A TRANSPLANTATION THEOREM FOR LAGUERRE SERIES

Yuichi Kanjin

(Received July 20, 1990, revised January 4, 1991)

1. Introduction. Let $L_{n}^{\alpha}(x), \alpha>-1$, be the Laguerre polynomial of degree n and of order α defined by

$$
L_{n}^{\alpha}(x)=\frac{e^{x} x^{-\alpha}}{n!}\left(\frac{d}{d x}\right)^{n}\left(e^{-x} x^{n+\alpha}\right)
$$

Then the functions $\tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2}, n=0,1,2, \cdots$, are orthonormal on the interval $(0, \infty)$ with respect to the ordinary Lebesgue measure $d x$, where

$$
\left(\tau_{n}^{\alpha}\right)^{-2}=\int_{0}^{\infty}\left\{L_{n}^{\alpha}(x)\right\}^{2} e^{-x} x^{\alpha} d x=\frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)} .
$$

This orthonormal system leads us to the formal expansion of a function $f(x)$ on $(0, \infty)$:

$$
f(x) \sim \sum_{n=0}^{\infty} a_{n}^{\alpha}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2},
$$

where $a_{n}^{\alpha}(f)$ is the n-th Fourier-Laguerre coefficient of order α of $f(x)$ defined by

$$
a_{n}^{\alpha}(f)=\int_{0}^{\infty} f(x) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2} d x
$$

We note that the integral converges and $a_{n}^{\alpha}(f)$ is finite if $\alpha \geq 0$ and $1 \leq p \leq \infty$, or if $-1<\alpha<0$ and $(1+\alpha / 2)^{-1}<p \leq \infty$.

Our theorem is as follows:
Theorem. Let $\alpha, \beta>-1$ and $\gamma=\min \{\alpha, \beta\}$. If $\gamma \geq 0$, then

$$
\begin{equation*}
\int_{0}^{\infty}\left|\sum_{n=0}^{\infty} a_{n}^{\beta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2}\right|^{p} d x \leq C \int_{0}^{\infty}|f(x)|^{p} d x \tag{1.1}
\end{equation*}
$$

for $1<p<\infty$, where C is a constant independent of f. If $-1<\gamma<0$, then (1.1) holds for $(1+\gamma / 2)^{-1}<p<-2 / \gamma$.

Historically, Guy [11] proved a transplantation theorem for Hankel transforms. Schindler [14] proved Guy's theorem showing an explicit integral representation. For other classical expansions, Askey and Wainger [3], [4] gave transplantation theorems for ultraspherical coefficients and its dual. Furthermore, Askey [1], [2]
generalized their theorems to Jacobi polynomial expansions. In [1], he also proved a transplantation theorem [1, Theorem 3] for Laguerre coefficients of orders α and $\beta=\alpha+2$. Our theorem is the dual to his theorem with arbitrary β. Some other related transplantation theorems are found in Gilbert [10] and in Muckenhoupt [13].

An advantage of our transplantation theorem is that, if a norm inequality of Laguerre series of some order α is proved, then the corresponding norm inequality of any other order β holds automatically. We give an application. Let $\Lambda=\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ be a bounded sequence. We define a multiplier operator $\mathscr{M}_{\Lambda}^{\alpha}$ with multiplier Λ by $a_{n}^{\alpha}\left(\mathscr{M}_{A}^{\alpha}(f)\right)=\lambda_{n} a_{n}^{\alpha}(f), n=0,1,2, \cdots$, that is,

$$
\mathscr{M}_{A}^{\alpha}(f) \sim \sum_{n=0}^{\infty} \lambda_{n} a_{n}^{\alpha}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2}
$$

We denote by L^{p} the Lebesgue space of all measurable functions $f(x)$ defined on $(0, \infty)$ such that $\|f\|_{p}=\left\{\int_{0}^{\infty}|f(x)|^{p} \mathrm{dx}\right\}^{1 / p}<\infty$. We may denote $\|f\|_{p}$ by $\|f(x)\|_{p}$.

Corollary. Let $\lambda(x)$ be a four times differentiable function on $(0, \infty)$ satisfying $\sup _{x>0}\left|\lambda^{(j)}(x) x^{j}\right| \leq B \quad(j=0,1,2,3,4)$, and let $\Lambda=\{\lambda(s(2 n+1))\}_{n=0}^{\infty}$ for $s>0$. Then, $\left\|\mathscr{M}_{A}^{\alpha}(f)\right\|_{p} \leq C B\|f\|_{p}\left(f \in L^{p}\right)$ if $\alpha \geq 0$ and $1<p<\infty$, or if $-1<\alpha<0$ and $(1+\alpha / 2)^{-1}<$ $p<-2 / \alpha$, where C is a constant depending only on α and p.

The corollary is obtained instantly by applying our theorem to the following result due to Długosz [6].
(A) • Dlugosz's criterion $(c f .[6, \S 1])$. Let $\lambda(x)$ and Λ be a function and a sequence given in the corollary. If $\alpha=0,1,2, \cdots$, then $\left\|\mathscr{M}_{A}^{\alpha}(f)\right\|_{p} \leq C B\|f\|_{p}\left(f \in L^{p}\right)$ for $1<p<\infty$, where C is a constant depending only on p.

