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Introduction. Let (X, x) be a germ of a normal isolated singularity of dimension
three and let σ: F-> Xbe a minimal (partial) resolution, i.e., a relatively minimal model
of a resolution. The singularity (X, x) is called a simple A3 singularity if it is
quasi-Gorenstein and if the exceptional set of Y consists of a single normal A3 surface
D. Here we call D a normal A3 surface if the minimal resolution of D is a K3 surface.
Y may still have finitely many terminal singularities {yj along D.

When a simple K3 singularity is defined by a quasi-homogeneous polynomial of
type (/?, q, r, s), the minimal (partial) resolution of the singularity is given by the so-called
a-blow-up (see Reid [R, p. 297]). In this case, the terminal singularities {yj along the
exceptional set are all cyclic terminal singularities, and the minimal resolution is unique
(see Tomari [T, Corollary 4]).

In this paper, we obtain a simple formula describing the distribution of terminal
singularities of the minimal resolution in terms of the type (/?, q, r, 5) of the
quasi-homogeneous defining polynomial for the simple A3 singularity:

24-Σ\ri )= P q (pq + pr + ps + qr + qs + rs),
\ n) pqrs

where rt is the index of the terminal singularity yt (compare Theorem 4.4 and [KT,
Theorem 9, p. 360]).

For the simple A3 singularity (X, x) we define integers by

and the Poincare series

P(t;X,x):= Σcm(X,x)tm,
m = 0

which is a formal power series in an indeterminate t. By the Riemann-Roch theorem
for normal isolated singularities (Watanabe [W3]), the Poincarέ series can be expressed
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in terms of the intersection numbers of the exceptional set on a good resolution

p: M -» Y.

1. Definition of simple A3 singularities. In this section, we recall known results

and basic definitions together with examples.

DEFINITION 1.1 (Reid [R]). A germ (X, x) of a normal singularity is said to be a
terminal (resp. canonical) singularity if the following two conditions are satisfied:

(i) There is an integer r > 0 such that the multiple rKx of the canonical divisor
Kx is a Cartier divisor (the smallest such r being called the index of (X, x)).

(ii) Let π: M-• Xbe an arbitrary resolution, and let Eu ' m, En be the exceptional
divisors. Then rKM = π*(rKx) + ΣiaiEi with all at>0 (resp.

DEFINITION 1.2. If X is a normal analytic space, a partial resolution of the
singularity (X, x) consists of a normal analytic space Y and a proper analytic
map σ: Y -* X such that σ is biholomorphic on the inverse image of the set R of regular
points of X and that π~1(R) is dense in Y.

DEFINITION 1.3. A partial resolution σ: Y-+X of the singularity (X, x) is a
minimal resolution if the singularities of Y are terminal, and the canonical divisor Kγ

of Y is numerically effective with respect to σ (see [KMM, p. 291]).

By Mori [M, Theorem 0.3.12, (i)], there exists a minimal resolution of a normal
three-dimensional isolated singularity.

DEFINITION 1.4. A normal compact complex surface S is said to be a normal A3
surface if the following three equivalent (see, e.g., Umezu [U]) conditions are satisfied:

(1) Its minimal resolution is a A3 surface.

(2) ωs~Θs, and S is birational to a KS surface.

(3) ωs ~ Θs, H
ί(S, Θs) = 0 and its singularities are at worst rational double points.

DEFINITION 1.5 ([Wl]). For each positive integer m, the ra-genus of a normal
isolated singularity (X, x) in an ^-dimensional analytic space is defined to be

δm(X9 x) = dϊmcΓ(X-{x}, Θ(mK))/L2"»(X-{x}),

where K is the canonical line bundle on X-{x), and L2/m(X—{x}) is the set of all
holomorphic m-ple «-forms on X— {x} which are L2/m-integrable at x. Let
π: (M, E) -• (X, x) be a resolution of the singularity (X, x). Then

δ^X, x) = dimcΓ(M-E, Θ{K))/Γ(M, (9{K)) = dimcHc

1(M, Θ(K))

where pg(X, x) is the geometric genus, and the subscript c represents compact support.

