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FINITENESS OF A COHOMOLOGY ASSOCIATED WITH
CERTAIN JACKSON INTEGRALS

KAZUHIKO AOMOTO

(Received December 20, 1989)

Abstract. A structure theorem on ^-analogues of ό-functions is stated. Basic
properties for Jackson integrals of associated ^-multiplicative functions are given.
Finiteness of cohomology group attached to them is proved for arrangement of ,4-type
root system. Some problems about the derived ^-difference systems are posed. An example
of basic hypergeometric functions are given.

1. Let En\ = En be the direct product of n copies of an elliptic curve E of modulus

q = e

2π\/-^τ for Imτ>0. The first cohomology group Hι(En,C) has the Hodge

decomposition H1(En,C) = Hu0(En) + H01(En)9 where HU0(En) is isomorphic to the

direct sum of n copies of Hli0(E)9 the space of holomorphic 1-forms on E. Let

{δ> * ' ' , 3*; 3* + i> ' ' ' , 32n} be a basis of the first homology group H^E^ Z) such that

each pair {^p ΰn+j} represents a pair of canonical loops in E. There exists a system of

holomorphic 1-forms 0 l 5 , θn on En such that

(1.1)
hi

r .
Im τ > 0 .

We denote by X the factor space of the dual HU0(En)* of H10(En) with respect

to the abelian subgroup A = <31? , 3Π> of Hγ{Ew Z) generated by 37 , 1 <j<n. This is

possible because HX{EW Z) can be contained in H10(En, C)*. In the same way we denote

by X the factor space H±(En, Z)\A. X can be assumed to be a submodule of X and has

a basis zJ = 3π + J modΛ. An arbitrary χe X is written uniquely as

(1.2) X=ΣvjXj f o r v ; e Z

j = i

The quotient X/X is canonically isomorphic to En. By the map

(1.3) X3ω^x = (xί=exp((θί,ω)), , xn = exp((0π, ω)))e(C*)n

for ωeX, Xis isomorphic to the algebraic torus q*=(C*)n and Zis isomorphic to the

discrete subgroup qx generated by qXi = {q, 1, , 1), , qXn = (\, 1, , q). Here (0, ω)

denotes the canonical bilinear form on H10(En, C) and its dual.

We denote by R(X) the field of rational functions on q* and by R*(X) the
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multiplicative group R(X)-{0}. Then X acts on X and also on R(X) or RX(X) in a

natural manner. We denote these operations by Qj and Q3 as follows:

(1-4) β / * i , ' ' ' , */, * , xn)*-+ ( * i , '''> * , - 1 , I*], xj+1,-', xn)

(1.5)

for x = (x l 9 , c jeg^ and φeR(X), respectively.

A cocycle 6χ(ω) on X with values in i? x (X) is defined by the cocycle condition

(1.6) χ χ χ χ

for any χ,χ'eXand ω e ϊ . A coboundary bχ{ώ) is defined as φ(ω + χ)/φ(co) for a certain

φeRx(X). The quotient space of the space Z 1 ^ , i?x(X)) of all cocycles with respect

to the space Bι(X, RX(X)) of all coboundaries defines the first cohomology group of

X with values in RX(X):

(1.7) Hι(X, RX(X))~Z1(X, R*(X))IBι(X, RX(X)).

H1{X, RX(X)) has a multiplicative group structure.

An arbitrary element μ e Hom(J, Z) can be uniquely extended to μe

Homx(Γ, C/(Z(2π x/
ΓTτ)- 1)) and to qμeHom(X, C*) by

( n

(1-8) jδ Σ

Then the following important result holds.

PROPOSITION 1. H1(X, RX(X)) is represented by cocycles of the following form:

μ o ( x ) " l _ fc

(1.9) bz(ω) = ax Π ^ o ( ω ) + v Π
v = 0 £ = 1

for μ0, μ GHom^, Z) and 7 f e C //er^ (aχ)χeX denotes an element ojΉom(J, C*). (α)π

means WjZoi\~a(lj) o r YYj=\(\~a(I j) l according as n>0 or n<0. The expression

(1.9) is not unique.

This result is a ^-analogue of a result of M. Sato which was proved as early as in

1970. He called the functions bχ(ω) "Z>-functions" and made use of them for the theory

of prehomogeneous spaces and classical hypergeometric functions of Mellin-Ore type

(see [SI], [S2] and also the classical papers [B] and [O2]).

The proof can be carried out in a way completely parallel to his. (See [S2] for the

English version recently elaborated by M. Muro from Sato-Shintani's original [SI].)

We denote by Θ(t) the theta function on C* defined as the triple product

Θ(t) = (0oo(#/0oo(#)oo where (Ooo = ΠΓ= o(l ~~ t(f) ^ n ^ s *s a meromorphic function on C*.

DEFINITION 1. A function φ on X is said to be quasi-meromorphic if there exist

Pi, , p n e C such that φxϊPί x~pn is meromorphic on q*.
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Since

(1.10) β qaiCOί +'" +anω" = qajq<*iωι + — + α n ω n ̂

(1.11) QMβ'(ω)+β')J(qβΛω)+β% = (l - f w + % '
( 1 1 2 ) 0 (Θ(c/μo^ + ̂ °)) = ( — 1 )μ°(χ^q ~ ̂ o(Xj)(μo(co) + βo)g - Ho(Xj)(Ho(Xj) - I)/2 . QίqHo(<o) + βo\

for α l 9 , απ, /?0, βl9 - - -, βneC, we can solve the functional equation

(1.13) Φ(ω + χ) = ^(ω)Φ(ω)

in the space of quasi-meromorphic functions on X:

PROPOSITION 2. There exists a quasi-meromorphic function Φ(ω) satisfying (1.13).

The quotient Φι(co)/Φ2(
ω) of any two solutions Φχ(ω) and Φ 2 ( ω ) 0/(1.13) is doubly

periodic on q* and hence meromorphic on En.

