DISTRIBUTION FORMULA FOR TERMINAL SINGULARITIES
 ON THE MINIMAL RESOLUTION OF A QUASIHOMOGENEOUS SIMPLE K3 SINGULARITY

Dedicated to Professor Ryosuke Nakagawa on his sixtieth birthday

Kimio Watanabe

(Received May 1, 1990, revised December 13, 1990)

Introduction. Let (X, x) be a germ of a normal isolated singularity of dimension three and let $\sigma: Y \rightarrow X$ be a minimal (partial) resolution, i.e., a relatively minimal model of a resolution. The singularity (X, x) is called a simple $K 3$ singularity if it is quasi-Gorenstein and if the exceptional set of Y consists of a single normal $K 3$ surface D. Here we call D a normal $K 3$ surface if the minimal resolution of D is a $K 3$ surface. Y may still have finitely many terminal singularities $\left\{y_{i}\right\}$ along D.

When a simple $K 3$ singularity is defined by a quasi-homogeneous polynomial of type (p, q, r, s), the minimal (partial) resolution of the singularity is given by the so-called α-blow-up (see Reid [R, p. 297]). In this case, the terminal singularities $\left\{y_{i}\right\}$ along the exceptional set are all cyclic terminal singularities, and the minimal resolution is unique (see Tomari [T, Corollary 4]).

In this paper, we obtain a simple formula describing the distribution of terminal singularities of the minimal resolution in terms of the type (p, q, r, s) of the quasi-homogeneous defining polynomial for the simple $K 3$ singularity:

$$
24-\sum\left(r_{i}-\frac{1}{r_{i}}\right)=\frac{(p+q+r+s)}{p q r s}(p q+p r+p s+q r+q s+r s)
$$

where r_{i} is the index of the terminal singularity y_{i} (compare Theorem 4.4 and [KT, Theorem 9, p. 360]).

For the simple $K 3$ singularity (X, x) we define integers by

$$
c_{m}(X, x):=\operatorname{dim}_{c} \frac{\Gamma(Y, \mathcal{O})}{\Gamma(Y, \mathcal{O}(-(m+1) D))}
$$

and the Poincaré series

$$
P(t ; X, x):=\sum_{m=0}^{\infty} c_{m}(X, x) t^{m}
$$

which is a formal power series in an indeterminate t. By the Riemann-Roch theorem for normal isolated singularities (Watanabe [W3]), the Poincaré series can be expressed
in terms of the intersection numbers of the exceptional set on a good resolution $\rho: M \rightarrow Y$.

1. Definition of simple $K 3$ singularities. In this section, we recall known results and basic definitions together with examples.

Definition 1.1 (Reid [R]). A germ (X, x) of a normal singularity is said to be a terminal (resp. canonical) singularity if the following two conditions are satisfied:
(i) There is an integer $r>0$ such that the multiple $r K_{X}$ of the canonical divisor K_{X} is a Cartier divisor (the smallest such r being called the index of (X, x)).
(ii) Let $\pi: M \rightarrow X$ be an arbitrary resolution, and let E_{1}, \cdots, E_{n} be the exceptional divisors. Then $r K_{M}=\pi^{*}\left(r K_{X}\right)+\sum_{i} a_{i} E_{i}$ with all $a_{i}>0$ (resp. $a_{i} \geq 0$).

Definition 1.2. If X is a normal analytic space, a partial resolution of the singularity (X, x) consists of a normal analytic space Y and a proper analytic map $\sigma: Y \rightarrow X$ such that σ is biholomorphic on the inverse image of the set R of regular points of X and that $\pi^{-1}(R)$ is dense in Y.

Definition 1.3. A partial resolution $\sigma: Y \rightarrow X$ of the singularity (X, x) is a minimal resolution if the singularities of Y are terminal, and the canonical divisor K_{Y} of Y is numerically effective with respect to σ (see [KMM, p. 291]).

By Mori [M, Theorem 0.3.12, (i)], there exists a minimal resolution of a normal three-dimensional isolated singularity.

Definition 1.4. A normal compact complex surface S is said to be a normal $K 3$ surface if the following three equivalent (see, e.g., Umezu [U]) conditions are satisfied:
(1) Its minimal resolution is a $K 3$ surface.
(2) $\omega_{s} \simeq \mathcal{O}_{S}$, and S is birational to a $K 3$ surface.
(3) $\omega_{S} \simeq \mathcal{O}_{S}, H^{1}\left(S, \mathcal{O}_{S}\right)=0$ and its singularities are at worst rational double points.

Definition 1.5 ([W1]). For each positive integer m, the m-genus of a normal isolated singularity (X, x) in an n-dimensional analytic space is defined to be

$$
\delta_{m}(X, x)=\operatorname{dim}_{\mathbf{c}} \Gamma(X-\{x\}, \mathcal{O}(m K)) / L^{2 / m}(X-\{x\}),
$$

where K is the canonical line bundle on $X-\{x\}$, and $L^{2 / m}(X-\{x\})$ is the set of all holomorphic m-ple n-forms on $X-\{x\}$ which are $L^{2 / m}$-integrable at x. Let $\pi:(M, E) \rightarrow(X, x)$ be a resolution of the singularity (X, x). Then

$$
\begin{aligned}
\delta_{1}(X, x) & =\operatorname{dim}_{c} \Gamma(M-E, \mathcal{O}(K)) / \Gamma(M, \mathcal{O}(K))=\operatorname{dim}_{c} H_{c}^{1}(M, \mathcal{O}(K)) \\
& =\operatorname{dim}_{c} H^{n-1}(M, \mathcal{O})=p_{g}(X, x),
\end{aligned}
$$

where $p_{g}(X, x)$ is the geometric genus, and the subscript c represents compact support.
The m-genus δ_{m} is finite and does not depend on the choice of a Stein neighborhood
X.
Definition 1.6 ([W1]). A singularity (X, x) is said to be purely elliptic if $\delta_{m}(X, x)=1$ for every positive integer m.

