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466 B. GAVEAU, M. OKADA AND T. OKADA

Introduction. In this series of works, we try to develop a construc-
tive theory mainly on special examples of elliptic second order operators
(and also, sometimes, hyperbolic operators) with very irregular coefficients
(for example, there can be Dirac measures along hypersurfaces in the
second order terms). Our aim is to compute as explicitly as possible,
examples of fundamental solutions and to show new phenomena which
oceur in such situations. Our motivations come from various areas: first
in mathematical physics it is more important to have explicit models
than general theory; for example in this work, we have “explicit” for-
mulas for transmission of waves or of heat in one dimensional medium
with discontinuous indices; in the second paper of this series, we shall
also examine higher dimensional situations related to interface problems.
The second motivation is more mathematical; recently, Fukushima [2] has
developped a remarkable theory of Dirichlet integrals allowing rather
general coefficients and he constructed in the abstract manner stochastic
processes associated to them; unfortunately very few examples were given
apart from the usual Brownian motion although many natural examples
come from mathematical physics, engineering problems, analysis in several
complex variables, and even in algebraic topology. Our work will give
some examples in these various areas.

This first part studies the one-dimensional case; we first give
general motivation (coming from physics) to study operators of the type
¢ Hx)d/dx(a"*(x)d/dx) and we also give two general methods of solution:
the spectral method in the self-adjoint case and the method of Green
functions in the general case. It is quite surprising that both methods
lead to very concrete results: we can write an explicit form of the
spectral measure as a series (which is not a perturbation series), provided
that c/a has a finite number of accumulation points of the set of dis-
continuities and log(c/a) is of bounded variation. The method is to reduce
everything to an infinite product of 2x2 matrices which can be done
explicitly; Chapter II gives example with piecewise constant coefficients
and Chapter III gives the formula for the infinite produect.

In Chapter IV, we introduce, on a simple example, a new kind of
singular perturbation problem and we show that a limit of operators
with irregular coefficients is a rather subtle phenomenon. Finally, Chapter
V gives the same kind of formulas as in Chapter III but for radial 3-
dimensional problems.

CHAPTER I. Definition of operators with general coeflicients and
their applications. The purposes of this introductory chapter are to give
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a motivation for the introduction of operators with irregular coefficients
arising in several problems of mathematical physics, to give a mathemati-
cal definition of these operators and finally to fix certain notations con-
cerning spectral resolution and Titchmarsh-Kodaira-Yosida theory.

1. Motivation coming from mathematical physics problems.

(a) Heat transfer in a general medium. We consider here the heat
transfer in a general medium in R" (n = 1, 2, 3). The material constitut-
ing the medium is characterized at each point x by two coefficients: the
first is the specific heat c*(x); its meaning is that when the temperature
at x increases by 1 degree then the heat in the material at that point
increases by 1 Joule. If T(x) is the temperature at x and Q(x) is the
heat at x, then

Q) = ¢*(x) T(x) .
The second coefficient is the diffusion coefficient denoted by a~*x); its
meaning is that, at each point x, the flux of heat J is given by
J@) = L VT(@) .
a’(x)

If Vis a fixed volume with boundary S, and if there are no internal
sources of heat inside V, the variation in time dt of the quantity of heat
inside V is d,s Q(z, t)dz and it is equal to the heat flux through S in

14

time dt
(§ T, 1) n(2)dS dt
S
and we obtain the law of heat diffusion (Fourier’s law)

4 SV @) Tz, t)ds = S 1 97, t)-ndS

dt s a*(x)
(n is the external normal to S, dS is the area element) and so we obtain
d 2 _ . 1
(1.1) 4 | ¢ oz = | dlv<a—2(x)v T, t))ds .

To derive this law (1.1) we have not assumed that a and ¢ are continu-
ous coefficients; they may be discontinuous.

We shall suppose that the coefficients @ and ¢ are C' and C° funec-
tions respectively on subdomains of the domain of definition but they
can be discontinuous across a finite set of hypersurfaces in R™ and
their jump across these hypersurfaces are finite jumps. Let D,, D; be
domains of the total domain where a and ¢ are C*' and C° functions,
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respectively. Taking for V a small domain contained in D, or contained
in D; and denoting
a; = alu, ¢ = chi

we obtain that T, = T, satisfies the usual heat equation
0Tz, t) _ 1 div( 1

ot ci(w) ai(x)
Let S,;; be the hypersurface separating D, from D;; take for V a small
domain cutting S;;. Then (1.1) becomes

él—t(gvnpi ci(@) Tx, t)dw + Svnp_,,- ci(x) Ty(z, t)dx)

1.2) VT, t)> in D,.

= 1im<§venpi div< 2% )VTi(x, t))dx + S

&0 a;\X

div( RS t))dx

VenDj a?(x)

+1im§

e—0

s div<a;x)v T(x, t))dac ,

where V.=V — I, and I'. is a tubular neighborhood of thickness ¢
around S;;. If we integrate by parts the second member of this last
equation and if we take into account the equation (1.2) in each domain
D,, D; we obtain the boundary condition

1 1
(1.3) 0= a_‘:’(ac_)(VT (@, t) - n;) + %(VTJ(% t)-n;) ,
where n, and n; are the external normal of S;; pointing outwards D, and
D;, respectively.
Moreover, we impose that T(x, ¢) is continuous everywhere.
(b) Wave transmission in a general medium. In wave transmission
we consider the equation

o’ . 1
—_—= le( Vu(x )
ot’ a’(x) (@)
where 1/a is the velocity of the waves and we take ¢ = 1. (But this is
not necessary in general).
(¢) Schrodinger equation with wvariable effective mass. The

Schrodinger equation is

1 ou . 1

————=d1v( Vux)—i— Vu

i ot 2m™(x) (@)
where V is a potential function and m*(x) is the effective mass of the
particle at point z; this effective mass can vary from point to point if
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the particle travels in different media (for example in a erystal the mass
of the electron is not its usual mass).

2. Relation with the general theory of Dirichlet integrals. In the
case when ¢ = 1, we can also consider the Dirichlet integral

1 & ou ov 1§ 0u; 0v
1.4)  Iu, v) = S— oz 9 08 = S o
(1.4) (, v) az(x)::; ot O > b @@ Gwy 0wy

This is a particular case of the theory of Dirichlet integrals with dis-
continuous coefficients [2]. The operator associated to this integral is
defined by

Lu = div( 1 Vu)

a(x)?
and with the boundary condition (1.8) on D,ND,;. But the problem con-
sidered in 7°l1 is more general than the one associated to a Dirichlet

integral, because it is not self-adjoint.

3. Definition of the operator L. We are looking for the solutions
of the Cauchy problem

a_u = Lu
(1.5) ot
Uli=o = Uy
where the notation L means
1 .. 1
(1.6) (Lu(e) = < dlv<mVu(w)>

with the boundary conditions
(1°) u(x) is continuous everywhere

(2°)

@.m L v, n) + -2 (Vu;-n) =0

aix) ai(x)

on the surface of separation of D, and D;. We also have to specify
certain boundary condition on the surface of the domain of definition of
u or at infinity but they can be specified in L as a condition of type (2°)
or more general mixed conditions.

4. The one dimensional case: methods of solution. In the sequel
of this work, we shall mainly be interested in the one-dimensional case.
The notations introduced in this section will be used throughout our
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work. The real line is divided in intervals
= —co <L<L<oee <y, <ly= o0,

In each interval [I,_, ;] = I, we define a;, and ¢, which are C* and C°
functions, respectively, but they may have discontinuity at points I,.
The operator L is defined by

1 0/1 ou .

.8 Ly =—2(20% I
(1.8) e <a3 aw) mok
with boundary conditions
(1.9) w(ly) = u(lf)

1 ou,- 1 ou
1.10 —() = —(1.
(1.10) D) e = i w

We see that we must find the kernel of F(L) for a function F' of a real
variable, for example

F(g) = exp(—t&) , exp(kit&””) or exp(ité) .

If we pose the problems as in Section 1. We have two methods to do
this.

First method: the functional calculus for a self-adjoint L. Let us
suppose that ¢ = 1 so that L is self-adjoint with respect to the Lebesgue
measure; L becomes a negative operator; let —k* and u(x, k) be respec-
tively a generalized eigenvalue and the corresponding generalized eigen-
functions. By von Neumann theory, there exists a 2x2 matrix o...(k) so

that
oo —v) = dk 3 ule, pur @, Dok -

0..(k) is the spectral matrix; it is hermitian and can be diagonalized; by
considering special linear combinations we can reduce p.. to be §..; then

(1.1) o —v) = |"_utw, ks, bk,
and
(112 P, v) = | F(—kute, u*, Bk .

We want to find explicit expansion for the u(x, k).
Second method: method of Titchmarsh-Kodaira-Yosida for a general
L. This method applies for ¢ # 1; let us assume that there exist m and

M such that
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O<m=a, c=M< o,
For » in C — R~ we consider the problems
(1.13) (P.) N — L)u(z, ») = 0 if 2— +o0.

