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Introduction. In the previous papers [2] and [3], we have introduced
and studied spherical functions and a spherical transform on the space of
nondegenerate hermitian, or symmetric, matrices over a p-adic number
field. In [2], we have shown the injectivity of the spherical transform,
and in [3] we have closely studied the case of matrices of size 2. In this
paper, making use of the results in [3], we shall show the functional
equations for spherical functions and determine their possible poles.

Let k be a P-adic number field with P not lying over 2, # the ring
of integers of k& and Il a prime element of k. Let X be the space of
nondegenerate symmetric matrices of size » with entries in k. Then
K=GL,(7)actson X by k-x = kx'k, ke K, xe X. For xe X, a character
=, ---, X, of (k*/k*>)" and s = (s,, +++, 8,) € C", consider the following
integral:

(+) L %5) = | T 1d -tk )ik

where dk is the Haar measure on K normalized by \ dk =1, d,(k-x) is

the determinant of the upper left 2 by < block ol% k-z, and K' =
{ke K: I, d,(k-x) + O}.

The right hand side of (x) is absolutely convergent for Re(s,), ---,
Re(s,_,) =0, and has an analytic continuation to a rational function in
g, -+, ¢ (cf. [1]). Thus we may regard L(x; X;s) as an element in
C~(K\X), the space of all K-invariant complex-valued functions on X.
We call L(x; X; s) a spherical function on X.

We introduce a new variable z = (z,, -, 2z,) which is related to s as
follows:

si:-——zi-l-zm——;— l=sisn—-1)
n—1
Y
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We shall show the following theorem:

THEOREM. (1) Let &, be the symmetric group on w letters. For
each o €&, there exists a matriz C(o, 2) in GL(C(g™, ---, ¢**)) such that

L(x; X; 0(2)) = Z C(o, 2)y v L(x; X';2) , for each zeX,

where X' ranges over the character group ((k*/k*>)™" of (k*/k**)".
(2) The function

I (¢ — ¢*i™)- L(x; X; 2)

14,550
i+3
18 a polynomial in q**, - .., q**»,

A formula for C(o, 2) is given for the transpositions (@ a + 1), 1 £
a=mn—1. One can calculate C(g, z) for arbitrary ¢ €&, by using the
cocycle property C(oz, 2) = C(o, 7(2))C(z, 2).

In this paper, we shall consider also the hermitian cases and show
similar theorems. To prove the theorems, we need the explicit forms
of spherical functions of size 2 given in [38]. The functional equations,
possible poles and zeros of spherical functions are related to the image
of the spherical transform: for example, in the unramified hermitian case,
the functional equations imply that the image is contained in

q2z_,,- . q2=t‘1
(cf. Remarks at the end of §2 and §4).

In the real case, analogous functional equations for spherical functions
were given by Oshima and Sekiguchi [56, §4, Proposition 4.6 and Theorem
4.10].

C[qi2zl, cee, qi2z“]9”

1. Prelminaries. We shall use the same notation as in [2]. We
denote by k, a p-adic number field with p not lying over 2. As before,
we shall consider the following three cases:

(U) the unramified hermitian case (k is an unramified extension of
k, of degree 2),

(R) the ramified hermitian case (k is a ramified extension of k, of
degree 2),

(S) the symmetric case (k = k,).

Denote by ¢ and B = (/) the ring of integers of k and the maximal
ideal of k, respectively, where IT is a fixed prime element such as I7 €k,
in Case (U) and II*€k, in Case (R). For the hermitian cases, let * be
the nontrivial k,-automorphism of k.

For a positive integer n, let G = G, = GL,(k) and K = K, = GL.(2).
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For a matrix A = (a;;) € M, .(k), A* denotes the matrix (a}) e M, (k) in
Cases (U) and (R), and A* denotes the transposed matrix of A in Case
(S). For a positive integer n, let X = X, = {4 eG: A* = A} and X() =
X.(7)=XNM,(2). For each case, the group G acts on X by g-x = gxg*
(xeX,geG). For each xc X and an integer 7, 1 <1 < n, let x, be the
upper left 7 by 7 block of z and d,(x) the determinant of z.

Denote by S#(G, K) the Hecke algebra of G with respect to K.
Let C~(K\X) be the space of all K-invariant complex-valued functions
on X and S(K\X) the subspace of C~(K\X) consisting of all compactly
supported functions in C*(K\X). By the convolution product, C~(K\X)
and S(K\X) become 2°(G, K)-modules. We are interested in the 57 (G, K)-
module structure of S(K\X).