When X is a two-dimensional analytic space, purely elliptic singularities are quasi-Gorenstein singularities, i.e., there exists a nowhere-vanishing holomorphic 2form on $X-\{x\}$ (see Ishii [I2]). In higher dimension, however, purely elliptic singularities are not always quasi-Gorenstein (see [WY]).

In the following, we assume that (X, x) is quasi-Gorenstein. Let $\pi:(M, E) \rightarrow(X, x)$ be a good resolution. Then

$$
K_{M}=\pi^{*} K_{X}+\sum_{i \in I} m_{i} E_{i}-\sum_{j \in J} m_{j} E_{j}, \quad \text { with } m_{i} \geq 0, m_{j}>0, I \cap J=\varnothing,
$$

where $E=\bigcup E_{i}$ is the decomposition of the exceptional set E into irreducible components. Ishii [I1] defined the essential part of the exceptional set E as $E_{J}=\sum_{j \in J} m_{j} E_{j}$, and showed that if (X, x) is purely elliptic, then $m_{j}=1$ for all $j \in J$.

Definition 1.7 (Ishii [I1]). A quasi-Gorenstein purely elliptic singularity (X, x) is of $(0, i)$-type if $H^{n-1}\left(E_{J}, \mathcal{O}\right)$ consists of the $(0, i)$-Hodge component $H^{0, i}\left(E_{J}\right)$, where

$$
C \simeq H^{n-1}\left(E_{J}, \mathcal{O}\right)=\operatorname{Gr}_{F}^{0} H^{n-1}\left(E_{J}\right)=\bigoplus_{i=0}^{n-1} H^{0, i}\left(E_{J}\right)
$$

in the sense of Deligne's canonical mixed Hodge structure.
Example 1.8. Consider the singularity x of the affine cone over an abelian surface. Then (X, x) is a purely elliptic singularity of (0,2)-type, which is a quasi-Gorenstein singularity, but not Gorenstein singularity.

Definition 1.9. A three-dimensional singularity (X, x) is a simple $K 3$ singularity if the following two equivalent (Watanabe-Ishii [WI]) conditions are satisfied:
(1) (X, x) is a Gorenstein purely elliptic singularity of (0,2)-type.
(2) (X, x) is quasi-Gorenstein and the exceptional divisor D is a normal $K 3$ surface for any minimal resolution $\sigma:(Y, D) \rightarrow(X, x)$.

Definition 1.10. Suppose that $\left(r_{0}, r_{1}, \cdots, r_{n}\right)$ are fixed rational numbers. A polynomial $f\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ is said to be quasi-homogeneous of weight $\left(r_{0}, r_{1}, \cdots, r_{n}\right)$ if it can be expressed as a linear combination of monomials $z_{0}^{i_{0}} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}$ for which $i_{0} r_{0}+i_{1} r_{1}+\cdots+i_{n} r_{n}=1$.

Let d denote the smallest positive integer so that $r_{0} d=q_{0}, r_{1} d=q_{1}, \cdots, r_{n} d=q_{n}$ are integers. Then

$$
f\left(t^{q_{0}} z_{0}, t^{q_{1}} z_{1}, \cdots, t^{q_{n}} z_{n}\right)=t^{d} f\left(z_{0}, z_{1}, \cdots, z_{n}\right)
$$

and f is said to be of type $\left(q_{0}, q_{1}, \cdots, q_{n} ; d\right)$.

Example 1.11. Let $f(x, y, z, w)$ be a quasi-homogeneous polynomal of type ($p, q, r, s ; h$) with $p+q+r+s=h$, and suppose $f(x, y, z, w)=0$ defines an isolated singularity at the origin in C^{4}. Then the origin is a simple $K 3$ singularity.

Remark 1.12. For a simple $K 3$ singularity, we have $p_{g}(X, x)=1$.
Example 1.13. In the notation of Example 1.11, take the weighted projective space $\boldsymbol{P}(p, q, r, s)$ with weighted homogeneous coordinates (x, y, z, w) and the hypersurface $S \subset \boldsymbol{P}^{4}(p, q, r, s)$ given by $f(x, y, z, w)=0$. Then S is a normal $K 3$ surface.
2. Poincaré series of simple $K 3$ singularities. Let (X, x) be a simple $K 3$ singularity. Consider a composite of partial resolutions $(M, E) \xrightarrow{\rho}(Y, D) \xrightarrow{\sigma}(X, x)$, where σ is a minimal resolution and ρ is a good resolution. Let E_{0} be the proper transform of D.

Thanks to the existence of minimal resolutions we get the following basic lemma:
Let $A=\sum a_{i} A_{i}$ be a Q-divisor on M, written as a sum of distinct prime divisors. We define the round-up $\lceil A\rceil$ of A to be the divisor $\sum b_{i} A_{i}$, where b_{i} is the smallest integer $\geq a_{i}$.