Π (»ί^ :

Π (»i

Φ(ω) has an expression as follows:

(1.14) xί

for some α^-eC, t;f, I J G C * and μί? μ j e H o m ^ , Z), where xμ i and xμ>i denote qβi{ω) and
qβ'i(ω)^ respectively.

DEFINITION 2. A function bχ(ω) is called a ̂ -function while a function Φ(ω) of

type (1.14) is called a ̂ -multiplicative function.

2. Wj will denote qΛj. For a function of up vt and v\ we denote by β / 1 , β ^ 1 and

βj^ 1 the ^-difference operators corresponding to the displacements uj\-^ujq
±1,

vt\->v{q
±l and vf

i\-^vf

iq
±1, respectively. Then we have

(2.1) ρ±vφ = χ±vφ ? Q±vφ = (p^±lφ9 Q^φ =

respectively. Consider the operator algebra jrf over C generated by Qf1, β ^ 1 and

β jj x for all /, j . si acts on R(X). We denote by V the subspace of R(X) spanned by

(κ Φ)/Φ for all KES/. Then Φ K is the smallest ^/-module in ΦR(X) containing Φ.

For an arbitrary point ξ = (ξ1, , ξn) of ^^ the X-orbit X ξ

(2.2) ΛΓ ̂ K ί ^ . .^Jlvi. .v.eZ}

will be denoted by [0, ξoo\ and called an ̂ -dimensional "^-cycle". This terminology

may be justified by the following.

DEFINITION 3. The Jackson integral of a function on q* over the #-cycle [0, ξco~\q
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(2-3) /=[ Axlt--;xJ-O

for Ω = (dqx1/xί) Λ Λ (dgxjxj is defined to be the sum

(2-4) (1-qf Σ f(<lViξu---,gv"ξn)

— o o < V i , , v M < o o

if it exists.

It is obvious that

(2.5) f QjfΩ=\ f-Ω,
J[0,ξθθ]q J[O,ξθθ]g

for each j, and hence

(2.6) f QψΩ=\ f Ω,

We are particularly interested in the Jackson integral for Φ:

(2.7) Φ = Φ Ω ,
J[0,ξoo]q

which depends analytically on ccp vh v\ and ξ.

If Φ has a pole at a point of [0, ξoo]^ then (2.7) does not make sense. In this case

the #-cycle [0, £oo]g should be regularized as follows.

First we note:

LEMMA 2.1. For each i, the function

(2.8) Ui(ω) = qnM2l2χpi x^Θiv^)

is invariant under the displacements Qu ',Qn, where qPi denotes ( — ly^^ vfi{Xj)-
q-μi(Xj)l2

PROOF. This follows from (1.12) and the formula q ^

Suppose a factor (i^Ooo °f t n e denominator vanishes at a point of [0, ξoo~]q so

that Φ has a pole at a point of [0, ξoo]r Since 6>0v^0 = (^*μ9oo0^f ^""Ooo(4)oo> Φ ^ . W

no longer has the factor (i^Ooo in the denominator. Moreover it satisfies the same

system of difference equations (1.13) as Φ. In this way, the integral Φ may be replaced

by ΦUi so that the zeros of (ι\ocμi)oo a r e avoided.

This regularization is equivalent to taking the residues of Φ at each pole lying in

[0, ξoo\. We call this procedure the regularization of integration and the corresponding

cycle the regularized cycle of [0, ξco\ which will be denoted by reg[0,
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By substitution of integration x^xfl (1 <j<ή) and by (2.5), we have a formal
system of ^-difference equations:

(2.9) π (»&?X1) • • &IU%M*= Π M2?' t e l ) 0 ί Λ t

for each7, \<j<n and

(2.10) Qϊi

1Φ = (l-viQ
μ

1

iiχi) - - Q^{Xn))±ιΦ

(2.11) Q*i

1Φ = (l-v'iQ
f(iiχί) Q^iXn))TίΦ.

One may naturally ask the following questions:

QUESTION 1. Do (2.9)—(2.11) really define a holonomic q-dijference system in the
variables upVj and v) in the sense of [A4] ? Namely, do there exist a finite number of
elements κl9 * *, κm of s/ such that s/Φ is contained in the linear space spanned by
κxΦ, , κmΦ over R(X)Ί Or equivalently, does there exist f^, ,fmeR(X) such that

m

(2.12) κφ=ΣfjKjφ

for every κes/Ί If this is the case, then what is the rank of the system (2.9)—(2.11), which
is defined to be the minimal number among such m ?

For / = Φ - φ, φeV, we have:

(2.13) Φ(ω)φ(ω) Ω=\ Φ(ω) bχ(ω) Qχφ{ω)-Ω

because Ω is invariant under the operation Qχ, i.e.,

(2.14) Φ(ω)(φ(ω) - bx(ω) Qxφ(ω)) Ώ = 0 .

This suggests us to consider the residual space

(2.15) V/\ Σ (1 -bx(ω)Q*)v}*V/\ Σ Q-bXj(ω)Qj)

This can be regarded as a ^-analogue of the twisted de Rham cohomology group (see
[A3]). We shall denote it by HΦ(V, dq) and call it "the ^-twisted cohomology group"
associated with Φ.

QUESTION 2. Is Hφ{V,dq) finite dimensional! If so, how can its dimension be
determined! How can one find out a basis of Hφ{V,dq)Ί

QUESTION 3. What is the dual space ofHφ{ V, dq) ? Is it represented by special kinds
of q-cycles ? By what kind of q-cycles ?



80 K. AOMOTO

QUESTION 4. Find out asymptotic solutions for Φ for α,—• + #) and vh v'i-+±ao.
Classify all different kinds of asymptotics for Φ.

We do not have any complete answer to these questions. We shall only give a few
examples in the next four sections.