Now we recall the spherical functions and the spherical transform
on S(K\X):
in Case (U),

L 8) = L sy, -, 80 = | Tkl

F: S(K\X) _>C(q¢1’ ) qzn) ’

FU@ = | f@)-tas da, feSE\X);
in Cases (R) and (S),

L(w; X5 8) = La; Xy =+ Xa3 81y * 5 84)

= | _ I dge-mpad e o)de,
F = (Fy): S(K\X) — @zc(qzly e g,
FiN®@ = | f@- L% 2ds, feSE\X),

where 2z€ X, se€C", K' ={keK: I, d,(k-x) # 0}, X, is a character of

k*/k** for which X,(II) =1, dk is the Haar measure on K normalized by
dk =1, dx is the G-invariant measure on X normalized by de =1,

aﬁd the variable z is related to s by the following formula: i

(1.1) in Cases (R) with (:;) =1 and (S),

m=—m+aﬂ—§ 1<izn-—1)

s, = —z, + 2=1

in Cases (U) and (R) with (:p_l) = -1,
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8; = —z,.+zi+1-——1—— my/ —1 l=si1=n-1)
2 2log q
n—1 m/ /=1
4 2logq °
In Cases (R) and (S), the number of the ways of the choice for X is 2=,
and hence @, means the direct product of 2" copies. The integrals {(zx; s)
and L(x; X; s) are absolutely convergent for Re(s,), ---, Re(s,_,) = 0, and

have analytic continuations to rational functions in ¢*, ---, ¢*» (cf. [1]).
Now we introduce the following integrals: in Case (U),

06 ) = 06, -+, 5. ) = | [T 1d@Pf@da;
in Cases (R) and (S),
OU; 5 ) =@y =+, Xa3 81 =+ 803 S)

n

= | Md@rade s,

X'i=1

8, = —2, +

where feS(K\X), seC", X'={reX: [, d:(x) #0} and X = (X, -+, X,)
is a character of (k*/k**)".

Since f has compact support in X, {d.(x): x € Supp(f)} is compact in
k*. Hence the integrals @(s; f) and @(X;s; f) are absolutely convergent
for Re(s,), ---, Re(s,_,) = 0, and have analytic continuations to rational
functions in ¢*, ---, ¢*» (cf. [1]), more precisely in ¢*, ---, ¢*» in Cases
(U) and (R). For each ze X, let ch, be the characteristic function of
K-z and v(K- x)zg dy. Then it is easy to see that @(s; ch,)=v(K-x)-{(x; s)
and ¢(X; s; chz)zv(‘}{z- x) - L(zx; X;8). For each feS(K\X), let f¥VeSEK\X)
be determined by fV(x)= f(x™!) for every € X. Then we have @(z; f) =
F(fV)(z) and O(X; z; f) = F,(fV)(2), where the variable z is related to s by
(1.1).

We shall determine the functional equations, possible poles and zeros
of @(s; f) and &(X; s; f) (ef. Theorems in the beginning of §2-§4). The
symmetric group &, on n letters acts on {2, ---, 2.} by 0(z;) = 2,5, 1 =
I<m, 08,

The following lemma enables us to reduce the proof of the functional
equations for arbitrary size n to the case m = 2. In Case (S), we shall
decompose @(X; z; f) and give a similar identity for each summand in §4.

(1.2) LEMMA. Let a be an integer with 1 < a <n—1 and, for each
xe X', let & be the lower right 2 by 2 block of xt.,,. When Re(s,), «--,
Re(s,_,) = 0, the following identities hold for every f im S(K\X):
iwn Case (U),
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oO(s; f) =§ / IIil ldi(x)l"jH |d (@) |7 *23+ f ()L (F; 80y —8./2)d2 ;

X! i#a,a =a+l
in Case (R), :
oG5 )=\, T1_1d@Fd@) T1 @)l 2 )
X X @41 (2)) S (@) Ly(F; Xy 1 80y —84/2)dw
where the suffix s in £, (;) and L, ; ;) means that they are written in

the variable s.

Proor. Assume that Re(s,), - -, Re(s,_,) = 0 and fix an « with 1<
a<n—1. For each zc X, let 2" be the (2, 2)-entry of #. In each case
we have d,(x) = d..,(@)x". Hence we have, in Case (U),

06 ) = | | T @I (@)t enionvef@)do ;

X' ita,a

and in Case (R),

005 ) = | T @ U@ dan @l (L L) dera(o)
X | X () f (w)das
Define an action of K, = GL,(#”) on X through the embedding

1., 0
K2—+K,ki~»( k ),

Oi ln-a—l

where 1, denotes the identity matrix of size m. Then we obtain, in
Case (U),

06 /) =TI 4@ @)l aslone S0 2)da

X’ i#a,a

= [ T 100 0 el )t el ) f ) dkd

Kg t#a,a+1
=1 a@reda@reens@f| 1o redelas,
X’ i#a,a+l K
where K; = {ke K,: (k-x)" + 0}. Since we have

* x;xlﬂ)
k)

01
= the (2, 2)-entry of k-% = d1<(1 O)k%) ,

1,
(k-2)" = the (o + 1, a + 1)-entry of ( “

we see that
Sx'l(k'x)/\l.adk = Cs(fe; say O)
2
= |y ()"0 Ay ()| 72 (& 80y —84/2)
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and this completes the proof in Case (U). In Case (R), we obtain in a
similar manner,

0; 55 f) = Sx' #Hﬂ |d (@)L ()) - | D1 () [ 2t
X U)o F@ | 060 el (-2 ] do

| T1 @) @) s @)l o ()
X f(@)Ly(F; Xy 1; 84 0)d
[, L P @) T a2
| X X&) F @ L Loy L 520 — 5420 -
q.e.d.

