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FINITENESS OF A COHOMOLOGY ASSOCIATED WITH
CERTAIN JACKSON INTEGRALS

KAzuHiko AomMoTo

(Received December 20, 1989)

Abstract. A structure theorem on g-analogues of b-functions is stated. Basic
properties for Jackson integrals of associated g-multiplicative functions are given.
Finiteness of cohomology group attached to them is proved for arrangement of A-type
root system. Some problems about the derived g-difference systems are posed. An example
of basic hypergeometric functions are given.

1. Let E,:=E" be the direct product of »n copies of an elliptic curve E of modulus
q=e2"\/"" for Im7>0. The first cohomology group H'(E,, C) has the Hodge
decomposition H(E,, C)=H"°(E,)+ H®'(E,), where H''°(E,) is isomorphic to the
direct sum of n copies of H:°(E), the space of holomorphic 1-forms on E. Let
{3 """+ 3u>3n+1> "> 32) De a basis of the first homology group H,(E,, Z) such that
each pair {3;, 3,4} represents a pair of canonical loops in E. There exists a system of
holomorphic 1-forms 64, - - -, 8, on E, such that

1.1 f 0,=2n/—18;,
35

J‘ Oy =2n/—119;,, Im 7>0.
In+j

We denote by X the factor space of the dual H"°(E,)* of H'°(E,) with respect
to the abelian subgroup 4=(3,, " * -, 3,» of H,(E,, Z) generated by 3;, 1 <j<n. This is
possible because H,(E,, Z) can be contained in H:°(E,, C)*. In the same way we denote
by X the factor space H,(E,, Z)/A. X can be assumed to be a submodule of X and has
a basis x;=3,+; mod 4. An arbitrary y € X is written uniquely as

(1.2) x= vy for veZ.
j=1

The quotient X/X is canonically isomorphic to E,. By the map
(1.3) - X x=(x;=exp((6,, ®)), - - -, X, =exp((0,, »)) € (C*)"

for we X, X is isomorphic to the algebraic torus q"7 =(C*)" and X is isomorphic to the
discrete subgroup ¢* generated by g**=(q, 1, - --, 1), - -, ¢*=(1, 1, - - -, q). Here (6, ®)
denotes the canonical bilinear form on H':°(E,, C) and its dual.

We denote by R(X) the field of rational functions on ¢¥ and by R*(X) the
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multiplicative group R(X)—{0}. Then X acts on X and also on R(X) or R*(X) in a
natural manner. We denote these operations by Q; and Q; as follows:

(1.4) Qj(x1’ Xy X)) (X, Xy, X Xjygs s Xy)
(1.5) Q0(x)=(0,(x)) ,
for x=(x,, - -, x,)€q* and g€ R(X), respecti\iely.
A cocycle b,(w) on X with values in R*(X) is defined by the cocycle condition
(1.6) by y(@)=b (@) b, (w+x)

for any y, '€ X and we X. A coboundary b,(w) is defined as ¢(w + x)/¢(w) for a certain
@€ R*(X). The quotient space of the space Z'(X, R*(X)) of all cocycles with respect
to the space B'(X, R*(X)) of all coboundaries defines the first cohomology group of
X with values in R*(X):

1.7 HY(X, R*(X))~Z'(X, R*(X))/B'(X, R*(X)).

H(X, R*(X)) has a multiplicative group structure.
An arbitrary element peHom(X,Z) can be uniquely extended to pe

Homy(X, C/(Z(2r/ —11)~1)) and to ¢* € Hom(X, C*) by
(1.8) i < anl ijj) = ‘Zn; wu(y), weC.

Then the following important result holds.

PrOPOSITION 1. H'(X, R*(X)) is represented by cocycles of the following form:
e . )
(1.9) bx(a’)zax H quo(w) v. H {(in+ﬂi(w))ﬂi(l)}il
v=0 i=1

Jor po, y;e Hom(X, Z) and y;€ C. Here (a,),.x denotes an element of Hom(X, C¥). (a),
means [[}Z o(l—ag’) or T] 21(1—aq™7)™" according as n=0 or n<0. The expression
(1.9) is not unique.

This result is a g-analogue of a result of M. Sato which was proved as early as in
1970. He called the functions b,(w) *“b-functions” and made use of them for the theory
of prehomogeneous spaces and classical hypergeometric functions of Mellin-Ore type
(see [S1], [S2] and also the classical papers [B] and [02]). '

The proof can be carried out in a way completely parallel to his. (See [S2] for the
English version recently elaborated by M. Muro from Sato-Shintani’s original [S1].)

We denote by ©(¢) the theta function on C* defined as the triple product
O()=(0)(q/1) (9) Where (1), =] |~ ,(1 — tg™). This is a meromorphic function on C*.

DErFINITION 1. A function ¢ on X is said to be quasi-meromorphic if there exist
P1, ", pn€ C such that ¢x{** - - - x, P is meromorphic on g*.
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Since
(1.10) Qqiort T anOn = grigra @t Fanen
(1.11) O (g TP J(gFI By = (1 —gh @ By 2L

(1.12)  Q(O(g+Fo)) = (— 1)Hotxig ™ Holxko(e) + Boly ~ko(x)kolx)) =~ 1I2 . @(gHol@) + oy
for oy, -+, oy, o> Bys - *» Bu€ C, we can solve the functional equation

(1.13) D0+ ) =by(0)P(w)

in the space of quasi-meromorphic functions on X:

PROPOSITION 2. There exists a quasi-meromorphic function ®&(w) satisfying (1.13).
The quotient @,(w)/P,(w) of any two solutions ®,(w) and ®,(w) of (1.13) is doubly
periodic on q* and hence meromorphic on E,.

&(w) has an expression as follows:

(0ix") o

i

I
-

(1.14) ‘ X5t X

e

(vixm)ao

1]
—-

for some «;€ C, v;, v;e C* and y;, uje Hom(X, Z), where x* and x* denote ¢*® and
q"®), respectively.

DErFINITION 2. A function b,(w) is called a b-function while a function @(w) of
type (1.14) is called a g-multiplicative function.

2. u; will denote ¢*. For a function of u;, v; and v; we denote by JF!, 0' and

Q~fl the g-difference operators corresponding to the displacements u;—>ug*!,

v;-0,g5 ! and vivigt!, respectively. Then we have
2.1) )P o=x0, Oro=0x)i'e, 0 0=@x*)F!,
respectively. Consider the operator algebra o/ over C generated by 0!, X! and

Q! for all i, j. o acts on R(X). We denote by V' the subspace of R(X) spanned by
(k- ®)/® for all ke o/. Then @V is the smallest_d—module in @- R(X) containing ®.
For an arbitrary point £=(&,, - - -, &,) of ¢* the X-orbit X-¢&

22 X-8={(g"¢1, . gD v, € Z)

will be denoted by [0, {oo], and called an n-dimensional “g-cycle”. This terminology
may be justified by the following.