3. H = 1 , ̂ -analogue of Jordan-Pochhammer case. A multiplicative function Φ
can be written as

(3.1) Φ = f]J

for u=<f, qβj and XjsC*. The integral over a suitable ^-cycle

(3.2) Φ =

is a ^-analogue of Jordan-Pochhammer integral. We put QU = Q and QXj = Qj. Then the

system (2.9H2- 1 1) becomes

(3.3) ft (I-^Q)Φ= f[ f 1-—

(3.4) QjΦ= q0Γ- Φ, Q^Φ = ί ί — Φ,

i ^ Q 1 δ

(3.5)

Hφ(V,dq) is spanned by a basis consisting of φj = (l — t/xJ)~1 for l < j < m . Hence
dim HΦ( V, dq) = m. We denote by <φ> the integral of Φφ and put (Φ} = Φ. Then we have

(3.6) Q±1«φi>, * , <<^» = (Oi>, , <φm»Λ± ,

(3.7) Qf'KψiX * , <Vm» = «^i>, * , <φm»Λ±j9

(3.8) dis\<Ψi\ ' , <Φ».» = «Φi>, • , <<Pm»A±βj

respectively, where A±=((a±;Kl)), A±j = ((a±jiktl)), A±β. = ((a±βj.kJ)) denote matrices
whose entries are rational functions in up Xj and qβj. More explicitly:

P R O P O S I T I O N 3 . Suppose xjxj and Xiqβj/Xj are different from 1, q±1,q±2, ••• for

each pair i,j such that iΦj. Then
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(0 <*srtu= — ί
Xr

00 a+;ij=- xjfi(χ) + xA,j >

\ Xj

Λr a \ f—r / A;

π

\ X/
IΦi

Π
<l<
IΦi

where fι(x) denotes the rational function

(3-9)

Hence for any φeV the integral <φ> w ̂  linear combination of <Φi), * * , <</>m)
rational function fields in u, qβ\ Xj. In particular

(3.io) φ = Σ / ; w<Φί >

By substitution t = x}q in (3.2), the integral of Φ over [0, x7 oo]4 gives the asymptotic
of Φ for w->0 (α-> + oo):

since in this case the sum (2.3) runs over only the set [0, xj\q = {xflv v= 1, 2, 3, •}.
There exist exactly n such asymptotics which correspond to m linearly independent
solutions of (3.3). Mimachi [M2] has solved the connection problem attached to these
asymptotics.

4. Basic Lemmas and Main Theorem. From now on, we take as Φ the following
function which is attached to the arrangement of A-type root system (see [A6] for
polynomial versions):
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(4.1) * = /?•••# Π

where we let t0 = 1. We consider the integral

(4.2) Φ =

over a suitable g-cycle. It is a function depending on Uj = qaj, βij9 β'i;j.

Because of symmetry it is convenient to put β'jti=\—βu. and β.Λ=\—β'u.. We

may put β'O J = 0.

Many authors have investigated basic hypergeometric functions as generalizations

of Heine's hypergeometric function. Except in one variable case, these seem to be includ-

ed in the set of functions Φ of type (4.2) provided that they are not confluent. In fact,

Φ is an extension of classical Barnes type integrals found, for example, in [S3] and

[ G l ] . The Milne's hypergeometric functions (see [Ml]) are similar to our Φ, although

they have additional parameters. For the case q=\, see also [G2] and [G3], which

study Barnes integrals from the view point of Grassmannian geometry. It is not

certain whether our approach is connected with Grassmannian geometry or not.

Assume the following conditions:

(Jf-1) For arbitrary arguments i0, il9 , ir, 0<iv<n, which are different from each

other,

(4.4) α^ + α^+ +

(Jf-2) α l 5 α2, * , αΛ are all sufficiently large numbers.

(Jtf-3) For an arbitrary partition {0, 1, , n) = Sι + S2 such that 0 e K(SΊ),

(4.5) Σ *j+ Σ (βιj-β'ij)φZ.
jeV(S2) ieV(S1),jeV(S2)

We denote by Qf1 the operations uj\-^ujq
±1 for functions of u = (u1, , un) =

qaι, ,qan) by the displacements of the j-th coordinate w, . Then the ^-difference

equations for Φ in the variables u are given by

(4.6) Π ( δ r / ; j ά K " l φ ~ = Π i&i-tf' 'Qr)Φ
jΦr J*r

(4.7) Qβlβ=(Qi-qβ'i iQj)~1QiΦ,
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(4.8) QβiJΦ = (Qi-/i'j-ίQj)Q^Φ,

(4.9) Qβiβ={Qi-qβijQi)Q;ιΦ,

(4.10) Qϊi

ί

jΦ=(Qi-qβi>j-1QjΓ1QiΦ,

where Qf*j9 QpUi and Qf*p Qp^ are the operations on Fand Φ Vrespectively induced

by the displacements βij->βitj± 1 and β\,,—•>/?}ί7 + 1. Note that

(4.H) δί1

(4.12) Q^j ^ p j

for ^ ^ ( ρ i ^ Φ V Φ a n d »"#> = (Q^.Φ)/Φ, respectively.
WffiQjjr.1. and WfflQp^j are nothing but a q-analogue of the covariant differenti-

ations.

Our main result states that this system of ̂ -difference equations is actually holonomic

and has rank (n+ I ) " " 1 . This can be shown by the aid of some results in elementary

graph theory. Before stating our Theorem, we need a few preliminary lemmas.