We use this criterion to prove our main theorem.
In $\S 2$, we shall extend the parameter β of $T_{\alpha}^{\beta}(f)$ to complex β, where $T_{\alpha}^{\beta}(f)$ is the function defined by the series $\sum_{n=0}^{\infty} a_{n}^{\beta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2}$. Using (A), we shall reduce the estimate of the L^{p}-norm of $T_{\alpha}^{\beta}(f)$ to that of the operator $T_{\alpha, \varphi}^{\beta}(f)$ defined in (2.8) which is easier to treat. We extend the parameter β to complex numbers $\beta=\alpha+k+i \theta$, $k=0,2,-\infty<\theta<\infty$, and apply an interpolation theorem. In $\S 3$, we shall estimate the L^{p}-norm of $T_{\alpha, \varphi}^{\alpha+i \theta}(f)$. To do so, we deal with $T_{\alpha, \varphi}^{\alpha+\varepsilon+i \theta}(f), \varepsilon>0$. We shall modify $T_{\alpha, \varphi}^{\alpha+\varepsilon+i \theta}(f)$. The essential part of our proof is to use the formula

$$
L_{n}^{\alpha+\varepsilon+i \theta}(y)=\frac{\Gamma(n+\alpha+\varepsilon+i \theta+1)}{\Gamma(\varepsilon+i \theta) \Gamma(n+\alpha+1)} \int_{0}^{1} v^{\alpha}(1-v)^{\varepsilon-1+i \theta} L_{n}^{\alpha}(v y) d v,
$$

and estimate the L^{p}-norm of the operator by the singular integral operator theory and Hardy's inequality. In $\S 4$, the L^{p} norm of $T_{\alpha, \varphi}^{\alpha+2+i \theta}(f)$ will be evaluated by an argument similar to that of $\S 3$.
2. Reduction. We extend the definition of the n-th Fourier-Laguerre coefficient
$a_{n}^{\beta}(f)$ to complex β as follows. By the explicit representation

$$
L_{n}^{\beta}(x)=\sum_{k=0}^{n}\binom{n+\beta}{n-k} \frac{(-x)^{k}}{k!}
$$

the definition of the Laguerre polynomial is extended to complex β. $L_{n}^{\beta}(x)$ is analytic in β except at the points $\beta=-n-1,-n-2, \cdots$ for fixed x. The coefficient $\tau_{n}^{\beta}=\{\Gamma(n+1) / \Gamma(n+\beta+1)\}^{1 / 2}$ is analytic in β in the cut plane $|\arg (\beta+n+1)|<\pi$, where we take the branch of the square root equal to +1 for $\beta=0$. Let C_{c}^{∞} be the space of infinitely differentiable functions with compact support in $(0, \infty)$. For $f \in C_{c}^{\infty}$, the definition of $a_{n}^{\beta}(f)$ is extended to complex β and is analytic in $|\arg (\beta+n+1)|<\pi$.

Lemma 1. Let $f \in C_{c}^{\infty}$. Let $\alpha>-1$ and $\Delta>0$. Then, for every $j=1,2,3, \cdots$, there are a constant C and a number n_{0} such that

$$
\begin{equation*}
\left|a_{n}^{\beta}(f)\right| \leq C\left(1+|\theta|^{j}\right) e^{\pi|\theta| / 2} n^{(\Delta-j) / 2+1 / 4} \tag{2.1}
\end{equation*}
$$

for $n \geq n_{0},-\infty<\theta<\infty$ and $0 \leq \delta \leq \Delta$, where $\beta=\alpha+\delta+i \theta$.
Proof. By the formula (cf. [7, 10.12 (28)])

$$
L_{n}^{\beta}(y) e^{-y} y^{\beta}=\frac{(n-j)!}{n!}\left(\frac{d}{d y}\right)^{j}\left\{L_{n-j}^{\beta+j}(y) e^{-y} y^{\beta+j}\right\},
$$

we have

$$
a_{n}^{\beta}(f)=\tau_{n}^{\beta} \frac{(n-j)!}{n!} \int_{0}^{\infty} f(y) e^{y / 2} y^{-\beta / 2}\left(\frac{d}{d y}\right)^{j}\left\{L_{n-j}^{\beta+j}(y) e^{-y} y^{\beta+j}\right\} d y
$$

By integration by parts

$$
a_{n}^{\beta}(f)=\tau_{n}^{\beta} \frac{(n-j)!}{n!}(-1)^{j} \int_{0}^{\infty}\left\{\left(\frac{d}{d y}\right)^{j}\left(f(y) e^{y / 2} y^{-\beta / 2}\right)\right\} L_{n-j}^{\beta+j}(y) e^{-y} y^{\beta+j} d y .
$$

Since f is a function with compact support in ($0, \infty$), we may assume supp $f \subset[a, b]$, $0<a<b<\infty$. Thus

$$
\left|a_{n}^{\beta}(f)\right| \leq C\left(1+|\theta|^{j}\right)\left|\tau_{n}^{\beta}\right| n^{-j} \int_{a}^{b}\left|L_{n-j}^{\beta+j}(y)\right| d y
$$

where C is a constant independent of n and θ, and is bounded in $0 \leq \delta \leq \Delta$. We apply the formula (cf. [7, 10.12 (30)])

$$
\begin{equation*}
L_{m}^{\mu+v}(y)=\frac{\Gamma(m+\mu+v+1)}{\Gamma(v) \Gamma(m+\mu+1)} \int_{0}^{1} v^{\mu}(1-v)^{v-1} L_{m}^{\mu}(v y) d v, \tag{2.2}
\end{equation*}
$$