The m-genus δm is finite and does not depend on the choice of a Stein neighborhood
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X.

DEFINITION 1.6 ([Wl]). A singularity (X, x) is said to be purely elliptic if

δm(X, x)=l for every positive integer m.

When X is a two-dimensional analytic space, purely elliptic singularities are

quasi-Gorenstein singularities, i.e., there exists a nowhere-vanishing holomorphic 2-

form on X — {x] (see Ishii [12]). In higher dimension, however, purely elliptic singu-

larities are not always quasi-Gorenstein (see [WY]).

In the following, we assume that (X, x) is quasi-Gorenstein. Let π : (M, E) -• (X, x)

be a good resolution. Then

KM = π*Kx + X mfii - X nijEj, with mi > 0, ra, > 0, /n / = 0 ,
iel jeJ

where E=\jEi is the decomposition of the exceptional set E into irreducible compo-

nents. Ishii [II] defined the essential part of the exceptional set E as Ej^ΣjejWjEp

and showed that if (X, x) is purely elliptic, then nij= 1 for all jeJ.

DEFINITION 1.7 (Ishii [II]). A quasi-Gorenstein purely elliptic singularity (X, x)

is of (0, (Hype if Hn~l{E3, Θ) consists of the (0, /)-Hodge component H°Λ(Ej), where

in the sense of Deligne's canonical mixed Hodge structure.

EXAMPLE 1.8. Consider the singularity x of the aίfine cone over an abelian surface.

Then (X, x) is a purely elliptic singularity of (0, 2)-type, which is a quasi-Gorenstein

singularity, but not Gorenstein singularity.

DEFINITION 1.9. A three-dimensional singularity (X, x) is a simple A3 singularity

if the following two equivalent (Watanabe-Ishii [WI]) conditions are satisfied:

(1) (X, x) is a Gorenstein purely elliptic singularity of (0, 2)-type.

(2) (X, x) is quasi-Gorenstein and the exceptional divisor D is a normal K3 surface

for any minimal resolution σ: (1^ D) -> (X, x).

DEFINITION 1.10. Suppose that (r0, r1 ? * ,rII) are fixed rational numbers. A

polynomial/(z0, zu • , zΠ) is said to be quasi-homogeneous of weight (r0, r l 5 , rn)

if it can be expressed as a linear combination of monomials zβz^ zj,n for which

Let ddenote the smallest positive integer so that rod=qo, r1d=q1, , rnd=qn are

integers. Then

, t«zl9 , t«"zn) = tdf(z0, zl9 ' , zn)

a n d / i s said to be of type (q0, q1, , qn; d).
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EXAMPLE 1.11. Let f(x, y, z, w) be a quasi-homogeneous polynomal of type
(p, q, r, s; h) with p + q + r + s = h, and suppose f(x, y, z, w) = 0 defines an isolated
singularity at the origin in C4. Then the origin is a simple A3 singularity.

REMARK 1.12. For a simple A3 singularity, we have pg(X, x) = 1.

EXAMPLE 1.13. In the notation of Example 1.11, take the weighted projective
space P(p, q, r, s) with weighted homogeneous coordinates (x, y, z, w) and the
hypersurface SczP^ip, q, r, s) given by/(x, >>, z, w) = 0. Then S is a normal A3 surface.

2. Poincare series of simple A3 singularities. Let (X, x) be a simple A3 singularity.

Consider a composite of partial resolutions (M, E) p >(Γ, D) σ >(X, x), where σ is a

minimal resolution and p is a good resolution. Let Eo be the proper transform of D.
Thanks to the existence of minimal resolutions we get the following basic lemma:
Let A = YjaiAi be a β-divisor on M, written as a sum of distinct prime divisors.

We define the round-up |^4] of A to be the divisor £Zv4i5 where bt is the smallest integer
>at.

LEMMA 2.1. For any nonnegative integer m

) ^ Γ(Y9Θ)

Γ(M9 G(-(m+ l)£0))~Γ(Y, (9(-(m+ 1)D))~ Γ(M, Θ{K + \mL])) '

where L = p*Kγ.