We denote linear functions of to = 1, tl9 , /„, ti — qβujtj9 and ti — qβujtj by (ij) +

and (ij)- respectively. A rational function φ = (ii,j1)eί

ί • ' ( W r K 1 f°Γ e a c n ε v= ± 1

defines a graph G = Gφ with directed edges zv,yv and the set of vertices {iuju , Wr}

The edge /v,yv is directed from iv to yv, i.e., iv -+jv or from yv to iv, i.e., 7V -• iv accord-

ing as ε v = + l or — 1 . We denote by ^ G = ΓΊV = I (Wv)εv>
 t n e product of all factors

(h'JiXi* " '* (inJrXr F ° r an oriented graph Γ we denote by V(Γ) and E(Γ) the sets

of vertices and edges of Γ, respectively. To each edge e of E(Γ) there corresponds a

unique linear function (e) = (i,j)ε for ε = — 1 or 1.

DEFINITION 4. Γ is said to be a spanning graph if V(Γ) contains all the vertices

{0, 1, , n}. A forest is a graph without any circuit. A spanning forest F is admissible

if and only if the number of edges | E(F) \ equals «, i.e., F is a tree. A spanning forest

Fis said to be subadmissible if | E(F) | =n— 1. In this case Fis a semi-tree, i.e., a disjoint

union F=F1+F2 of only two trees Fx and F2 such that K(FX) contains the root 0 and

V(F2) is disjoint from {0} (see [T]).

We denote by &r

ί and J^ 2

 t n e s e t °f a ^ admissible trees and that of all admissible

semi-trees, respectively. The evaluation of (e) for eeE(Γ) at some point ί e # ^ will be

denoted by <(e), />. When Γ is a tree such that 0 e V(Γ), we denote by p(j) the predecessor

of a vertex 7 of Γ, i.e., the vertex of Γ lying in the path connecting 0 andy such that

dis({/?(/)}> {0}) = dis({/}, {0})— 1, where dis means the distance between two vertices in

the graph Γ.

LEMMA 4.1. For an arbitrary admissible tree T the equations

(4.13) <(«?), 0 = 0 , eeE(T),
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have a unique solution.

PROOF. Indeed tj can be uniquely solved by induction on dis({0}, {j}). If y = 0,
then tj = t0 = 1. Suppose that dis({0}, {j}) = N and that all tk for dis(0, k) < N are already
solved. Then tj is uniquely solved by one of the above equations (p(J)J)+—® O Γ

(P<J)J)-=O.

LEMMA 4.2. For an arbitrary connected spanning graph Γ containing a circuit, we
have a unique partial fraction expansion

(4.14) J-= Σ -i-7-^Z
ΔΓ eeE(Γ) ΔΓe \e, t )

where t is uniquely determined by the equations <(e), / > = 0 for all eeE(Γe). Moreover
each Γe is an admissible tree.

PROOF. Indeed, since Γ contains a circuit, the constant 1 is a linear combination
of linear functions (e) for eeE(Γ):

(4.15) 1= Σ <*e(e), f ° r aeeC9

esE(Γ)

which is equivalent to (4.14) by division of both sides by ΛΓ.

Let f be an oriented graph containing Γ, i.e., such that E{Γ)ZDE(Γ). f — Γ denotes
the subgraph complementary to Γ in f, i.e., such that E(f-Γ) = E(f)-E(Γ). We put
^ f - r = Y\e e E(f - r)(̂ )> w r i e r e (£) denotes the linear function (i,j)-ε oppsite to (e) = (ij)ε,
ε=±l.

Then the following first basic lemma holds.

LEMMA 4.3. Suppose that Γ is an admissible tree. Then

(4-16) i ^ = Σ -?Δf Tczf
 Δτ

where T runs through all admissible spanning trees in f. Each cτ is given by

(4.17) cTJ
f

Δt

where tτ = (tTj)ί<j<n denotes the unique solution of the equations (4.13).

PROOF. We prove the lemma by induction on the number JV= | E{f — Γ) \ = | E(f) \
— \E(Γ)\. When N=0, then f coincides with Γ so there is nothing to prove. Suppose
the lemma has been proved for N<M— 1. We must prove it for N=M. There exists
at least one edge eoeE{f — Γ). Then there exists a circuit # in f such that
and E(<£eo) aE(Γ). Then
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(4.18)

A fortiori

(4.19) ψ= Σ a*

since (e0) is a linear combination of eeE(%>):

(4.20) (eo)= Σ
eeE(

Hence

Λf r Δf _ Γ ( £ 0 ) _̂  At _Γ(4.21) r - ^ = reo r v o; ^ flifo[

Δf Af e

F i r s t a s s u m e eoφe, i .e . , eeE(Γ). S i n c e f e o - Γ = Γ β - ( Γ e u { έ ? 0 } ) a n d | ( e

u { e 0 } ) I = I E(f — Γ) I - 1 , b y t h e i n d u c t i o n h y p o t h e s i s w e g e t a p a r t i a l f r a c t i o n

(4.22) ^ f ^ = Σ aί-J-

where T runs through all admissible spanning trees of f e. On the other hand if e = e0,

then feo^Γ and we have again \E(feo-Γ)\ = \E(f-Γ)\-l. Hence by the induction

hypothesis

(4.23) % ^ = Σ *ϊ-f

Summing up (4.22) and (4.23), we get

(4.24) i ^ = Σ « e%^= Σ a. Σ lί-^-.

Any admissible spanning tree of fe being also an admissible tree, we have finally the

formula (4.16). The expression of (4.16) is unique. Indeed by residue calculus on both

sides of (4.16), cτ is equal to (4.17).

The second basic lemma is as follows:

LEMMA 4.4. Let Γ = Γ1-\-Γ2 be a semi-tree such that Oe K(ΓA) and 0 is disjoint

from V(Γ2). Let f be an admissible graph containing Γ. Then

(4.25) i ^ = Σ ^ + Σ ±-
Δp Te&χ Δτ Fe&2,F1^Γί ΔF
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for

(4.26) aτJ-l^

where F=F1 + F2 such that Oe V(FX) and where tF(λ) denotes a non-zero solution of the

equations

(4.27) <(έ?),f> = 0 for any eeE(F).