$\operatorname{Re} \mu>-1, \operatorname{Re} v>0$ with $\mu=\alpha+j-1, v=1+\delta+i \theta$ and $m=n-j$ to the integrand $L_{n-j}^{\beta+j}(y)$. Then, we have

$$
\begin{equation*}
\left|a_{n}^{\beta}(f)\right| \leq \frac{C\left(1+|\theta|^{j}\right)}{|\Gamma(1+\delta+i \theta)|} n^{-j} A_{n, \beta} \int_{a}^{b} \int_{0}^{1} v^{\alpha+j-1}\left|L_{n-j}^{\alpha+j-1}(v y)\right| d v d y \tag{2.3}
\end{equation*}
$$

where $A_{n, \beta}=\left|\tau_{n}^{\beta}\right||\Gamma(n+\beta+1)| /|\Gamma(n+\alpha)|$. Since $\quad \Gamma(1+\delta+i \theta)^{-1}=B(1 / 2+\delta, 1 / 2+i \theta)$. $\{\Gamma(1 / 2+\delta) \Gamma(1 / 2+i \theta)\}^{-1}$ and $|\Gamma(1 / 2+i \theta)|^{2}=\pi / \cosh \pi \theta$, we have

$$
\begin{equation*}
\frac{1}{|\Gamma(1+\delta+i \theta)|} \leq \frac{B(1 / 2,1 / 2)}{\inf _{x \geq 1 / 2} \Gamma(x)}\left\{\frac{\cosh \pi \theta}{\pi}\right\}^{1 / 2} \leq A e^{\pi|\theta| / 2} \tag{2.4}
\end{equation*}
$$

for $-\infty<\theta<\infty$ and $\delta \geq 0$, where A is an absolute constant. We estimate $A_{n, \beta}$. We have

$$
A_{n, \beta}=\left\{\frac{|\Gamma(n+1) \Gamma(n+\alpha+\delta+1)|}{|\Gamma(n+\alpha)|^{2}}\left|\frac{\Gamma(n+\alpha+\delta+1+i \theta)}{\Gamma(n+\alpha+\delta+1)}\right|\right\}^{1 / 2} .
$$

It follows from the identity (cf. [7, 1.3 (3)])

$$
\begin{equation*}
\frac{\Gamma(x+i y)}{\Gamma(x)}=e^{-i \gamma y} \frac{x}{x+i y} \prod_{k=1}^{\infty} \frac{e^{i y / k}}{1+i y /(k+x)} \tag{2.5}
\end{equation*}
$$

with $x=n+\alpha+\delta+1$ and $y=\theta$ that $|\Gamma(n+\alpha+\delta+1+i \theta) / \Gamma(n+\alpha+\delta+1)| \leq 1$ for $n=0,1,2, \cdots, \delta \geq 0$ and $-\infty<\theta<\infty$. Thus, we have

$$
\begin{equation*}
A_{n, \beta} \leq C n^{(\Delta-\alpha+2) / 2} \tag{2.6}
\end{equation*}
$$

for $n \geq n_{0}$, where the constant C and n_{0} depend only on Δ and α. To estimate the integral on the right side of the inequality (2.3), we note that the integral is independent of β. We have

$$
\begin{aligned}
& \int_{a}^{b} \int_{0}^{1} v^{\alpha+j-1}\left|L_{n-j}^{\alpha+j-1}(v y)\right| d v d y=\int_{0}^{1} \int_{v a}^{v b}\left|L_{n-j}^{\alpha+j-1}(t)\right| d t v^{\alpha+j-2} d v \\
& \quad=\left\{\int_{0}^{1 /(n-j)}+\int_{1 /(n-j)}^{1}\right\} \int_{v a}^{v b}\left|L_{n-j}^{\alpha+j-1}(t)\right| d t v^{\alpha+j-2} d v=D_{1}+D_{2},
\end{aligned}
$$

say. It follows from the asymptotic formula $[15,(7.6 .8)]$ of the Laguerre polynomial that

$$
\begin{align*}
& D_{1} \leq \int_{0}^{1 /(n-j)} \int_{v a}^{v b}\left(C n^{\alpha+j-1}\right) d t v^{\alpha+j-2} d v \leq C n^{-1}, \tag{2.7}\\
& D_{2} \leq \int_{1 /(n-j)}^{1} \int_{v a}^{v b} C(n / t)^{(\alpha+j-1) / 2}(n t)^{-1 / 4} d t v^{\alpha+j-2} d v \leq C n^{(\alpha+j) / 2-3 / 4}
\end{align*}
$$

for large n, where C is a constant independent of n. Combining (2.4), (2.6) and (2.7), we complete the proof.
q.e.d.