Lemma 2.1. For any nonnegative integer m

$$
\frac{\Gamma(M, \mathcal{O})}{\Gamma\left(M, \mathcal{O}\left(-(m+1) E_{0}\right)\right)} \simeq \frac{\Gamma(Y, \mathcal{O})}{\Gamma(Y, \mathcal{O}(-(m+1) D))} \simeq \frac{\Gamma(M-E, \mathcal{O}(K+\lceil m L\rceil))}{\Gamma(M, \mathcal{O}(K+\lceil m L\rceil))},
$$

where $L=\rho^{*} K_{Y}$.
Proof. Since $\Gamma\left(M, \mathcal{O}_{M}\left(-(m+1) E_{0}\right)\right) \simeq \Gamma\left(Y, \mathcal{O}_{Y}(-(m+1) D)\right)$, it suffices to show that $\Gamma\left(Y, \mathcal{O}_{Y}(-(m+1) D)\right)$ can be identified with $\left.\Gamma\left(M, \omega_{M}\left(\Gamma-\rho^{*} m D\right\rceil\right)\right)$ by $f \mapsto f \omega$. For any $f \in \Gamma\left(Y, \mathcal{O}_{Y}(-(m+1) D)\right)$, we have $f \omega \in \Gamma\left(M, \rho^{*} \omega_{Y}(-m D)\right)$. Therefore $f \omega \in$ $\Gamma\left(M, \omega_{M}\left(\Gamma-\rho^{*} m D\right\rceil\right)$), because $\rho^{*} \omega_{Y}=\omega_{M}(-\Delta)$ for some $\Delta \geq 0$.

Conversely, any $\left.\eta \in \Gamma\left(M, \omega_{M}\left(\Gamma-\rho^{*} m D\right\rceil\right)\right)$ has a zero of order at least m at E_{0}. Then the holomorphic function $f=\eta / \omega$, on M, has a zero of order at least $m+1$ at E_{0}.
q.e.d.

We now defined the Poincare series associated with a simple $K 3$ singularity. We then compute the series as an application of the following result in [W3].

Definition 2.2. Let (X, x) be a normal three-dimensional isolated singularity, and suppose that X is a sufficiently small Stein neighborhood of x. Let $\pi:(M, E) \rightarrow(X, x)$ be a resolution. Then, for any line bundle F on M, the Euler-Poincaré characteristic can be defined as

$$
\chi(M, \mathcal{O}(F))=\operatorname{dim}_{c} \frac{\Gamma(M-E, \mathcal{O}(F))}{\Gamma(M, \mathcal{O}(F))}+\operatorname{dim} H^{1}(M, \mathcal{O}(F))-\operatorname{dim} H^{2}(M, \mathcal{O}(F)) .
$$

Under a certain condition, $\chi(M, \mathcal{O}(F))$ depends only on the first Chern class of F.

Theorem 2.3 ([W3]). Let A be an integral divisor whose support is contained in the exceptional set E. Define the intersection number of $c_{2}(M)$ with $A=\sum a_{i} E_{i}$ to be

$$
c_{2}(M) \cdot A=\sum a_{i}\left\{c_{2}\left(E_{i}\right)+c_{1}\left(E_{i}\right) c_{1}\left(N_{E_{i}}\right)\right\},
$$

where $N_{E_{i}}$ is the normal bundle of E_{i} in M. Then

$$
\begin{aligned}
\chi(M, \mathcal{O}([A]))= & -\frac{1}{6} A^{3}+\frac{1}{4} A^{2} K_{M}-\frac{1}{12} A\left(c_{2}(M)+K_{M}^{2}\right) \\
& +\operatorname{dim} H^{1}(M, \mathcal{O})-\operatorname{dim} H^{2}(M, \mathcal{O})
\end{aligned}
$$

Theorem 2.4 ([W3]). In the same notation as above, if (X, x) is quasi-Gorenstein, then

$$
2\left\{p_{g}(X, x)-\frac{-K_{M} \cdot c_{2}(M)}{24}\right\}=\operatorname{dim}_{\boldsymbol{C}} H^{1}(M, \mathcal{O})
$$

For the simple $K 3$ singularity (X, x) we define integers by

$$
c_{m}(X, x):=\operatorname{dim}_{\boldsymbol{c}} \frac{\Gamma(Y, \mathcal{O})}{\Gamma(Y, \mathcal{O}(-(m+1) D))},
$$

and the Poincaré series

$$
P(t ; X, x):=\sum_{m=0}^{\infty} c_{m}(X, x) t^{m}
$$

which is a formal power series in an indeterminate t.
In our case it is moreover possible to prove that $H^{i}(M, \mathcal{O}(F))$ vanish for all $i>0$. Then, using Theorem 2.3 of Riemann-Roch type, we obtain

Proposition 2.5. Let $L=\rho^{*} K_{Y}$. Then

$$
c_{m}(X, x)=-\frac{1}{6}\left(\lceil m L\rceil^{3}\right)-\frac{1}{4}\left(\mathrm{~K}\lceil\mathrm{~m} L\rceil^{2}\right)-\frac{1}{12}\lceil m L\rceil\left(c_{2}(M)+K^{2}\right)+1 .
$$

Proof. $\quad K_{Y}$ is σ-nef and σ-big, since $\sigma:(Y, D) \rightarrow(X, x)$ is a minimal resolution; then $m \rho^{*} K_{Y}$ is also $\sigma \circ \rho$-nef and $\sigma \circ \rho$-big for any nonnegative integer m. Hence $H^{i}\left(M, \mathcal{O}\left(K_{M}+\left\lceil m \rho^{*} K_{Y}\right\rceil\right)\right)=0$ for $i>0$ by the Kawamata-Viehweg vanishing theorem (for example, see [KMM, p. 306]). Therefore by Theorem 2.3 we have

$$
\begin{aligned}
\operatorname{dim}_{\boldsymbol{c}} & \frac{\Gamma(M-E, \mathcal{O}(K+\lceil m L\rceil))}{\Gamma(M, \mathcal{O}(K+\lceil m L\rceil))} \\
= & -\frac{1}{6}(K+\lceil m L\rceil)^{3}+\frac{1}{4}(K+\lceil m L\rceil)^{2} K-\frac{1}{12}(K+\lceil m L\rceil)\left(c_{2}+K^{2}\right) \\
& +\operatorname{dim} H^{1}(M, \mathcal{O})-\operatorname{dim} H^{2}(M, \mathcal{O})
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{1}{6}\left([m L\rceil^{3}\right)-\frac{1}{4}\left(K\lceil m L\rceil^{2}\right)-\frac{1}{12}\lceil m L\rceil\left(c_{2}+K^{2}\right)-\frac{1}{12} K c_{2} \\
& +\operatorname{dim} H^{1}(M, \mathcal{O})-\operatorname{dim} H^{2}(M, \mathcal{O}) .
\end{aligned}
$$

