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Introduction. One of the important results in the classical ergodic theory is the
following theorem of Rohlin and Sinai [10].

Let (X, 4, 1) be a Lebesgue probability space and let T be a measure preserving
automorphism of it.

THEOREM A. There exists a sub-o-algebra of = B such that

(a) T 'dcod,
(b) V Thw=2,
© N 1 =n().
) WT)=H(s/|T~' o)

where 7(T) and h(T) denote the Pinsker o-algebra and the entropy of T, respectively.

Every such o-algebra is said to be perfect. Perfect o-algebras have important
applications to the investigations of mixing and spectral properties of automorphisms
(cf. [9], [10]). Shimano [11], [12] investigated helices associated with a given perfect
o-algebra.

Theorem A has been generalized by the author in [3] as follows:

Let Z¢ denote the group of d-dimensional integers, ¢ the null vector of Z¢ and <
the lexicographical ordering of Z¢, d>2.

An ordered pair (4, B) of nonempty subsets of Z“ is called a cut if 4u B=2Z* and
for every ge A and he B it holds g<h.

A cut (4, B) is said to be a gap if 4 does not contain the greatest element and B
does not contain the lowest element.

Let @ be a Z%action on (X, 4, ), i.e., @ is a homomorphism of Z¢ into the group
of all measure preserving automorphisms of (X, %, u). We denote by @? the
automorphism of (X, 4, p) which is the image of g Z¢ under @.

The following result, formulated in [3] in terms of measurable partitions, is an
analogue of Theorem A for Z%actions.
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THEOREM B. There exists a sub-c-algebra of = # such that

(a) Dol oA for g<o,
(by) Voot =3,
geZzd
(c1) N oo =n(®P),
geZ4d
(dy) WP)=H(L|4™)  where o4 =\ P,

g<eo

(e,) for every gap (A, B) of Z* it holds

V&t = ot

geAd geB
where n(®) and h(®P) denote the Pinsker c-algebra and the entropy of ® respectively.

Similarly as in the one-dimensional case < is called a perfect o-algebra of ¢. The
essential difference between the one-dimensional and multidimensional concept of a
perfect o-algebra is contained in the condition (e,) which one may call a continuity
condition. It is shown in [5] that there exist o-algebras satisfying (a,)—(d,) but not (e,).

The paper [3] also contains applications of Theorem B. It would be interesting to
know whether the results of Shimano have multidimensional analogues.

The definition of a perfect g-algebra admits a more accessible form if we represent
the considered action @ by a d-tuple of natural automorphisms associated with ¢. For
simplicity we will do this only in the case d=2.

Let T and S be automorphisms which are images under @ of the vectors (1, 0) and
(0, 1), respectively. Hence for g=(m, n)e Z? we have &/ =T"o S". Obviously, T and S
commute. Then the conditions (a;)—(e,) may be written as follows:

(a) S ldcod, T ldscod,
(b,) "ym T"oA =R,

oo
(c2) .,QwT "ol s=m(P),
(dz) h(®)=H(|S™ '),
(e2) _Ho S"od =T oy,

where o/5=\/, " S"o.

n= — oo
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Theorem B has been sharpened in [5] (see also [4]) in the following manner.

THEOREM C. If # <% is a sub-c-algebra which is a factor of @, i.e., P*H =K,
geZ°, then there exists a sub-c-algebra of > # satisfying (a,), (b,), (¢,) and

(c) @ =(@|#),
Ch) H@| )= H(f |47,

where n(<D|Jf ) and h(d5| ) denote the relative Pinsker -algebra and the relative entropy
of @ with respect to # (for the definitions see Section 2).

A sub-c-algebra &/ satisfying the properties given in Theorem C is said to be
relatively perfect with respect to . It is clear that a relatively perfect o-algebra with
respect to the trivial o-algebra is perfect.

Theorem C has been used in [5] (see also [4]) to give an axiomatic definition of
the entropy of a Z%action.

In this paper we use this theorem to show that the concept of a relative K-action
given by Thouvenot [13] is an extension of the concept of a K-action in the sense of
Kolmogorov. Using this fact, we prove that if # is a factor having an independent
complement s#°¢ such that the restriction of @ to the space (X, s, u) is a K-action,
then @ is a relative K-action with respect to #. We also show a formula for the direct
product of relative Pinsker g-algebras which implies that the product of relative K-actions
is a relative K-action. This formula is an extension of that of Pollit [9] to Z%-actions.
These results are obtained due to the property of the exchangeability of the order of
taking suprema and intersections of nets of o-algebras.