Let $\alpha>-1$ and $\operatorname{Re} \beta>-1$. We define an operator T_{α}^{β} by $a_{n}^{\alpha}\left(T_{\alpha}^{\beta}(f)\right)=a_{n}^{\beta}(f)$,
$n=0,1,2, \cdots$, for $f \in C_{c}^{\infty}$, that is,

$$
T_{\alpha}^{\beta}(f) \sim \sum_{n=0}^{\infty} a_{n}^{\beta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2} .
$$

It follows from (2.1) that $T_{\alpha}^{\beta}(f) \in L^{2}(0, \infty)$ for $f \in C_{c}^{\infty}$. Let $\left\{\varphi_{n}\right\}$ be the sequence defined by

$$
\varphi_{n}=\left\{\frac{\Gamma(n+\alpha+1)}{\Gamma(n+\alpha+1+i \theta)}\right\}^{1 / 2}, \quad n=0,1,2, \cdots,-\infty<\theta<\infty
$$

We choose the branch of the square root which is equal to +1 for $\theta=0$. We define also an operator $T_{\alpha, \varphi}^{\beta}$ by

$$
\begin{equation*}
T_{\alpha, \varphi}^{\beta}(f) \sim \sum_{n=0}^{\infty} \varphi_{n} a_{n}^{\beta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2} \tag{2.8}
\end{equation*}
$$

for $f \in C_{c}^{\infty}$. Since the sequence $\left\{\varphi_{n}\right\}$ is bounded for every θ, we have $T_{\alpha, \varphi}^{\beta}(f) \in L^{2}(0, \infty)$ for $f \in C_{c}^{\infty}$. We state here two propositions. Theorem will follow from Proposition 1, which in turn is deduced from Proposition 2.

Proposition 1. (I) If $\alpha=0,1,2, \cdots$, then

$$
\left\|T_{\alpha}^{\alpha+k+i \theta}(f)\right\|_{p} \leq M(\theta)\|f\|_{p} \quad\left(f \in C_{c}^{\infty}\right)
$$

for $1<p<\infty,-\infty<\theta<\infty$ and $k=0,2$ where $M(\theta)$ is independent of f and satisfies the condition

$$
\sup _{-\infty<\theta<\infty} e^{-\kappa|\theta|} \log M(2 \theta)<\infty \quad \text { for some } \quad \kappa<\pi
$$

(II) If $\alpha \geq 0$, then

$$
\begin{equation*}
\left\|T_{\alpha}^{\alpha+2}(f)\right\|_{p} \leq C\|f\|_{p} \quad\left(f \in C_{c}^{\infty}\right) \tag{2.9}
\end{equation*}
$$

for $1<p<\infty$, where C is a constant independent of f. If $-1<\alpha<0$, then (2.9) holds for $(1+\alpha / 2)^{-1}<p<-2 / \alpha$.

Proposition 2. If $\alpha \geq 0$, then

$$
\begin{equation*}
\left\|T_{\alpha, \varphi}^{\alpha+k+i \theta}(f)\right\|_{p} \leq M(\theta)\|f\|_{p} \quad\left(f \in C_{c}^{\infty}\right) \tag{2.10}
\end{equation*}
$$

for $1<p<\infty,-\infty<\theta<\infty$ and $k=0$, 2, where $M(\theta)$ is independent of f and satisfies (\#). If $-1<\alpha<0$, then (2.10) with $k=2$ holds for $(1+\alpha / 2)^{-1}<p<-2 / \alpha$.

We show first that Proposition 2 implies Proposition 1. Since $\varphi_{n}=1$ for $\theta=0$, Proposition 1, (II) is a special case of Proposition 2. We apply Długosz's criterion to the function

$$
\lambda(x)=\left\{\frac{\Gamma(x+\alpha+1 / 2+i \theta)}{\Gamma(x+\alpha+1 / 2)}\right\}^{1 / 2}, \quad \alpha>-1 / 2
$$

We have $\lambda((2 n+1) / 2)=\varphi_{n}^{-1}$. Here, the branch of the root is so chosen that $\lambda(x)=+1$ for $\theta=0$. Let $\Lambda=\left\{\varphi_{n}^{-1}\right\}_{n=0}^{\infty}$. Then we have $\mathscr{M}_{A}^{\alpha}\left(T_{\alpha, \varphi}^{\alpha+k+i \theta}(f)\right)=T_{\alpha}^{\alpha+k+i \theta}(f)$. Thus, Proposition 1, (I) follows from Proposition 2 by Lemma 2 below which shows that the function $\lambda(x)$ satisfies Długosz's condition with the constant $B=C\left(1+\theta^{4}\right)$, where C is a constant depending only on α.

Lemma 2. Let $\alpha>-1 / 2$ and $j=0,1,2, \cdots$. Then,

$$
\sup _{x>0}\left|\lambda^{(j)}(x) x^{j}\right| \leq C\left(1+|\theta|^{j}\right)
$$

for $-\infty<\theta<\infty$, where C is a constant independent of θ.
Proof. By (2.5), we have $\sup _{x>0}|\lambda(x)| \leq 1$. Let $\psi(z)$ be the logarithmic derivative of $\Gamma(z)$, that is, $\psi(z)=\Gamma^{\prime}(z) / \Gamma(z)$. Let $u=x+\alpha+1 / 2$. We note $u>0$. We have $\lambda^{\prime}(x)=\lambda(x)\{\psi(u+i \theta)-\psi(u)\} / 2$. Differentiating in x both sides of the identity j times, we have

$$
\lambda^{(j+1)}(x)=\frac{1}{2} \sum_{k=0}^{j}\binom{j}{k} \lambda^{(j-k)}(x)\left\{\psi^{(k)}(u+i \theta)-\psi^{(k)}(u)\right\}
$$