On the other hand, a simple $K 3$ singularity is purely elliptic and Cohen-Macaulay, so $p_{g}(X, x)=h^{2}(M, \mathcal{O})=1$ and $h^{1}(M, \mathcal{O})=0$. Thus

$$
-\frac{1}{12} K c_{2}+\operatorname{dim} H^{1}(M, \mathcal{O})-\operatorname{dim} H^{2}(M, \mathcal{O})=1
$$

by Theorem 2.4. We are done by Lemma 2.1.
q.e.d.

Corollary 2.6. Let r be the least common multiple of the indices of the terminal singularities along D. Then $c_{k r}$ is a polynominal of degree three in k :

$$
c_{k r}=-\frac{1}{6}(r L)^{3} k^{3}-\frac{1}{4} K(r L)^{2} k^{2}-\frac{1}{12}(r L)\left(c_{2}+K^{2}\right) k+1,
$$

where $L=\rho^{*} K_{Y}$.
Definition 2.7. Let $f(t):=\sum_{m=0}^{\infty} c_{m} t^{m}$ be a formal power series. We define the r-invariant part of $f(t)$ to be

$$
\frac{1}{r}\left\{f(t)+f(\omega t)+\cdots+f\left(\omega^{r-1} t\right)\right\}=\sum_{k=0}^{\infty} c_{k r} t^{k r},
$$

where ω is a primitive r-th root of unity.
From Corollary 2.6 we obtain the r-invariant part of the Poincare series of simple $K 3$ singularities.

Proposition 2.8.

$$
\begin{aligned}
\sum_{k=0}^{\infty} c_{k r} t^{k r}= & \frac{-r^{3} L^{3}}{\left(1-t^{r}\right)^{4}}-\frac{-4 r^{3} L^{3}+r^{2} K L^{2}}{2} \cdot \frac{1}{\left(1-t^{r}\right)^{3}} \\
& +\frac{-14 r^{3} L^{3}+9 r^{2} K L^{2}-r\left(c_{2} L+K^{2} L\right)}{12} \cdot \frac{1}{\left(1-t^{r}\right)^{2}} \\
& -\frac{-2 r^{3} L^{3}+3 r^{2} K L^{2}-r\left(c_{2} L+K^{2} L\right)-12}{12} \cdot \frac{1}{1-t^{r}},
\end{aligned}
$$

where $L^{3}=\left(1 / r^{3}\right)(r L)^{3}$.
Proof. It follows immediately from the equality

$$
\sum_{k=0}^{\infty}\left(a k^{3}+b k^{2}+c k+d\right) t^{k}=\frac{6 a}{(1-t)^{4}}-\frac{2(6 a-b)}{(1-t)^{3}}+\frac{7 a-3 b+c}{(1-t)^{2}}-\frac{a-b+c-d}{1-t} .
$$

3. Arithmetic Poincaré series of simple $K 3$ singularities defined by a quasihomogeneous polynomial. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a quasi-homogeneous polynomial of type $\left(p_{1}, p_{2}, p_{3}, p_{4} ; p\right)$. Suppose that f defines a simple $K 3$ singularity (X, x) at the origin, i.e., f defines an isolated singularity at the origin and $p_{1}+p_{2}+p_{3}+p_{4}=p$, i.e., $(1,1,1,1)$ is contained in the interior of the Newton boundary of f (see [W2]). Yonemura [Y] (see also Fletcher [F]) classified such quadruples of integers, which have the special properties:

Lemma 3.1 (Yonemura [Y]). Let $p_{1}, p_{2}, p_{3}, p_{4}$ and p be positive integers such that $\operatorname{gcd}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=1$. We denote by Δ the convex hull of $\left\{v \in Z_{0}^{4} \mid \sum_{i=1}^{4} v_{i} p_{i}=p\right\}$ in \boldsymbol{R}_{0}^{4}, and suppose that $(1,1,1,1) \in \operatorname{Int} \Delta$. Then
(1) $p_{1}+p_{2}+p_{3}+p_{4}=p$;
(2) $\operatorname{gcd}\left(p_{i}, p_{j}, p_{k}\right)=1$ for any distinct, i, j and k;
(3) $a_{i j}:=\operatorname{gcd}\left(p_{i}, p_{j}\right)$ divides p.

Proof. (1) Since $(1,1,1,1) \in \Delta$, we have $p_{1}+p_{2}+p_{3}+p_{4}=p$.
(2) Suppose not. Then there would exist p_{1}, p_{2} and p_{3} such that $\operatorname{gcd}\left(p_{1}, p_{2}, p_{3}\right)=$ $d>1$. Since $\operatorname{gcd}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=1$, we have $\operatorname{gcd}\left(p_{4}, d\right)=1$, and hence $\operatorname{gcd}(p, d)=1$.

Thus, for any $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ such that $\sum_{i=1}^{4} v_{i} p_{i}=p$, the inequality $v_{4} \geq 1$ holds; indeed, if there is a 4-tuple ($v_{1}, v_{2}, v_{3}, 0$) with $p=v_{1} p_{1}+v_{2} p_{2}+v_{3} p_{3}$, then we have $d \mid p$.