PROOF. Since Γ{M, (9M{-(m + l)E0))~Γ(Y, Θγ(-(m+l)D)l it suffices to show
that Γ(Y,Θy(-(m+l)D)) can be identified with Γ(M,ωM([-p*mD'])) by f\-+fω.
For any feΓ(Y90y(-{m+l)D))9 we have fωeΓ{M9 p*ωγ(-mD)). Therefore fωe
Γ(M, ωM([ — p*m/)])), because p*ωγ = ωM( — A) for some A>0.

Conversely, any η e Γ(M, ωM([ — ρ*mD~])) has a zero of order at least m a t £ 0 . Then
the holomorphic function / = η/ω, on M, has a zero of order at least m+ 1 at £ 0 .

q.e.d.

We now defined the Poincare series associated with a simple A3 singularity. We
then compute the series as an application of the following result in [W3].

DEFINITION 2.2. Let (X9x) be a normal three-dimensional isolated singularity, and
suppose that X is a sufficiently small Stein neighborhood of x. Let π: (M, E) -> (X, x)
be a resolution. Then, for any line bundle F on M, the Euler-Poincare characteristic
can be defined as

, Θ(F)) = dimc

 Γ(^f E'f}P + dim
Γ(M, ̂ (F))

Under a certain condition, χ(M, Θ{F)) depends only on the first Chern class of F.
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THEOREM 2.3 ([W3]). Let A be an integral divisor whose support is contained in
the exceptional set E. Define the intersection number of c2(M) with A=YjaiEi to be

c2(M) A = Σa^Cii

where NE. is the normal bundle of Et in M. Then

χ(M, 0(|X|)) A + ^AKM

6 4 12

+ dim H\M, 0)-dim H2(M, Θ).

THEOREM 2.4 ([W3]). In the same notation as above, if(X, x) is quasi-Gorenstein,
then

For the simple K3 singularity (X, x) we define integers by

cm(X, x): = dimc [^Σlfl

and the Poincare series

P(t;X,x):= Σcm(X,x)tm,
m = O

which is a formal power series in an indeterminate t.

In our case it is moreover possible to prove that H\M, Θ(F)) vanish for all />0.
Then, using Theorem 2.3 of Riemann-Roch type, we obtain

PROPOSITION 2.5. Let L = p*Kγ. Then

c m ( X , x ) = - ^ ^ ^^([mLV)^(K[mL])^
6 4 12

PROOF. KY is σ-nef and σ-big, since σ: (Y, D)^>(X, x) is a minimal resolution;
then mp*Ky is also σop-nef and σop-big for any nonnegative integer m. Hence
H\M, Θ(KM + [mp*Kγ~])) = 0 for />0 by the Kawamata-Viehweg vanishing theorem
(for example, see [KMM, p. 306]). Therefore by Theorem 2.3 we have

J . Γ(M-E,
dimr

6 4 12

+ dim H\M, 0)-dim H\M, Θ)
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^{\mLγ){K\mLγ)\mL]{c2 + K ) K c 1
o 4 12 12

+ dim H\M, 0)-dim H2{M, 0).

On the other hand, a simple A3 singularity is purely elliptic and Cohen-Macaulay,

so pg(X9 x) = h2(M, Θ) = \ and h\M9 Θ) = 0. Thus

- — Kc2 + dim H\M,Θ)- dim H2{M,(9)=l ,

by Theorem 2.4. We are done by Lemma 2.1. q.e.d.

COROLLARY 2.6. Let r be the least common multiple of the indices of the terminal

singularities along D. Then ckr is a poly nominal of degree three in k\

ckr= -]r(rL)3k3-]-K(rL)2k2-U
6 4 12

where L = p*KY.

DEFINITION 2.7. Let / ( 0 : = Σm=ocm?m ^ e a f ° r m a l power series. We define the
r-invariant part of f(t) to be

-
r

where ω is a primitive r-th root of unity.

From Corollary 2.6 we obtain the r-invariant part of the Poincare series of simple

K3 singularities.

PROPOSITION 2.8.