Call u.(x, \) the solution (supposed to be unique modulo constants); the
Green function is

__ a¥(x)c*(u_(x, MNu(y, \)
Wen_, w.)(x) @=v

_ @*@)c (u_(y, Mu(x, \)
Wl us)aw (=)

where W(u_, u.)(x,) = (u_u) — U U1),—,, 1S the Wronskian of the two
solutions, and #, is any point on R. Then for xeC — R_and fe LAR)N
C(R), we can prove that

w=0— L =|" G,y 0wy

(1.14) Gz, y; \) =

satisfies W — L)u = f and u — 0 if © — + .
The heat kernel p,(z, y) is given by

(1.15) e y)=$§ Gz, y; M)dn
24w Jr

where T is a contour in the complex )\ plane around the negative real
axis (as in the figure).

ImA

7\

Red

A\
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REMARKS. 1. Neither G(x, ¥, A) nor p,(x, ¥) are continuous in y in
general if the coefficients of the operators are not continuous.

2. The computations involved in the spectral resolution or in the
Titchmarsh-Kodaira method are very similar; we shall do them using a
statistical mechanics method (transfer matrix).

CHAPTER II. The case of piecewise constant coefficients.

1. Hypothesis and general formulas for the transfer matrix. We
shall assume the situation of Chapter I, n°6: namely [, = —c <[, =
0<l, <+ <ly_, <ly= o and on each interval I, = [I,_,, I,], we suppose
that ¢, and a, are constants. We can always reduce ourselves to the
case [, = 0 and we can also assume that

lLi=@G—1)l
by refining the partition by the I;’s. We denote also u; = ul;;. The two
eigenfunctions on I, are exp(zika;c;x) associated to the eigenvalue —k*
or exp(E\"a c;x) associated to € C — R~ (determination A% > 0 if A > 0).
We shall do the computation in the first case (it does not really matter
which case we take). We look for an eigenfunction u(x, k) such that
(2.1) u;(x, k) = Ajk)exp(ika;c;x) + B(k)exp(—ika;c ) .
The boundary conditions at [; can be written as
Ajy exp(tha;yicinly) + Biyy exp(—ika;i.Cjpl;)
= A;exp(tka,c;l;) + B;exp(—ikac,l;)

C; . .
aj (A, exp(tha;,Ciiil;) — By €Xp(—1ka j11C54l5))
J+1

= Y% (A, exp(ika,e;l;) — B, exp(—ikajc;l,))

a;

which can be rewritten as

Aa’+1 Ai

. = Tk
®2 <B,-+1) o )<B,->
where T;(k) is the 2x 2 matrix:

1 x1  *2

3 T, =
(2 ) ! 2ajCj+1 <*3 *4>
where *1 = (a;ci + ai+1cj)eXp(7:k(ajci - ai+1cj+1)lj)

#2 = (@Cjp1 — Wj4:€5)eXP(— k(A c; + @j1iCis1)l5)
*8 = (@;Cip1 — @j4:C;5)eXP(h(a c; + @;11Ci1)l5)
x4 = (aica'ﬂ + ai+1cj)exl)(—ik(a'jcf - ai+1cj+1)li) .
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DEFINITION. Tj(k) is the transfer matrix for momentum k.

2. The self-adjoint case. Referring to formulas (1.11) and (1.12) we
need to compute integrals such as

(2.4) K, ) = | _Fyue, bu, bk,

where F(k*) denotes an even function of %* for x, ¥ in I; and I;, respec-
tively. Replacing u; and u, by their values (2.1) and using the fact that
F' is even, we have

(2.5) Ko, y) = | FUOIKCH (explik(as — a))

+ Cif'(k)exp(ik(a;x + ay)))
for x e I;, ye I, where C§i'(k) are called spectral coefficients and are
Ci'(k) = Aj(k)At(k) + B{(—k)Bf(—k)
Cit'(k) = Aj(k)Bi (k) + Bi(—k)At(—F) .
Now we write the condition of spectral resolution (1.11), i.e., we take

F=1. If x, y are in I,, x — y can take any real value z and we must
have from (2.5) with j=0l=1and F=1

(2.6)

0(z) = rm dk(C (k)exp(ika,(x — y)) + C (k)exp(ika,(x + ¥)))

so that

2.7) C(k) = 2o,
2

If now z is in I, and y is in I,, we must have
0= Sm dk[C7 (k)exp(ik(ax — ayy)) + Ci (k)exp(ik(a.x + ayy))]
and because a,x + ayy can take any real value, we deduce
(2.8) CHEk)=0.
Let us now define the following matrix

(Al Bk

(%) 0= (52 ab)
so that using (2.6)

- +)(

(2.10) Ule)* U, k) = <C:z (k) Cir( k))

Cit'(k)  Ci'(—k)
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and also using (2.2), we obtain
Uijn(k) = Uik) *Ti(k) = Uy(k) *Ti(k) *To(k) - - - *Ti(k)
In particular,
@.11)  Ugk)*Uk) = (Tj_y(k) - -+ Ty UL k) U Ty(le) « + + *To(K))

If we take in this formula N=j and [ =1 and if we take into
account the relations (2.7) and (2.8) giving C{’'(k) and C{'(k), we obtain
from (2.11) and (2.10)

Civ'(k) 0 )
0 Ci7' (—k)

This system of equations gives C%(k) and C4’(k). In particular,
U*(k)Uk) is known and from (2.11) and (2.10), we know all the other
spectral coefficients, provided that we can perform the product of the
matrices T;_, -+ T..

In the self-adjoint case, ¢; = 1 for any j and it is clear that

= Ty k)« Tl(k)(al/zﬂ Cif (-—k)) ‘

(2.12) ( \CS' (k) a,/2m

(2.13) det Ty(k) = %L

]

so that Tik) = T(k)(a;./a;)"* with det T; = 1. Denote

N 5 M. N.
2.14 To k)« Tk)=1{"" i
(2.14) ) -+ Tk (N; M})
My — N =1.
Then
M; N;
2.15 T, (k) -+ T, = (a;/a)" i i
(2.15) ) - TR = (asla) (N; M})

and for j = N we deduce C from (2.10) as

Ce(k) = ——é‘;%}i = C{(—k)*
N

C () = @™ 1 _ ooy

2r My
C,‘,T’(k) — '(axgé)l/z M;MNA; NiNy — C{;’(—-k)*
N

a;)"> N;My — NyM;
Ciph) = 0= Nilu 2 Ty — cip—ty»
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3. The non self-adjoint case. In the non self-adjoint case, we define
u_,(x, \) = exp(\*a,c,x)
so that u_, -0 if ¢ - — o
Uy (%, N) = exp(—N"aycyx)

so that u, y — 0 if x — oco.
Then, we have again to compute u_ (@, ) and u, ;(, \)

u_ {2, N) = A;(\)exp(\Vaex) + Bi(h)exp(—\a cx)
and so for 7 > 1,

(2.16) ( A

B;(\)
In particular, if we compute the Wronskian at o, we have
W(u_, u,)(o) = —2ayey\?Ay .
If xe€l;, yel,, we have by (1.14)
G(z, ¥, M) = ayex(4;(00N)exp(\%ac;x) + B;(u)exp(—na e x))
X exp(—N"axeyy)/(2N"Ax(N)) .

2 1/2 1
>= (W) eee Tl(k/)<0> .

4. The particular cases N = 2 or 3: the self-adjoint case. (a) These
cases can be explicitly treated. We shall give the details only in the
self-adjoint case (all ¢; = 1) and just give the result for the general case.
Also, we shall treat the case N = 3; we have [, = 0, and define [, = [.