Therefore

$$
\Delta \subset\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \boldsymbol{R}^{4} \mid x_{4} \geq 1\right\},
$$

and so

$$
(1,1,1,1) \in \operatorname{Int} \Delta \subset\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \boldsymbol{R}^{4} \mid x_{4}>1\right\},
$$

which is a contradiction.
(3) Suppose not. Then there would exist a_{12} such that $a_{12} \nmid p$. Therefore any element $\nu=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ in $\left\{v \in Z_{0}^{4} \mid \sum_{i=0}^{4} v_{i} p_{i}=p\right\}$ satisfies either $v_{3} \neq 0$ or $v_{4} \neq 0$, for otherwise, $p=v_{1} p_{1}+v_{2} p_{2}$ for some v_{1} and v_{2}, and $a_{12} \mid p$, which is a contradiction.

Consider the hyperplane $H=\left\{x_{3}+x_{4}=2\right\}$ through ($1,1,1,1$). Since $(1,1,1,1) \in$ Int Δ,

$$
\left\{x_{3}+x_{4}>2\right\} \cap\left\{\Delta \cap R^{4}\right\} \neq \varnothing
$$

and

$$
\left\{x_{3}+x_{4}<2\right\} \cap\left\{\Delta \cap Z^{4}\right\} \neq \varnothing,
$$

so there exist $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in \Delta \cap \boldsymbol{Z}^{4}$ such that $v_{3}+v_{4}<2$. Therefore we have a point of the form

$$
v=\left(v_{1}, v_{2}, 1,0\right) \quad \text { or } \quad v=\left(v_{1}, v_{2}, 0,1\right) .
$$

Let the point be of the form $v=\left(v_{1}, v_{2}, 1,0\right)$. Then

$$
v_{1} p_{1}+v_{2} p_{2}=p-p_{3} .
$$

Thus $a_{12} \mid p-p_{3}$, i.e., $a_{12} \mid p_{1}+p_{2}+p_{4}$, so $a_{12} \mid p_{4}$. Since $\operatorname{gcd}\left(a_{12}, p_{4}\right)=1$, we have $a_{12}=1$, a contradiction.
q.e.d.

Definition 3.2. Let $S=\boldsymbol{C}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ be the polynomial ring in n variables over C. Introduce a filtration $\left\{F^{k}(S)\right\}_{k \geq 0}$ on S by putting degrees on each monomials as $\operatorname{deg}\left(x_{i}\right)=p_{i}$ for $1 \leq i \leq n$, and induce a filtration $\left\{F^{k}(R)\right\}_{k \geq 0}$ on $R=S /(f)$ by $F^{k}(R)=F^{k}(S) R$ for $k \geq 0$. For the graded ring $R=S /(f)$ we define integers

$$
d_{m}(R):=\operatorname{dim}_{c} R / F^{k}(R),
$$

and the arithmetic Poincaré series

$$
P_{A}(t: X, x):=\sum_{m=0}^{\infty} d_{m}(R) t^{m} .
$$

Now consider the Poincaré series of a simple $K 3$ singularity (X, x) defined by a quasi-homogeneous polynomial $f(x, y, z, w)$ of type $(p, q, r, s ; h)$. Then the arithmetic Poincare series of the simple $K 3$ singularity is given as

$$
P_{A}(t ; X, x)=\frac{1-t^{h}}{\left(1-t^{p}\right)\left(1-t^{q}\right)\left(1-t^{r}\right)\left(1-t^{s}\right)} \cdot \frac{1}{1-t} .
$$

Remark 3.3. This definition is different from the ordinary one. For example, Stanley [S] uses the arithmetic Poincaré series for a graded ring $\boldsymbol{C}[x, y, z, w] /(f(x, y$, $z, w)$) of type ($p, q, r, s ; h$) given by

$$
\frac{1-t^{h}}{\left(1-t^{p}\right)\left(1-t^{q}\right)\left(1-t^{r}\right)\left(1-t^{s}\right)} .
$$

Example 3.4. Let $f(x, y, z, w)=x^{2}+y^{3}+z^{7}+w^{42}$. The type of this quasihomogeneous polynomial is $(21,14,6,1 ; 42)$. Let ϕ_{k} be the cyclotomic polynomial of degree k. Then

$$
\begin{aligned}
& \frac{1-x^{42}}{\left(1-x^{21}\right)\left(1-x^{14}\right)\left(1-x^{6}\right)\left(1-x^{1}\right)} \cdot \frac{1}{(1-x)} \\
& =\frac{\phi_{42} \phi_{21} \phi_{14} \phi_{7} \phi_{6} \phi_{3} \phi_{2} \phi_{1}}{\left(\phi_{21} \phi_{7} \phi_{3} \phi_{1}\right)\left(\phi_{14} \phi_{7} \phi_{2} \phi_{1}\right)\left(\phi_{6} \phi_{3} \phi_{2} \phi_{1}\right)\left(\phi_{1}\right)} \cdot \frac{1}{\phi_{1}}=\frac{\phi_{42}}{\phi_{7} \phi_{3} \phi_{2} \phi_{1}^{4}} .
\end{aligned}
$$