-r3L3 -
kr

t
krt ~( l - t r ) 4 2

-\4r3L3 + 9r2KL2-r(c2

12

12

PROOF. It follows immediately from the equality

£ / t , I l 7 . „ t 6α 2(6α —ft) Ίa-3b + c a-b + c-d
Y (ak3 + bk2 + ck + d)tk = — -!- + ,

ά ( 1 ί ) 4 ( 1 ί ) 3 ( l O 2 1 ί
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3. Arithmetic Poincare series of simple K3 singularities defined by a quasi-
homogeneous polynomial. Let f(xl9 x2,

 X3> x*) be a quasi-homogeneous polynomial

of type (pl9 p2, p 3 , p 4 ; p). Suppose that / defines a simple K3 singularity (X, x) at

the origin, i.e.,/defines an isolated singularity at the origin and p1+p2+p3+p4=p,

i.e., (1, 1, 1, 1) is contained in the interior of the Newton boundary of/(see [W2]).

Yonemura [Y] (see also Fletcher [F]) classified such quadruples of integers, which

have the special properties:

LEMMA 3.1 (Yonemura [Y]). Let pu p 2 , p 3, p 4 αndp be positive integers such that

gcd(pι,p2,p3,p4)=\. We denote by A the convex hull of {veZ$\Σt=iviPi=P} in Ro>

and suppose that (1, 1, 1, l )e ln t A. Then

(1) Pi+P2+P3+P*=P\
(2) gcd(/?f, Pj, pk)= 1 for any distinct, ij and k\

(3) ay: = gcd(/7t., pj) divides p.

PROOF. (1) Since (1, 1, 1, l)eA, we havep1+p2+P3+p4.=p.

(2) Suppose not. Then there would exist pί9 p2 and p3 such that gcd(pί9p2,p3) =

d>\. Since gcd(p l 5 p2, p 3 , p 4 ) = 1, we have gcd(/?4, d)=ί, and hence gcd(p, d)=l.

Thus, for any (v1? v2, v3, v4) such that YJ*=lV\Pi=p, the inequality v 4 > l holds;

indeed, if there is a 4-tuple (v l5 v2, v3, 0) with/7 = v1/71+v2/72 + v3/?3, then we have d\p.
Therefore

and so

(1, 1, 1, l )Glntz lc={(x 1 ,x 2 ,x3,x 4 )E/? 4 | x 4 >l} ,

which is a contradiction.

(3) Suppose not. Then there would exist a12 such that a12)(p. Therefore any

element v = (v1? v2, v3, v4) in {VGZQ |Σ 4

= o

v i / 7 i=/ 7 } satisfies either v3=£0 or v 4 ^ 0 , for

otherwise, p = v1p1 -\-v2p2 for some vx and v2, and a12\p, which is a contradiction.

Consider the hyperplane //={x 3 + .x4 = 2} through (1, 1, 1, 1). Since (1, 1, 1, l ) e

Int A,

and

so there exist v = (v1? v2, v3, V4)GA n Z 4 such that v3 + v 4 < 2 . Therefore we have a point

of the form

v = (vi, v2, 1,0) or v = (v l9 v2, 0, 1).

Let the point be of the form v = (v1? v2, 1,0). Then
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+ v2p2=p-p3.

Thus a12\p-p3, i.e., aί2\p1 +PI+PA, so a12\p4. Since gcd(α12,/?4) = 1, we have a12 = 1,

a contradiction. q.e.d.

DEFINITION 3.2. Let 5 '=C[x 1 , x2> ' ' *> **] be the polynomial ring in « variables

over C. Introduce a filtration {Fk(S)}k>0 on 5 by putting degrees on each monomials

as deg(Xi)=Pi for \<i<n, and induce a filtration {-/**(/£)}* > 0 on R = S/(f) by

Fk(R) = Fk(S)R for fc>0. For the graded ring R = S/{f) we define integers

and the arithmetic Poincare series

PA(t' X,x):= Σdm(R)tm.
m = 0

Now consider the Poincare series of a simple K3 singularity (X, x) defined by a

quasi-homogeneous polynomial /(x, y, z, w) of type (/?, ̂ f, r, 5; /1). Then the arithmetic