1. Decreasing nets of g-algebras. Let (X, 4, u) be a probability space, Sub # the
family of all sub-g-algebras of # and 4" = 4"(X) the trivial sub-g-algebra. All equalities
between sets, functions, transformations and o-algebras are to be interpreted up to a
set of measure zero. For &/ eSub# we denote by L?(</) the subspace of L2(X, p)
consisting of functions measurable with respect to /. The conditional probability of a
set A e with respect to &/ is denoted by u(A|M). For f e L'(X, u) we put

Ef=ffdu and || flI=E|f].

Now, let P be a countable measurable partition of X and let P be the sub-g-algebra
generated by P. We define the conditional entropy of P under < as

H(P|) =E( ~ 3 u4| ) log (4 !M))

and the entropy of P as H(P)=H(P|.A").
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If € e Sub %, then we define the conditional entropy of € under & by the formula
H(%|s/)=sup H(P| /),

where the supremum is taken over all countable measurable partitions P such that Pc %
and H(P)< 0.

It is easy to check that the last definition is equivalent to that of Jacobs [2].

If o, o, €Sub %, then the symbol & | v o, (o v &,) means the smallest algebra
(o-algebra) containing &/, and & ,.

In the sequel we use the following two elementary properties of the conditional
probability.

Let € € Sub £ be fixed.
(1) For every & e Sub# with &/ 5%, Ae# and Ce ¥, it holds

WANC|l)=pu(A| L) 1.
(2) If o/, 2eSub4 are such that .o/ v 9 and ¢ are independent, then for every 4 € &
it holds
WA|E v D)=u(A|D) .

Let I be a countable set directed by an ordering relation <. A net (%,),.; (%,
for short) in Sub & is said to be decreasing (resp. increasing) if 4,5 %, (resp. B,<=%B,)
for s<t.

Let (4,) be a decreasing net in Sub % and let 4,5 for all te l. Proceeding in the

same way as in the proof of Lemma 2 in [6] we have:

LEMMA 1. (),.,%.=% if and only if for every Be\/,_ %, it holds

lim sup || (4 nB|€)—wA|%) u(B|%) =0,

tel

i.e., for any €>0 there exists t,€ I such that
| k(A 1 B|%)— u(A| €)u(B|¥) | <e
for each t<t,.
The following result is a sharpening of Theorem 2 in [6].

THEOREM 1. If () is a decreasing net in Sub% such that \/,_ o, and € are
independent, then

NA,vE)=A,VE.

tel tel

Proor. We define

A=Ay, Co=A,VE

tel
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and
B=ANC, B=,VvE

for each te 1. Let se be fixed. For any Be 4, there exist sets Fy, ..., F, from &/  and
pairwise disjoint sets D;, ..., D, from € such that

q
B=|J F;nD;
j=1
First we shall prove that
© lim sup || (4 0 B|..)— u(A|..) u(B|%.,) | =0

Let te1 be fixed. Similarly as above for any 4 €%, there exist sets Ey, ..., E, from &/,
and pairwise disjoint sets Cy, ..., C, from % such that

T

A= E,-ﬂCi.

i=1

It follows from (1), (2) and the independence assumption that

Il (AN B|E ) — (A€ ) w(B|€ ) |

{WENF;nC;n D;|% ) — WE;n Ci|€ o )u(F;n D;| %, }

M'a
Pﬂa

i=1j=1

“ > i {WENF)| ot ) — W(E;| o ) w(F| o L)}, np,

i=1j=1

Z Z | WCE:n Fy| ot o) — WEi| o ) u(Fj| o ) | i(Cin D))

i=1j=1

< max sup | ENF;| ot ) — W(E | ) i(F| o ) | -

1<jSqEe

Therefore for every Be 45 and te it holds
sup || w4 NB|%.)—u(A|€.,) u(B|%.)