DerINITION 3. The Jackson integral of a function on ¢* over the g-cycle [0, {o],
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(23) i=.[ ﬂxla.'.,xn).g
[0,&0]q
for Q=(dx/x;) A -+ A(dyx,/x,) is defined to be the sum
(2.4) (I—-q) ) VUG TORREN A48

if it exists.

It is obvious that

2.5) J ij‘9=f /e,
[0, £ao]g

[0,&0]q

for each j, and hence

(2.6) J Q"f‘Q=J re,
[0, &alg

[0,&0]q

for Q*=Q% - -+ Q!n.
We are particularly interested in the Jackson integral for &:

2.7 = J d-Q,
[0,&]q

which depends analytically on «;, v;, v; and &.

If @ has a pole at a point of [0, £o0], then (2.7) does not make sense. In this case
the g-cycle [0, £oo], should be regularized as follows.

First we note:

LemMA 2.1.  For each i, the function

2.8) Ulw) =g 2x8 - - - xbr@(vx™)
is invariant under the displacements Q,, -, Q,, where q° denotes (— 1)) pti.
q—ﬂi(lj)/l_

ProoF. This follows from (1.12) and the formula g#(©* %12 = gr@/2 +mbui(e) ¥ miei/2,

Suppose a factor (vx*"),, of the denominator vanishes at a point of [0, {o0], so
that @ has a pole at a point of [0, £c0],. Since O(v,x*) = (V3" o (qv; ' X ") (9) > PU(x)
no longer has the factor (v;x*?),, in the denominator. Moreover it satisfies the same
system of difference equations (1.13) as . In this way, the integral & may be replaced
by @U, so that the zeros of (v;x*), are avoided.

This regularization is equivalent to taking the residues of @ at each pole lying in
[0, £oo],. We call this procedure the regularization of integration and the corresponding
cycle the regularized cycle of [0, Eoo], which will be denoted by reg [0, o],
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By substitution of integration x;—x;q (1<j<n) and by (2.5), we have a formal
system of g-difference equations:

k k
(29) l__ll (U;QI;i(ll) e Qﬁi(x"))u.’-(xj)¢= I__Il (viQ‘;i(ll) e Q":i(l"))“i(lj) uj— )
for each j, 1 <j<n and
(2.10) ~vi;1 (5=(1 —, Q“;ltf(xx) . Q#i(lﬂ))il &
(2.11) ~£15=(]_02Q~73(11)...Q’#é(x..))?l@l

One may naturally ask the following questions:

QUESTION 1. Do (2.9)(2.11) really define a holonomic g-difference system in the
variables u;,v; and v in the sense of [A4]? Namely, do there exist a finite number of
elements k,, -, K, of &/ such that o -® is contained in the linear space spanned by
kB, -, kP over R(X)? Or equivalently, does there exist f,, - - -, f,,€ R(X) such that

(2.12) kb= fix;®
. j=1
for every ke o/ ? If this is the case, then what is the rank of the system (2.9)—(2.11), which
is defined to be the minimal number among such m?
For f=® ¢, peV, we have:

(2.13) f P(w)p(w) Q= j ()b, (w) Q¥ (w) 2
10, &l

[0,&]q

because Q is invariant under the operation Q¥ i.e.,

(2.14) J{O - B(w)(p(w) —by(w) Q*p(w)) 2=0.
This suggests us to consid;r the residual space

(2.15) V/{xgx ¢! —bx(w)Q")V} ~ V/{jgl (1-5,,(0)Q ,.)V} )

This can be regarded as a g-analogue of the twisted de Rham cohomology group (see
[A3]). We shall denote it by Hg(V, d,) and call it “the g-twisted cohomology group”
associated with @.

QUESTION 2. Is Hy(V,d,) finite dimensional? If so, how can its dimension be
determined? How can one find out a basis of He(V,d,)?

QUESTION 3. What is the dual space of Hy(V, d,)? Is it represented by special kinds
of q-cycles? By what kind of q-cycles?
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QUESTION 4. Find out asymptotic solutions for & for o;— + 00 and v;, v;—> + 0.
Classify all different kinds of asymptotics for ®.

We do not have any complete answer to these questions. We shall only give a few
examples in the next four sections.

3. n=1, g-analogue of Jordan-Pochhammer case. A multiplicative function @
can be written as

i (t/x ')oo
3.1 o=r ] 2
j=1 (tqﬁj/xj)oo
for u=g*, ¢’ and x;€ C*. The integral over a suitable g-cycle

(3.2) & =f¢#

is a g-analogue of Jordan-Pochhammer integral. We put 0,=0 and ij =0 ;- Then the
system (2.9)—+2.11) becomes

(.3) f[ (1— @ Q>q§= 1 (1_Lg>u-1<§,

Xj j=1 X;
1 bi
1——0 1-1¢
~ = qx; o ~_ 4~ X; ~
1— 0 1—0
X; X;
. ®# A\ - _ gf=t N\t
(3.5) Q,,j<15=<1— Q>q>, Q;jldi=<l— Q) é.
X; X;

Hy(V, d,) is spanned by a basis consisting of ¢;=(1—1/x;)"" for 1<j<m. Hence
dim Hy(V, d;) =m. We denote by (¢ the integral of ®¢ and put () = @. Then we have

(3.6) 01 (K1), s K@m) =@, -, <P,
(37) ~jil (<‘P1>, B <(pm>)=(<(p1>a T <(Pm>)Aija
(38) Q[ii,l(<¢1>9 ) <(Pm>)=(<(p1>a Y <(pm>)Aiﬁj

respectively, where A, =((a+ 1)), 4+;=axj;x,1))s A+p,=((a1p,;x,1)) denote matrices
whose entries are rational functions in u;, x; and ¢%. More explicitly:

PROPOSITION 3. Suppose x;/x; and x,q%/x; are different from 1, g**, g*2, - - - for
each pair i, j such that i#j. Then
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. X; X;
(1) aﬂr;i,j=*l‘qﬂrfi(x)+5i,j<1——Jqﬂ'> ,
xr xr
(i1) ay ;= —Xf{x)+x6; ;,
(1—¢™ I (1-= q”’) X;
I?LSm X 1— gx
(iii) =q ’ +6; e #),

a,.; =
Y q xr B xi xi Br—1
q—"—q¢" | 1] (1- 1——g*
X; 1<i<m X, X,
J 1#i

1#i

where f{x) denotes the rational function

(1 — g (Lﬂmm>

qgl—qg- Xy

(39) fi(x)zl_qa+ﬁ1+"'+ﬁm1<l<m ( x.) ’
i 1-=

7 .
X
Hence for any @ €V the integral {@) is a linear combination of {¢,>, - * -, @, over the
rational function fields in u, g%, x;. In particular

(3.10) B= 3 S0

By substitution 7= xq in (3.2), the integral of @ over [0, x;00], gives the asymptotic
of & for u—0 (a— + o0):

=4 - (qx'/xk)oo
3.11) O~(1—q)(gx) |] —F—=—
G4 # L ot
since in this case the sum (2.3) runs over only the set [0, x;],={x;q"; v=1,2,3,---}.
There exist exactly » such asymptotics which correspond to m linearly independent
solutions of (3.3). Mimachi [M2] has solved the connection problem attached to these
asymptotics.