(b) We want to compute C{'(k) for 1 <4, 5 <38. First we have

M, N,
T1 k) = of Ay 12 ’
(k) = (a,/a,) <N2* M2*>

where M, = 27a,a,) "X, + ), N, = (a, — a,).
Then we have

M, N,
T (k) = (aufas) ( - M;) ,
where

= 1 )
M,=—— [(a, . B
* T Kaaia,)” [(a, + a,)a, + a)exp(ikl(a, — a,))

+ (al - az)(az - a3)exP(""ikl(az + a/a))]

1 .
Ny = ————-l(a, — a.)(a, , —
* T Kaalan)” [(a, — a,)a, + as)exp(iki(a, — as))
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+ (a;, + a,)(@, — a;)exp(—ikl(a, + as))]
and we have C{ (k) = a,/27,
a Ny _ _ a (a,—a)(a, +a,) + (a, + a,)(a, — a)exp(—2ikla,) .
2 M, 27 (a, + a,)(a, + a;) + (a, — a,)(a, — as)exp(—2ikla,)
Then, we need C3”(k) given by U,(k)*U,(k)
My Ny\[(a/2m C{(—k)
N, M2> <C{i* '(k) a,/2r )

CiP (k) = —

U k)U(k) = Ty(k) U (k) Uy(k) = (az/al)‘”(
(=) — <a1a2>1/2 * __ *.l_vi (+) — (a1a2)1/2 — _Z_\r_a
Oty = Ly — Ne22), O = (N, — M)

so that

C¥(k) = *1 A ) .
7 (a, F a,)(a, F a,) + (a, = a,)(a, + a;)exp(*2ikla,)

Then we have also
CH k) =0,

O (k) = (B8 _ 20884 1 4 o,)(a, + a,)exp(ikl(a, — a5))
2 M, T

+ (@, — a)(@, — a,)exp(—ikl(a, + a))]™ .
We compute C$'(k) by using

Ce'(k) CY(—k)\/M, Nt y
GrU) = Ve 0T = (C;ﬂk) C;r(—k))(m Mz*)(‘“/ @’
so that
CE () — [ F(a, + a))a,a,(a, F ay)
2 (k) = 207 L@ F a0y F @) + (@ & @)@y & a,)exp(+ 2ikiay)
+ (aq — az)axa/z(az + as) :l .
T (a, £ ay)(a, = ay) + (@, F a)(a, F a,)exp(*2ikla,)

Then we also obtain
Ce (k) = ‘%‘i(al F a)l(a, + a.)(a, + as)exp(Fikl(a, — a,)

+ (a, — a,)(a, — as)exp(*ikl(a, + a))]™
and finally C&'(k) is computed by
Uz (k) Us(k) = U (k) U, (k) *Ty(k) * To(k)
_ (C{;’(k) 0 ><M3 N¥

172
0 CP(—k)\N, M:>(“3/“‘)
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C(+) Lk as -9 kl (a1 az)(az + a':-x) + (a’l + a'z)(a'z _ as)exp(_ziklaz)
w (h) = 2z exp(—2 aS)( a, — a,)(a, — a,) + (a, + a,)(a, + a,)exp(—2ikla,)

50 = o>

(¢) Now we can compute the heat kernel using (1.12) or (2.5). We
introduce the function

(2.17) ht & C,a) = ZL Sw e Fte(1 + Ce**)'d
T

—oo

well-defined for |C] = 1. It is a kind of §-function. Denote

(@, Y) = P® Plerjuer
for 7,1 =1, 2, 3, and also recall the usual formula

g(tr E) = (47Ct)_1/2 eXp(—EZ/(th)) = 31_ Sw e—kzteikedk ]
T J—

Using (2.5) and the preceding values for the spectral coefficients we
obtain

pt(l,l)(x, y) = a,9(t, a,(x — ) — a, a; — A, h(t, a(x + ), K, —L)
a, + a,

1

—a, 2" %, o +y) — L, K, —L),

a, +
P, y) = —22% Rt ax — ayy, K, —L)
1T @y
20,058, — @5) 4,
— t axr + a LI K7 —L ’
(a; + a.)(a, + @) e v )
(2.18) PP, ) = ——2B%__p(t, ap — ay — Ua, — a), K, L),

(@, + a,)(a; + a,)
P& (x, ¥) = a.h(t, a(x — y), K, —L)

_ (a, — a,)(@, — as) _
oy o TaNe T 3)"(t a,(x —y) + L, K, +L)

- ag%—#‘%ho: az + ) — L, K, —L)

+ a, 2 =%, a(x + y), K, +L) ,
+ a,

1

P (x, y) = %h(t 0,z — ay — Ua, — ay), K, —L)
2
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2a,0,(a, — a,)
(a1 + 0’2)((1/2 + as)

ht, a,x + ay + l(a, — a,), K, +L),

PP @, Y) = au(t, 6@ — 1)) + 0BT IDh(t, 0w + 9) + 2Ua, — 0, K, +L)
(a; + @)

+ 0B =Wt 0w + y) — 2la, K, ~L)
(a, + a,)
and here K = (a, — a,)(a, — a,)/(a; + a,)(a, + a;) and L = +2la,.
(d) We now obtain the case N = 2 which is special case of N =3
for I =0, a, = a;. In that case

h(ty & Ca L = 0) = g(tr E)

and the heat kernel is simply

P @, ) = gt o — 9)) — BB =Byt 0w 4+ 1))

a, + a,

2a,a,

PP (w, ¥) = g(t, a,x — a.y) ,
a, + a,

pg""”(x, y) = aig(t, az(oc —_ y)) + a2Mg(t, az(x + y)) .
(@, + a,)

5. The particular cases N = 3 and 2: non self-adjoint cases. We
consider here the case N = 3 but with the ¢,’s not necessarily 1, i.e., the
operator

(2.19) L= (‘Cl?l[z«)] + clgl[[o<z<l] + -j—gﬂttq])%((—é—ﬁrmo]
+ —&12—1[0««1 + zlg-]ltzq])-(%) .
Then
u_(x, \) = exp(\’c,a,x) for 2 <0
(2, ) = exp(—\"%c,a,x) for 2 >1.
We define
(@, ) = {A exp(\Y%¢,a,x) + Bexp(—\"c,a,x) o<l
C exp(\'ca5) + D exp(— A\ c,asx) x>1
G exp(\c,a,x) + H exp(—\"*c,a,x) x<0
wal®y V) = {E exp(\2¢,a,x) + F exp(—\"e,a,x) o<z<l.

We write the boundary condition at 0 and ! for w.(x, ) and we obtain
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E = l _M exp(—A"2la,e, + ascs))
2 5C,
(2.20) 1
F = o) 0, + A0y exp(\N 2l aqc, — ascs))
8Y2
(2.21) lez; H 2aff/?302 exp(\lacy)[(a.0, — a,6) (@, — a,0,)
1
X eXP(—N"2a,6,) + (a6, + @16.)(@sC5 + €,a5)eXP(N1a,)] ™
Then

a, 2 .
WC(?/) w_(2, Mu(y, \) if 2=y
(2.22) G(x, ¥, ) =

T;;ch)?u_(y, Muse, ) i w2y,
For example, if we compute G(z, ¥, \) for x < y < 0 we have from (2.22)
Gz, ¥, N) = (cla,/(2eN*H))exp(\*a,c,2){G exp(\M*a,¢,Y)
+ Hexp(—\"a,c.y)}
= (a,¢,/(2N""))exp(Va,c, (@ — ¥))
+ a,c.27\"VA(G/H)exp(\ M ac,(x + ¥)) .

But from the transmission conditions and (2.20), (2.21)

B+ F+ 25F - )

h ? (LA
and so
Qsly = AiCy | G I a, exp(—2\"a,c,)
@223 G __attae  ac+ac -
H (a»zc1 — a,c, )( T0aCs + il )exp(~2>»”2lazcz)
azcl + a1cz a’zc3 + a3cz

Now using the contour integral (1.16) and performing the integral we
obtain

Pt (2, ¥) = ae9(t, ac(e — ) + 'a;I r e—e%eiemﬂw%de '

where we replace A2 by +£ in G/H given by (2.23). With the same
function » given by (2.16) we obtain

(2.24) o (x, ¥) = a,c,9(t, ac(r — ¥))

2000 = 88y, g,0,(n + y), K, — L)
(@6, + a,0.)
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+ (06 ¥ 68 bt .00 + 4) — L, K, L)
A,Cs + A3C,

In the same manner we also obtain for x < 0 <1 < y (case (1, 3))

4a,0,0,C,C5
(2.25) iz, y) = 125728 h(t, a,c.x
’ @ T (@, T a4

— acy + Uase; — ayc,), K, —L) .

Here
L = +2la,c,
K —_ < a6, — a,C, )( @3Cy — AsCy )
a.c, + a.c, AyCs + AsC,

In the case N = 2, we obtain

2.26) PPz, ¥) = aeg(t, ae (e — y)) + LB T G g4 g0 + )
a.C, + a,C,

2a,a,c;

g(t, a,.c,.x — a.C,Y)
a,c, + a.c

(2.27) P (w, ¥) =

(2.28)  pEI@, U) = @t ae(x — ) + 2CUC = 8O g4 g0 + y))
a6, + a.C,

2a,0,2

9(t, a.c,y — a.c,) .
a;C; + AyCy

(2.29) pP(x, y) =

REMARK. Compare p&¥ and pi?; here they differ by the exchange
of x and ¥ and also by the exchange of ¢ and ¢} in the coefficient in front
of g due to the non self-adjointness of the operator. Moreover they are
not continuous (for example at 0): for example fix ¢ < 0; then y — p,(z, ¥)
is not continuous at 0 because

2
P, 0°) = g(t, aye)—22%%
a,c; + a.c,

"o 2a.,a,c5
vz, 07) = g(¢, a,c)——222—
ac, + a,c,

but if we fix ¥ > 0, then « — p,(x, ¥) is continuous at x = 0.

CHAPTER III. The operator with general irregular coeflicients.