Lemma 3.5. Let σ_{i} be the i-th elementary symmetric polynomial in p, q, r and s. Then the Poincaré series $P_{A}(t ; X, x)$ has the following expression in terms of the partial fractional expansion:

$$
g(t)=\frac{\sigma_{1}}{\sigma_{4}}\left(\frac{1}{(1-t)^{4}}+\left(-\frac{3}{2}\right) \frac{1}{(1-t)^{3}}+\frac{\sigma_{2}+6}{12} \frac{1}{(1-t)^{2}}+\left(-\frac{\sigma_{2}}{24}\right) \frac{1}{1-t}\right)+\sum_{i} \frac{\alpha_{i}}{t-\beta_{i}}
$$

such that

$$
\frac{\sigma_{1} \sigma_{2}}{24 \sigma_{4}}+\sum_{i} \alpha_{i}=1 \quad \text { and } \quad \frac{\sigma_{1} \sigma_{2}}{24 \sigma_{4}}-\sum_{i} \frac{\alpha_{i}}{\beta_{i}}=1,
$$

where β_{i} is a pole different from 1 , and α_{i} is the residue of $g(t)$ at $t=\beta_{i}$.
Proof. By Lemma 3.1, the Poincaré series has only simple poles except $t=1$, hence it has the desired expansion. Thus it suffices to show only the latter half of the lemma. Since $p+q+r+s=h$, the residue of the meromorphic form $g(t) d t$ at infinity is

$$
\begin{aligned}
& \operatorname{Res}\left(\frac{1-t^{h}}{\left(1-t^{p}\right)\left(1-t^{q}\right)\left(1-t^{r}\right)\left(1-t^{s}\right)} \cdot \frac{1}{(1-t)} d t ; \infty\right) \\
= & \operatorname{Res}\left(\frac{1-\left(\frac{1}{u}\right)^{h}}{\left(1-\left(\frac{1}{u}\right)^{p}\right)\left(1-\left(\frac{1}{u}\right)^{q}\right)\left(1-\left(\frac{1}{u}\right)^{r}\right)\left(1-\left(\frac{1}{u}\right)^{s}\right)} \cdot \frac{1}{\left(1-\frac{1}{u}\right)^{2}} d\left(\frac{1}{u}\right) ; \infty\right) \\
= & \operatorname{Res}\left(\frac{u^{h}-1}{\left(u^{p}-1\right)\left(u^{q}-1\right)\left(u^{r}-1\right)\left(u^{s}-1\right)} \cdot \frac{u}{(u-1)} \cdot \frac{d u}{-u^{2}} ; \infty\right)=-1 .
\end{aligned}
$$

Thus the sum of the other residues is 1 , and so

$$
\frac{\sigma_{1} \sigma_{2}}{24 \sigma_{4}}+\sum_{i} \alpha_{i}=1
$$

Since $1=c_{0}=g(0)$,

$$
\frac{\sigma_{1} \sigma_{2}}{24 \sigma_{4}}-\sum_{i} \frac{\alpha_{i}}{\beta_{i}}=1
$$

q.e.d.

As a consequence of this lemma, one can easily calculate the r-invariant part of $P_{A}(t, X, x)$:

Proposition 3.6.

$$
\begin{aligned}
\sum_{k=0}^{\infty} c_{k r} r^{k r}=\frac{\sigma_{1}}{\sigma_{4}} & \left(\frac{r^{3}}{\left(1-t^{r}\right)^{4}}-\frac{4 r^{3}-r^{2}}{2} \cdot \frac{1}{\left(1-t^{r}\right)^{3}}+\frac{14 r^{3}-9 r^{2}+\left(\sigma_{2}+1\right) r}{12} \cdot \frac{1}{\left(1-t^{r}\right)^{2}}\right. \\
& \left.-\left\{\frac{2 r^{3}-3 r^{2}+\left(\sigma_{2}+1\right) r}{12}-\frac{\sigma_{2}}{24}\right\} \frac{1}{1-t^{r}}\right)+\sum_{\lambda} \frac{\left(\beta_{\lambda}\right)^{r-1} \cdot \alpha_{\lambda}}{t^{r}-\left(\beta_{\lambda}\right)^{r}}
\end{aligned}
$$

i.e.,

$$
c_{k r}=\frac{\sigma_{1}}{\sigma_{4}}\left\{\frac{1}{6}(k r)^{3}+\frac{1}{4}(k r)^{2}+\frac{\sigma_{2}+1}{12}(k r)\right\}+1 .
$$

Proof. Denote temporarily the r-invariant part of a formal power series $f(t) \in \boldsymbol{C}[[t]]$ by $r-\operatorname{inv}[f(t)]$. Then

$$
\begin{aligned}
r-\operatorname{inv}\left[\frac{1}{1-t}\right]= & r-\operatorname{inv}\left[\sum_{n=0}^{\infty} t^{n}\right]=\sum_{n=0}^{\infty}\left(t^{r}\right)^{n}=\frac{1}{1-t^{r}}, \\
r-\operatorname{inv}\left[\frac{1}{(1-t)^{2}}\right] & =r-\operatorname{inv}\left[\sum_{n=0}^{\infty}(n+1) t^{n}\right]=\sum_{n=0}^{\infty}(n r+1) t^{n r}=r \sum_{n=0}^{\infty} n\left(t^{r}\right)^{n}+\sum_{n=0}^{\infty}\left(t^{r}\right)^{n} \\
& =\frac{r t^{r}}{\left(1-t^{r}\right)^{2}}+\frac{1}{1-t^{r}}, \\
r-\operatorname{inv}\left[\frac{2}{(1-t)^{3}}\right] & =r-\operatorname{inv}\left[\sum_{n=0}^{\infty}(n+1)(n+2) t^{n}\right]=\sum_{n=0}^{\infty}(n r+1)(n r+2) t^{n r} \\
& =r^{2} \sum_{n=0}^{\infty} n^{2}\left(t^{r}\right)^{n}+3 r \sum_{n=0}^{\infty} n\left(t^{r}\right)^{n}+2 \sum_{n=0}^{\infty}\left(t^{r}\right)^{n} \\
& =r^{2} \cdot \frac{t^{r}\left(t^{r}+1\right)}{\left(1-t^{r}\right)^{3}}+3 r \cdot \frac{t^{r}}{\left(1-t^{r}\right)^{2}}+\frac{2}{1-t^{r}}, \\
r-\operatorname{inv}\left[\frac{6}{(1-t)^{4}}\right] & =r-\operatorname{inv}\left[\sum_{n=0}^{\infty}(n+1)(n+2)(n+3) t^{n}\right]=\sum_{n=0}^{\infty}(n r+1)(n r+2)(n r+3) t^{n r} \\
& =r^{3} \sum_{n=0}^{\infty} n^{3}\left(t^{r}\right)^{n}+11 r^{2} \sum_{n=0}^{\infty} n^{2}\left(t^{r}\right)^{n}+6 r \sum_{n=0}^{\infty} n\left(t^{r}\right)^{n}+6 \sum_{n=0}^{\infty}\left(t^{r}\right)^{n} \\
& =r^{3} \cdot \frac{t^{r}\left(t^{2 r}+4 t^{r}+1\right)}{\left(1-t^{r}\right)^{4}}+11 r^{2} \cdot \frac{t^{r}\left(t^{r}+1\right)}{\left(1-t^{r}\right)^{3}}+6 r \cdot \frac{t^{r}}{\left(1-t^{r}\right)^{2}}+\frac{6}{1-t^{r}} .
\end{aligned}
$$