4. Basic Lemmas and Main Theorem. From now on, we take as @ the following
function which is attached to the arrangement of A-type root system (see [A6] for
polynomial versions):
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4.1) o= []

%,
O<i<j<n (qﬂl,,j—t‘i->
ti ©

where we let t,=1. We consider the integral

4.2) $=J¢d"" oo p aln
1 1,

over a suitable g-cycle. It is a function depending on u;=¢%, B, ;, Bi-;.

Because of symmetry it is convenient to put f;,=1—p,; and B;,=1—B; ;. We
may put 5 ;=0.

Many authors have investigated basic hypergeometric functions as generalizations
of Heine’s hypergeometric function. Except in one variable case, these seem to be includ-
ed in the set of functions & of type (4.2) provided that they are not confluent. In fact,
@ is an extension of classical Barnes type integrals found, for example, in [S3] and
[G1]. The Milne’s hypergeometric functions (see [M1]) are similar to our &, although
they have additional parameters. For the case g=1, see also [G2] and [G3], which
study Barnes integrals from the view point of Grassmannian geometry. It is not
certain whether our approach is connected with Grassmannian geometry or not.

Assume the following conditions:

(#-1) For arbitrary arguments iy, iy, -, i,, 0<i,<n, which are different from each
other,

(4'3) ﬁio,i1+ﬂi1,i2+...+Bir,io¢z’
(4.4) Oti0+ach+“'+<x,~r¢Z.
(H#-2) oy, a,, -, a, are all sufficiently large numbers.

(s#-3) For an arbitrary partition {0, 1, - - -, n} =S, + S, such that 0 V(S)),
.5) Yoot Y BBtz
. JjeV(S2) icV(S1),jeV(S2)
We denote by 0! the operations u;+>u;q*! for functions of u=(uy, - -, u,)=
g*', -+, ¢q*) by the displacements of the j-th coordinate u;. Then the g-difference
equations for & in the variables u are given by

(4.6) I1(Q—¢"Q)u; =11 (Q;—¢"0)&.
j=1 i=1
j*tr Jj#r

@.7) 0y, =0~ ¢"0)"'0, ¥,
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4.8) Qﬂ_;'l, 43:(Qi_qﬁ£,,-— 1 Qj)éi_ 1§,
(49) Qﬂi,j5= (Qi_qﬂi'jgj)gi_ ! 6 B
(4.10) Q";ilj<§=(g__qﬁi,,-—1é_)—1gi5

where Q}i,lj, Q;;J and Q Q,, _are the operatlons on ¥ and & V respectively induced
by the displacements ﬁ,—y,—»ﬁ,,]il and B; ;—p; ;+ 1. Note that

(4.11) Ol oy=WH Q! o>
(4.12) 05 o> =W Q! 9>

for W‘i’—(Q | ®)/® and Wi} = (Q,}t1 ®)/®, respectively.

wHog! and wiP oyt ) are nothing but a g-analogue of the covariant differenti-
ations.

Our main result states that this system of g-difference equations is actually holonomic
and has rank (n+1)""!. This can be shown by the aid of some results in elementary
graph theory. Before stating our Theorem, we need a few preliminary lemmas.

We denote linear functions of t5=1,1;, """, 1, ti—qﬂ;’ftj, and t;—q%it; by (i, ))+
and (i, j)_ respectively. A rational function ¢ =(iy, j,);," - (i, j,),, = for each e,= +1
defines a graph G =G, with directed edges 7,, j, and the set of vertices {i, j;, * * *, iy, j,}-
The edge i,, j, is directed from i, to j,, i.e., i, —»j, or from j, to i,, i.e., j, — i, accord-
ing as ¢,=+1 or —1. We denote by dc=[]._, (i,,/,)... the product of all factors
(i1, J1)ep> = 5 (s Jp)e,- For an oriented graph I' we denote by V(I') and E(I') the sets
of vertices and edges of I', respectively. To each edge e of E(I') there corresponds a
unique linear function (e)=(i, j), for e=—1 or 1.

DerINITION 4. T is said to be a spanning graph if V(I') contains all the vertices
{0, 1, - - -, n}. A forest is a graph without any circuit. A spanning forest F is admissible
if and only if the number of edges | E(F)| equals n, i.e., F is a tree. A spanning forest
Fis said to be subadmissible if | E(F)|=n— 1. In this case Fis a semi-tree, i.e., a disjoint
union F=F, + F, of only two trees F; and F, such that V(F;) contains the root 0 and
V(F,) is disjoint from {0} (see [T]).

We denote by &, and &, the set of all admissible trees and that of all admissible
semi-trees, respectively. The evaluation of (¢) for e€ E(I') at some point e g will be
denoted by {(e), t). When I' is a tree such that 0 € V(I'), we denote by p(j) the predecessor
of a vertex j of I', i.e., the vertex of I' lying in the path connecting 0 and j such that
dis({ p(j)}, {0})=dis({/}, {0})— 1, where dis means the distance between two vertices in
the graph I'.

LemMma 4.1.  For an arbitrary admissible tree T the equations

(4.13) Le), 1>=0, eecKET),
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have a unique solution.

ProoF. Indeed 7; can be uniquely solved by induction on dis({0}, {/}). If j=0,
then ¢;=1,=1. Suppose that dis({0}, {/}) = N and that all ¢, for dis(0, k) <N are already
solved. Then ¢; is uniquely solved by one of the above equations (p(j),/)+=0 or

(r(), ))-=0.

LEMMA 4.2. For an arbitrary connected spanning graph I" containing a circuit, we
have a unique partial fraction expansion

1 1 1
(4.14) —= ) —
Ar  ecEn) Ar, e, t)
where t is uniquely determined by the equations {(e), t»=0 for all ec E(I',). Moreover
each I', is an admissible tree.