1. Computing a finite product of transfer matrices. In Chapter II,
we defined the transfer matrix T;(k) by formula (2.3) rewritten as
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3.1) Ty(k) = —1 (aa- exp(ikl0;) B exp(——ikl,-a,-)) I W

2aic;.1\B; exp(ikl;o;) a; exp(—ikl;0;) 2a,C;.,
where I, =0, I; = (7 — 1)l and

Q; = AjCipy + Cj4iCj

Bi = @iCip1 — Aj4iCj

3.2)
0; = aic; — @j4.Cin

0; = QjC; + 0;1.Cip

and det T; = (a;4.¢;/a,c;.,); we rewrite (3.1) in the form

(3.3) Tj — < @j+1Cs )1/2 1 : 21’\1](1‘:) ]
@iCisy 7 2(@3Ci054:C541)"

We have seen in Chapter II, n°2 that the most important object is the
product

T, Ty, -+ T,
of N matrices 7;. Let
(3.4) T; = Ti(k)
Then we have
(3.5) TyTy_y -+ T,

_ (OyuC: )\ 1 A Lo
- ( oN 2 1/2TNTN—1 e Ty
@,Cx+1 (@yiiCyir(@yCy -+ a50,)'a.c,)

It is clear from (3.4) that we can write
(AN+1,1 BN+1,1)

*
BN+1,1 AJT’+1,1

(AN+1,1> - (AN,I)
=T,

BIT’+1,1 BZTM
which means

Ay = ay eXp(":klNeN)AN,l + By exp(—iklNo'N)B?\;,l

(8.6) Tyeoo T, =

and

3.7 . .

@.7) B¥i: = Bx exP('LklNO'N)AN,l + ay exp(—zklNﬂN)B;’,l .
Define

(3.8) AN+1,1 =0 aNCN+1

By = oy - ayD¥,,
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(3.9) y, = Bi
a;
so that (3.7) becomes (recalling the definition (8.3) of 4;, o))

Cy+1 = exp(—ikl(N — 1)ay.Cxi){exp(Gkl(N — l)aNcN)CN
+ Yy exp(—1kl(N — Daycy)D3}

3.10
G100 Dt = exp(HIN — Dtysoys)(y XDHIN — Danen)Ca
+ exp(—tkl(N — 1aycy)D5} .
Now define
(3.11) Ey.. = exp(—ikl(a.c, + +++ + aycy))Cui
) F%,, = exp(ikl(a.c, + -+ + aycx))Di.,
Ey., = exp(—ikl(N — D)ayyicy+){exp(@kl(N — 2)a'NCN)EN
3.12) + 7y exp(—iklNaycy)exp(—2ikl(a.c, + -+ + ay_ .y ) Fx}
' Y41 = exXP(Ikl(N — l)aN+1CN+1){7N exp(iklNaycy)
x exp(2tkl(a.c, + c 4+ ay_ex_))Ex

+ exp(—tkl(N — 2)aNcN)F;$} .

On this form, it is almost obvious to perform the product of the
matrices in a systematic way. The answer is that for N = 2

Ey = exp(—ikl(N — Daney) 3 3 YoV, 00 Ty
nZ0 1541 <+ <igy<N—1
ion ign—1 iy
xexp<—2ikl{2 A, — >, A0+ 00 — D, a,c,})]
(8.13) ' ! !
— exp(ikl(N — Z)aNcN)[ s S Vo Tan Y

120 154 <+ <igy 41 SN—1
. tont1 ion i
xexp(szl{ S, ae, —Dac, + o0 + Da,e, — alcl})] .
1 1 1

We can check this formula by replacing E, and F% given by (3.13)
in (3.12); we obtain

By = exp(— kN = Dayocun) 5y 5 Yoo,

720 152; <+ <igy SN—1

ion iom— 1
Xexp(—%kl{zarc, - 221 a,c, + o0 — 3 awu})
1 1
+ Yoy xp(—20kl(ay0, + « -+ +aney)) 3 > Vigwes " * Vi

20 154y < v+ <lgpp1SN—1
ion+t1

xexp(Zikl{ 514‘ @, — *** + le a:Cr — a“"}):l
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but this is obviously of the type given by formula (3.13) for N+ 1
instead of Nand 1 =4, < -+ <1, =< N. In the same way, we also have

F., = exp(iki(N — 1>aN+1cN+I>[vN exp(2ikl(aic, + *++ + axey))

ign

iy
ign T A/ix eXp(**Z?:kl{Z a,C, — *** — Z arcr})
1 1

+ Z Z 7¢2n+1 e

n20 154 < o+ <dgy 4 SN—1
ion+1 ign

xexp(zfikl{ 3. a6, = 30,0+ -0 + i:'“'c' - alc‘}):l

which is again of the form (8.13) for N + 1 instead of N and 11, <
oo <'£2n+1§N-

Coming back to the definition of A,,,, By., we see by (3.8) and
(8.11) that we have

(8.14) Ay, =a, - ay_,exp(ikl(ac, + + -+ + ay_Cy_))
x exp(—ikI(N — 2)aNcN)[ SO0 v

nZ0 154 <+++<igy SN—1

x> S vy

n20 154;<+++<ig, SN—1

1

ign—1 " 'Yil

ion iop—1 iy
xexp(—Zikl(Z A — D, ApCp F o0 — a,c,))]
1 1 1
BI)'\;,x =0 v Oy eXp(“"ikl(azcz + oo+ aN-—1cN-—1))

x exp(ikl(N — 2)aNcN)[ 5 5 ¥

n20 154y <+++<fgp 4 SN-1

oty ’Yix

ion+1

ion i1
xexp(Zikl( Sac,—>ac+ 0+ D ac, — alcl))] .
1 1 1
We also have the same algebraic formula for 7k replaced by A\

2. The heat kernel for a general finite N. We write for xeI;
u_ (@, N) = A;(\V)exp(Naee) + Bi(\)exp(—\*a e x)
u_,(x, \) = exp(\Mac;x)
U+,i(® N) = Di(Mexp(Naze;x) + E;(N)exp(—Na e;x)
Uy, v(@, N) = exp(—N"ayeyx) .
(1
- (0>

The for 7 > 1, by (2.16) (with & = \'?)
A
( :0“)) T, Tl(l) , (A>
B,(\) 0 B,
A:’O\') = (ajc1/ a105)1/22—“1(0,,-0,-(0,5__10,-_1 s a262)2a‘lcl)—1/2AJ.1
Bio\') = (aic1/ alcj)l/22”i+1(ajc,-(a,~_1c,-_1 ‘e azcz)zalcx)—mBi,l

(3.15)

and so

(3.16)
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( 1),(7\1)) ‘Z -1 ,.. Nl < > < ) — ( )
Ej(:") 1 EN 1

rr— 1 (015 exp(—1kl;0;) —B;exp( —iklﬂj))
’ 2a.f+lc.7' - ﬁj eXp(’ikl,-O',-) a; exp(@kl_,ﬁ,)

and

so that we have to compute a backward product of the same type as
before.
If 1 < N, we have

(7,N) aycy2y it 172
@17 GYV(x, y, x)=~W(aN_1cN_1aN_ch_z---ajcj)exp(—x axCyy)
J4iN,1
X {A;,exp(\a c;x) + BF, exp(—Na cx)}
(rcall that in this notation ze€I;, yely)
G (@, Y N) = S exD(— N/ 0yexy){Aw,, eXD(VayCy)
N,1
+ B%, exp(—\"aycyx)} (for z < y)
and the heat kernel is given by

1
2w
REMARK 1. All 4;, and B}, are computed by (3.14) with 4k changed
into A2 _
REMARK 2. For practical purposes these kernels are sufficient; some-

how, we have a source of heat at y €I, and an observer somewhere at
x; it is reasonable to have sources outside the medium.

oY (x, y) = SF G (x, y, N)d\ .

3. Going to the continuum limit: the case of continuous coefficients.
We suppose now that a*(x) and c*(x) are functions which are constant
for x < 0 and for x > L. We denote these constants ¢_., ¢_. and a.,
€., respectively. We discretize the segment [0, L] into N subsegments
of length L/N =1 and denote as usual

L=]-0,0 -, ;=10 =2, G = DI+, Iy = 1L, o[ .

We shall also assume that a and ¢ are continuous functions with
bounded variation. We replace a and ¢ in I; by constant values a; and c;.
Fix xe I;, We want to study the limiting behaviour of A;(\) and
B;(\) given by (3.16) when N — oo, for j tending also to infinity such
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that x € I;. Let us consider 4,(\) first; since 4;, is given by (3.14), we
see that A;(\) is the product of three factors:

(3.18) (@jeifac) P27 aei(@i_iCiy =+ * AsC)A.C) 20 = @y -

(8.19) exp(ikl(ac, + « -+ + a;_.c;_))exp(—ikl(s — 2)a,c;) .

