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1. Introduction. Let (M, %, g) = (M, ¢, & 7, g) be a contact Rieman-
nian manifold of dimension 2xn + 1. If ¢ is a Killing vector field, then
it is called a K-contact Riemannian manifold. Further, if the covariant
derivative Vg of ¢ satisfies some relation, then it is called a Sasakian
manifold. The model spaces of contact metric structure are complete
and simply connected Sasakian manifolds of constant ¢-sectional curvature
H. These Sasakian manifolds admit the maximal dimensional automor-
phism groups (Tanno [6]). The Riemannian curvature tensor K of a
Sasakian manifold of constant ¢-sectional curvature is determined (Ogiue
[3]). However, we know almost nothing about geometry on contact
Riemannian manifolds of constant g-sectional curvature. One good result
is due to Olszak [4], who showed an inequality on H and the scalar
curvature S of a contact Riemannian manifold of constant g-sectional
curvature H. Generalizing this inequality, we obtain the following.

THEOREM 3.1. Let (M, 7, g) be a contact Riemannian manifold of
constant g-sectional curvature H. Then the Ricci curvatures satisfy

Ric(X, X) + Ric(¢X, 9X)=3n — 1+ (n + 1)H

Sfor each unit vector Xe T,M, x € M, such that 7(X) = 0. Egquality holds
for any xe M and for any unit vector Xe T,M such that n(X) =0, if
and only if (M, 7, g) is Sasakian.

Generalizing the theorem of Blair [1], Olszak [4] proved that any
contact Riemannian manifold of constant curvature k and of dimension
2n +1=5 is a Sasakian manifold of constant curvature k. =1. We
generalize this by replacing the constancy of sectional curvature by the
conditions on the Ricei tensor and the k-nullity distribution. Namely,
we obtain the following.

THEOREM 5.2. Let (M, 7,9) be an FEinstein contact Riemannian
manifold of dimension 2n +1=5. If & belongs to the k-nullity dis-
tribution, then k =1 and (M, 7, g) is Sasakian.

2. Preliminaries. Let (M, 7, g) be a contact Riemannian manifold
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of dimension 2% + 1. Following Blair [1], we define & = (k%) by h = (1/2)L.9,
where L, denotes the Lie derivation by & Then the structure tensors
of (M, 7, g) satisfy the following relations:

.6 =1, ¢&=0, 7¢;=0,

$r9; = —05 + £,

9050k = Gir — Vi »  95:E" = i »

Vi, — Vi, = 26,5 = 29,95 ,
2.1) V.7 = —2nn;, &V,4:i=0,
(2.2) Vil = ¢ — duch

hi; = hi; = g95,h7 ,

¢hi = —hig;, hyt?=0.
h = 0 is equivalent to the condition that (M, 7, g) is a K-contact Rieman-

nian manifold. We prepare some relations which hold on a contact
Riemannian manifold. By (2.2) we obtain

2.3) V. V; = hy,hi — 2hi; + 9i5 — 0975 .

The next two relations are obtained by Blair [1], [2].

2.4 Riyii'8" + Ranl'8°9i05 = —2hi,h + 29, — 29:7;
(2.5) Ric(, &) = 2n — |IA]]*,

where ||T|? = g*r¢?*T,;T,, for T = (T};).
LEMMA 2.1. The Ricct tensor satisfies the following.
(2.6) R;,& =V, V" = V'Vy; + 4dny; ,
2.7 $iV' Vb + $iV'V,85, = 2V,8,V '8 + Rjy &N + Ryl
+ 2h;,hi — 4k, + 29,5 — 2(4n + 1), .

Proor. Contracting Ri.c" = V, V& — V, V£ with respect to 4 and k,
we obtain the first equality of (2.6). To verify the second equality we
rewrite V'V,n; as V'V,n; = V'(24,;) + V'V;7,. Then, applying (2.1), we
get (2.6). Next, operating V'V, to ¢i¢,, = —0ir + 00 We obtain

¢;'Vrvr¢ks + ¢laﬂvrvr¢j; - 2V,¢”~Vr¢i = V'Vf'f]ﬂ?k + nivrv'rnk + zvrﬁivrm .

Applying (2.3) and (2.6) to the last equation, we get (2.7). g.e.d.
We define P = (P,,;) on a contact Riemannian manifold by
(2'8) Pﬂi = Vr¢si - 7]ag'ri + 7]ign .

