζa\ξ)

where C denotes the complex conjugation and C its fe-th power. As
usual, this series will converge if

(5.37)
Jo a

\da(ξ)\ ^ [L \da(ξ)\

•(f) ' J" ζtfiζ)

4. The general case when a has discontinuities. We redefine a by
the formula

(5.38) a(x) =

As in Chapter III, we assume that a has finite right and left limits
at each point and that a is a constant a for |a?| > L. We can obtain the
same kind of formulas as in Chapter III, n°4.
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