(3-20) Z Z 712”71'2,,_1 et 71'1

nZ0 159)<+++<igy<N—1

ion ign—1 iy
xexp(—2ikl{2 Al — Dy UCp + o00 — >, a,c,})
1 1 1
We recall that
Qi = @15 + @35, -

Here a, and ¢, refer to I, = ]— o0, 0[ so they are equal to a_. and c_..
a; and ¢; tend to a(x) and c(x) respectively if a and ¢ are continuous.
Now we also have:

( ., Qi) 1 - (alcz + 0201) (aj_lcf + 0465 )a_c.
vy
2 2/ AyCs *** Aj_1Ci_y 2a,c, 2a;¢;
But
O = Qppy — Qi — W) » Ct = Chir — (Chgr — C1)

and the following finite product

’—1( ApChis T ApiiCh ) — ﬁ (1 Qg — A Cpyy — Cy >
204 41Cr 11 20141 20411

_(#( da(=) de(@) \) _ [_0_oCow )"’
exp( So( 2a(x) + 2¢(x) )> (a(x)c(x)>
by the definition of the Riemann-Stieltjes integral with respect to a

bounded variation measure on the real line. In consequence the factor
(8.18) converges to (c_.a(x)/a_.c(x))’*>. We also see that the factor (3.19)

converges to exp(ik Sza(s)c(g)dg - ikxa(m)c(x)), because (7 — 2)L/N < z <
(j — 1)L/N and | = L/N. Concerning the sum (3.20), we note that

k=1 k=1

converges to

yo= Bi — 8iCini = B5iC; _ Cin| Uiy — €40
5 .
a; QiCipy + B5.C5  Cipa[@jp + €505

In particular, we immediately see that each summand in (3.20) converges
to

(3.21) SOE%% exp(—2ik X:z"a(g)c(g)dg) S

#2n dV(250_1)
0 2V
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*2n
0

X exp(2ik S - a(e)c(s)dg) . Sz d_;’%j.”i exp(2ik S a(g)c(g)ds)

again by the definition of the Riemann-Stieltjes integral where we have
denoted V = ¢/a which is by our hypothesis a continuous function such
that

K= S:c |d(log c/a)| < oo .

Let us denote W(x) = Sz |d(log ¢/a)| which is an increasing function tending

to K if x tends to L 0or e, Since [v;] is dominated by |log(c;../a;1) —
log(c;/a;)|, we have always an estimate from above of each summand of
(8.20) by

il -+ el = | [ W) " W, - [awia)
154;< e+ <tg, =N —1 0 0 0
= W(x)"/(2n)! < K*/(2n)! .

By the Lebesgue dominated convergence theorem for series, the sum
(3.20) tends as N — o« to the infinite sum in n of the term (3.21). Thus

(3.22) A0 — (Mﬁ—_f»—)/ exp(—ikxa(x)c(x))exp(-ik S’a(g)c(g)de)

a_.c(x)

xexp(2ik | a@e(@ds) - | "L ;’g)

% exp<2ik SO a(s)c(g)dg) .
We denote this limit by A(x, »). In the same way

3.23) B\ — (ﬂ(_@ﬁ—:)’ exp(ikxa(w)c(x))exp(——ik S:a(e)c(s)dg)

a_.c(x)
><,§, S:ﬂg%“—) exp<2ik S:%“ a(g)c(&)d&)if”“ %3—”‘2

X exp(—2ik S:Z" a(E)c(g)d5> - :21_;’(%)_

X exp<2ik S:l a(&)c(é‘)dé) .

We denote this limit by B(zx, )\).
The case where x > L, so that x € I,,, is slightly special; we denote
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this case by A.(\) and B.(\). We have

L_(Ocoe )" exp(—ikLancexp(ik | a@e@as) 3, |/ L0 ...

Coll_oo A oCoo 5T
so that
A.(N) = ( a«f-m) exp(—ikLamcw)exp(ik S: a(E)C(E)dE)
S L) exp(—2ik | c(©a(@rde) - | G
.20 x exp(zik S a(@e(e)ds)

B.O\) = (—%9;1)”2 exp(ikLawc,,,)exp( —ik S: a(g)c(g)ds)

—ooV oo

x exp<2ik S a@e)de) -

Let us now take x <y and y > L. We choose j with x e I;; first if
x < L, we have

G, ¥, \) = —ﬁ%{&(x)exp@vzajc,-w) + Bj(\)exp(—\a %))

X eXP(—N"* @y 4:Cx+2)Y)

and going to the limit N—, we obtain the Green function of the operator

oo L
(3.25) Gz, y, \) = —m{A(x. Aexp(\ia(x)e(x)w)
+ Bz, M)exp(—Aa(x)e(x)x) }exp(— N *CwCoy)
were A(x, ) and B(x, ) are the limits given by (3.22) and (3.23).
If L<xz<y, then

3.26) G, y,\) = "';"m {exp(x*ﬂawcmx)

1/2

B(eo, V)
A, N

where A(oo, A) and B(eo, ) are given by (3.24).
These are the Green function of

czzx) —d%c_< a’}x) E%.) )

exp(— x‘“amcwx)}exp( e ! )|
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The heat kernel can be computed by the usual contour integral.

REMARK. We used the fact that the Green function Gy(x, y, \) for
the operator cz*(x) (d/dx(az*(x)d/dx)) converges to the Green function
G(x, ¥y, ») when ¢, and ay tend to ¢ and a respectively. But this fact
can be easily shown by routine argument of successive approximation.

4. The continuum limit: the case of discontinuous coefficients. We
suppose now that a’(x) and c¢*(x) are functions constant for x < 0 and
2> L and that they are functions of bounded variation such that they may
be discontinuous at a set which has only a finite number of accumulation
points. We define a/c at a point of discontinuity as the mean value of
their left and right limits, so that the equalities

L) = H{Laai) + L)

are valid for each point. We have now to be extremely careful to com-
pute the limit of A4;(\) and B;(\) when j — + oo is such that xeI;, We
suppose that x is not a point of discontinuity: then, everything goes as
in the previous section concerning (3.20) and (3.21). But the problem is
the series in (8.14) at the points of discontinuity which are before x; if
such a point «x, appears in the interval I, (k¥ < j7), we can refine the
partition so that this point is the upper extremity of I,, i.e., (x,) =
I...N1I,; suppose now that 4, = k in the series (3.14); then

7;1< <7:t-1<k=?:z<'l:z+1<

AiCrt1 — CrQp+1

ACri1 T ApriCy

where a, is the limiting value on the left and a,,, the limiting value on
the right. But this is exactly

fa 8 (S (oo

Lotr + L 2(;)(4%)

Qg1 ay
But c¢/a having a discontinuity at «,, this is exactly the integral in
[x7, ] of (2(c/a)(x,))"*d(c/a) and we obtain formally the same expression
as in (3.22)

5 [ LV @exn( —2ik | o) |

X exp(Zik S:m—l a(s)c(g)dg) e

7,;1 =Y =

av
Lo, 29,[ 2V

(wl)exp(szS 1ch,(gf)c(&)(Jls) .

——(3—1)

S[ o5l 2V
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But the intermediate integrals are taken on the semi-open set [0, x [
(because if %k = ¢, for the same [ and corresponds to a discontinuity,
then for I' < I, the 4, are different from 1,).

The only remaining case is the case where the upper bound x of the
integral is itself a point of discontinuity. We can assume that the
partition in intervals is such that xe I;,N1;,,.

As we know that x# — G(z, ¥, \) is continuous, we can compute the
value for '’ < z and let 2’ — &=, for example.

The final thing is to obtain the limit in (8.18) or (8.19) in the
presence of points of discontinuity. Let us first suppose that x itself is
not a point of discontinuity and that z is in I;. First of all if there is
only a finite number of discontinuities x,, ---, 2, before 2 then by an
easy modification of the argument of Section 3

’ﬁ iCrty + Bi1iCi :( QosCooo )"za(wr)c(xr)+a(wf)c'(xr)/ a(@e(@:) )"2
B 20Chn a(a?)e(ar) 2a(x; )e(ar) \ a(ay)e(wr)

I ><( a(x;)e(ws) >‘/2 _ ( 0_ciC_o >‘/2 I ( c )(m)( a(xy)a(xy) )”2 )

a(x)c(x) a(x)c(x) a c(xp)e(xi)

If there is an infinite number of such points which accumulate to x, the
only thing to check is that the infinite product
¢ a(@i)a(xy) \*

I ()G seay)
is convergent.
Put ¢, = (c/a)(xi), 7. = (c/a)(xi), so that by our definitions, (c/a)(x,) = 1/2
(& + 7). Put also 6, =9, — & (the jump at the discontinuity). Then
the logarithm of the general term of the product is log((&, + 7.)/2) —
1/2log(g:) = log(1 + 0,/28,) — 1/21log(1 + 6,/&:) = 0(0%65%). On the other
hand dlog(c/a) is a bounded variation measure which implies that
2. [log 7, — log &| = 3. [log(1 + 6,/&,)| is finite, so that 3 [0u/& [ < oo.
Hence the infinite product converges. If x is itself a point of disconti-
nuity, we obtain if xeI,NI;,,

<_“_—__oo_0__—__w___.>"2 il <£_>(xk)< a(wp)a(et) >"2

a(x™)e(x™) 7p<z \ @ c(xp)e(xd)
and in (3.19), we obtain
a(x™)e_. | c a(xy)a(xy) \*
<a_wc(fv‘)> pis ( a ) o(wi)e(at) )

where «, are the discontinuity points (we assume here that 0 is not a
point of discontinuity for simplicity).
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Finally (3.20) will not be changed and (8.21) will give
exp(—ika(x )e(x™)x) (recall x < L).