Now we establish Lemma (1.5), which will be used to determine
possible poles of the spherical functions.

Let a be an integer with 1 < a < n — 1, and define the following
domains:

Il

I

(1'3) goz{s:(su ) sn): Re(sz)_z_o (1é2§n—1)}7

oo BURO SRS BOS Y it
= e BOED ORI s ) 2R
pecs B0 0SZD RIS it en,
foecn Relb)20 BZisn—1) ~1SRe)S0 it 4oy
Fus = {lsec Iiel(s:é)R;e(Zsf)léég,éRZ(—sal/'ziz?'zaoﬂ(‘}li'aﬂ)} Frses
frec MR 550 Ree o pzof i amnl
D, = ZUD,,UD,, and & = Q.@ .
Let 0,=(aa+1)€S,. Then g, acts on {z,, - -, 2,} as the transposition

of z,and z,,,, and so o, acts on {s, ---, s,} as follows: in Cases (R) with

(‘_31') —1 and (8),

—8, — 1 if j=a
1

0',,(3;'): sa+sj+-2_ ifj=ai_1

S; otherwise ;
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in Cases (U) and (R) with (—T1> = 1,
v/ —1

—8, — 1— if j =
log ¢
76D = Yo 4 a1t %;ql if j=atl
8; otherwise .

In particular, we see that 0.(2,) = Z,, and 0.(Z,,) = D,,.

(1.4) LEMMA. Let & = €U Uigicicn20:0:4,*** 6(&). Then = is
conmected and the convex hull of 2 1is equal to C™.

PROOF. Since &, is connected and contains =, for any «a, we see
that & is connected. For each j, since ¢,(Z;) = &;, we have €N
0i(&)#* @, and 80 0,0, 0;(&E)N0G0,4, * 0;_(¥F)#* @, for every 1%
with 7 < j. Hence we see that &7 is connected.

Let

0 in Cases (R) with (-——1> =1 and (S)
t= d

/=1 . . —1\_
oz in Cases (U) and (R) with (_5.) = 1.

For any a € C with Re(e)=1/2, we see that P=(0,---, 0, a, —a—1/2—¢, 0) ¢
o1 And so we get, for 21 n — 2,

. i—1
3 —1

T (---,O,a-i— ﬁ.:z____;. (n—1i—1t,

i

D e NU
a - m — i}, 0, )e.@,

and g0, 0,,(P)=(—a—(n —1)/2—(n— 1), 0---)e 2. Hence we see
that, for any a,eC with Re(a,) =1/2 1 £72=<n—1) and be(,

l(—a,,-l—az——1—2t, —a,+a, —1—2t -+,
n

1
—Qp_y + Qp_y — 1-— 2t; —Qpy — ‘5‘ - t; b)

is contained in the éonvex hull & of 2, and so for any b,eC with
Re(b) =1/m 1<i<n—1)and b,eC, (—b, -+, —b,) belongs to <. Since
(¢, * -, ¢,) € D, for any ¢,eC with Re(c) =0, we have & =C". q.e.d.

For any integer m, let C(g™, .-+, g™*) be the rational function field,
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Clg*™=, - .., ¢*™s] the polynomial ring in ¢*™*, ... ¢*™=, and C[¢*™, ...,
gt™n]® the subring of C[¢*™=, ..., g*™*] consisting of all polynomials
which are invariant under the action of &,.

(1.5) LEMMA. Let < be as in (1.3) and f(z)eC(@™, .-, q™n). If

f(z) is holomorphic in <2 for the variable s, themn f(z) 1s contained in
C[qtmzl’ cee, qimzn].

Proor. By (1.4), it is known (cf. [4, Theorem 2.5.10]) that f(z) is
holomorphic in C" for the variable s, and so we see that f(z) is holo-
morphic in C" for the variable z by (1.1). Since f(z) is assumed to be
a rational function in ¢™4, ..., ¢™», we have f(2) € C[¢*™, - --, ¢*™].

q.e.d.
2. The unramified hermitian case.
THEOREM. For any f e S(K\X),

225 2.
__q_j_q_Zi_.@(z; f)

1si<jsn qzz)' — q2z¢—1
belongs to Clg**, « - -, ¢**»] and is &, -invariant.

(2.1) LEMMA. For any x€X and s€C,

1 — q—Zl—l
—iTq_—_z‘_TC'(x; 8, 0)

18 a polynmomial in ¢* and q~*, and satisfies the following identity:

1-—(1'2'_1<, ___S_ =_1+q—2c—1 . —-18+1 ﬂl/-—_l
T z; 8, ) T .(ac, s '3 T ) .

2
PROOF. By [38, §2, Theorem 1], we see that

q2zz + qul ) . .
Lt ) Cla, .
Transforming the variable z into s and letting s, = s and s, = —s/2, we
get

1—g®t (o s\_—ldg®*t, (. 1 o/=1 s+1 =/ -1
mmC,(x, % ) q“+q‘2'“lc‘<x' ® logg ~ 2 2logq>

2
_ =1+ q“”"c‘(x; _s—1, 81y 1:1/_——1').