We see by the identity that it is enough to show that

$$
\sup _{x>0}\left|\psi^{(k)}(u+i \theta)-\psi^{(k)}(u)\right| x^{k+1} \leq C|\theta|
$$

for every $k=0,1,2, \cdots$. For $k=0$, we use the formula (cf. [7, 1.7 (24)])

$$
\psi(z)=\log z+\int_{0}^{\infty}\left\{\frac{1}{1-e^{t}}+\frac{1}{t}-1\right\} e^{-t z} d t
$$

for $\operatorname{Re} z>0$. We have

$$
\begin{aligned}
|\psi(u+i \theta)-\psi(u)| \leq & \log \left|1+i \frac{\theta}{u}\right|+\left|\tan ^{-1} \frac{\theta}{u}\right| \\
& +2|\theta| \int_{0}^{\infty}\left|\frac{1}{1-e^{t}}+\frac{1}{t}-1\right| e^{-t u} t d t \leq C \frac{|\theta|}{u} .
\end{aligned}
$$

Since

$$
\psi^{(k)}(z)=(-1)^{k+1} k!\sum_{m=0}^{\infty} \frac{1}{(z+m)^{k+1}}
$$

(cf. [7, 1.17 (9)]), we have

$$
\begin{aligned}
\psi^{(k)}(u+i \theta)-\psi^{(k)}(u)= & (-1)^{k+1} k!\sum_{m=0}^{\infty}\left\{\frac{1}{u+i \theta+m}-\frac{1}{u+m}\right\} \\
& \cdot\left\{\frac{1}{(u+i \theta+m)^{k}}+\frac{1}{(u+i \theta+m)^{k-1}(u+m)}+\cdots+\frac{1}{(u+m)^{k}}\right\} .
\end{aligned}
$$

Thus, we have

$$
\left|\psi^{(k)}(u+i \theta)-\psi^{(k)}(u)\right| \cdot x^{k+1} \leq k!|\theta| x^{k+1} \sum_{m=0}^{\infty} \frac{1}{(u+m)^{2}} \frac{k+1}{(u+m)^{k}} \leq C|\theta|
$$

where C is a constant not depending on θ and x.
q.e.d.

We show that Proposition 1 implies Theorem. Let f and g be in C_{c}^{∞}, and let z satisfy $0 \leq \operatorname{Re} z \leq 1$. We write $z=\delta+i \theta$. We define

$$
\Phi_{\alpha}(z)=\int_{0}^{\infty} T_{\alpha}^{\alpha+2 z}(f)(x) g(x) d x
$$

for $\alpha>-1$. Then, it follows from (2.1) with $j=4$ that

$$
\begin{aligned}
\left|\Phi_{\alpha}(z)\right|^{2} & =\left|\sum_{n=0}^{\infty} a_{n}^{\alpha+2 z}(f) a_{n}^{\alpha}(g)\right|^{2} \\
& \leq \sum_{n=0}^{\infty}\left|a_{n}^{\alpha+2 z}(f)\right|^{2} \sum_{n=0}^{\infty}\left|a_{n}^{\alpha}(g)\right|^{2} \leq C\left(1+\theta^{4}\right)^{2} e^{2 \pi|\theta|}\|g\|_{2}^{2},
\end{aligned}
$$

for $0 \leq \delta \leq 1$ and $-\infty<\theta<\infty$, where C is a constant not depending on δ and θ. Thus, $\Phi_{\alpha}(z)$ is analytic in the strip $0<\delta<1$, and continuous in the closed strip, and of admissible growth there, that is, $\sup \left\{e^{-\kappa|\theta|} \log \left|\Phi_{\alpha}(z)\right| ; 0 \leq \delta \leq 1,-\infty<\theta<\infty\right\}<\infty$ for some $\kappa<\pi$. Let $\alpha=0,1,2, \cdots, 1<p<\infty$ and $1 / p+1 / q=1$. By Proposition 1, (I), we have $\left|\Phi_{a}(k+i \theta)\right| \leq M(2 \theta), k=0,1$, for $\|f\|_{p}=\|g\|_{q}=1$. It follows from the lemma of Hirschman [12, Lemma 1] that $\left|\Phi_{\alpha}(\delta)\right| \leq C$ for $0 \leq \delta \leq 1$, where C is a constant depending on δ. Thus, we have

$$
\begin{equation*}
\left\|T_{\alpha}^{\beta}(f)\right\|_{p} \leq C\|f\|_{p} \quad\left(f \in C_{c}^{\infty}\right) \tag{2.11}
\end{equation*}
$$

for α, β and p satisfying the condition

$$
\begin{equation*}
\alpha=0,1,2, \cdots, \quad \alpha \leq \beta \leq \alpha+2 \quad \text { and } \quad 1<p<\infty, \tag{*}
\end{equation*}
$$

where C is a constant not depending on f. Note that we may obtain the above inequality by using a special case of Stein's complex interpolation theorem. Since $\int T_{\alpha}^{\beta}(f) g=\sum a_{n}^{\beta}(f) a_{n}^{\alpha}(g)=\int f T_{\beta}^{\alpha}(g)$, it follows from the duality argument that

$$
\begin{equation*}
\left\|T_{\beta}^{\alpha}(f)\right\|_{p} \leq C\|f\|_{p} \quad\left(f \in C_{c}^{\infty}\right) \tag{2.12}
\end{equation*}
$$

for α, β and p with (*). By the standard density argument, T_{α}^{β} is extended to the whole space L^{p}. We denote the extension also by T_{α}^{β}. Then, (2.11) and (2.12) hold for all $f \in L^{p}$
and for α, β and p with (*). We note that $a_{n}^{\alpha}\left(T_{\alpha}^{\beta}(f)\right)=a_{n}^{\beta}(f)$ for all $f \in L^{p}$ and for α, β and p with (*). The same argument is applicable to $T_{\alpha}^{\alpha+2}, \alpha>-1$. It follows that