Now in the summation in (3.14), we compute the limiting value for
2’ <z, 2 €l; and so the 1,, (or ,,.,) is <7 — 1, and so at the limit when
N — «, we obtain

S L iwexn( 2k | oot |

x exp<2ik S‘ a(g)c(g)dg) . S

av
[0,29n[ 2V

(xl)exp(szS a(E)C(S)d$>

——(30—1)

ozl 2V
All these can be summarized in the following theorem.

THEOREM. Let a(x), c(x) be functions of bounded variation such that
d(c/a)/(c/a) s a bounded measure. We suppose that a and ¢ are constants
i ]—o0, 0] and ]L, <[ and also that the set of discontinuous points of
a and ¢ has only a finite number of accumulation points.

Then the Green function of the operator

c%x) _c-l%_( a%x) (dix-))

18 given by G(x, y, \) for y = L, x < y by the formulas

Ol ooy
G, ¥, \) = DALY {A(z, Mexp(\a(z7)e(z7)2)
+ B(x, Mexp(—Aa(x™)e(x™)x)exp(— N 0 wlol) for z=< L
and

6@y )=~ 22 XD N Gutule — ) + 20 exp(—V N tucula + W)

Jor LZx=<y

with the following definitions

A(x, ) = (%}m exp(—1/ Twa(x“)c(x"))exp(l/ n S:a(E)C(E)d&‘)
av

[ 22“[ 2V(x2'n—-l)

x [nzzo S[o o 2V (xZn)exp( —2% S:M a(E)C(E)dS) S
. S dV

% exp<21/f S et a(g)c(g)ds) SRR MR- ACN

X exp<2l/ n S:l a(&)c(&)déﬂ ,Ez (3)(%)(_&1:_)‘1(_%1)”2

c(ay)e(xi)
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- 1/2 —_— _—
Bz, \) = <—Z—(x—c)(jc—“_°;> exp(l/ xxa(x“)c(x‘))exp<~1/ by Soa(f)c(g)dg)

2] aexp(2 % [ aeeas) | S

xexp(——zl/i” SO“ a(é)c(s)dg) . S - gg( )
xexp(2 % |"a@e©)ds) | (s )(xk)(%)m
A0\ = ( °°> exp(—1 '\ Lawcw)exp<l/ N S a(g)c(g)dg)
% [:%o S[o £l gg (ac2,,)exp( —2% S:% a(E)c(E)dS) S[ 0,2gml gg (@)
X exp<2l/ n So . a(s)e(g)d&) .- S[o o czlg ()
X exp<2l/ n S:la(s)c(g)dsﬂ ZE <a )(xﬁ(%%%)w

B.(\) = (gfi-;ss)’ exp(V/ X Lauc.)exp(—1/ % §L a(g)c(@dg)

( ) ")( ZEZ;Z((;;)) >wn§,5m 1 zv( o)

><exp<2>\,‘/2 Sx i a(s)a(s)d&) .- g[ e gg( x,)

X exp<27\,‘/ 2 Sol a(S)C(E)d5>

where V(x) = 27 ((c/a)x™) + (c/a)(x™)).

REMARK 1. Clearly the case of piecewise constant coefficients is a
particular case of these formulas where dV is a pure jump measure (a
sum of Dirac masses); but we needed first to examine this case to deduce
the general case.

REMARK 2. This theorem can also be applied to the case where V
increases only on a set which is of Lebesgue measure 0, without being
piecewise constant (i.e., V is continuous).

5. Comments about the form of the Green function. (i) The
preceding theorem gives a series converging to the Green function; this
series is convergent provided that d(logc/a) is a measure of bounded
variations and we have proved that it converges very rapidly because it
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is controlled by the series of sinh or cosh. Moreover, this series is a
resummation of the trivial perturbation series which does not converge
in general. The quantity which controls the convergence is only
d(log c/a).

(ii) The problem of transmission of heat or waves through one-
dimensional medium was posed to us by several physicists. In particular,
physicists are interested in propagation of waves in random media
(which means that a(x) and c¢(x) are random functions). There are two
main problems: the first one is to find the total transmission or reflexion
coefficients by the medium; or, equivalently, to find G(z, v, A) for 2 and
y separated by the medium. The other problem is the inverse scattering
problem: namely to obtain information about the medium by measuring
the total transmission or reflexion coefficients, or by knowing G(z, ¥, \);
explicit expressions for the Green function are interesting because they
give partial answers to these questions.

(iii) In higher dimensions, it is hopeless to find such explicit expres-
sions in general. On the other hand, using projection technique and
comparison theory, we can hope to obtain estimates for the Green
function by one-dimensional Green function (see Malliavin [7] and Debiard-
Gaveau-Mazet [1] for example).

CHAPTER IV. An example of singular perturbation: limit of opera-
tors with irregular coefficients. In this chapter, we give a new kind of
example of the singular perturbation theory and we examine the limit
behaviour of a sequence of operators with irregular coefficients. The
limit behaviour is rather complicated and depends strongly on the kind
of limit that we take.

1. An example of a sequence of operators and their heat kernels.
We shall take the following formal operators

1
4.1) L= <1[[z<0] + EH[KK” + ]I[x>l]>’g;<(1[a:<o] + %H[o«m + K[»l])%) .

and we shall suppose that the boundary layer 0 < 2 <1 tends to 0 and
that a, and/or ¢, tend to +o. We define 2 and v by

4.2 =6 =06 = la,c, .

(4.2) jZ Py v = layc,

Recall from Chapter II, n°5 (formulas (2.24) and (2.25)) that then ¢, = ¢; =
a, =a;, =1, we have for z <y

o, ¥) = g(t, © — y) + ph(t, © + y, — 1, —2v)



DIRICHLET INTEGRALS WITH SINGULAR COEFFICIENTS 493

— ph(t, © + y — 2v, — £, —2)
P, y) = 1 — Dtz —y + 1 — v, —p£f, —2v) .

Recalling the definition (2.17) of the function kh, we can rewrite this
more explicitly as
—Ziku)

) . 7 T " 1—e
(4'3) péx 1)(96’ y) — g(t, xr — y) -+ 2—71- S_we k2t 5tk +mm

(4 4) p“’z)(x y) — (1 . #2)__1__ Sm e._kh eik(z—y+l—»)
: t ’ o Jow 1 — #23—2:41”'
Formally we see that L tends to the operator d*/dx®. In fact, we
shall see at the end of this chapter that this conclusion is entirely
misleading and that we can have a great variety of cases.

2. The case where £ tends to 1. (a) The case where » tends to
a limit 0 <y, < oo,
We examine p{¥(zx, y) given by (4.4); because y, is finite > 0 and 22— 1,
this kernel is the integral of a function which tends to 0 pointwise; the
only problem is for k near zn/y, for ne€Z. But on a small neighbor-
hood of such a k, we have

1— 2

1 — #26_2”“

e—k%
‘1 + 2k — (zn/v,))/(1 — 1)
and this is bounded by Ce™*; so by the Lebesgue theorem p{~¥(x, y) — 0.

On the other hand, if we examine the second term of p®*(x, ¥) we see
that

— k2
ekt

1 —_ e—Ziky

W =C where p—1, v—y,

and so
P (@, ¥) — 9. — ¥) + g.(x + ¥) .