Poincare series of the simple K3 singularity is given as

\-th 1
PA(t; X, x) =

(l

REMARK 3.3. This definition is different from the ordinary one. For example,

Stanley [S] uses the arithmetic Poincare series for a graded ring C[x, y, z, w]/(/(x, y,

z, w)) of type (p, q, r, 5; h) given by

\-th

EXAMPLE 3.4. Let f(x9 y9 z, w) = x2 + y3 + z 7 + w4 2. The type of this quasi-

homogeneous polynomial is (21, 14, 6, 1; 42). Let φk be the cyclotomic polynomial of

degree k. Then

1-x 4

- x )

1 042

l) Φl ΦlΦsΦlΦl

Lemma 3.5. Lei σf Z?e /Λe /-ίA elementary symmetric polynomial in p, <y, r and s.

Then the Poincare series PA(t; X, x) has the following expression in terms of the partial

fractional expansion:

it-βi
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such that

^ + Σ α ; = l and ^ - £ ^ = 1 ,
24σ4 i 24<x4 T ft

where βt is a pole different from 1, and αf is the residue of g(t) at ί = /?,-.

PROOF. By Lemma 3.1, the Poincare series has only simple poles except ί = l ,

hence it has the desired expansion. Thus it suffices to show only the latter half of the

lemma. Since p + q + r + s = h, the residue of the meromorphic form g(t)dt at infinity is

Res dt; oo

/

= Res
1 JU:~

uh-\ u du
= Res - oo = —1 .

\(up-\)(uq-\)(ur-l)(us-\) (M-1) -U2 '

Thus the sum of the other residues is 1, and so

ΓJ—+Σ««=1
24σ 4 ί

Since l = c o = gf(0),

y
24σ4 t f t

q.e.d.

As a consequence of this lemma, one can easily calculate the r-invariant part of

,X,x):

PROPOSITION 3.6.

r3 4r3-r2

9 1 14r 3 -9r 2 +(σ 2 + \)r ^ 1

12 24J I -
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<τ4 16 4 12

PROOF. Denote temporarily the r-invariant part of a formal power series

Z(ί)eC[[ί]] by r-inv[/(ί)]. Then

Γ l Ί Γ o o Π o o γ

_inv Ur-inv Σ Π = Σ ( O M = - ,
L I " O l_n = O J n = 0 1 —Γ

1 ~| Γ °° " I 0 0 °° °°
* = M n v Σ (» + l)ί" = Σ (w + l)t"r = r Σ n(tΎ + Σ (O"

— t) J L« = 0 J π = 0 n = 0 n = 0

rf 1

+(i-O2 ι-
Γ 2 Ί Γ °° Ί °°

-inv = r-inv ^ (n + l)(n + 2)tn \=Σ(nr+ \){nr + 2)tnr

L(i —ί) J L"=o J π=o

2(tr)nn2(tr)

r-inv = r-inv Σ (n + l)(n + 2)(n + 3)f = Σ (nr + l)(nr + 2)(nr + 3)t"Γ

L ( i - 0 J L«=o J «=o

= r3 Σ «3(0" +1 lr2 Σ «2(O" + 6r Σ «(0" + 6 Σ iff

( i O 3 ( i O 2

The rest part of the proof easily follows from these equalities.

REMARK 3.7. The sum of the residues of the Poincare series of a graded simple

K3 singularity is 1, the proof of which was suggested by M. Tomari.

In what follows we show the following proposition:

PROPOSITION 3.8. The a-blow-up gives a minimal resolution of simple A3

singularities defined by a quasi-homogeneous polynomial.