< max sup | WENFj|o ) — W(E | o ) W(Fj| o ) || -

1<j<qEed

Hence using Lemma 1 we get (3). Now, let Be\/,_, %, and let £>0 be arbitrary. Then
there exists se I and a set B, e % such that u(B-+ B,)<¢/5. If follows from (3) that there
exists ¢, €l such that for t<¢, and any E€ %; it holds

@ I (ENB,|€ ) — WE|C)  n(B,|€ ) | <e/S .
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Let t<t¢, and let A€ %,. Then there exists 4,€ %, such that u(4+ A4,)<e/5. It follows
from (4) and basic properties of the conditional probability that

| u(ANB|C ) — (A€ ) u(B|€ ) I| <2u(A+ A,)+2u(B~+B,)+e/5<e.
Thus for every Be\/,_,4%, it holds

lim sup | u(A0 B|%.,)—u(A|€ ) w(B|%.) [ =0.

Using again Lemma 1 we obtain the desired result.

ReEMARK 1. It is worth noting that Weizsacker [14] characterized decreasing
sequences (&,) in Sub# for which it holds

N, vE.
=0

N (v ©)=
n=0

Now, let (X, 4, ) and (X, 4, ji) be probability spaces and let (X x X, BRQE, u x fi)
be the direct product.

COROLLARY 1. If (&Z,) is a decreasing net in Sub B and € € Sub &, then

N, @)= ,®% .
tel tel
PROOF. It is easy to see that the above equality is valid for €= .4"(X). Let now
& be arbitrary. It follows from Theorem 1 that

N(,®%8)= (AN (X) v ¥/ (X)®F) = (AN (X)) V(¥ (NN®D) = ,OF .
tel tel tel tel

REMARK 2. The results given in Corollary 1 and the following lemma are an-
nounced in [9] without proofs.

LEMMA 2. For arbitrary o/ € Sub®B and o7 € Sub & it holds (4 @ B)n (BRA )=
AR .

PrROOF. It is enough to show that
LH(ARENBRA ) LA (ARL) .

There exist orthonormal basis (f,),c; in LA(X, u), (gg)pes in L*(X, ji) and subsets I, <1,
Jo<J such that (f,),cs, is an orthonormal basis in L*(&), (g4)es, is an orthonormal
basis in L3().

We put h,=f,"gp (o, B)elxJ. It is clear that the sets (k. aely, BeJ),
(hap, €1, BeJy) and (h,g, 2 € Iy, B€J,) are orthonormal basis in LH(ARH), L(BRA)
and L*(/ ®. ), respectively.

Let fe LAAQBNBRA) and let c,p denote the Fourier coefficient of f with
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respect to A, i.€.,
Cap=E(f " hyp) , (a0, B)elIxJ.
Since fe LX(A @HF)n LA(BR) we have c,;=0 for a¢l,, feJ or ael, f¢Jo, and f
has the following Fourier expansions:
Y Cap hap=f =Y Cap gy
where the first sum is taken over all (a, b)€ I, x J and the second over all (a, B)e I x J,,.

Hence ¢,;=0 for («, )¢ 1, x J, and so f=anﬂ~ha,,, where the sum is taken over all
(o, B)e Iy x J,. This means that f e L*(«/®.%/) and the lemma is proved.

COROLLARY 2. If (s,) and (sZ,) are decreasing nets in Sub%® and Sub %,
respectively, then

n(ﬂt®~d71)= ndt®ﬂ'5it .

tel tel tel

Proor. If follows from Corollary 1 that

n(ﬂt®&7t)c n(vdt®g?)= ﬂ&[,@g?

tel tel tel

and similarly

N @)= B, .

tel tel

Hence using Lemma 2 we get

N, @)=L, RN A, .

tel tel tel
Since the opposite inclusion is obvious, we get the desired result.

REMARK 3. It is not difficult to show that Corollary 2 is also valid for increasing

nets of sub-g-algebras.
We will also use in the sequel a property analogous to that given in Corollary 2,

for increasing nets of g-algebras.

REMARK 4. If («,) and (7)) are increasing nets in Sub £ and Sub 4 respectively,
then

V(&f,@.ﬁi,)= V«Q"@Vjt P

tel tel tel

as can be easily proved.