This solution is not unique and can be written as t = tF(λ) = tF

0) + λtF

1) for an arbitrary

parameter λeR. tψ^ and tF^ denote real constants. tF j = tp0^ is unique for je F\ and tp0^ = 0

for je V(F2). tF

1}j = Ofor je F(FX) and t^pje V(F2), differ from zero and are determined

uniquely except for a scalar factor.

PROOF. Choose an edge (e0) e E(f) outside E(Γ), such that Γ u {e0} is a spanning

tree. Since Γ=>Γu {e0}, by the preceding lemma we have

ίAΊΛ\ I f - r , ^ - r u { e o } (go)_ v n (eQ)
\^.ZQ) - - — l^ aT~~A '

Δf Δf Te&uT^Γ Δτ

for aτeC. Since each (e0) is a linear combination of (e) for eeE(Ύ) modulo constants:

(e0) = c0 + Σee£(r) Ce' (e) ^O Γ CeG C and since (e)/Δ T=\/Δ Γ e , each (eo)/Δ τ can be written as

(4.29) ^L= Σ "e-i—
Δτ ee£(T) ΔTg Δτ

Te is a semi-tree: Tee^2. Hence we have from (4.28) an expression

(4.30) ^-= Σ •vL+ Σ - T 1 -

Through residue calculus, c Γ and cF are given by Af-r(h)lΆf-Ah) a n ( l

1 ^ ^ ^ Δf-r(tF(λ))/Δf-F(h(λ)), respectively. We must show that FίaΓ1 for

F=Fί +F2. Suppose the contrary is true: Fίή:Γί9 i.e., there exists an edge eeE(F1) —

J. Since for any e

(4.31) Um<(6),/F(λ)>/A = 0 for

= non-zero constant for e e E(F2),

we have

(4.32) l i m Λ
λ-oo ^

Hence cF must vanish unless E^F^a EiΓ^). The proof of the lemma is now complete.
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One can formulate the third main lemma as follows:

LEMMA 4.5. Γ be a spanning forest with two components /\ and Γ2 such that
Oe V(Γ\) and je V(Γ2). Let Γ be an admissible graph containing Γ. Then

(4.33) ti1^ίrL= Σ «τ-f-+ Σ v / 1 - } -
Δf Te&i ΔΎ Se^ 2 Δs

where Se&r

2 denotes a forest with two components: S=Sι+S2 such that E(S2)c^E(Γ2),
OeViSJandjeViSJ.

PROOF. According to (4.25),

-Γ r " 1 τ-« , 1
(4-34) ^ - Γ - Σ a ' + Σ -, .

Δf Te&i tjΔτ Fe^2,Fι^Γι tjΔF

aτ, bF e C, where je V(F2) since ^(^2) c= V(F2). For each Γon the right hand side we have

(4.35) 1 = cotj + Σ ce(e) 1 f°Γ some c0 and ceeC.
eeE(T)

Hence

(4.36) -^L.=Co-L+ X C e _J_.

Since Tee^2, from (4.34) and (4.36) tj 1Af_Γ/Af can be reexpressed as

(4.37) ^-= Σ <$4-+ Σ *?-V,
^ i

for some a%, b% s C. a% and b% are uniquely determined by the residue formulae:

(4.38> a*τ=
 3f~Λtτ) and bjJ

where tτ = (tTJ)1<j<n denotes the solution of the equations <(e), /> = 0 for all eeE(T),
while tF = (tFJ)1<j<n denotes that of the equations <(e), t} = 0, for all eeE(F) together
with ί, = 0. Clearly, tFΛ vanish for ke V(F2). Hence Af-r(h) vanishes if it contains a
factor (e)eE(F2), i.e., bf vanishes if E(f-Γ)nE(F2)Φ0. In other words, if bf differs
from zero, then £'(F2)c:Je

r(r1)u£'(r2). Being a tree such that je V(F2), F2 must be
contained in Γ2. In this way (4.33) has been proved.

DEFINITION 5. An admissible labelled tree Γ is called terminal if every edge e e E(Γ)
is directed towards the vertex 0.

We denote by $ the linear space spanned by admissible forms φΓ associated with
admissible labelled trees Γ with directed edges. We also denote by 380 the linear space
spanned by terminal admissible forms φΓ for labelled trees with terminal directed edges.
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The inclusion i: J^o i—• Fgives rise to a homomorphism

(4.39) ιφ : @ov-*Hφ{V, dq).

Then our Main Theorem can be stated as follows:

THEOREM. Under the assumptions p f - l ) ~ p f - 3 ) , i^ is an isomorphism. Hence

5. Proof of Theorem.

LEMMA 5.1. Suppose Γ is an admissible tree.

(5.1) bχ'Q
χ<Pr^0

for any χeX+ if and only if Γ is terminal, i.e., φΓ does not admit any transformation

φΓ

]r^bχ QχφΓfor χeX+, where X+ denotes the abelian semigroup generated by χu ,

In *" X.

PROOF. Suppose Γ is terminal. We take an arbitrary X = Σ"==1v7 χJ eA r +. Let k

be the vertex nearest to 0 in V(Γ) such that v k >0. Then bχQ
χφΓ contains

('p(fc)-tf/^(k)'k'fc)~1 * ' ' ( ' p w - V ^ ' * " ^ * ) " 1 as an irreducible factor. Hence (5.1) holds.

The converse is proved below.

The first main result which we want to prove is the following.