In that case L tends to d*/dx* with the pure reflexion condition at 0.
(b) The case where y — o,
We expand in series the denominator in the integral (4.4)
—_— 2 ) L.
pé1v3) — 1 27[# nglo S—w e—kzt#Zme—zmukzezk(z—u+l—-v)
— 1-— #2 2m
=0 3 gtz —y+1—v—2my).
T mz0

It is clear that this tends to 0 if y— « and g#£—1. On the other
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hand, in the integral in (4.3) we have

1 —_ e——zikv — [1 _ (EEZ — l)e—zilw ]—1 . 1

1— luze—zikv 1 — g2k

and so
oV (@, ¥) — 9 — y) + g.(x + ¥)

and we have the same conclusion as in (a).
(¢) The case where y — 0.
Let us examine p{"¥; then
1= [1 — 2&8_'2_”’1:_2]“
1 —_ #26—211101' # 1 . #2
and the denominator is equivalent to 1 + vki/(1 — g). So if /(1 — ¢)— 0,
then pi®¥ — g,(x — y); if v/(1 — 1) — oo, then pi*¥ —0; if v/(1 — ) = N,
then

(1,8 1 [~ g €*e®
(4.5) P ) = 5o | etk
We examine the integral term in p{? (ef. (4.8))
1 — gk 2iky 1ky

" e 1 (1— ) — 1P — 2ikv)  +vki+ (1 — )

so if v/(1 — ) =0, then p{*’ — g,(x — y); if v/A — ) = oo, then p" —
gx — y) + g.(x + u); if v/(1 — ) = X,, then

1 (° e dk
4.5) Ly _ . S k2t L1k (z+y) .
4.5) Pt =gl —y) + o) et nF

3. The case where ¢t — g, with —1 < ¢, <1. (a) The case where
y tends to a limit 0 < y, < co. Then

(4.6) pd¥(x, y) — (1 — ”3)2_];1'- S:o ¢ Figike=r—0) (1 — e dk

and
(4.7) pél,l)(x’ y) = g,(x _ y) + -E#LSOO e_lmeik(zﬂn(l . e—zskuo)/(l _ #ge—zikyo)dk
Tc —00
(b) If v—0, then p{**(x, y) — g.(x — ¥) and P (x, ¥) — gl — Y).
(¢) If vy — o, then we again write

1 oi ovkis
= ge—zwct;; .
1 — /126“2"“ %ﬂ
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Then in p{*¥ we obtain X3, ¥g(t, x — ¥y + I — (27 + 1)v) which tends to
0 if vy — o, so pi¥ — 0.

In the same manner, we expand the denominator in the integral of
the second member of (4.3) and we obtain

(4.8) PP (@, ¥) = g, & — ¥) + t9(E, x + Y) .

4. The case where ¢ — —1, It is similar to the case ¢ — 1.

(a) If vy tends to a limit 0 < y, < o, then p¥(x, ¥) tends to 0 and
pivY tends to g(t, x — ¥) — g(¢, x + ¥).

(b) If v tends to <o, then p{"*(x, y¥) tends to 0 and »p*V(x, y) tends
to g(t, x — y) — gt, x + ¥).

(¢) If v tends to 0, then

1— vki \*
1_#25—»1‘1 ~<1+ 1—|—p> ¢

If »/(1+p#)—0, then pi"(x,y)—g(t, x—y) and pi(z,y)—
9,  — ¥);

If »/(1+ p)— o, then p{¥(x,y)—0 and p{ (x, y) —g(t, ¢ — y) —
9(t, x + ¥);

(4.9) If v/ + p) — N, then

1 Sm s eik(z—v)
09 (g 1 ek 8
D: ( y) 2w J-w 1+ ko?:k
1 © eik(z-Hl)
@0 (g r — - S P dk
GRS g Lt el I e ) oW

5. Conclusion. Let us take the family of operators L defined by
(4.1) and suppose that ! tends to 0 and a, and/or ¢, tend to «~. Define
U, v by (4.2).

Then the heat kernel q,(z, ¥) (x < y) tends to the following situation:
(A) Suppose p—1.

(@) If y—y, 0 <y, < o, then to a heat kernel with pure reflexion
at 0.
(b) If y—0 and

(1°) if v/ — p) — 0, then to a free heat kernel on R;

(2°) if v/(1 — p) — o, then to a heat kernel with pure reflexion

at 0;

(8°) if v/ — @) — Ny, then to the limits (4.5) and (4.5)".
(B) Suppose pt— g, and —1 < g, < +1.

(@) If y—oy, 0<y,< +c, then to the limits (4.6) and (4.7).

(b) If v — 0, then to the free heat kernel.
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(¢) If y— oo, then to the heat kernel with partial absorption at 0
and partial reflexion, the formula being (4.8).
(C) Suppose p— —1.

(@ If v—oy, 0<y, £ + oo, then to the heat kernel with absorption
at 0.
(b) If y—0 and

1°) if v/1 + p) — 0, then to the free heat kernel;

(2°) if v/(1 + ¢#) — oo, then to the heat kernel with absorption

at 0;

8°) if »/A + ) =N (0 < Ny < +0), then to the limit (4.9).
In particular, we see that, the approximating operators L* can be con-
servative, but the limit diffusion may not be conservative (when ¢ — 0),
for example in cases (B), (¢); (C), (a); (C), (b), 2°; which seems surprising.

CHAPTER V. Diffusion operators with spherical symmetry in R,

1. Transfer matrix for a self-adjoint operator with piecewise con-
stant coefficients. In this chapter, we shall only consider a self-adjoint
operator in R® having a spherical symmetry around 0. If z is a vector,
r = x| is its length. We begin with the case of piecewise constant
coefficients; formally the operator can be written as

. o1
(5.1) L= le((Z, —;]I((i—l)l<la:l<il) + 21 JInasl>zvu>V> ,
=t aj A4t
where a; are constant (and we can always assume that the spheres where
a; changes its value has radius (5 — 1)I).
A generalized eigenfunction u(x, k) satisfies

(5.2) Elz_m,. = —Fu; on j—1l<|gl<gjlorle>Nif j=N+1

J

Uilso,in = Uinlso,in
(5.3) 1 ou; 1 duj
a% or lsoi  ai,, or lsoin

where S(0, ;1) is the sphere of centre 0 and radius jl and u; = u|y_yi<io1<it-
We consider only the case of radial functions wu;r, k). Define

ui(r, k) = vi(r, k)/r. Then on (j — 1)l < r < jl, we have d*v,/dr® = —k*v;

so that

(5.4) vi(r, k) = Ajk)exp(ika;r) + Bjk)exp(—ika;r) .

The second condition (5.3) becomes
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1 (ov; 1 _ 1 fov;y, 1

—\= Y ==l T 5l
a; or Rj r=jl Ajyq or Rj

so that if we take into account the continuity condition, then

r=4l

A;,. exp(ika;,,jl) — Bj,, exp(—ika;;,jl)
= %i—ﬂ(Aj exp(ika;jl) — B; exp(—ika;jl))

J

a; 1 1 . . . .
+ —@-ﬁ(a — -—§>(Aj exp(tka;jl) + B; exp(—ika;jl)) .

The continuity condition is just
A;., exp(ika;gl) + Bjy, exp(—ika;.,jl) = A; exp(ika;jl) + B;exp(—1ika;jl)
so that

Ai+1 . AJ‘
6 (5,2) = {z)

with T; being the following transfer matrix

1 /tl 2
Ti= 2a; (t?» t4)

where

t1 = exp(ik(a; — a;..)5)(a; + a,~+1)<l + _;;j; Zm)
FWi+1

t2 = exp(—ik(a; + az41)il)(@; — aj+1)<1 + ;J-l; Z,-ﬂ)
§Yi+1

8 = exp(ik(a; + a;.)50(e; — as)(1 — _;:j;; «Zg-ﬂ)
FYi+1

t4 = exp(—ik(e; — a;,)0(@; + 051 - L i)
Wi+

and det T; = a;,,/a;. We define a; = a; + a4, B; = a; — a;,, and

(5.6) R,‘ = 20;,‘Tj .
Then

rl r2
5.7 R, =
6.7) ! (7'3 1'4)
where

rl = exp(ikﬁjﬂ)af<1 + leﬁ' aij )
FYI+1
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r2 = exp(—-ika,jl)ﬁ’,(l + -ﬁ a(;j >
i%i+1

3 = exp(ika,jl)ﬁ,-(l - - l:ﬂ L )
Wi+1

. . 1 B
4 = - k ; l 'l 1 —_— f_" .
rd = exp(—1kB;J )a( Tl a,.a,-ﬂ)
We have to compute the product
AN-H 1 BN+1 1
(5.8) RR_"'RIE< ’ )
A Bl Ak
so that
Ay Ay 1)
5.9 = '
®9) (B:oﬂ,l) R”(B;s,l

Aysr, = exp(—ikING 1) {exp(iklNaN)aN(l + %T%ﬁ a_ﬁ’;_)AN‘,
NWN+1

+ exp(— kNG, )81 + ik}N o )Bt.}
NWN+1

Bfu = exp(iklNay,) {exp(ikiNaygs(1 - ———%5 )4,
NWN+1

+ exp(—iklNaN)aN(l - ﬁ;N _aﬁaf.v_)B;,,} .
NWN 41

We define as in Chapter III
(6.10) Ay =a - ayCyiyy Biy,a=a + ayDyy, Ty = Bylay,
and then

Ey,., = exp(—ikl(a, + +++ + ay))Cyyiy

5.11
(6.11) Fys = exp(ikl(a, + +++ + ax))Dys -
We obtain
By, = exp(—-'iklNaNﬂ){exp('ikl(N — 1)aN)(1 41 __ B )EN
WkIN ayyy,
+ exp(—1klay(N + 1))exp(—2tkl(a, + +++ + axy_))7x
1 o
X1 N F
( t N aNaN+1> ”}