$$
\begin{equation*}
\left\|T_{\alpha}^{\beta}(f)\right\|_{p} \leq C\|f\|_{p} \quad\left(f \in L^{p}\right) \tag{2.13}
\end{equation*}
$$

and $a_{n}^{\alpha}\left(T_{\alpha}^{\beta}(f)\right)=a_{n}^{\beta}(f)\left(f \in L^{p}\right)$ if $0 \leq \gamma=\min \{\alpha, \beta\},|\alpha-\beta|=2$ and $1<p<\infty$, or if $-1<\gamma<0,|\alpha-\beta|=2$ and $(1+\gamma / 2)^{-1}<p<-2 / \gamma$. By duality it is enough to show $\left\|T_{\alpha}^{\beta}(f)\right\|_{p} \leq C\|f\|_{p}\left(f \in L^{p}\right)$ in the following three cases (i) $0 \leq \alpha<\beta, 1<p<\infty$, (ii) $-1<\alpha<0 \leq \beta,(1+\alpha / 2)^{-1}<p<-2 / \alpha$ and (iii) $-1<\alpha<\beta<0,(1+\alpha / 2)^{-1}<p<-2 / \alpha$. We use the property $T_{\alpha}^{\beta} \circ T_{\beta}^{\zeta}(f)=T_{\alpha}^{\zeta}(f)\left(f \in L^{p}\right)$ for suitable α, β, ζ and p which follows from $a_{n}^{\alpha}\left(T_{\alpha}^{\beta}(f)\right)=a_{n}^{\beta}(f)\left(f \in L^{p}\right)$. We show only the case (ii) since the other cases are proved by a similar argument. Let N be the integer such that $2 N \leq \beta<2(N+1)$. It follows that $T_{\alpha}^{\beta}=T_{\alpha}^{\alpha+2} \circ T_{\alpha+2}^{0} \circ T_{0}^{2} \circ \cdots \circ T_{2 N}^{\beta}$. We have the desired inequality by applying (2.13) to the operators $T_{\alpha}^{\alpha+2}, T_{0}^{2}, \cdots, T_{2(N-1)}^{2 N}$, and (2.12) to $T_{\alpha+2}^{0}$, and (2.11) to $T_{2 N}^{\beta}$. Therefore, we see that Proposition 1 implies the theorem.

The rest of the paper is devoted to the proof of Proposition 2. We shall estimate the L^{p} norm of $T_{\alpha, \varphi}^{\alpha+i \theta}(f), \alpha \geq 0$, in $\S 3$ and that of $T_{\alpha, \varphi}^{\alpha+2+i \theta}(f), \alpha>-1$, in $\S 4$.
3. Estimate of L^{p} norm of $T_{\alpha, \varphi}^{\alpha+i \theta}(f), \alpha \geq 0$. Let $\varepsilon>0$. We define

$$
\begin{equation*}
G_{\varepsilon}^{\theta}(f)(x)=\sum_{n=0}^{\infty} \varphi_{n} \omega_{n}^{\alpha} a_{n}^{\alpha+\varepsilon+i \theta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2} \tag{3.1}
\end{equation*}
$$

for $\alpha>-1, f \in C_{c}^{\infty}$ and $x>0$, where

$$
\begin{equation*}
\omega_{n}^{\alpha}=\{\Gamma(n+\alpha+i \theta+1) / \Gamma(n+\alpha+i \theta+1+\varepsilon)\}^{1 / 2} \tag{3.2}
\end{equation*}
$$

We take the branch of the square root which is positive for $\theta=0$. It follows from Lemma 1 that $\lim _{\varepsilon \rightarrow+0} G_{\varepsilon}^{\theta}(f)(x)=T_{\alpha, \varphi}^{\alpha+i \theta}(f)(x)$ for every $x>0$. We shall show that

$$
\begin{equation*}
\left\|G_{\varepsilon}^{\theta}(f)\right\|_{p} \leq M(\theta)\left(\left\|f(x) x^{\varepsilon / 2}\right\|_{p}+\left\|f(x) x^{-\varepsilon / 2}\right\|_{p}\right) \tag{3.3}
\end{equation*}
$$

for $\alpha \geq 0,1<p<\infty, 0<\varepsilon<1,-\infty<\theta<\infty$ and $f \in C_{c}^{\infty}$, where $M(\theta)$ is independent of f and ε, and satisfies the condition (\#) in Proposition 1. Then, letting $\varepsilon \rightarrow+0$, we have $\left\|T_{\alpha, \varphi}^{\alpha+i \theta}(f)\right\|_{p} \leq M(\theta)\|f\|_{p}$ for $\alpha \geq 0, \quad 1<p<\infty,-\infty<\theta<\infty$ and $f \in C_{c}^{\infty}$ by Fatou's lemma and Lebesgue's convergence theorem. This is the inequality to be proved for $T_{\alpha, \varphi}^{\alpha+i \theta}(f)$.