PROPOSITION 4. An arbitrary admissible form φΓ which is not terminal is co-

homologous to a linear combination of terminal admissible forms. More precisely,

(5.2)

PROOF. Assume that φΓ is not terminal. Then Γ being a spanning tree, there exists

an edge e = (i,j)- directed from i toj such that/;(/) = /. The deleted graph Γe is divided

into two components J\ and Γ2 such that Oe F(J\) and that V(Γ2) is disjoint from {0}

(see Figure 1). We apply the transformation tk\-^tkq for all ke V(Γ2). Then

(5.3)
ΔΓ At

= 0 modJ'n
χeX*

f

FIGURE 1.
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where f denotes a graph such that (i) V(f)=V(Γ) and (ii) E(f) = E(Γ1)u

E(Γ2)υ \Jh€Virl)tkev(r2) ^ fc) + F r o m Proposition 1 we have

(5.4) — f l - ^ " | £ ( Γ 2 ) l X aτ — = Q mod^n £ (\-bχQ
χ)<%,

where in particular α Γ = 1. Hence the relation (5.3) is rewritten as

(5.5) ( 1 - ^ )
ΛΓ u τ χ

In this way we have (2n — \){n + l ) π " 1 relations corresponding to non-terminal admissible

forms. (jtf'-l)~(Jtf'-3) enable us to solve these equations with regard to non-terminal

admissible forms, i.e., each non-terminal admissible form is cohomologous to a linear

combination of terminal admissible forms. This is exactly what we wanted to prove.

LEMMA 5.2. Let Γ be an arbitrary spanning forest with two components,

Then φΓ = Ω/AΓ is cohomologous to a linear combination of admissible forms, i.e.,

(5.6) φΓ = 0 mod^+ Σ (l~-bχQ*)V.
χeX

PROOF. Γ consists of two disjoint trees Γx and Γ2 such that Oe F ( Γ X ) and 0 is

disjoint from V(Γ2). The lemma can be proved by induction on ^ ( Γ J I . Indeed, we

can apply to Ω/ΔΓ the substitution (,—>*# for all^e V(Γ2). Then as in (5.3),

(5.7) — — ^ 2 ~ | £ ( Γ 2 ) I Af~Γ Ω = 0 mod Σ ^~bχQ
χ)V.

By Proposition 2, J f _Γ/zlΓ can be written as

(5.8) Σ aτ^~+ Σ ^ s ^ -

where S=Sί + S2 runs through the set of all the semi-trees such that EiS^aEiΓ^. aτ

and bs are given by the formula (4.26). Hence we have

(5.9) A _ ^ r 2 - | E ( r 2 ) i | Σ a O + Σ έ s | 0 odΣ
Δτ LTe&i Δτ Se&2 Δs ) χeX

where bΓ is given by ΣheV(r,),keV(r2)βh,k-β'h,k- τ h e n ( 5 9 ) c a n b e rewritten as

( Γ h k V i r ) β h k - β h ^(5.10) ( i - q * r ^
Δ Γ

Δτ
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Since each O/zl5 in the last part is cohomologous to an element of 88 by the induction

hypothesis, so is Ω/AΓ. The proof is now complete.

LEMMA 5.3. For an arbitrary admissible form φΓ and an arbitrary j , 1 <j<n, tjψΓ

is cohomologous to a linear combination of admissible forms, i.e.,

(5.11) tj(pr~Q

PROOF. Indeed, there exists a unique path [yo,7i, * Jm-uΠJo = 0 a n dy m =7, in a
Γ

(5.12)

tree Γ so that /,- can be written as

v = l

for c0, c v e C and (ev) = 0'v-i>Λ)+ s o t h a t

(5.13) ^ = ^ + f ;

Since Γe v is a spanning semi-tree, we can apply Lemma 4.4 to Ω/AΓβv so that

β/J Γ β v ~6 mod J*. This shows (tj/AΓ)Ω~0 mod J*, since Ω/ΔΓe@.

Similarly, we have:

LEMMA 5.4. Under the same circumstance as in Lemma 4.5, we have tj1ΩIΔΓ~

0

PROOF. We can apply the substitution tk\-*tkq for all ke V(Γ2). Then as in (5.3)

(5.14) ^rrt q t

ΔΓ Δf

By Lemma 4.4,

(5.i5) o " 1 " τ - L = Σ tfr—+ Σ ^ o x —

since *S is a semi-tree with two components Su S2 such that je V(S2), E(S2)

and 0 e FίiSJ. αΓ and b s are given by (4.25) for the solutions tτ and ts of the equations:

φ\ ίΓ> = 0 for eeE(T) and <(e), ίs> = 0 for eeE(S) together with ^ = 0, respectively. bs

vanishes unless E(S2)aE(Γ2). Hence

(5.16) ίj-iA
Δ Δτ
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or equivalently,

(5.17) ( l l * ( r ) | i i i L
ΔΓ

since bΓ = 1. By induction, the system of equations (5.17) for all the forms tjxφr, with
φΓ admissible, can be solved concerning tj ιφΓ in such a way that tj 1φΓ is cohomologous
to a linear combination of admissible ones. This implies the lemma.

PROPOSITION 5. For an arbitrary admissible φΓ = Ω/AΓ and any j , 1 <j < n, we have

tjιφr~® mod#•

PROOF. AS in the proof of Lemma 5.3 there exists a unique path {Jθ9jί9 " 'Jm-uΔ
in Γ such that (5.12) holds. (5.12) implies

(5.18) 1 _ ! _L_ f fL 1

v = l

(remark that c o # 0 by hypothesis), i.e.,

1

(5.19) _ L

From Lemma 4.4 ί2/JΓe ^0 mod^, whence Proposition 5 follows.

COROLLARY. ^oTJβ/^/p-O mod J>, W i j ^ ^ ^ O mod^, ^ ^ ^ . φ - O mod»
for an admissible φ.

PROOF. Indeed, W{

β

+

o

).Qβo.φΓ = (\-qβo>j-ιQJ)φΓ or (\-qβo^Qj)φΓ according as
(OJ).eE(Γ) or not. Similarly, W^Qβ^φ^Qr^Q,-^ ^'Q^r or β Γ 1 ^ -
qβi'jQj)ψr according as (iJ)_eE(Γ) or not, while W'i

iJ)Qβ^φΓ = Qr\Qi-aβ'i>JQj)φΓ

or Qi~1(Qi-gβuj~1Qj)φr according as (i,j)+ eE(Γ) or not.