Proor. Indeed, since I' contains a circuit, the constant 1 is a linear combination
of linear functions (e) for ee E(I'):

4.15) 1= Y aJe), for a,eC,

ecE(l)
which is equivalent to (4.14) by division of both sides by 4.

Let I" be an oriented graph containing I, i.e., such that E(I")> E(I'). I'— I denotes
the subgraph complementary to I' in I, i.e., such that E(I'—I')= E(I')— E(I'). We put
Ap_r= I1.. & — r)(6), where (&) denotes the linear function (i, j) -, oppsite to (€)= (i, )),,
e=+1.

Then the following first basic lemma holds.

LEMMA 4.3. Suppose that I is an admissible tree. Then

Ap_
(4.16) Leroy fr
ViV ey P
where T runs through all admissible spanning trees in I'. Each cy is given by
‘ _ Ap_r(ty)
Ar_1(tr)

where tp=(I1 ;)1 <j<n denotes the unique solution of the equations (4.13).

(4.17) er

PrOOF. We prove the lemma by induction on the number N=| EC-T)|=| E(D)|
—|E(I')|. When N=0, then I' coincides with I' so there is nothing to prove. Suppose
the lemma has been proved for N< M —1. We must prove it for N=M. There exists
at least one edge e, E(I'—T'). Then there exists a circuit ¢ in I' such that e, E(%)
and E(%,,)< E(I'). Then
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5 1
(4.18) (@) _ 1
Aeg ec E(%) A‘Ke
A fortiori
3 1
(4.19) @ _ v,

e
Ar ecE(%) Are

since (&) is a linear combination of e e E(%):

(4.20) @)= 2 a,(e).

ecE(¥)

Hence

Ar_r =fo20_,-(€0)= Z a Zf‘eo—r

@.21)
Ar Ap eck9)  Ar,

First assume e,#e, i.e., ee E(I). Since feO—F=fe—(Feu {eo}) and |E(I',)—

E(I',u{e,})|=| E(I'-T)|—1, by the induction hypothesis we get a partial fraction
a Foo—T 1 ‘

422 =Y af—
42 ar,  r<r,  Ar
where T runs through all admissible spanning trees of I,. On the other hand if e=e,,
then I’ ., =1 and we have again | E(F eo—1I)|=|E(I'=T)|—1. Hence by the induction
hypothesis

. _ 1
r,

(4.23) Tl Y a—.
Afeo TCfeo AT

Summing up (4.22) and (4.23), we get

Zr‘—r Afe -r * 1
4.24 _—= a,—2>—= Z a, Z ay .
(4.24) Ar ef:"m Ap,  ecE® Tcp, Ar

Any admissible spanning tree of I, being also an admissible tree, we have finally the
formula (4.16). The expression of (4.16) is unique. Indeed by residue calculus on both
sides of (4.16), ¢y is equal to (4.17).

The second basic lemma is as follows:
LEMMA 4.4. Let I'=I,+1I, be a semi-tree such that 0e V(I';) and 0 is disjoint
from V(I',). Let I be an admissible graph containing T'. Then
a4 r-r

(4.25) -y 4,y b

Af Tes, Ay Fe#,Ficr, Ag
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for

if‘L(t_L) db_'ﬂf_F(zF_()‘B

Ap_1(t7) im0 Ap_p(tp(A))
where F=F,+ F, such that 0€ V(F,) and where t;(A) denotes a non-zero solution of the
equations

4.27) {(e), t)=0 for any eeE(F).

This solution is not unique and can be written as t=1(A)=1"+ At for an arbitrary
parameter € R. 1 and 1) denote real constants. ty ;=\ is unique for je Fy and t?),=0
Jor je V(F,). 1§%=0 for je V(F,) and 13, je V(F,), di ﬂer from zero and are determined
uniquely except for a scalar factor.

(4.26) ap=

ProOF. Choose an edge (e,) € E(I') outside E(I'), such that I'u {eo) isa spanmng
tree. Since I' >T'u {e,}, by the preceding lemma we have

(4.28) ~ﬁ—r ___Zf—ru(eo}'(éo)= Z ar (éo) i

Ar Af TeF,1<f  Ar

for are C. Since each (é,) is a linear combination of (e) for ee E(T) modulo constants:
(€y)=co+ Zee ) Ce(€) forc.e C, andssince (e)/4r=1/47,, each (é,)/4can be written as

g 1 const
(éo) _ Z n )

(4.29) e
A4 T ecE(T) a4 Te A4 T

T, is a semi-tree: T,€ % ,. Hence we have from (4.28) an expression

Ap_
(4.30) fr_y ‘rpy 8

Af Te#, A7 Few, Af

Through residue calculus, c¢; and ¢, are given by Ap_(t7)/4r-7(ty) and
lim,,,, Adp_p(te(A)/A7_p(te(A)), respectively. We must show that F,<I'; for
F=F, +F,. Suppose the contrary is true: F; ¢ I';, i.e., there exists an edge e E(F,)—
E(I',). Since for any ee E(F)),

4.31) lim (&), tx(A)>/A=0 for eeE(F,),
A-®
=non-zero constant for eeE(F,),
we have
a tp(A
432) Pt ) _

ar Ap st ()

Hence ¢ must vanish unless E(F;)< E(I',). The proof of the lemma is now complete.
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One can formulate the third main lemma as follows:

LeEMMA 4.5. T be a spanning forest with two components I'\ and I', such that
0e V(I'y) and je V(I',). Let I’ be an admissible graph containing I'. Then

L Apr 1 1
(4.33 [ i Sk ar—+ bgt; 1 —
) ! Af T;Fl T AT SGZ?'Z $H As

where S€ F , denotes a forest with two components: S= S, + S, such that E(S,)< E(I',),
0e V(S,) and je V(S,).

Proor. According to (4.25),

Ap_ 1
(4.34) [ LB + Y b !