LEmMMA 2.2. P,,.,P™; is given by



CONTACT RIEMANNIAN MANIFOLDS 443

(2.9) P,,P"; = V,$,V'¢; — 2h;; — 9,; — 2n — 1)0,7; .
ProoF. First we get
P, P = V,,V"¢; — 0,V.8; — 7, V8¢ + 9., — @n + 1)n.7; .

Since 7,V.¢5 = —V7,4:, applying (2.2) to the last equation, we obtain
(2.9). qg.e.d.

We define R} by the same way as in the Kahlerian case:
2RY = —R.ugis" .
By the Bianchi identity R} is written also as
Ry = —Rungig" .
We define S* by S* = Rfg“.
LEMMA 2.3. R} satisfies the following.
(2.10) R} + R}l=R,;+ R, 465 —22n —1)g,;; + 2(n — 1)90; + P, P"; +h,,hj} .
PrOOF. By the Ricci identity for ¢, we obtain
ViVigi — ViVigi = — Ruagi + Rjugs -

Contracting the last equation with respect to ¢ and k, we get

(2'11) _2’"/V177j - Vzvl¢; = -_Rsl¢;' + Rsirl¢r’ .
Transvecting (2.11) by —¢}, we obtain
(2.12) 2nV gt + 6iV.Vig; = Rugigi — R .

Transvecting (2.11) by ¢i, we obtain
(2.13) —2nV it — $iV.Vig; = Ry — RLEY, — BE .
Change I to 7 in (2.13). Then the result and (2.12) imply
ng,igp + $iV'(V.is — Vidw) = Ry + R, 8561 — Ri&N — 2R}, .
Since V,¢,; + V.4;, + Vip,; = 0, the above is written as
An(gn — i) — V' Vigir = By + R, 879t — B3 — 2R .

Taking the symmetric part of the last equation and using (2.7) and (2.9),
we obtain (2.10). q.e.d.

We define P(X) for a vector field (or tangent vector) X by P(X) =
(P,,.,X%). Then we get ||[P(X)|? = (P,,P™;X'X7). By (2.9) it is easy to
verify

(2.14) 1P®I = Al .
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Therefore, (M, 7, g) is a K-contact Riemannian manifold, if and only if
P¢E) =0. A contact Riemannian manifold (M, 7, g) satisfying P =0 is
called Sasakian.

By Lemma 2.3 we obtain the following.

PROPOSITION 2.4. A contact Riemannian manifold (M, 7, g) is Sasa-
kian, if and only if
R + R, = R;; + R,.8i¢; — 2(2n — 1)9,; + 2(n — 1)n7; .
REMARK. (2.5) and (2.10) give the Olszak’s inequality;
(2.15) S* — S + 4n* = (1/2)(||Va|* — 4n) + ||R]* = 0,

where ||P||* = ||Vg||* — 4n (cf.[4]). S* — S + 4n* = 0 is a necessary and
sufficient condition for (MM, 7, g) to be Sasakian.

3. Constant g-sectional curvature. By D we denote the contact
distribution of a contact Riemannian manifold (M, », g) defined 7 = 0.
(M, 7, g) is said to be of constant g¢-sectional curvature if at any point
x € M the sectional curvature K(X, ¢X) is independent of the choice of
non-zero X e D,. In this case, the ¢-sectional curvature H is a function
on M.

THEOREM 3.1. Let (M, 7, g) be a (2n+1)-dimensional contact Rieman-
nitan manifold of constant g¢-sectional curvature H. Then the Ricci
curvatures satisfy the following inequality

(3.1) Rie(X, X) + Ric(¢X, ¢X) =3n — 1+ (n + 1)H

for each unit XeD,, xeM. Equality holds for any point x€ M and
for any unit Xe D,, if and only if (M, 7, 9) is Sasakian.

Proor. We define A and B by
Aijin = Ro 909207 — £0.)(05 — £9;)(01 — Ebﬂk)(ml - fdvz)
= Ripna$idi + Rursof 885010k — RariaE’ 85010 — Birni' 876101 »
B, = H(Gu — 7095 — N7)
Then K(X, ¢X) = H for any non-zero X € D, is equivalent to
3.2) (Aijia — Bs) Y'Y Y* Y'=0
for any Ye T,M. Put Q = A — B. Then (8.2) is equivalent to
Quint + Qujn + Quiqt + Qus + Quis + Qugr + Qiss + Qi
+ Qs + Qs + Quas + Quin = 0.