I 2 2logg

PROOF OF THEOREM. Let a be an integer with 1< a<n—1 and
for each x € X’ let % be the lower right 2 by 2 block of z%,. By (1.2),
we have the following identity for se 2

q.e.d.
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a 224
@2) LEEC 0@ = T a0 IL et
q atl — Qe X' i#a,ak

1-q™ g _
><f(oc)1 p— C(T; 80y —84/2)d .

The right hand side of (2.2) is absolutely convergent in Doy = 0D)),
since the integrand is o,invariant by (2.1). We see that

11 ld@l I 1di(o)fa™
is bounded for se‘,@,,,_2 and

— 2y
ﬁ.—_;{(a’ Say sa/ 2)

is a polynomial in ¢**. Since f has compact support, the right hand side
of (2.2) is absolutely convergent in &,,. Thus we see that the right
hand side of (2.2) is absolutely convergent in &,, and so

22g+1 22q
LR T g 1)

q2¢a+1 —_ q2za—1

is holomorphic in &,. Since the integrand is ¢,-invariant and ¢,(Z,) =
=,, we see that

a+1 a
et + g o(z; f)

q22a+1 —_— Zza—-l
is o,invariant. On the other hand
qzz,- + qui q22a+1 — qzza-—l

15i<jsn q2’5 —_ qﬁzi—l q2z¢+1 + qzza

is holomorphic in &, and g, invariant. Thus

2z 2 22
LT H97 g f)
1gi<jsn @79 — @ i
is holomorphlc in (= Ul 2,) and &, -invariant, and hence is holomorphie
in U,ce, 0(¥°). Now the result follows from (1.5). q.e.d.

REMARK. The theorem implies that the image of the spherical trans-
form F' is contained in

g*i — ¢! Clg=™, « - -, g¥¥n]%s .

1gi<isn th + qz:s‘

This observation together with [2, §3, Theorem] and [3, §2] leads us to
the conjecture that, in Case (U), the spherical transform
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225 __ 224
F:S(K\X)— 11 2_2’___‘1_:.C[qi2n, cee, gE¥n]on
1si<isn Q% 4 q2=t
is an 2#(G, K)-module isomorphism.

3. The ramified hermitian case. Let X* be the character of k*/k**
determined by X*(I) =1 and X*(e) = (—Z—) for any unit ¢ in <. Since
every character X of k*/k** is assumed to satisfy X*({I) =1, we see that
L=1or X=2X*

THEOREM. Let feS(K\X) and let X = (X, --+X,) be a character of
(k*/k*Z)'n.

(i) In case X;=X* for1=it=mn— 1.

{ II (¢ — @™ )} 0; 2 f)

1Zi<jsn

belongs to Clg**, - -, ¢**=] and is &,-invariant.
(i) In gemeral,

1siI<Iisn (qzzj - (_—p_l)qm).@(x; 2 f)

belongs to Clq**, «--, ¢**»], and for each o€, there exists an C,(z)
wm C(g*, -+, ¢***) and a character X, of (k*/k**)" such that

O(X; a(2); f) = C,(2)- @A 25 f) -

In particular, for ¢ = (aa + 1) €&,, we have the following:
wn case X, =1,

A ifi=axl
X; otherwise ;

Con(2) = —(:p—1> and (X,); = {

n case X, = X*,

224 . 2%q+171
Coar) =429

22041 — 221
q q

and X, =X.
(8.1) LEMMA. For any xz€X,, a character X of k*/k** and s€C,
- :_1 —28—1 - . Yk . _i 281 . . ____§_
(1 ( b )q > L,(x, xX*, X s, 2) and (1—gq )L,(x, 1, X% s, 2>
are polynomials in ¢* and ¢~ %, and satisfy the following identities:

L,(x; xX*, X s, ——Z—)

1 (:pl)q
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'L.(x; X% % —s—1, f’—+—1-) o
= g =g : o v <—Pl>=1
. ¢ (2

e =)=—1,
@ - gL (s, %8, —2)
) @ = DL(2 1, 1% —s — 1, %1) if (_—5_1.) —1
A= Lo 1,27 —s =1, B iy (=) = 1

ProoF. By [3, §3, Theorem 1], we see that
L(x; X*, X; 2 S
q(zz2 = qzzl—l) e C[qdﬁ 1, qi‘Z 2]92
and
229 ___ __'_1 2z . RN 227 22
(q 2 ( " )q I)L(x, 1, X; 2) e Clg**, ¢**]
and it satisfies the following identity:
(qm - (:p—l)q”l)L(x; 1, X 2,2)= (q2’1 - (-?p—l)f”)L(x: 1, X*%; 2, 2,) .

Transforming the variable z into s and letting s, =s and s, = —s/2, we
obtain the result. q.e.d.