To prove (3.3), we shall express $G_{\varepsilon}^{\theta}(f)$ in an integral form (3.10) for $\alpha>-1, \varepsilon>0$ and $-\infty<\theta<\infty$. The expression for $G_{\varepsilon}^{\theta}(f)$ with $\varepsilon=2$ and $\alpha>-1$ will be used also in §4. We define

$$
G_{\varepsilon, r}^{\theta}(f)(x)=\sum_{n=0}^{\infty} r^{n} \varphi_{n} \omega_{n}^{\alpha} a_{n}^{\alpha+\varepsilon+i \theta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2},
$$

for $0<r \leq 1$. We note that $\lim _{r \rightarrow 1-} G_{\varepsilon, r}^{\theta}(f)(x)=G_{\varepsilon}^{\theta}(f)(x)$ for every x. By the formula (cf. [15, (5.4.1)])

$$
L_{n}^{\alpha}(x)=\frac{e^{x} x^{-\alpha / 2}}{n!} \int_{0}^{\infty} e^{-t} t^{n+\alpha / 2} J_{\alpha}\left(2(t x)^{1 / 2}\right) d t, \quad \alpha>-1
$$

we have

$$
\begin{aligned}
G_{\varepsilon, r}^{\theta}(f)(x) & =e^{x / 2} \sum_{n=0}^{\infty} \varphi_{n} \omega_{n}^{\alpha} a_{n}^{\alpha+\varepsilon+i \theta}(f) \tau_{n}^{\alpha} \int_{0}^{\infty} \frac{(r t)^{n}}{n!} t^{\alpha / 2} J_{\alpha}\left(2(t x)^{1 / 2}\right) e^{-t} d t \\
& =e^{\alpha / 2} \int_{0}^{\infty}\left\{\sum_{n=0}^{\infty} \varphi_{n} \omega_{n}^{\alpha} a_{n}^{\alpha+\varepsilon+i \theta}(f) \tau_{n}^{\alpha} \frac{(r t)^{n}}{n!}\right\} J_{\alpha}\left(2(t x)^{1 / 2}\right) e^{-t} t^{\alpha / 2} d t
\end{aligned}
$$

for $\alpha>-1$ and $0<r \leq 1$. We remark that $a_{n}^{\alpha+\varepsilon+i \theta}(f)=O\left(n^{-j}\right)(n \rightarrow \infty)$ for large j by (2.1). It follows from the definition of $a_{n}^{\alpha+\varepsilon+i \theta}(f)$ that

$$
\begin{align*}
G_{\varepsilon, r}^{\theta}(f)(x)= & e^{x / 2} \int_{0}^{\infty} \int_{0}^{\infty}\left\{\sum_{n=0}^{\infty} \varphi_{n} \omega_{n}^{\alpha} \tau_{n}^{\alpha+\varepsilon+i \theta} \tau_{n}^{\alpha} \frac{(r t)^{n}}{n!} L_{n}^{\alpha+\varepsilon+i \theta}(y)\right\} \tag{3.4}\\
& \cdot f(y) e^{-y / 2} y^{(\alpha+\varepsilon+i \theta) / 2} J_{\alpha}\left(2(t x)^{1 / 2}\right) e^{-t} t^{\alpha / 2} d y d t
\end{align*}
$$

for $\alpha>-1$ and $0<r \leq 1$. We apply the formula (2.2) with $\mu=\alpha, v=\varepsilon+i \theta$ and $m=n$ to $L_{n}^{\alpha+\varepsilon+i \theta}(y)$. Then we have

$$
\begin{aligned}
G_{\varepsilon, r}^{\theta}(f)(x)= & \frac{e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} v^{\alpha}(1-v)^{\varepsilon-1+i \theta} \sum_{n=0}^{\infty} \frac{(r t)^{n}}{\Gamma(n+\alpha+1)} L_{n}^{\alpha}(v y) \\
& \cdot f(y) e^{-y / 2} y^{(\alpha+\varepsilon+i \theta / 2} J_{\alpha}\left(2(t x)^{1 / 2}\right) e^{-t} t^{\alpha / 2} d v d y d t
\end{aligned}
$$

for $\alpha>-1$ and $0<r \leq 1$. By the formula (cf. [15, (5.1.16)])

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{w^{n}}{\Gamma(n+\alpha+1)} L_{n}^{\alpha}(x)=e^{w}(x w)^{-\alpha / 2} J_{\alpha}\left(2(x w)^{1 / 2}\right) \tag{3.5}
\end{equation*}
$$

and a change of variables, we have

$$
\begin{align*}
G_{\varepsilon, r}^{\theta}(f)(x)= & \frac{2 e^{x / 2}}{r^{\alpha / 2} \Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} u^{\alpha+1}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} J_{\alpha}\left(r^{1 / 2} s u z\right) \tag{3.6}\\
& \cdot g_{\varepsilon}^{\theta}(z) J_{\alpha}\left((2 x)^{1 / 2} s\right) e^{-(1-r) s^{2} / 2} s d u d z d s,
\end{align*}
$$

where $g_{\varepsilon}^{\theta}(z)=f\left(z^{2} / 2\right) e^{-z^{2} / 4}\left(z^{2} / 2\right)^{(\varepsilon+i \theta) / 2} z$ for $\alpha>-1$ and $0<r \leq 1$. We remark that this identity with $\alpha+2$ in place of α will be referred to in $\S 4$. In the rest of this section, we assume $0<r<1$. We can change the order of integration in the above triple integral. Since $g_{\varepsilon}^{\theta} \in C_{c}^{\infty}$, it is enough to show that $h(u, s)$ is integrable in (u,s) for fixed z, where $h(u, s)=u^{\alpha+1}\left(1-u^{2}\right)^{\varepsilon-1}\left|J_{\alpha}\left(r^{1 / 2} s u z\right)\right|\left|J_{\alpha}\left((2 x)^{1 / 2} s\right)\right| e^{-(1-r) s^{2} / 2} s$. We write $\int_{0}^{\infty} \int_{0}^{1} h(u, s) d u d s=\left\{\int_{0}^{1} \int_{0}^{1}+\int_{1}^{\infty} \int_{0}^{1 / s}+\int_{0}^{\infty} \int_{1 / s}^{1}\right\} h(u, s) d u d s=H_{1}+H_{2}+H_{3}$, say. By the asymptotic formulas