Transvecting the last equation by g, we obtain
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Ry + R, 016t — Runit"®® — Ronn8igi + 8RY + 3RE — R, — Ry, &™),
— 3RYE, — 3RAE™: + R,EEMM, — 4n + DH(9y — ) = 0.

Let Xe D, such that || X]| = 1. Transvecting the last equation by X*X*
and applying (2.4) and (2.10), we obtain

(8.3) 4 Ric(X, X) + 4Ric(¢X, ¢X)

=12n — 4 + 4(n + 1)H — 8||P(X)|* — 5||[hX]||* .

Therefore we obtain (3.1). Equality of (8.1) for any XeD implies
P(X)=0 and hX =0 for any XeD. Since ht=0, hX =0 for any

XeD implies h = 0. Thus, we obtain P(¢) =0 by (2.14). Therefore,
P(X) =0 for any Xe D implies P =0, and (M, 7, g) is Sasakian.

REMARK. Let {e, ¢€., &1 < a < n} be an adapted frame of T,M of
a contact Riemannian manifold of constant g¢-sectional curvature H.
Since [|hpX| = [lghX|| = [|hX]|, (8.8) gives |[P(¢X)| = [[P(X)||. Thus, we
obtain [|P[}* =235, [|P(e)l* + [[k* and [|a]|* = 23, |lke.[. Then, by (2.5)
and (8.8), the scalar curvature S is given by

S = Ric(g, &) + . Ricles, €,) + 2. Ric(ge,, ge.)
=3n* +n + n(n + 1)H — [|b]|* — B/4)2. | Plen)|]* — (5/4)3. ||he.|*
=3+ n + nln + 1)H — (8/8)||P|* — (5/4)||h]]* < 38n*+n + n(n + 1)H .
The last inequality is due to Olszak [4].

REMARK. Let (M, 1, g) be a K-contact Riemannian manifold of con-
stant g-sectional curvature H. If H is constant on M, then H can be
deformed by a D-homothetic deformation of the structure tensors. For
example, if H > —3, then choosing a constant § = (H + 3)/4, we get a
K-contact Riemannian manifold

(M, ¢, (1/0)¢, 67, 69 + (6° — ) Q 7)
of constant ¢-sectional curvature 1 (ef. (2.14) of Tanno [5]).
REMARK. It seems to be an open problem if there exist contact

Riemannian manifolds of constant ¢-sectional curvature, which are not
Sasakian.

4. Conformally flat contact Riemannian manifolds. Let (M, 7, g)
be a conformally flat contact Riemannian manifold. Then the Riemannian
curvature tensor R is expressed as

Riw = (1/2n — 1))(0iR; — 0iR;, + Rigy — Rig)
— (S/2n(2n — 1))(6ig5 — 0i9:) -
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Hence, R} is given by
R = (1/@n — 1)) (R; + R,.8i¢; — Ru£™;) — (S2n2n — 1))g: — 17,) -
Let Xe D such that || X| = 1. Then
RxX‘'X7 = (1/(2n — 1))(Ric(X, X) + Ric(sX, X)) — S/2n(2n — 1) .

On the other hand, (2.10) gives

2R X:X? = Rie(X, X) + Rie(sX, ¢X) — 2n(2n — 1) + ||P(X)|* + ||RX]* .
Combining the last two equations we obtain
(4.1) (2n — 3)(Ric(X, X) + Ric(pX, X))

= 2(2n — 17 — S/n — 2n — 1)([[P(X)[}* + [[RX]") .

Therefore we obtain the following.

THEOREM 4.1. Let (M, 7, 9) be a conformally flat contact Riemannian
manifold of dimension 2n +1=5. Then, for any unit Xe D,

(4.2) Rie(X, X) + Ric(gX, ¢X) < 4n + [2n(2n + 1) — S]/n(2n — 3)
holds. Equality holds for any unit XeD, if and only if (M, 7, g) s
Sasakian.

REMARK. Let {e, ge., & be an adapted frame of T,M of a conformal-
ly flat contact Riemannian manifold. Then, using (2.5) and (4.1), we can
show that the scalar curvature S is given by

S =2n2n+1)—((2n—1)/4(n—1))||P||*—(2n—38)/2(n —1))||k||* < 2n(2n+1) .
This is the inequality due to Olszak [4].