2. Relative Kolmogorov Z%-actions. Investigating measure preserving automor-
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phisms of a Lebesgue space with the strong Pinsker property, Thouvenot has introduced
in [13] an interesting class of factors of automorphisms—the so called entropy maximal
factors. These factors have been also objects of investigations of Ornstein [8]. Lind
used them in [7] for studying skew products on compact groups.

Now we recall the definition of these factors. Let T be an automorphism of a
Lebesgue space (X, 4, p) with i(T) < co.

A factor HT=\/+°° T"H of T, where H is a finite partition of X, is said to be

n=—oao

entropy maximal if for every finite partition P of X, the conditions
Pr>H; and WP, T)=h(H,T)

imply Pr=Hj.

Instead of saying that H is entropy maximal one says in [13] that T is a relative
K-system with respect to Hy.

At first glance the concept of a relative K-system seems to have no connection with
the traditional meaning of a Kolmogorov system (automorphism) for which there should
exist some special exhaustive o-algebras for the automorphism.

However, we will show that such a connection exists, not only for single
automorphisms with finite entropy, but also for arbitrary Z%actions. In order to do
so we introduce some concepts concerning Z%-actions.

Let @ be a Z%action on a Lebesgue space (X, 4, n). Let # € Sub # be a factor of
@. For a countable measurable partition P of X with H(P)< oo we put

h(P, ¢|%)=H(P|P" viH),
where P~ =P~
For a given factor ¥ > # we define
h(®/€|#)=sup h(P, | H),

where the supremum is taken over all partitions P with Pc % and H(P) < .
By the relative entropy of @ with respect to # we mean h(®|#)=h(P/B|H).

The smallest sub-g-algebra containing all sub-g-algebras P, where P is a countable
measurable partition such that H(P)< oo and A(P, <D|.Jf )=0is called the relative Pisker
o-algebra with respect to # and is denoted by n(q§|.# ).

It is clear that the sub-o-algebra n(®|#) is a factor of & with A(®/n(®|#)|#)=0.

We shall use in the sequel the following two results.

LEMMA 3 (cf. [5]). For every factor € > H it holds
WP|C)=h(D|H )+ h(P|E|H) .

DEFINITION 1. A o-algebra o/ e Sub 42 is said to be exhaustive if it satisfies the
properties (a,), (b;) and (e,) of perfect g-algebras.

LEMMA 4. If o ©5# is exhaustive, then
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N ¥ >n(D|H) .

geZd

If, in addition, H(s |sf ~)=h(®|# )< o0, then
N oA =n(P|H).
geZd

ProoF. The first part of the lemma is proved in [5]. Now let us suppose
h(d>|Jf )<oo. Let P, Q be countable measurable partitions of X with H(P)< oo,
H(Q)< o0, Pcsof and Oc N gseza®?</. The following equality is a relativized version
of the Pinsker formula for Z%actions.

(5) h(Pv Q, ®|H#)=hQ, ®|#)+H(P|P~ v Q4v H#),
where Qp=YV/ eza®0. The proof of (5) is analogous to that given in [1] in the case
# =" Using (5) and the inclusions Pc o/, Qpc o, # < o we get
WP|AHA)=h(PV Q, ®|H)=hQ, D|#)+HP|P™ v Qpv H)
>h(Q, ®|#)+H(P|L7).
Hence
WP|A)=hQ, D|H)+H(L 7).
It follows from our assumption that h(Q, ®|#)=0, i.e., Q =n(P|H#). Thus we have
shown the inclusion
N P cn(®|H)
geZ4d
which completes the proof.

Now we formulate an extension of the definition of Thouvenot to Z%actions in
our notation.

DEFINITION 2. A Z“action @ is called a relative Kolmogorov action (K-action
for short) with respect to a factor # of @ (or s is entropy maximal) if for every factor
%> with h(®/€|#)=0 it holds €= .

It follows immediately from Lemma 3 that in the case d=1 and A($)< oo our
definition reduces to that of Thouvenot. It is clear that in the absolute case (# =.A4")
it coincides with the definition of a Z%action (d> 1) with completely positive entropy
and therefore (see [10] for d=1 and [3] for d>2) with the definition of a K-action.

THEOREM 2. @ is a relative K-action with respect to A if and only if there exists
an exhaustive sub-c-algebra £ > # with ) geza®?A =K.