The rest part of the proof easily follows from these equalities.
Remark 3.7. The sum of the residues of the Poincare series of a graded simple $K 3$ singularity is 1 , the proof of which was suggested by M. Tomari.

In what follows we show the following proposition:
Proposition 3.8. The α-blow-up gives a minimal resolution of simple $K 3$ singularities defined by a quasi-homogeneous polynomial.

Proposition 3.9. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a quasi-homogeneous polynomial of type ($p_{1}, p_{2}, p_{3}, p_{4} ; p$), and suppose that $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0$ defines an isolated singularity at the origin in C^{4}. Denote by X the hypersurface $\{f=0\}$. Then there exist mutually distinct x_{i} and x_{j} such that $\left\{x_{i}=x_{j}=0\right\} \cap X$ consists of a finite number of affine curves.

Proof. Otherwise, the union $\bigcup_{i \neq j}\left\{x_{i}=x_{j}=0\right\}$ of planes in C^{4} would be contained in X, and so there are polynomials $g_{i}(i=1,2,3,4)$ such that

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum x_{i} x_{j} x_{k} g_{l}
$$

which contradicts the assumption that $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ defines an isolated singularity at the origin.
q.e.d

Corollary 3.10. Let the notation be as above. Take the weighted projective space $\boldsymbol{P}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ with weighted homogeneous coordinates $y_{1}, y_{2}, y_{3}, y_{4}$, and the hypersurface $S \subset \boldsymbol{P}^{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ given by $f\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=0$. Then there exist mutually distinct y_{i} and y_{j} such that $\left\{y_{i}=y_{j}=0\right\} \cap S$ consists of a finite number of points.

Lemma 3.11. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a quasi-homogeneous polynomial. Suppose that f defines a simple $K 3$ singularity (X, x). Let $\sigma:(Y, D) \rightarrow(X, x)$ be a partial resolution obtained by the α-blow-up of C^{4}. Then K_{Y} is numerically effective with respect to σ.

Proof. Let C be any curve in D. Take coordinate functions x_{i} and x_{j} as above. Then, there exist positive integers m_{i} and m_{j} such that

$$
\left(\sigma^{*} x_{i}\right)=m_{i} D+B_{i}, \quad\left(\sigma^{*} x_{j}\right)=m_{j} D+B_{j}
$$

where B_{i} and B_{j} are non-compact divisors on Y, i.e., proper transforms of $\left(x_{i}\right)$ and $\left(x_{j}\right)$. Since $K_{Y} \simeq-D$ as a Q-Cartier divisor,

$$
m_{i} C \cdot K_{Y}=C\left\{B_{i}-\left(\sigma^{*} x_{i}\right)\right\}=C \cdot B_{i} .
$$

If $C \notin B_{i}$, then $m_{i} C \cdot K_{Y} \geq 0$. If $C \subset B_{i}$, then $C \notin B_{j}$, because $B_{i} \cap B_{j} \cap D$ consists of a finite number of points. Therefore $m_{j} C \cdot K_{Y}=C \cdot B_{j} \geq 0$.
q.e.d.

Lemma 3.12 (Yonemura [Y, Corollary 3.5]). Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a quasihomogeneous polynomial. Suppose that f defines a simple $K 3$ singularity (X, x). Let $\sigma:(Y, D) \rightarrow(X, x)$ be the partial resolution obtained by the α-blow-up of \boldsymbol{C}^{4}. Then the singularities of Y along D are all cyclic terminal singularities.

Remark. Lemmas 3.11 and 3.12 are special cases of results in Tomari [T].
4. Comparison. The Poincaré series $P(t ; X, x)$ and the arithmetic Poincaré series $P_{A}(t ; X, x)$ agree (see [TW, Remark 2.4, p. 694]) as the following consequence of Proposition 3.8 shows:

Proposition 4.1. $\quad P(t ; X, x)=P_{A}(t ; X, x)$.
Then, comparing the r-invariant part of $P(t ; X, x)$ (in Proposition 2.8) with the r-invariant part of $P_{A}(t ; X, x)$ (in Proposition 3.6), we have:

Theorem 4.2. In the same notation as above,
(1) $\frac{\sigma_{1}}{\sigma_{4}}=-\left(\rho^{*} K_{Y}\right)^{3}$,
(2) $\frac{\sigma_{1}}{\sigma_{4}}\left(\sigma_{2}+1\right)=-\left\{c_{2}(M) \cdot \rho^{*} K_{Y}+K_{M}^{2} \cdot \rho^{*} K_{Y}\right\}$.