5. k-nullity distribution. Let % be a real number. By N(k):x—
N,(k) we denote the Fk-nullity distribution of a Riemannian manifold
(M, 9):

N(k) ={Ze T.,M; R(X,Y)Z = k(9(Y, Z)X — 9(X, 2)Y), X, Ye T,M}.

Considering the second theorem of Blair [2] as k£ = 0 case, we prove the
following.

PrOPOSITION 5.1. Let (M, 7, g) be a contact Riemannian manifold.
If ¢ belongs to the k-nullity distribution, then k < 1. If k<1, then
(M, 1, 9) admits three mutually orthogonal and integrable distributions
D(0), D(\) and D(—2\), defined by the eigenspaces of h, where x=VvV'1—F.

Proor. By &€ N(k) we can verify Ric(¢, &) = 2nk. Then, (2.5) implies
k =<1. Now we suppose k < 1. Olszak ([4], p. 250, p. 251) proved that
¢€ N(k) with k£ < 1 implies h* = (k — 1)¢* and
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(6.1) V.ps = (0rs + he)E" — 1,07 + h7) .

Since k& =0 and h is symmetric, h* = (k — 1)¢* implies that the restriction
h|D of h to the contact distribution D has eigenvalues » = 1”1 — k and
—x. By D(\) and D(—)\) we denote the distributions defined by the
eigenspaces of % corresponding to ) and —)\, respectively. By D(0) we
denote the distribution defined by & Then these three distributions are
mutually orthogonal. Let Xe D(\). Then hX = A X and ¢h = —h¢ imply
hpX) = —\(¢X), and hence ¢X € D(—)\). This means that the dimension
of D(\) and D(—2)\) are equal to n. We prove that D(\) (D(—)\), resp.)
is integrable. Let X, Y e D(\) (D(—X\), resp.). Then,

Vig = —¢X — ghX = —(1 £ \)pX
and Vy¢ = —(1 =2\)¢Y. Therefore, g(Vz£,Y) = g(Vy& X) = 0 holds. Thus,

dp(X,Y) =0 and 7([X,Y]) =0 follow. X, YeD and ¢£e N(k) imply
R(X,Y)e = 0. On the other hand,

0= vayf - VYVXE - V[X,Y]E
= —(1 £ MVz(3Y) + A £ N)V(sX) + ¢[X, Y] + ¢h[X, Y]
= -1 = M{(Vehd)Y — (Vyd) X} F 03[ X, Y] + 6h[X, Y] .

By (5.1) the first term of the last line vanishes. And so we obtain
oh[X, Y] = =2g[X, Y], which together with 7([X,Y]) = 0 implies [X,Y]e
D(\) (D(—2\), resp.). g.e.d.

REMARK. (i) In Proposition 5.1, if & = 0, then D(0) + D(—)) is also
integrable ([2]).

(ii)) In a Sasakian manifold, £€ N(1) holds.

THEOREM 5.2. Let (M, 7,9) be an FEinstein contact Riemannian
manifold of dimension 2n +1=5. If & belongs to the k-nullity dis-
tribution, then k =1 and (M, 7, g9) s Sasakian.

PROOF. By &e N(k) we obtain ||Vg|? = 4n(2 — k) (cf. [4], p. 251) and
Ihl* = 2n(1 — k). We obtain also Ric(g, &) = 2nk. Since (M, g) is an
Einstein manifold, we get R,; = 2nkg,;;, and hence S = 2n(2n + 1)k. Op-
erating V7 to &R, = k(w95 — M19), We get
(56.2) ¢ Riju + EVIR,u = 2key, .

By the second Bianchi identity and R,; = 2nkg,;, we see that VR,
vanishes. Hence, transvecting (5.2) by ¢*, we get S* = 2nk. Substituting
these values into (2.15), we obtain 4n*(1 — k) = 4n(1 — k). Since n = 2,
we get k=1. Therefore, we get h =0 and ||Vg|* = 4n, and (M, 7, g9)
is Sasakian. a.e.d.
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REMARK. Theorem 5.2 is a generalization of Olszak’s theorem [4]
that any contact Riemannian manifold of constant curvature £ and of
dimension 2n + 1 = 5 is a Sasakian manifold of constant curvature k£ = 1.
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