(8.2) PROPOSITION. Let feS(K\X) and let X=X, ---, X,) be a
character of (k*/k*)". For an integer a with 1= a=n—1, let 0,=
(aa+1)e®, and let =, be the domain defined in (1.3). Then

(i) in case X, = X*,

oX; 2 f)
q2za+1 —_ q2za-1
18 holomorphic in Z, and o.invariant;
(ii) im case X, =1, ,
2241 _—_1 224 [
(e = (FH)a)ot 2 )

is holomorphic in Z, and satisfies the following identity:

cu((tf‘aﬂ - (——p—l)q”a)@(X; 2 f )) = (qz’"“ - (:p-l)q”“)@(X’; z f),
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where
2 = {X*Xj ifji=a=xl
2 otherwise .
PrROOF. Let a be an integer with 1 < a <n—1 and for each x € X’
let ¥ be the lower right 2 by 2 block of «i},. Let X,=X*. By (1.2),
we have the following identity for se &
@3 -2Eal) | ] @)

q2’a+1 — qzza_l X' i#a,axl1

(%) 25X (d (@) * X* (s () S@)L(®; X*, 1; 84y —34/2) de .
L ) T ) B e
p

The right hand side of (3.3) is absolutely convergent in Z,, = 0.(2)),
since the integrand is o,-invariant by (8.1). We see that

1T ld(@)I"X(d.(x)) * IL 1d;@)0 2 (@) X¥ (dsa(2))g e

1#a,atl
is bounded for s€ Z,, and
L(’ﬁ; X*) 1; Say "'8,,/2)
— ___]_-_ —28,—2
1-(3 )

is a polynomial in ¢**«. Since f has compact support, the right hand
side of (3.3) is absolutely convergent in =, and so ’

o(X; 25 f)

Q*ett — @*a™?

is holomorphic in &,. Since the integrand is ¢,-invariant and ¢,(2,) =
,, we see that
o(X; 2 f)
q2za+1 — q2’a_1
is o,-invariant, and this completes (i).
Let X, = 1. By (1.2), we have the following identity for s€ =,
2241 :_1 22 . e —_ S s
@ (oo~ (T)e)ow s N =| T d@r%da)

' ita,a

x I |ds(@)[*a* X ;(ds(x))+ f(@)g*a+1 (1 — g )L(Z; 1, 1; 8,y —84/2)d
J=atl
Denote by A(X, z) the above integrand. Then we have by (8.1),

N i jmatl
35)  A(, 2) = A, 6.(2), where X, = {x todi=a
X; otherwise .

Considering the identity (8.4) for X', we see that the right hand side of



SPHERICAL FUNCTIONS 663

(8.4) is absolutely convergent in &Z,, = ¢,(Z,). By the same argument
as in case X, = X*, we see that the right hand side of (8.4) is absolutely

convergent in <7, and so
(qz’“+1 - (%)qz‘“)(P(X’; 2 f)
are holomorphic in &,, we have by (3.5),
oa«q”a“ - (—;—1)«12‘“)@(%; % f)) = (q”a“ - (——p—l)q”a)G)(X'; zf). aed.

PrOOF OF THEOREM. Let X, =X* for 1<41=<n — 1. Since
(gert — g TI_ (g — ¢}
1Si<jsn

is holomorphic in &, and o,-invariant, we have by (3.2),

O 2, A{ I (¢ — g )}

1<i<jsn
is holomorphic in & (= Uizl &,) and &, -invariant. Hence it is holomorphic
in U,ce, 0(%), and the result follows from (1.5) in this case.

Now we consider the general case. Let ¢ = <—:pl)'

2z __. q2zj~—1

A=s4,5=n).

G)= Tl (¢ +eg™) and K,=2 =97
15i<j=sn q¥i — g*t

Then by (8.2), GR®)PX;=z; f) is holomorphic in (= U,, Z,), and
K, ... 9(X; ; f) is holomorphic in =, is X, = X*. On the other hand, K,;
is holomorphic in & unless 7 # ¢ £+ 1. For each ¢+ with 171 n — 2,

we obtain the following identity for se & N, (¥)
eK, i GR)O(; 2, f) if X, =X*

3.6 (G(2)OX; #; = X i

(3.6) g (G()O(; z; f)) {G(z)q)(X'; 2 f) ity =1,

where
v = {X*X,- if j=1+1
’ X; otherwise .

Hence we see that G(2)@(X; z; f) is holomorphic in & U Uiz} ¢,(#). For
any ¢, 7 with 1<71<j7<n— 2, using (3.6) repeatedly, we can express
00, 0(GR)OX; z; f)) as a product of +G(2)O(X; 7 f) for a suitable
X and some of K;;., or 6,0, -+ 6. (K; 1) = Ky juy 1<1=<j. The factor
K; ;., appears only if X; = X*, and then K;;, . ®(X; #; f) is holomorphic in
;. Hence we see that the product is holomorphic in %, and so
G(z)@(X; z; f) is holomorphic in & U{U,<isicns 001, *** 0;(Z)}. Thus we
obtain G(2)@(X; z; f) € Clg*™, - - -, ¢***], by (1.5). We get easily the formula
for @(X; 6,(2); ) by (3.2). g.e.d.