Corollary 4.3.

$$
-c_{2}(M) \cdot \rho^{*} K_{Y}=\frac{\sigma_{1} \sigma_{2}}{\sigma_{4}} .
$$

Proof. By the projection formula, we have $\left(\rho^{*} K_{Y}\right)^{3}=K_{M} \cdot\left(\rho^{*} K_{Y}\right)^{2}=K_{M}^{2} \cdot \rho^{*} K_{Y}$. q.e.d.

Remark 4.4. $r \sigma_{1} / \sigma_{4}$ is an integer, since $r^{3} \sigma_{1} / \sigma_{4}=\left(\rho^{*} r K_{Y}\right)^{3}=r K_{M} \cdot\left(r \rho^{*} K_{Y}\right)^{2}=$ $r^{2} K_{M}^{2} \cdot\left(r \rho^{*} K_{Y}\right)$ and $K_{M}^{2} \cdot\left(r \rho^{*} K_{Y}\right)$ is an integer.

Let (V, p) be a germ of a terminal singularity of dimension three, and let $\mu: W \rightarrow V$ be a good resolution such that $\mu: W-\mu^{-1}(p) \leadsto \underset{\rightarrow}{ } V-\{p\}$. We write $K_{W}=\mu^{*} K_{V}+E$ and $E=\sum_{j} a_{j} E_{j}$, where E_{j} are exceptional divisors of μ. Let

$$
\Delta(V, p):=-\left(E \cdot c_{2}(W)\right) .
$$

Theorem 4.5. In the same notation as above,

$$
\frac{\sigma_{1} \sigma_{2}}{\sigma_{4}}=24-\sum\left\{r\left(y_{i}\right)-\frac{1}{r\left(y_{i}\right)}\right\},
$$

where the summation \sum is taken over all terminal quotient singular points of indices $r\left(y_{i}\right)$ on Y.

Proof. From Corollary 4.3,

$$
-c_{2}(M) \cdot K_{M}+c_{2}(M) \cdot\left\{K_{M}-\rho^{*} K_{Y}\right]=\frac{\sigma_{1} \sigma_{2}}{\sigma_{4}}
$$

and so

$$
-c_{2}(M) \cdot K_{M}-\sum_{i} \Delta\left(Y, y_{i}\right)=\frac{\sigma_{1} \sigma_{2}}{\sigma_{4}} .
$$

By a result of Reid or Kawamata [K, Lemma 2.2],

$$
\Delta\left(Y, y_{i}\right)=r\left(y_{i}\right)-\frac{1}{r\left(y_{i}\right)}
$$

Thus

$$
\frac{\sigma_{1} \sigma_{2}}{\sigma_{4}}=24-\sum\left\{r\left(y_{i}\right)-\frac{1}{r\left(y_{i}\right)}\right\}
$$

by Theorem 2.4.

q.e.d.

Example 4.6. Consider the singularity $x^{2}+y^{3}+z^{7}+w^{42}=0$. The minimal resolution of this singularity is unique and has three terminal singularities, which are of indices 2, 3 and 7 . Then

$$
\frac{42 \times 545}{1764}=24-\left\{\left(2-\frac{1}{2}\right)+\left(3-\frac{1}{3}\right)+\left(7-\frac{1}{7}\right)\right\} .
$$

References

[F] A. R. Fletcher, Plurigenera of 3-folds and weighted hypersurfaces, Thesis submitted for the degree of Doctor of Philosophy at the University of Warwick, 1988.
[II] S. IshiI, On isolated Gorenstein singularities, Math. Ann. 270 (1985), 541-554.
[I2] S. Ishis, Two-dimensional singularities with bounded plurigenera δ_{m} are \boldsymbol{Q}-Gorenstein singularities, Contemporary Math. 90 (1989), 135-145.
[K] Y. Kawamata, On the plurigenera of minimal algebraic 3-Folds with $K \sim 0$, Math. Ann. 275 (1986), 539-546.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Minimal model problem, in Algebraic Geometry, Sendai, 1985 (T. Oda, ed.), Advanced Studies in Pure Math. 10, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1987, 283-360.
[KT] R. Kobayashi and A. N. Todorov, Polarized period map for generalized K3 surfaces and the moduli of Einstein metrics, Tôhoku Math. J. 39 (1987), 341-363.
[M] S. Mori, Flip theorem and the existence of minimal models for 3-folds, J. Amer. Math. Soc. 1 (1988), 117-253.
[R1] M. Reid, Canonical 3-folds, Journées de Géométrie Algébrique d'Angers (A. Beauville, ed.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1980, 273-310.
[R2] M. Reid, Minimal model of canonical 3-folds, in Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Advanced Studies in Pure Math. 1, Kinokuniya, Tokyo, and North-Holland, Amsterdam, New York, Oxford, 1983, 131-180.
[S] R. Stanley, Hilbert functions of graded algebras. Adv. in Math. 28, 1978, 57-83.
[T] M. Tomari, On the uniqueness of minimal model of singularities, preprint, 1990.
[U] Y. Umezu, On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math. 4 (1981), 343-354.
[W1] K. Watanabe, On plurigenera of normal isolated singularities, I, Math. Ann. 250 (1980), 65-94.
[W2] K. Watanabe, On plurigenera of normal isolated singularities, II, in Complex Analytic Singularities (T. Suwa and P. Wagrech, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, 671-685.
[W3] K. WATANABE, Riemann-Roch theorem for normal isolated singularities, preprint, 1989.
[WI] K. Watanabe and S. IshiI, On simple K3 singularities (in Japanese), in Proc. of Conf. on Algebraic Geometry at Tokyo Metropolitan Univ., 1988 (N. Sasakura, ed.), 20-31.
[WY] K. Watanabe and T. Yonemura, On ring-theoretic genus p_{r} and plurigenera $\left\{\tau_{m}\right\}$ of normal isolated singularities, preprint, 1988.

Institute of Mathematics
University of Tsukuba
Ibaraki, 305
Japan