PROPOSITION 3.9. Let f(xu x2, x3, x 4) be a quasi-homogeneous polynomial of type

(PDPH P3> Pά P\ and suppose that f(xu x2, *3, x4) = 0 defines an isolated singularity at

the origin in C 4 . Denote by X the hypersurface {/=0}. Then there exist mutually distinct

xt and Xj such that {xI = x7 = 0} nX consists of a finite number of affine curves.
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PROOF. Otherwise, the union (J iφj{χ. = χj = 0} of planes in C 4 would be contained
in X, and so there are polynomials gi (i= 1, 2, 3, 4) such that

f(xί9 x2,x3, x4) = ΣxixjxkQι >

which contradicts the assumption that/(x l5 x2, x3, x4) defines an isolated singularity at
the origin. q.e.d

COROLLARY 3.10. Let the notation be as above. Take the weightedprojective space

P(Pu Pi> P3> P4) with weighted homogeneous coordinates y1? y29 y3, y4, and the hypersurface

SczP*(pl9 p2, p3, p4) given byf(yu y2, y3-> )>4) = 0. Then there exist mutually distinct y{ and

yj such that {^.=^. = 0} n 5 consists of a finite number of points.

LEMMA 3.11. Letf(xί9 xl9 x$, x4) be a quasi-homogeneous polynomial. Suppose that

f defines a simple A3 singularity (X, x). Let σ: (Y,D)-> (X, x) be a partial resolution

obtained by the a-blow-up of C 4 . Then Kγ is numerically effective with respect to σ.

PROOF. Let C be any curve in D. Take coordinate functions xt and Xj as above.
Then, there exist positive integers mt and mj such that

(σ*χ.) = m.D + Bt, (σ*Xj) = mjD + Bj ,

where Bt and Bj are non-compact divisors on Y9 i.e., proper transforms of (xt) and (Xj).
Since Kγ~ — D as a β-Cartier divisor,

miC Kγ = C{Bi-(σ*xi)} = C Bi.

If CφBh then miC'KY>0. If CaB^ then CψBj9 because B^BjViD consists of a finite
number of points. Therefore mjC-KY = C'Bj>0. q.e.d.

LEMMA 3.12 (Yonemura [Y, Corollary 3.5]). Let f(xu x2, X3, x*) be a quasi-
homogeneous polynomial. Suppose that f defines a simple K3 singularity (X, x). Let

σ: (Y, D)-+χX9x) be the partial resolution obtained by the oc-blow-up of C 4 . Then the

singularities of Y along D are all cyclic terminal singularities.

REMARK. Lemmas 3.11 and 3.12 are special cases of results in Tomari [T].

4. Comparison. The Poincare series P(t; X, x) and the arithmetic Poincare series
PA(t; X, x) agree (see [TW, Remark 2.4, p. 694]) as the following consequence of
Proposition 3.8 shows:

PROPOSITION 4.1. P(t; X, x) = PA(t; X, x).

Then, comparing the r-invariant part of P(ί; X, x) (in Proposition 2.8) with the
r-invariant part of PA(t; X9 x) (in Proposition 3.6), we have:

THEOREM 4.2. In the same notation as above,
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(1) ^ = -
σ4

(2) ^-(σ2+l)
σ4

COROLLARY 4.3.

σ4

PROOF. By the projection formula, we have (p*KY)
3 = KM-(P*KY)

2 = KM

q.e.d.

REMARK 4.4. rσ1/σ4 is an integer, since r3σί/σ4. = (p*rKYγ = rKM (rp*KY)
2 =

r2K& (rp*KY) and K&-(rp*KY) is an integer.

Let (V, p) be a germ of a terminal singularity of dimension three, and let μ: W-+V

be a good resolution such that μ: W— μ~ί(p)2^ V— {/?}. We write ΛV = μ*^V + E and

E=YjjajEp where £} are exceptional divisors of μ. Let

Δ(V,p):=-(E c2(W)).

THEOREM 4.5. In the same notation as above,

where the summation £ w /α^« over all terminal quotient singular points of indices

on Y.

PROOF. From Corollary 4.3,

σ 4

and so

— c2(M)-KM — 2_jΔ(Y,yύ = ^—±.

i σ 4

By a result of Reid or Kawamata [K, Lemma 2.2],

1

Thus
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by Theorem 2.4. q.e.d.

EXAMPLE 4.6. Consider the singularity x2+y3+ zΊ + w42 = 0. The minimal

resolution of this singularity is unique and has three terminal singularities, which are

of indices 2, 3 and 7. Then

1764
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