F
Af TeF, tjAT Fe#3,F1<TI'y tjAF

ar, bp e C, where je V(F,) since V(S,) = V(F,). For each T on the right hand side we have

(4.35) l=cot;+ Y. cle), for some ¢y and c,e C.
eeE(T) .
Hence
1 1 1
(4.36) =co—+ Co— .
tjdr Ar  ecE(my A7,

Since T,e & ,, from (4.34) and (4.36) t; 'Ar_p/Af can be reexpressed as

A 1
4.37) I°F Y gt —+ Y b ! ,

LAr  tew,  Ar  Few, Ap

for some a¥, bfe C. a¥ and bf are uniquely determined by the residue formulae:

Ar_(ty) and b;:jf_r(tp)
tr,iAr-r(tr) Ap_g(tp)

where t7=(7, ;)1 < j<n denotes the solution of the equations {(e), t) =0 for all e€ E(T),
while 7z = (1, ;); < j<n denotes that of the equations {(e), 1> =0, for all e€ E(F) together
with ¢;=0. Clearly, t , vanish for ke V(F,). Hence Ar_(tp) vanishes if it contains a
factor (e) € E(F,), i.e., b} vanishes if E(I' —I')n E(F,) # . In other words, if b} differs
from zero, then E(F,)< E(I'))u E(I';). Being a tree such that je V(F,), F, must be
contained in I',. In this way (4.33) has been proved.

(4.38): at=

DEFINITION 5.  Anadmissible labelled tree I' is called terminal if every edge e € E(I')
is directed towards the vertex 0.

We denote by # the linear space spanned by admissible forms ¢, associated with
admissible labelled trees I" with directed edges. We also denote by %, the linear space
spanned by terminal admissible forms ¢ for labelled trees with terminal directed edges.
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The inclusion 1: £, V gives rise to a homomorphism
(4.39) le: Bor—>Hy(V,d)) .
Then our Main Theorem can be stated as follows:

THEOREM. Under the assumptions (#'-1)~(#-3), 1, is an isomorphism. Hence
dim Hy(V, d))=(n+1)""1.

5. Proof of Theorem.

LEMMA 5.1. Suppose I is an admissible tree.
(5.1 b, Q*r=x0 mod4%#
for any ye X™ if and only if T is terminal, i.e., o does not admit any transformation
or—b, Q*p for ye X*, where X* denotes the abelian semigroup generated by y, - - -,
An in X.

ProoF. Suppose I' is terminal. We take an arbitrary x=z;=1vjxjeX *. Let k

be the vertex nearest to 0 in V(I') such that v,>0. Then b,Q%pr contains
(Togy—GPP® 1)~ -+ - (Lpgy— g7 * " 1,) 1 as an irreducible factor. Hence (5.1) holds.

The converse is proved below.
The first main result which we want to prove is the following.

PROPOSITION 4. An arbitrary admissible form @p which is not terminal is co-
homologous to a linear combination of terminal admissible forms. More precisely,

(5.2) B=RBo+Bn{ Y (1-b,00B}.
xeX+
PrOOF. Assume that ¢ is not terminal. Then I" being a spanning tree, there exists
an edge e=(i, j)_ directed from i to j such that p(j)=i. The deleted graph I, is divided
into two components I'; and I', such that 0e V(I',) and that V(I',) is disjoint from {0}
(see Figure 1). We apply the transformation ¢, + t,g for all ke V(I',). Then

1 Ap_
(53) — Qg2 1B 2L 920 mod#n Y. (1-b5,00)%
AI‘ Af xeX+*
r r

/

FIGURE 1.
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where I’ denotes a graph such that (i) V(I=V({I) and (i) E()=EI,)u
E(I')) U Upeviry.kevay (B K)+. From Proposition 1 we have

1 Q
(54 —A—Q_qarz—lwzn Y ar—=0 mod%&n Y (1-b,004%,

r Te#, T xex+
where in particular a,=1. Hence the relation (5.3) is rewritten as
~1Era 1y & —|E(I)| Q
(5.5)  (1—grr2 BTN = =gery BTl % g " mod®&n ) (1-b,00%.
Ar TeF 1, T#T T yex+

In this way we have (2"— 1)(n+ 1)" ! relations corresponding to non-terminal admissible
forms. (##°-1)~(s£-3) enable us to solve these equations with regard to non-terminal
admissible forms, i.e., each non-terminal admissible form is cohomologous to a linear
combination of terminal admissible forms. This is exactly what we wanted to prove.

LEMMA 5.2. Let I be an arbitrary spanning forest with two components, I € % ,.
Then @r=Q|/Ar is cohomologous to a linear combination of admissible forms, i.e.,

(5.6) ¢r=0 modZ+ Y (1-b,09V.
xeX

PrOOF. I consists of two disjoint trees I'; and I', such that 0e V(I";) and O is
disjoint from V(I',). The lemma can be proved by induction on | E(I',)|. Indeed, we
can apply to Q/4 the substitution ¢;—,q for all je V(I';). Then as in (5.3),

Q Ar_
(5.7 g, BN LT 920 mod Y, (1-5,00V .
A4r 4p xeX

By Proposition 2, A7_/Ar can be written as
1
(5.8) Y ar—+ ), bs—

where S=S, + S, runs through the set of all the semi-trees such that E(S,)< E(T';). ar
and bg are given by the formula (4.26). Hence we have

Q i Q Q
(5.9) e IWZH{ Y ar—+ Y, bsA—}Eo mod Y. (1-b,09V,

T Te%, T SeF, S xeX

where by is given by Y.y kevayBhk— Bhi- Then (5.9) can be rewritten as

(5.10) (1 —gor2" 1B +EhsV(n),keV(r2)ﬂn,k—ﬁi.,k) Q
4r

Q Q
Eqarz_IE(FZ)I{ Z aT—+ Z b }

s ——
reF: Ar  sesiSigr ds
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Q
=g¢'r, BN pe " modB+ Y, (1-b,00V .

Se?z,slgn S xeX

Since each Q/4g in the last part is cohomologous to an element of # by the induction
hypothesis, so is €/4,. The proof is now complete.

LemMMA 5.3. For an arbitrary admissible form ¢ and an arbitrary j, 1<j<n, t;or
is cohomologous to a linear combination of admissible forms, i.e.,

PrOOF. Indeed, there exists a unique path [ jo, j;, * * *5 jm-1-J1-Jo=0and j,=j,ina
tree I' so that #; can be written as

(5.12) L=co+ Y. cfe),
v=1

for ¢, ¢,€ C and (e,)=(j,_1,/,)+ so that

i c m 1
5.13) =01 Y, .
( Ar Ar vgl Arev

Since I',, is a spanning semi-tree, we can apply Lemma 4.4 to Q/4;, so that
Q/Ar, ~0 mod #. This shows (¢;/45)Q2~0 mod 4, since Q/Ar€ A.

Similarly, we have:

LEMMA 5.4. Under the same circumstance as in Lemma 4.5, we have 1 'Q[Ap~
0 mod #.