664 Y. HIRONAKA

4. The symmetric case.

THEOREM 1. Let fe S(K\X) and let X = (X, +-+, X,) be a character
of (k*/k***. Then

I (g% — ¢*i™)-0(X; z; f)
1=i,jsn
[£X]
belongs to Clg**, ---, ¢**], and for each ¢ €&,, there exists a matrix
-C(o; 2), independent of f, in GLx(Clg*™, -+ -, g***)) such that

O(X; 0(2); f) = ;‘. Clo; 2)1,09X'; 25 f) »

where X' ranges over the character group ((k*/k**)™)".

In Theorem 1, taking f to be the characteristic function for K.
(xe X), we obtain Theorem in the introduction.

To prove Theorem 1, we need to decompose P(X; z; f). We shall
give the functional equations for each summand of the decomposition in
Theorem 2.

Let P be the subgroup of G consisting of all lower triangular matrices
and, for u = (u,, -, u,) € (*/k**)", let X, ={xe X:d,(x)=wu, - - u,(mod £*?),
1<i1=<mn}). Then X' can be expressed as

X'= UX, (disjoint union) ,

where u ranges over all representatives of (k*/k**)". For pe Pand z € X,

we have (p:2)y = Pw %u, and so d,(p-x) = d,(x) (modk*?). Now we
define

@) 0.5 1) = 065 N = | [Tl f@)da
Then, for X e ((k*/k**)™)",

u € (k*/k*2)n

4.2) n
An = _l;let(u1 SRR VAN

Note that @,(s; /) is absolutely convergent in &, and has an analytic
continuation to a rational function in ¢, ---, ¢*» (ef. [1]).

To begin with, we consider the case » = 2. For a character X of
k*/k** for which X(IT) =1, let ¥ be the character of k*/k** defined by
XU = —1 and X(¢) = X(e) for e ~*.

(4.3) LEMMA. Let n =2 and feSK\X). Arrange u e (k*/k**)? in
the following order: (1, 1), (8, 0), (I, IT), (I1s, I15), (1, 9), (5, 1), (1, II5),
(119, 0), 1, ), (11, 1), (o, o), (114, 0), A, 1), (I13,1), (6, ) and (IT,8). Let



SPHERICAL FUNCTIONS 665

= @ —6¢"+ g")g 2 + (1 + ¢7)g* + (¢ + ¢ g
a= 2(¢™ — @) (g2 — @Y ’
g =1 — )"+ ¢ (g™ — g™

2(q2z1 —_ q222—1)(q2zz —_— q2¢1—1)

_ (L= g — g
7= (@ — ¢ Y) (g — ¢*17Y)
o=+ g o, A +ae =g

’

’

2((1222 . q221—-1) ’ 2(q212 _ qzn—l)
o== q")zq’j” L d= q“/:z(q”2 — g*l") )
a7t — g gt — g™
Then
¢u(z2y 25 f) = ve(k*z/k“?ﬂ M(zu zz)uu'Qv(zv 2y f) [}
=1\ _
where if (-—5—) =1,
a BT ‘
Banv " abd <ab‘ <cd) (cd) (cd) (cd)
= 1 ,
Me, 2=\, 44 l<ba)l ba)l de) \de/ \de) lde
T TR«
. -1\ _ _
and if <_p_> = -1,
a BV
ab ab Banv" cd cd cd cd
Mz, 2) = (b a)l<b a)l Yvag l(al c)’L(d c)l(d c)l(d c) :
YT B

REMARK. As is well-known, there are seven G-orbits in X which
are represented by

SR
BY DYDY

in case (:p—1> =—1;

and
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10 I 0 -1
. if {(— :1’
G(o 1)9<0 II) ! (p>

o Dpll ) 1 G-

Note that the above decomposition of the matrix M(z,, z,) corresponds to
the G-orbit decomposition of X.

PROOF. Arrange X = (X,, %) in the followmg order: (1 1), (1 xX*),
@, 1), X*, X*); {4, 1) {, X*) @, D), ax % A 0, @ 1%, @ 1), @, 1)
(1 1), (, X*), (x* 1) and (X* X*) Arrange w € (k*/k**)* as above. Then,
for the characteristic function f = chg.,, x € X, we have

(4.9) WK oL@ G 2) = > Az f),
where A,, (==1) is as given in (4.2). Let M(x; 2) € M,;(C(q™, ¢*2)) for which
Lx; X525 2) = 3, M(@; 2)g,0- L(2; X'; 24, 25) «

xle((kt/kiﬂ)Z)/\
Let X, =1 or X* and 2z, = 2, — m/ —1/logq, i =1, 2. Then
L(x; Xy X3 2,y 2,) = L(a; Xy, Xt 2, 22)
(4.5) Lx; X,y %ot 2,y 2) = L(w; Xy, Xy 2, 2,)
L(x; Zn Zz: 2y ) = L(x; Xy, %ot 245 23)
Recall the explicit formula for L(x; X: z) given in [3, §4, Theorem 1]. It
is easy to see that M(x; z) has the form
M, 0
0
0 M,
0 0 M|’
M, 0
where M, = M(x; z) € M, (C(q™, ¢**)) is diagonal, 1 =1 =4. Letx= {IT"¢,) L
{IT*¢,y. We obtain the following functional equation:

L(x; Xy Xs2 2, 2,) = f(2; X; 2)° L(®; Xy %ot 24y 25)

where
R ACT]
a4 Xi(e.&,)q

Flotg) = 4=+ X (—eg) D
sy vy - qzl _ qzz—I/Z ng + X*(_elez)qzl—lﬂ

if 2/, + N\,

if 2, +2,and X, =1

22 229—1
q 1_q2

prr—— if 2[n, +2; and X, = X*.
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This immediately implies that
* + qzz—-l/Z 1 0 g+ s(122--!./2 1 0 .
¢+ ™o 1) Tt o 1 tE 2+

M (z; 2) =
(¢ + €q)(g — ) (1 0) g™ — qz’?“<1

(@2 + &)@ — ¢ )\ 1) ¢ — ¢’

0
.f 2 1 2 9
0 1) if 2|n,+\

where ¢ = X*(detx) and &' = (%)X*(det x).

The matrices M (x; z), © = 2, 3, 4, can be easily obtained from the above
formula for M,(x; z) and the following relations, which are immediate
consequences of (4.5):

M2(x; 2y zz) = Ml(x; z;y Z;) ’
My(x; 2, 2,) = M\(x; 21, 2,) and
M (z; 2, 2,) = M\(; 2, 2) .

Let X = Uj-, X be the G-orbit decomposition, where the indices (1)
in that order correspond to the representatives given in the remark above.
It is easy to see that M(x; z) depends only on det« (mod k*?), and hence
is determined by the G-orbit to which & belongs. We write M(;2) =
M(x; z) if xe X"

For u = (u,, u,) € (k*/k**)?, define the number I(u), 1 =1l(u) <7, by
{uyy L<{u,y € X4, Let xe X, Then @,(2, 2,; chg.,) = 0 unless l(u) = l.
If l(u) =1, we obtain

D,(2, 25 ¢he,) = >,  (ATM(; 2)A),, D,(2,, 2,2 chg.,)

ve (k*/k*2)2

= 3, (A7 2)4),, 0.z, 2 chy.)

where A = (A,,) (cf. (4.4)). Since every feS(K\X) is a finite C-linear
combination of chy.,, # € X, we obtain

Oty 2 )= 3 (A" MG DA Oulas 22 ) -
L) =l(u)

Thus we get

_ (A7M(; 2)A),, if l(u) =1l(w) =1
M@y 2w = 0 otherwise .
Therefore we can establish the lemma by elementary calculation. q.e.d.

(4.6) LEMMA. Let feS(K\X), u = (u, +++, u,) € (k*/k*)" and let a
be an integer with 1< a<mn — 1. For each x€ X', let T be the lower 2
by 2 block of xl, and Y,={x e X: d,(x) =u, -+ u,(mod k**), for 1<i<m,
1# a). Let
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F.(x; z; f) =#H Id,-(w)l"-jH |d () |*«/**25 f () .

a,atl =a+l

When Re(s,), -« -, Re(s,_,) = 0, the following identity holds:
?.(2 f) = S F(2; 2; f): @y(8ay —Saps; @3 Chy,.3)de

where v = (Ugpy, ) € (K*/E*?)? and a3 is a positive constant depending on
the K-orbit containing %.

PROOF. Assume that Re(s,), -+, Re(s,_)=0and fixan g with1=<a <
n — 1. For each x e X', let d¥(%) be the (2, 2)-entry of Z. By the same
action of K, on X as in the proof of (1.2), we obtain

0.5 )=\ T d@pde@ler e di@pe]_flca)dkda
= [, JL @peda@leren £@)| a8 dkds

where K; = {ke K,: d¥(k+%) = o, (K**)}. Now

[, Iz Ge-2)pedk = af Ay

Kz'; n (ﬂid;(y) Sug41(k*2

ld,(¥)|"2 @ chg,;(WAY = Puyyup(Sar 0; @-Chy,.3)

S"i’(umﬂ.u,,,)

and the constant a = a3 is given by

dk

S(kexzsz:Z;

for a suitable Haar measure on {ke€ K,: k-% = %}. It is easy to see that
a; depends only on the K,-orbit containing # Thus we obtain the re-
quired identity. g.e.d.

For w = (uy, -+, #,) € (k*/k**)" and an integer a, 1S a=n—1, we
say that w is of type 2 at a if 2|v;(W thes) and X*(—UU,py) = 1, and u
is of type 1 at «, otherwise. For n = 2, it is easy to see that @,(2; f) ¢
Clq*™, ¢**] if u is of type 1 at 1, and (¢**2 — ¢*™)0,(z; f) € Clg*™, ¢**2] if
u is of type 2 at 1; there is no common factor in {9,(z; f): f € S(K\X))
if u is of type 1 at 1, nor in {(¢*2 — ¢*1™)@,(2; f): f e S(K\X)} if u is
of type 2 at 1.

THEOREM 2. Let feS(K\X), u = (u,, - - -, u,) € &*/k**)" and
G@) = I (@™~ q*i7).