PROPOSITION 6. (i) W'tpQ^ φΓ~0 modJ .
(ii) W^Qβ.^.ψΓ~0 mod J , for 0< i<j<n.

PROOF. Suppose first that E(Γ) does not contain the form (i,j) + . We denote by
f the graph obtained from Γ by adding the edge (i,j)+ to Γ such that E(f) = E(Γ) u {(/,/) + }
and F(Γ)= K(Γ). Γ contains a circuit ^ which itself contains (i,j) + . Then from Lemma
4.2,

(5.20) —= V α - L
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Since each Γe is a tree such that Oe V(Γe), Ω/AΓe is admissible, i.e., W'^Q^ Ω/AΓ~0

mod J*. Suppose on the contrary E(Γ) contains the form (Uj) + . Then

(5.21) * °
1 A ' ' Ί—f

Γ (£._qβi,jtj){ti — qβui + x tj) [\ (e)
eeE(Γe)

Γ(iJ)+ consists of two components of disjoint trees Γx and Γ2 such that {0, /}<

and {j} a V(Γ2). We apply to W'WQ^ Ω/ΔΓ the substitution tk\-+q~ι ίk for all ke V(Γ2).

Then

(5.22) - — ~ Ω

q Ω

ι > J Δ Γ Δf

where Γ is a graph containing Γ such that

(5.23) V(f)=V(Γ),

(5.24) E(f) = E(Γί)uE(Γ2)u [} (A, fc)_u

where (Λ, k)Φ(Uj). From Lemma 4.3 we have the partial fraction on the right hand side

of (5.21). Hence the proposition follows.

From Propositions 3 and 4 applied to an arbitrary admissible form φΓ

(5.25) β ^ V r - O modJΌ

(5.26) W'ffQfcφr-O mod^0

(5.27) WffQ^ΨΓ-O mod^0.

Since ΦV=stfΦ = s/(Φ&0), an arbitrary element φe V is cohomologous to an element

of ^ o : φ~0 mod^ 0 . This implies the following:

PROPOSITION 7. The map i^ defined in (4.39) is a surjection.

We can now prove the Theorem in Section 4.

PROOF OF THEOREM. For each unoriented admissible labelled tree f, the point

7= (77^ <7 <π e q* is defined by the equations: TpU) = qβp^-j Tj9 and To = 1. We can construct

a cycle c(T) = c(t) consisting of countable points given by

(5.28) q ^ ' z \

To each f corresponds a unique terminal admissible tree and vice versa. Thus the set

of unoriented admissible labelled trees is in one-to one correspondence with that of

terminal admissible forms. The number of such trees is equal to μ = ( « + l ) n " 1 . Let

Tu - , Tμ be the totality of them. We must prove that these are linearly independent

in HΦ(V,dq). It is sufficient to prove that the determinant of the period matrix
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M=((φTi, £(Tj)))ί<iJ<μ does not vanish. This can be shown by asymptotic argument

as follows.

We consider the integration of the functions Φφ, φe&0, over the cycle c(T). The

function Φ has no pole on c{T) if and only if Γis standard, i.e., p(j) <j for eachy'e V(T).

If Γis not standard, we replace c{T) by its regularization reg^(Γ) by taking the residues

of Φφ at the poles of Φφ. The crucial fact is the following:

LEMMA 5.5. For 0Lj = ηjN-\-0ί'j{ηjeZ+,α}eC), 7V-> + OO, the integral of an terminal

admissible form φτ*

(5.29) ί Φφτ,Ω^(l-q)%q)lTV-δl''-C-δ^l+θ(j^

or

(5.30)

according as T* = T or T* Φ T, where δj + 1 denotes the degree of the vertex j in T*. The

same holds for the integration over reg c(T).

PROOF. The function Φ has an expression

(5.31) Φ = (tγ tη

n

n)Ntf tf Π , V / Λ *
0<i<j<n(qPl'Jtj/ti)o0

By assumption the function | t\x tη

n

n | has maximal value at / = F o n c{T) or reg^(Γ).

It is unique, i.e., \t\l 'tη

n

n\<\Tγ ' -Tη

n

n\ on c{T)-{Ί). If T*ΦT, then the factors

\-qβi'jtj/tpij) appear in the numerator of Φ/Aτ, while if Γ* = Γ, all the factors

1 -qβ'pu),Jtj/tpU) disappear. Since all these factors vanish on c(T) or reg^(Γ), Φ vanishes

at t = T(T*) for T* φ T, while Φ is equal to

_ _ (aλn

(5.32) /i1 /Jn — for Γ* = T.
Π (πβiΉ -It )

This shows that the period matrix M is asymptotically equal to a diagonal matrix whose

entries are represented by the principal terms in (5.29) for each unoriented admissible

labelled tree T. In other words, the matrix M is non-singular for sufficiently large

α l 9 , απ. Hence φ Γ l , , φTn are linearly independent in HΦ(V, dq). The theorem has

been proved.

COROLLARY, { ^ Γ J ) , , (φTμ) satisfy the normal holonomic q-dijference equations

(5.33) Q]
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(5.34) Q

(5.35) Qt μ μ / ; ,

respectively. Here Λf, A±β. . and Λ±β>_ denote matrices of degree μ over the rational

function field C((ul9 q
βk-\ /"'')o<k</<π) lt These are equivalent to (4.6)^(4.10).

REMARK. The set of all directions η = (η1, * , ηn)eZn — {0} giving inequivalent

asymptotic behaviours of Φ are divided into a finite set of rational polyhedral cones in

Qn. This defines an ^-dimensional toric variety which may be singular in general (see

[Ol] for the definition). The connection coefficients among asymptotic solutions along

different directions η can be described in terms of transition matrices on this variety.