ProoF. We can apply the substitution £+ #,4 for all ke V(I',). Then as in (5.3)

(5.14) lj_liqu“l‘z_“z(fz)l—ltj—lAf—l“g.
4 P
r F
By Lemma 4.4,
LT‘__ Q _ Q
(513) (71 Y a4 Y bstit—,
Ar  tew, Ap sex, Ag

since S is a semi-tree with two components S, S, such that je V(S,), E(S,)<E(I';)
and 0e V(S,). ar and by are given by (4.25) for the solutions 7, and ¢4 of the equations:
(e), t7y =0 for e€ E(T) and {(e), ts) =0 for e E(S) together with ¢;=0, respectively. by
vanishes unless E(S,) < E(I",). Hence

Q Q Q
(5.16) ,J.—x_~qar2-|mn—1{ Sy ¥ bstj‘l——}
. Ar TeF, AT SeF,,8,<I', AS
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or equivalently,

_ o,
(517) (l_qar2 | E(I'2)| 1)tj 1.7
Ar
Q Q
~qar2—lE(Fz)|—1{ Y aT7+ y bstj_lA_}’
TeF, T SeF2,5gl; N

since b =1. By induction, the system of equations (5.17) for all the forms 7; ', with
@ admissible, can be solved concerning ¢; !¢ in such a way that ¢ ' ¢ is cohomologous
to a linear combination of admissible ones. This implies the lemma.

PROPOSITION 5. For an arbitrary admissible ¢ =Q|A, and any j, 1 <j<n, we have
17 'or~0 modA.

PROOF. As in the proof of Lemma 5.3 there exists a unique path [ o, j1, = *» Jm—15J1
in I' such that (5.12) holds. (5.12) implies

1 1 1 m 1
(5.18) m7=_ A——‘ Z cv
¢ v=1C
511 7 T (e
v=1 k#v
(remark that ¢, #0 by hypothesis), i.e.,
1 1 m 1
(5.19) = -

1jAr  codr  v=1¢o Arev.
From Lemma 4.4 Q/A;, ~0 mod #, whence Proposition 5 follows.

CoROLLARY. W10 ©~0mod B, W0, @~0mod B, Wi} 705 ¢ ~0 mod #
for an admissible ¢.

ProoF. Indeed, W§;) 04, J(pr—(1~ bo.i=1Q)er or (1—4¢P*Q;)¢ according as
(0,/)- € E(I) or not. Similarly, W{7Qp or=0;"(Q:;— qﬂ' T 0)er or Q7 NQi—
¢*+7Q,)or according as (i, j)_ € E(I') or not, while W7 )Qp. or=0: 10— gbe 0)er
or O (Q,— g ~10))¢r according as (i, j)+ € E(I') or not

PROPOSITION 6. (i) W"“Qﬂ @r~0 mod 4.
(i) w; )Qﬂ. J(pr~0 mod # for0<l<]<n

Proof. Suppose first that E(I') does not contain the form (i, j),. We denote by
I the graph obtained from I' by adding the edge (i, j) ;. to I' such that E(I)= E(I') u {(i.j) .+ }
and V(I')=V(I'). I contains a circuit ¥ which itself contains (i, j), . Then from Lemma
4.2,
1 1

(5.20) =Y a—.
V| r ee;(‘g) Are
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Since each I', is a tree such that 0e V(I',), Q/4r, is admissible, i.e., W}'Q,. Q/4,~0
mod 4. Suppose on the contrary E(I') contains the form (i, j) .. Then
Q Q
(5.21) WiPQ, —= .
(ti—g"1)(t;—q"* 1) [1 (@

Ar
eeE(le)

I ;. consists of two components of disjoint trees I'; and I', such that {0, i} < V(I';)
and {j} = V(I';). We apply to W{{[)Q,. Q/A the substitution z,— ¢~ Yt forallke V(I',).
Then , '

Q Ap
522 Wi, L grentlEra T g
( ) iJ Qﬁi,j AF q Af
where I is a graph containing I such that
(5.23) nhH=wr),
(5-24) E(l)=E(I')uE(T';)u U (h, ) v{(i,)+},

heV(I'1),keV(I3)

where (h, k) #(i, j). From Lemma 4.3 we have the partial fraction on the right hand side
of (5.21). Hence the proposition follows.

From Propositions 3 and 4 applied to an arbitrary admissible form ¢,

(5.25) iil¢r~0 l’nOd '930
(5.26) W04 pr~0 mod B,
5.27) W}y’j’Qi‘jgop~0 mod %, .

Since PV =A P = (PB,), an arbitrary element ¢ € V' is cohomologous to an element
of #,: ¢ ~0 mod #,. This implies the following:

PROPOSITION 7. The map 1, defined in (4.39) is a surjection.

We can now prove the Theorem in Section 4.

PrOOF OF THEOREM. For each unoriented admissible labelled tree T, the point
t=(1;)1<j<n€q" is defined by the equations: 7,;, =¢"*?77;, and 7, = 1. We can construct
a cycle ¢(T)=«(t) consisting of countable points given by
(5.28) gFroritft,eq?” .

To each T corresponds a unique terminal admissible tree and vice versa. Thus the set
of unoriented admissible labelled trees is in one-to one correspondence with that of
terminal admissible forms. The number of such trees is equal to u=(n+1)""*. Let
Ty, -+, T, be the totality of them. We must prove that these are linearly independent
in Hy(V,d,). It is sufficient to prove that the determinant of the period matrix
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M=, «(T)))1<i, j<, does not vanish. This can be shown by asymptotic argument

as follows.

We consider the integration of the functions @¢, @ €%, over the cycle «(T). The
function @ has no pole on ¢(T) if and only if T is standard, i.e., p(j) <j for each je V(T).
If T is not standard, we replace «(T) by its regularization reg <(T) by taking the residues
of @@ at the poles of @¢. The crucial fact is the following:

LEMMA 5.5. Foro;=n;N+ao(n;e Z*, ;e C), N> + oo, the integral of an terminal
admissible form @1«

— - 1
(5.29) f PP Q~(1—g)"(q)" 15172 - - tﬁ""’"(l +0<*>>
(T) N
or
n n Ja1—90 Fon— 0 1
(5.30) ~A= (@™ 0 ~)

according as T*=T or T*# T, where 6;+ 1 denotes the degree of the vertex j in T*. The
same holds for the integration over reg <(T).