154,550
3

(i) The function G(z)a),,(z;vf) belongs to C[q*™, - -+, ¢**].
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(ii) For each o€ ®,, there exists a matrix B(o; z) in GLA(C(g™, -,
q**)) such that

0,(0(2); )= 3 B(0:2).., P2 f) .

ve (k*/k*2)n

(iii) If u s of type 1 at a, let u' € (k*/k**)" such that w+u', u;=u;
Jor j#a, a+1 and

« 0 « 0
(5 oo (5 un):
0 %o 0 Upys
Then, for 6 = (aa +1)e&,,

B(0; %)y, =0 unless v=u or o,

B(0; D) = —2 | B(0; 2)u = — =

g¥att — ga ! g¥a+t — el ’

where
(1 — g7H)gratrat of 2fvp(Ualhasy)
a, =41

— qg! .
——2—‘-1—(41‘“ + g at1)  if 20p(Ualhars) »

q gttt — gte) if 24vn(UgUesy)

—1
—lizq—(q’ﬂ'+1 — ¢« if 2vp(Uesy) -

b, = -

(iv) If w is of type 2 at a, let w = u", and u®, u®, u" e (k*/k**)"
be defined as follows:
uP =u; if j+a,a+1
0%y OUety) Wf1=2
(us, &) = {(TUey Mthpy)  of 1=3
(0%, MOUey,) if i=4.
Then, for ¢ = (aa +1)e&,,
B(0;2),,=0 unless v=u4",151=4,

. R Ca,i
B(g; 2)uur = (q¥a — gPati~T)(g¥a+t — gat) ’

where
Coapy = —;—{(1 — 6g7" + g )¢ a1 4 (1 4 q7)g¥e + (7' + q7H)get},

Cas = —;-a — g)(g¥ + grar)(g et — g¥e)

Cayp = Cap = (1 — q7H)@Pa Pat(qats — ga) |
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PrROOF. Let u be of type 1 at «. By (4.5), we have the following
identity for se =z,

(4.7) (g% — gD, (2; f)
- Squa(x; 2; ) (@ — @t D, (s, —84/2, @3- chy,2)da

in the same notation as in (4.6). Since F,(x;=z; f) is o, invariant, we
see, by (4.3), that the right hand side of (4.7) is absolutely convergent
in 9,, = 0,2,). Since F,(z; z; f) has compact support and

(qua - q2’a+1_1)-Qv(3a, —sfx/27 a;'ChK2~;)

is a polynomial in ¢**«, the right hand side of (4.7) is absolutely convergent
in Z,,, and so (4.7) holds for s€ =Z,. Hence (¢*= — ¢*«+1™")@,(2; f) is
holomorphic in =,, and by (4.3) we have
(4.8) 0,((g%« — @*«+17)D,(2; f)) = 0. D.(2; f) + b.D.(2; [) ,
where a, and b, are defined as in Theorem 2, (iii), and this establishes
(iii).

Let u be of type 2 at @. In a similar manner,

(g%« — gatr7h)(g%att — g*a™")- D, (2; f)

is holomorphic in &, and

(4.9)  0.((g7 — gHerT)(gar — ¢ 0, (2; f)) = 2 Cai a5 )

where ¢, , are defined as in Theorem 2, (iv), and this establishes (iv).

The assertion (ii) follows from (iii) and (iv). Finally, we prove the
first assertion. From the above argument, we see that G(2)0,(z; f) is
holomorphic in & (= Uizl 2,). By (4.8) and (4.9), we obtain the following
identity for se€ & No(¥):

. _ G(z) - 3 .
(4'10) O'Z(G(Z)@u(z, .f)) - (q2’i — q2’i+1_1)(q2’i+1 — q221_1) lz-:l g)l(z)@um(zr f) ’
u® e (k*/k**)" and @,(z) is a polynomial in C[g**, ---, ¢**»]. It is easy to

see that (¢*¢ — ¢*i™")™* is holomorphic in & wunless j#* 1%+ 1, and
{(g%+ — g*i+17*)(g**i+1 — @*i"*)} ! is holomorphic in &, for k # i. Hence we
see that the right hand side of (4.10) is holomorphic in U,., &,. The
left hand side of (4.10) is holomorphic in ¢,(%&), which contains =,
Hence we see that ¢,(G(2)9.(z; f)) is holomorphic in &. Therefore we
see that G(2)@,(z; f) is holomorphic in £ U Uizl 6,(&). For any 4, 7 with
1<¢1<j=mn—2, using (4.10) repeatedly, we can express ¢;o;_, - 0,
(G(2)0,(z; ) as a sum of terms of the form
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{a function holomorphic in &} x0;(G()P.(z; f)), weE*/k**)".

Consequently, we see that G(2)@,(z; f) is holomorphic in & U {U.<i<i<n_
00, 0;(&)}, and so belongs to C[g*™, ..., ¢**=] by (1.5). q.e.d.

ProOF OF THEOREM 1. Recall (4.2). We see that the result easily
follows from Theorem 2, in particular, the matrix C(g, z) is given by
A-B(o; 2)- A7, where A = (Aw)- q.e.d.

REMARK. Contrary to Case (U), our result does not provide enough
information to formulate a precise conjecture on the image of the spherical
transform.
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