PROOF. Since h(®/n(®|# )| #)=0 our assumption implies n(®|# )= . It fol-
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lows from Theorem C that there exists an exhaustive sub-g-algebra &/ > # with
N VoA =n(P|H) .
geZd
Now, let us suppose &/ > # is an exhaustive sub-g-algebra with
N P2t =3¢ .
geZ4
It follows from Lemma 4 that
N oA >n(®|H),
geZd
ie., n(®|# )= If > is a factor such that h(®/€|#)=0, then € =n(P|#) and
therefore ¥ < #, i.e., #=¢. Thus @ is a relative K-action with respect to .
COROLLARY 1. Every Z*-action @ is a relative K-action with respect to the Pinsker
o-algebra n(P).

It is enough to take as ./ in Theorem 2 an arbitrary perfect g-algebra of @.

It is shown in [3] that if 4(®)=0 then 4 is the only exhaustive g-algebra. Therefore
in this case there are no nontrivial factors with respect to which @ is a relative K-action.

Now, let @ be a Z%action with A(®$)>0.

COROLLARY 2. If 3 is a factor such that there exists a factor # ¢ independent of
H, H v H =R and the action ® restricted to the space (X, #°, u) is a K-action, then
@ is a relative K-action with respect to H# .

Proor. It follows from Theorem 2 that there exists € € Sub # which is exhaustive
in (X, 5°¢, u) and such that

6) ﬂ PG =N .
geZzd
Let of =€ v . It is clear that
Ao for g<o and \ PA=%.
gezZ4d

Let a cut (4, B) of Z be a gap. Applying Theorem 1 in the preceding section to the
directed set (B, <) and to the net (#%./), 5 we get

Nt = (@G v H)=PCvH =\ PCvH=\ A .

geB geB geB geA geAd

This means that o/ is an exhaustive sub-o-algebra. In the same way using (6), we get
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N A=) PCvH=H.
geZd gezZd
It follows from Thorem 2 that @ is a relative K-action with respect to .

Now, let (X, %, n), (X, %, ji) be Lebesgue probability spaces and let @, & be
Zactions on (X, %, u) and (X, 4, ji), respectively. We denote by @ x & the product
action of @ and @, i.e.,

(® x DY (x, y)=(Px, D), (x,y)eXxX, geZ‘’.
Our next aim is to show the following:
THEOREM 3. For any factors # and # of ® and b, respectively, it holds
(P x B|H x H)=n(®|H#)RM(P|#) .

PrROOF. Let o« and o be relatively perfect sub-g-algebras for & and ¢ with respect
to # and S, respectively. It is clear by Theorem C that

HARQHA (PxPP(ARLcARA, g<o
and
V (@x PP ARA)=BRSB .
geZ4d

Let (A4, B) be a cut of Z¢ which is a gap. It follows from Corollary 2 to Theorem 1
and Remark 4 that

N(@x PY(A @)= (P A @)= VAR ) B/

geB geB geB geB
=VOARN g =\ (PxPP(ARA) .
geAd geA geA

This means that &/ ®.« is exhaustive. Therefore using Lemma 4 and the fact that &/
and </ are relatively perfect, we get

WPxB|HARA ) ) (Px PP (ARA)= (| VAR (| A =n(D|H)QM(D|H#) .
gezd geZzd geZd

In order to show the opposite inclusion let us suppose that Een(®|#) and
Een(®|#). We consider the partitions P and P of X and X respectively such that

P={E, E}, P={E E%

where E‘=X\E and E°= X\ E. It follows from the definition of the relative Pinsker
o-algebra that h(P, ®|#)=0 and h(P, &| #)=0. It is easy to check that
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h(Px P, ® x $| # @ H)=hP, ®|#)+h(P, B| )
where P x P is the partition of X x X defined by
PxP={ExE, E‘x E, Ex E, E°x E} .

Therefore we have A(P x P, & x &|# ® #)=0 which implies A x Ae (P x §|H# QH).
Hence, by the definition of a product g-algebra, we get the desired inclusion.

COROLLARY. If ® and ® are relative K-actions with respect to # and H,
respectively, then ® x ® is a relative K-action with respect to # Q # .

Assuming # =.4"(X) and # =.4'(X) we get an extension of the Pollit formula
(cf. [9]) to Z“-actions.
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