Proor. The function @ has an expression

(qﬂi’jtj/ti)oo

5.31 O=(1 - t:’l")N 1. tﬁ;‘ ]
o 1 1 o<i<j<n(qPI1/1)

By assumption the function | #1* - - - #| has maximal value at ¢ =7 on &(T) or reg«(T).
It is unique, i.e., |7 - 1| <|17 - 17| on o(T)—{1}. If T*#T, then the factors
1 —q”f’dtj/tp(j) appear in the numerator of ®/A4;, while if T*=T, all the factors
1 —gPfrtigft,; disappear. Since all these factors vanish on ¢(7T) or reg «(7), ¢ vanishes
at t=1(T*) for T*# T, while @ is equal to

(D%

S for T*=T.
,l=_[1 (@115 )

(532) ?;l [ ?'lln

This shows that the period matrix M is asymptotically equal to a diagonal matrix whose
entries are represented by the principal terms in (5.29) for each unoriented admissible
labelled tree T. In other words, the matrix M is non-singular for sufficiently large
ay, ", o, Hence @r,, - -, ¢r, are linearly independent in Hy(V, d,). The theorem has
been proved.

COROLLARY. (@7, *, {@7,) satisfy the normal holonomic q-difference equations

(5.33) 07 ' Kor) . Kor ) =Kor,), -, (pp NAf . 1<j<n,
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534)  OEKor)s  or )=o) pr, ) Aup,, . 0<i<j<n,
(535)  Oilord, @) =Cord,  or A,y . 1<i<j<n,

respectively. Here AF, A, p.; and A, , denote matrices of degree u over the rational

function field C((uy, ¢, ¢* o <k <1<n). These are equivalent to (4.6)~(4.10).

REMARK. The set of all directions n=(n,, - -, n,)€ Z"— {0} giving inequivalent
asymptotic behaviours of & are divided into a finite set of rational polyhedral cones in
Q". This defines an n-dimensional toric variety which may be singular in general (see
[O1] for the definition). The connection coefficients among asymptotic solutions along
different directions 1 can be described in terms of transition matrices on this variety.
The combinatorial structure of them will be presented elsewhere (see [AS]).

6. The basic hypergeometric function of third order. The case n=2 is given by
the basic hypergeometric function

a,b,c & (@3 9)b; 9a(C; @),
6.1 = Y DI T
€D 3"’2<d,e x) Zo ([ e DG D)

for a, b, ¢, d, ee C and (a; 9),=(a),,/(ag")., etc., such that d,e#1,47",¢q72, - -. It has
an integral representation

a b, c
(6.2) 3902( X
d e

>

) _ (31)e0(@2)(b1/81) o0 (b2/22) oo
(b1)w(b2)o(@) (1 —a)*

j 7o e g% (T19)5(g72/71) 0 (A0T2X) dq71 AdgT,

12112750 (b171/a1)(b272/(a2/71))(T2%) e T1T2

for b=¢* and c=¢**. This integral coincides with (4.2) by putting o, > ot — &, ty > &5,
¢ 1=q, ¢"21=ayx, ¢*1=b,/a,, ¢**=x, ¢*1* =g and ¢**=b,/a, in (4.2). For brevity
we put Bo =P, Bo.2=P2 P1,.=F and B, ,=p. We have dim%B,=3 due to the
Theorem. The basis is given by

Q _ Q
(I—t)1—1y) (L=1,)(t,—¢" 1) T LG~
corresponding to the terminal admissible trees T, T, and T}, respectively as in Figure
2. In addition to these it is also convenient to consider the forms
_ Q _ Q
TG TG

corresponding to the admissible trees T, and T's which are not terminal (see Figure 2).
There are two linear relations among them as follows:

(63) or,= @1, =

(6.4) or,
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T, T,
0—<—2—>—| 0—<—1—>—2

FIGURE 2.

- l_qﬂl l_qmﬂi—l l—qﬂ‘
(6.5) or,~q" {T‘_‘F(Prl‘i' gt (P13+1_q1_ﬂ<PT5},

1 _qﬂz qﬁz___qlf' l_qﬁz }
. 1+ 5 2+ ’ 4

(6.6) ¢15~q"2{
From these relations one can solve ¢, aand ¢, as linear combinations of ¢,, ¢r,
and ¢r,, provided (1—¢' /) (1 —¢*)—g* "~ (1 —¢’)(1—¢#*) #0, i.c,,
6.7) @r,~0 mod#, and ¢ ~0 mod%,.

To find the formulae for 9, and 0, one needs the following:

LEMMA 6.1. We have the relations

g | .
©8) (1 —q'“”“)<ﬁ>+q“‘*”*(q"‘1—q" “)<4 >

—1z Lh—¢""'t
JA=g)(1—¢"h (1—¢")1—q""
=q { [ {pr, )+ T {@ry
@' =" —=gP }
+ - {pr -
1—g~1 '
Q
(69) (1 _qa|+az+ﬂl+ﬁz—1) <‘T>
L—q 1
b (l—q’gi)(l—qﬂl) (1— By B2 — of’
_gtm 1{_#«%)_%__%«%9
l1—¢ l1—gq
(1—¢")(1—g""F)
+ 7 <(pT4> H
1—¢*
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Q , Q
(6.10) (1 q¢z+ﬂz+ﬁ ﬁ)< >+qaz+ﬂz(1_qﬂ—ﬂ)< . >
1—t t—q%1,

1=gP? 1_ B 1=aP2= 8P —gF
qn{( (i X )< T1>+( q )(ﬂc{ 7)
— 1—g

<‘PT2>

_ ﬁz B
LU= =) 11(" ‘”<<pn>},

o ' : Q
A WS Y25 B2
(6.11) <11—qﬂ_1t2> q {(1 q )<‘PT4>+q <11-—qﬂ112>} .

(6.8)—(6.11) can be derived as in the proof of Lemma 5.2. They enable us to express
Q(1=11)), {RI(1—=1,)), <Q[(t;—¢*12)) and (Q/(1,—¢’"'t;)) in terms of {or),
1<j<5. Since

~ Q ~ Q
(6.12) Q1<(PT1>=<<PT,>_<1 > Q1<(PT2>=<(/)T2>_< 5 >
=1 L—q" I

~ Q , Q ,
(6.13) Qory= <1 >“‘I‘El < I3 >+q” {o1) >
—1 1L—q° 1,
~ Q
(6.14) Q2<¢T1>=<¢T1>_<1 . >
—h

~ , Q Q

(6.15) 0:@r,y=q""* {<¢T2>—<] >'—< N >} s
- L—q' 1,
~ Q
(6.16) Q2<(Pr4>=<¢r4>—< 5 >
L—q' 1,
we get from the formulae (6.8)-(6.11) the following:
LEMMA 6.2.
6.17) Oprd>=Cpry—— {(l_qﬁ')““qﬂz) (Prd
1 T2 T2 l_qa1+az+ﬁ1+ﬂz—1 1_qﬂ’ T,
(1-4")q"*—q") (1-¢""")1-¢") }
+ (1—g ﬂ,) <(PT2>+ l—qﬂl <(PT4> s
7