(5.12)

Fy., = exp(iklNaNH){exp(iklaN(N + 1))exp(2ikl(a, + -+ + ay_,)

1 o
XYl — ——— —=¥_\F
”( BN aytys, ) i
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+ exp(—ikl(N — 1)aN)<1 - %%ﬁ . iN ) FN} .
NWN +1

The formulas for solving (5.12) are of the same type as those found
in Chapter III; namely we obtain

(6.13) E, = exp(—ikz(N—naN)[E (1+-,L-—B—f—

iklj a,-a,-H) m 1S51<4p<"<jgm SN -1

(g e (- )

#<4; iklr a,a,., iklj, a;a; .,
g 1 8. ) ( 1 a;
x exp| 24kl a, 1""—-—-—— v; 1+._T 2
p( v ?S‘f )a‘1<IrI<:'2( iklr a0,/ 2\ iklg, a,-za,-ﬁl>
%k S 1 _ B8 ...
x exp( 2kl 3, a,)jz I 1_3(1 o Mm)

1 a;
XV o1+ e e )
" ’lej“ Qg Pign 41

xexp(——Zikl%a,) 11 (1+ 1 -——§'—-—>:]

=1 /jpp<rsn-1 wklr a,a,,,
(5.14)  Fy = exp(iklN—1)ay) 5, L _B: )y,

n 1£41<dp: <Jop4+1SN—1 r<j1< W a,, .y
x(1- ikllg} ao;+>
xexp(2ikl 3ya,) T (1-—2- L)y, (14-1 %)

=1 /§1<r<i wklr a,a,, iklg, 0,0,

Jg .
X exp(——Zikl S, a,) X ’>’,~“+1(1 — 1 Qiznts

r=1 q’kljzn-i-l ai2“+1ajg,.+l+1

X exp<2ikl jgl a'>izu+1gszv—1 <1 — —'ZI:—Z; a—ﬁ:—ﬂ-) .

To check that this is the correct solution, we have to substitute Ej
and Fy in (56.12) by those given in the preceding formulas. We then see
that we obtain the same formulas as (5.14) but for E,,, and Fy,,.

We then have from (5.10) and (5.11)

AN+1,1 =q, - ayexp(ikl(a, + -+ + ay)Eyi

5.15
( ) BI‘\;+1,1 =q, - ayexp(—ikl(a, + <+ + ay))Fyy,

and so

1 Ry--+ R,

1
Toweol = b~
~ T2Y g eeray
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1 a - -ay/sl s2
] T oo T = _~_ C1°"" Oy

(65.16) v 2V g ay <s3 34)
where

sl = exp(ikl(a, + +++ + ayx)Eyy,

s2 = exp(ikl(a, + -+ + ax)F¥,,

s8 = exp(—ikl(a, + -+« + ay)Fyp
s4 = exp(—ikl(a, + <+ + ay)E%,, .

2. Spectral resolution for a self-adjoint operator with piecewise
constant coefficients. We must now compute a spectral resolution of
identity for L. Because we are on a half line R*, each eigenvalue —Z?
for the v function is non-degenerate and there is only one v(k, r): we
must find » such that

(5.17) S — 1) = S” (e, 7y0*(k, v)dk .
[}
We can also suppose that v is a real function, so that
(5.18) A¥ = B;.
Let us write (5.17) for », ' > NI; then r — ' can take any positive
or negative value and we must have
3 — 7" = | Ak{Ay sy expliby.ar) + Al exp(— iy}
0
X (A% exp(—ikay.,r") + Ay, exp(ihay ')}

=2 S: dk|Ay., P cos kay,(r—r")+ Sj Ak(A% ., + A% )C0s kay o (r +77)

+i S“’ (A, — A% )sin kay . (r + 1) .
0

This gives

(5.19) |Ayp|? = 4ot
An

Moreover, we have v(k, 0)=0 because u(k, r) = v(k, r)/r has to be regular
at r = 0, so that

(5.20) A = —A, .

Now if we want to find a kernel K(0, ') of some function F(L) between
0 (the center of symmetry) and ', we take

(5.21)  K(0, ') = lim r F(—k) 2 ) 'v*(k: ) ik
r—0 0 r r

== Sw F(—k)ik(A, — A¥)(A; exp(ika;r’) + Af exp(—ikay"))dk

r Jo
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= 2@’_1_5 F(—k»)ikA(A; exp(ika;r’) + AF exp(—ika;r"))dk ,
r [

if (j —1l< 7+ <34l. But by (5.5) and (5.8)
AN+1) < A, >
= TyTy_, -+~ T,
(A?eﬂ vy —A,
and by (5.16)

Ay = -2 AN oxp(ikila, + +++ + ax))(Eyn — FiA, .
2 a, - ay

Taking the modulus we have by (5.19)

29Nq e 1 T
(.22) |4 = (“NH) 100 By and arg A, =%
4z Ay Ay IEN+1 - Fx'ﬂl ' 2

because A4, = — A}

1/2 _ * )
6:28)  Ava = (%2)" explikila, + -+ + ay)Zra = in e
N+1 — LN

A; A,
L= Ty T, ’
A;‘ ’—Ax

Ay =2 Qin exp(ikl(a, + -+ + a;))(E; — FHA,
27 [ N T

and more generally

so that

(5.24) AA; = _ Q- ay2¥ I ayy, 2V, - ay E;, - F}
aj*** Ay it a, - ay |-EN+1""1'_'1="/<’1‘~1I2

x exp(tkl(a, + +++ + a;_,))

2%q, ---ay Ey,, — F% .
5.25) AAy, = —Sxn 2% O Swn T SV eyp(ikl(a, + -+ -+ ay)) -
( ) N+ i -y By — Fi xp(ikl(a w)
So, putting together formulas (5.21), (56.24) or (5.25) and the values
of E; and F; given by (5.13) and (5.14), we have an explicit representa-
tion of the spectral measures of L and of the functional calculus for L.

3. Spectral resolution for a general self-adjoint operator (continuous
coefficients). We shall now assume that L is of the form

(5.26) L= div(a%c—) )

where a*(x) is, first of all, a continuous function that we suppose to be
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constant for || > L. As in Chapter III, we divide the ball of radius L
in small corona

L ={§ -l <|w| <jl} where = L/N

and call Iy, = {|x| > L}. We take an approximation of a*(x) by piecewise
constant functions in each I; in an obvious manner. Fix an z with
l#| < L and choose j such that xel; so that j < N. We first look at
the behaviour of

(@t a)@ ) e (a5 ) ﬂ (1 4 {a — aH))

2j—1a1 R ¢ 7 2j—1(a1 et a’.’i——l) zak—-l
which leads to
“da _ 12
(5.27) exp(So 2a,) — (a(@)/a(0))" .

Again we have
(5.28)  exp(ikl(a, + -+ + a,._l))—-»exp(ikya(g)dg) , Oy = G -
0

Now E; and F; are given by (5.13) and (5.14) in which

(5.29) g Ve _, g=tkaes)  hecause Jl = 2
(5.30) i (1 + o)
=1 iklr a,0,4,

Then, the structure of (5.13) is rather elementary. Define the kernel
for y <z by

(5.31)  (x, dy) = ~exp(__2_ S da(s))

ik Jvga’(g)

><exp<—2'£k S:a(s)dgxl - kyi (y)) szgf)) :

Then we obtain

(5.32) E; — e“"‘“‘”(exp( — -:7 S: ?g%) -l—ngl S: ¥z, du,,) S:Z" ¥ (XLgny Aoy y)

N S:zq/f*(xz, dwl)exp(—_@% S:Iga%%»

and the corresponding formula for F;
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(5.33) Fy — gitsa® 205 @, ) S " e @anesy A
Koo S *(2,, dwl)exp( 1 S:l Z{;ﬁg)

Then, if || > L,

(5.34) Ey,— e““‘““’(exp< SL 99y + 5 S WL, ) | ™ (s At )

o Ea*(€)
e Szqu*(xz, dwl)exp<“‘71];' S:l ?c‘:“’((?)»
and
(5.35) P o0 B | 00 o) [ o, )
e S ¥ (2, dxl)exp( = S Zg((?))

Let us now look at E; — F} appearing in A,A4; in (5.24).

(5.36) E;—F} = e"”‘”‘“‘”(exp( 1 SO g;((?)) + 3 (= 1)"8 ¥(, dz,)

x| v (@, da,) - |0y, da)
xexp( - | 443))

where C denotes the complex conjugation and C* its k-th power. As
usual, this series will converge if

‘da@] _ . (“lde@]
(5.87) . e - . £a (&)

4. The general case when a has discontinuities. We redefine a by
the formula

(5.38) a(x) = —;—(a(x“) +a(@) .
As in Chapter III, we assume that a has finite right and left limits

at each point and that @ is a constant a for |x| > L. We can obtain the
same kind of formulas as in Chapter III, n°4.
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