The combinatorial structure of them will be presented elsewhere (see [A5]).

6. The basic hypergeometric function of third order. The case n = 2 is given by

the basic hypergeometric function

(6.1)
d,e n=o{d;q)n(e;q)n{q;q)n

for a, b, c, d, eeCand (a q)n = (a)J{aqn)OQ etc., such that d9eφl9q \q 2 , . It has

an integral representation

(6.2)
\d9e

a, b, c
x ]=-

(cii)Ja2)O0(b1/a1)a0(b2/a2)0

ίi > t 1 > τ 2 > o

ί -a2 τa2 (Tl^)ao(^2Al)OoKT2x)o o ^
2 (biτί/a1)Jb2τ2/(a2/τ1))OD(τ2x)OD τ1τ2

for b = gαi and c = #α 2. This integral coincides with (4.2) by putting a11—• αx — α2, α2ι-> α 2,

^o, i __^ ^ o , 2 _ ^ ^ ^o, i _b 1/a 1, qβo>2 = x,qβl'2 = q and qβί-2 = b2/a2 in (4.2). For brevity

we put β0 i = j 8 l 5 JSQ i = βii βi i — β' and jSx 2 = β. We have dim«^0

 = 3 due to the

Theorem. The basis is given by

(6.3) φ τ = - — -, φτ=- wr— and ωτ=- Λ . .

corresponding to the terminal admissible trees Tu T2 and Γ3, respectively as in Figure

2. In addition to these it is also convenient to consider the forms

(6.4) ΨΎA — τ,— and ωτ =

corresponding to the admissible trees Γ4 and T5 which are not terminal (see Figure 2).

There are two linear relations among them as follows:
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τ2 τ3

Γ 4 T5

FIGURE 2.

(6.5)

fl-V2 Qβ2-Qβ' \-Qβl

(6.6) {
From these relations one can solve φT4 aand φTs as linear combinations of φTί, φTl

and φ Γ 3 , provided (1 -^ 1 ~ / ϊ )(l -qβ')-qΛι+Λ2~\\ -qβϊ)(\ ~ / 2 ) # 0 , i.e.,

(6.7) <Pτ4~0 mod^o and φ Γ 5 ^ 0

To find the formulae for g x and (?2 o n e needs the following:

LEMMA 6.1. We have the relations

(6.8) ( l - # α i + '

— : τ=\ <<PTΊ> + ΠΓTΪ <^r 5 >

, ^ Λ X x- «.._!_«. L-β.-l-fl 1x / " ^
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(6.10)
l-t

(6.8)-(6.11) can be derived as in the proof of Lemma 5.2. They enable us to express
- O X <Ω/(l-ί2)>, <Ω/(/i-/'ί2)> and <Ω/(ί x -/-%)> in terms of <<pΓ.>,

1<;'<5. Since

(6.12) βi<ς»r,> = <<pΓl>

(6.14)

(6.15)

(6.16)

we get from the formulae (6.8)—(6.11) the following:

LEMMA 6.2.

(6.18)
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(6.19)

(6.20)

= <φTί>+ χgX2+β2+β.β. (VT^-

(6.21)

(6.22)

(1 -gβ'Xgβt-qβ ) (1 -
< < P > +

so thai

(6.23) δ 2 < φ Γ 2 > - ^ " ^ 2 < Φ r 1 > - ^ ' ^ 2 < Φ r 4 > = ^ ' r {<Φr 2 >-<Φr 1 >-<Φr^

To compute the formulae for Qϊ1 and Q21, one needs the following two lemmas,
which can be obtained as in the proof of lemma 5.4.

(6.24)

LEMMA 6.3.

Ω

(6.25)
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Ω
(6.26)

LEMMA 6.4.

(6.28)

(6.29)

= q«

(6.30)

From these two lemmas one can express

Ω \ I Ω \ I Ω

\tί(t1-qβ'ί2)/' Xt^-t

and

Ω \ I Ω \ I Ω
(6.31)

as linear combinations of <φ Γ l >, <Φr2>, <Φr 3 ) ? (φτ4}> a n d <Φr5> Since we have



(6.32)

(6.33) " " ' Ω
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Ω

(6.34)

(6.35)

< 6 3 6 )

we can conclude:

PROPOSITION 8. QViVr^ and Q21<\(PTJ}> 1<7<3, «r^ written as linear

combinations of(φTl}, <φΓ 2>, <ΦΓ3>, <Φτ4>? <Φr5>? respectively.

Since β ^ 1 and β^ are written by using g * 1 and Q 2

 a s

(6.38) Qi1 = Ql1(Qi-gβ'-1Q2) for < φ T l > , < Φ r 3 > ,

(6.39) Qϊ^QϊKQi-qP'Qi) for <Φr2>,

(6.40) Qβ = Qϊl(Qi-qβQ2) for <φ Γ l > , <<Pτ2>,

(6.41) Qβ-QϊKQi-tf^Qi) for <<Pr3>,

we get the following:

PROPOSITION 9. Qβ^iφrj} and Qβ^Ψτ^)^ 1<7<3, «r^ written explicitly as linear

combinations of ( ^ Γ J ) , ^^P^), < Φ Γ 3 X < Φ Γ 4 ) ŵrf (ΨTS) through the formulae

(6.38)-(6.41). Γ/ze /α/^r αre expressible as linear combinations of <φ Γ l >, <Φr2> ««<i

<φΓ 3> through (6.5)-(6.6).

The formulae for β * 1 , β^ and β ^ 1 give a complete system of contiguous relations

for the basic hypergeometric series 3 φ 2 .

REMARK. TO prove the Theorem we have used asymptotic behaviours of integrals.

However it is desirable and is probably possible to give a purely algebraic proof of the
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Theorem.

The author is grateful to M. Kita for useful suggestion of formulating a ^-analogue
of Z>-functions. He is also grateful to the referee for careful reading and several
improvements.
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