618 Oulory+iT Ly 0or)

1—g* -4 ¢ -4

ST g P+

1 q011+ﬂ1 <(pT2>+

w <‘PT4> 5
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(6.19) 001> — 4" 0:Kor,)+ 001> =<01,> — 4" <p1,> + 4" o1, .
qdz +ﬂ2(l _qﬁ—ﬁ') o

T gt QX010

a3+ B2 B & b2 4
g1 —gP P q (1—¢")(1—-4")
= e - ; ,
{or,> [ g hatsp {or> l_qaz+ﬂ2+ﬂ—ﬂ{ 1—¢*

(6.20)  QOxor>+

<(PT,>

1— B=B\( B — B2 1—=ad%)(g? —oP
—( 7 1_)£Iqﬂ 1 )<¢Tz>+ﬁ( ql 1(;9 9 )<(PT4>}

621)  0xXor)—q 0o >=—q" o1, ) +q " or,>
gttt (—gy—g), | (1—a)g - g)

1 —gutmthitb-1| (1 _gb) @ro+ 1—g¥

+(1 - (1—4¢%)
1—q¢*

o1,

<¢T4>} s

ay+az—1 1— B1 1— B2
q {( ¢’)(1—q )<¢T1>

(6.22) Q2<<pr4>=<¢r4>—(1_qal+az+,,l+,,2_l) _—

1— P )P — oF L—af) (1 —ghr+F
n "1)(",,, T oy + L dNd )<<pn>},
—q 1—¢q

so that
6.23)  0:{01,>—47 001>~ 001> =0""{{or,> —{@r,>) —<Lor)} -

To compute the formulae for 07 ' and 0 !, one needs the following two lemmas,
which can be obtained as in the proof of lemma 5.4.

LEMMA 6.3.

, Q
(6.24) (1—qa'+ﬂ~f’—l)<Al g t)>
1 —t2

1—¢gf ! 1—gf~# 1—gF b

—_pgu—1)" 1 s g -

=q {l—q”'l {pr2+ gt {pro+ — Prs) (s
Q

(625) (1 _qal+a2—2)< >

1t —q%'1y)

e Q (=g )(1—4")
— ay taz—p v 2 1 _ B2 . + aytar—2 _
q (I1-q )<—tl(1_t2)> q {———l_qﬁ N2

+(1—q”’)(q”2—q”') (1—g"*P)(1—4P?)
l—qﬂ' l—qﬁ'

{or,y+q7F <<pr4>} ,
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(6.26) (1—gnte2) <————Q >
' 9 1(ty—q" 7 'ty)

_qdl"'az-ﬁ"l(l _qﬂ2)<

—aB1)(1 — ﬂz
>+qa‘+a2— {(1 q )(1 )< Tl>
1-¢~

1— Bi1+p—1 1— B2
(or+q' ! q(l_q,,)_(l) d )<<pr,>}-

ti(1—1,)
(1 —g(1— q’“"’“)

1—q
LEMMA 6.4.
a1 Q i J@ =N —4")
(627) (1—¢ )<(l—t1)t2>_q { T (o1,
_ ﬂ __ B2 B 1— B2
La 1)_(1 q )< r,>+( 1q_)( q )< T4>}

(6.28) (1—“1+“z-2)<———g >
. 1 1,(ty—4%'1)

Q
=gt —q“'><
L—1)

(1= B B2 __ 4P
>+qa,+a2_z{q,,( )" —q )<(PT2>

(1—4")
— b1 _ b2 _aB1tBN\(1 _ B2
(1 q )(1 q )< T.>+(1 q )E}l q )<¢T4>}’
1—4¢* l1—gq

Q
629) (l—gnte? <_*>
©2) (1-a ) ty(ty—q*'ty)
—gutaz=201 _ b1 Q > a1+az—2{(1_qﬂl)(l—qﬂz)
q (1—q )<t2(l—t1) +q g {p1,)

(=51 —¢*) L= =gh Y
+ e (pro>+¢ 7! 1—q£ﬂ {pryp-

From these two lemmas one can express

Q Q Q
6.30 , ; ,
(6.30) <,,(1 - t2)> <t1(z, 7 z2)> <t1(t1 gy 1t2)>

and

Q Q Q
(630 <t2(1“f1)>, <tz(t1"qﬂ,tz)>, <12(11_qﬂ—1t2)>

as linear combinations of <@t >, <@r,>, {@r,>, {®r,>, and {@r ). Since we have
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A Q
(6.32) o 1<¢T1>:<¢T1>+<“> )
1(1—13)

")
1t —q%t)/

~ Q Q
L I e
(6.34) 01 Kor>=—¢ <ll(l_12)>+<t1(t1_q,,,12)>+q KZW

(6.33) Qfl<¢rz>=<¢rz>+<

. Q 1—gPf)(1—gP>
(6.35) Q;1<<pn>=q“2“{< >+( DT ey
t(1—1)) l—gq
B __ BN(AB2_ P B __ B __ B2
L q)(q' q )<¢T2>+(q q)(ll q )<<pn>},
1_qﬂ l—qﬂ
- _ Q Q _,,,
(6.36) 0; Koryy <t2(1—t1)>+<12(11—qﬂ't2)>+q @1, s
~_, _ Q Q \ 1-p
(©37 Gz Cons <t2(1—t1)> +<t2(t1—qﬁ“tz)/ e

we can conclude:

ProposiTioN 8. Of'<er,> and 05y, 1<j<3, are written as linear
combinations of {@1,>, {@1,7, {@r,>, {P1,, {P1,), respectively.

Since 0, ! and J, are written by using J£! and @, as

(6.38) 0;'=07'0,—¢"7'Q,) for (or,>, <or),
(6.39) 0;'=01"0,—4"0,)  for <er,),
(6.40) 0,=07'0,—4¢"0,) for {or>, {91,
(6.41) 0s=07"0,—¢""'0,)  for (o),

we get the following:

PROPOSITION 9. Q,;1<(ij> and QK pr,>, 1<j<3, are written explicitly as linear
combinations of {@r.>, <@r,>, {@r,), {@r,) and {@r,) through the formulae
(6.38)—(6.41). The latter are expressible as linear combinations of {@r ., {@r,) and
@,y through (6.5)(6.6).

The formulae for 7, O, and Q! give a complete system of contiguous relations
for the basic hypergeometric series 3¢,.

ReMARk. To prove the Theorem we have used asymptotic behaviours of integrals.
However it is desirable and is probably possible to give a purely algebraic proof of the
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Theorem.

The author is grateful to M. Kita for useful suggestion of formulating a g-analogue
of b-functions. He is also grateful to the referee for careful reading and several
improvements.
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