$$
\begin{equation*}
J_{\alpha}(t) \sim t^{\alpha}(t \rightarrow+0) \quad \text { for } \quad \alpha>-1, \text { and } J_{\alpha}(t)=O\left(t^{-1 / 2}\right)(t \rightarrow \infty), \tag{3.7}
\end{equation*}
$$

we have $H_{1} \leq C \int_{0}^{1} \int_{0}^{1} u^{\alpha+1}\left(1-u^{2}\right)^{\varepsilon-1}(s u)^{\alpha} s^{\alpha} e^{-(1-r) s^{2} / 2} s d u d s<\infty$ for $\alpha>-1$, and $H_{2} \leq$ $C \int_{1}^{\infty} \int_{0}^{1 / s} u^{\alpha+1}\left(1-u^{2}\right)^{\varepsilon-1}(s u)^{\alpha} s^{-1 / 2} e^{-(1-r) s^{2} / 2} s d u d s<\infty$ for $\alpha>-1$, and $H_{3} \leq C \int_{1}^{\infty} \int_{1 / s}^{1} u^{\alpha+1}$. $\left(1-u^{2}\right)^{\varepsilon-1}(s u)^{-1 / 2} s^{-1 / 2} e^{-(1-r) s^{2} / 2} s d u d s<\infty$ for arbitrary α. By inverting the order of integration and changing variables, we have

$$
G_{\varepsilon, r}^{\theta}(f)(x)=\frac{2 e^{x / 2}}{r^{(\alpha+1) / 2} \Gamma(\varepsilon+i \theta)} \int_{0}^{1} u^{\alpha}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} \int_{0}^{\infty} g_{\varepsilon}^{\theta}\left(w /\left(r^{1 / 2} u\right)\right) X_{1-r}\left(w,(2 x)^{1 / 2}\right) d w d u
$$

for $\alpha>-1$, where

$$
X_{\gamma}(w, t)=\int_{0}^{\infty} J_{\alpha}(w s) J_{\alpha}(t s) e^{-\gamma s^{2} / 2} s d s, \quad 0<\gamma<1
$$

It follows from the formulas [7, 7.7 (25) and 7.14 (27)] that

$$
X_{\gamma}(w, t)=\frac{1}{\gamma} \exp \left(-\frac{w^{2}+t^{2}}{2 \gamma}\right) I_{\alpha}\left(\frac{w t}{\gamma}\right),
$$

and

$$
\int_{0}^{\infty} X_{\gamma}(w, t) d w=\left(\frac{\pi}{2 \gamma}\right)^{1 / 2} \exp \left(-\frac{t^{2}}{4 \gamma}\right) I_{\alpha / 2}\left(\frac{t^{2}}{4 \gamma}\right)=W_{\gamma}(t)
$$

say, for $\alpha>-1$, where I_{α} is the modified Bessel function. By the asymptotic formula

$$
\begin{equation*}
I_{\alpha}(z)=(2 \pi z)^{-1 / 2}\left[e^{z}\left\{1+O\left(|z|^{-1}\right)\right\}+i e^{-z+\alpha \pi i}\left\{1+O\left(|z|^{-1}\right)\right\}\right], \tag{3.8}
\end{equation*}
$$

$-\pi / 2<\arg z<3 \pi / 2$ (cf. [7, $7.13(5)])$, we have $W_{\gamma}(t)=O(1)(\gamma \rightarrow+0)$ for fixed t. Thus, we have $\left|\int_{0}^{\infty} g_{\varepsilon}^{\theta}\left(w /\left(r^{1 / 2} u\right)\right) X_{1-r}\left(w,(2 x)^{1 / 2}\right) d w\right|=O(1)(r \rightarrow 1-)$ uniformly in u for fixed x. By Lebesgue's convergence theorem, we have

$$
\begin{align*}
\lim _{r \rightarrow 1-} G_{\varepsilon, r}^{\theta}(f)(x)= & \frac{2 e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{1} u^{\alpha}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} \tag{3.9}\\
& \cdot \lim _{r \rightarrow 1-}\left\{\int_{0}^{\infty} g_{\varepsilon}^{\theta}\left(w /\left(r^{1 / 2} u\right)\right) X_{1-r}\left(w,(2 x)^{1 / 2}\right) d w\right\} d u
\end{align*}
$$

for $\alpha>-1$. Let $Z_{\gamma}(w, t)=W_{\gamma}(t)^{-1} X_{\gamma}(w, t)$ and let $0<a<b<\infty$. Then, by (3.8), we have $Z_{\gamma}(w, t) \leq C \gamma^{-1 / 2} \exp \left(-(w-t)^{2} /(2 \gamma)\right)$ for $a \leq t, w \leq b$, where C is a constant independent of t, w and γ. This leads to the fact that the family $\left\{Z_{\gamma}\right\}_{\gamma}$ is a summability kernel in $a \leq t, w \leq b$. Thus we see that the limit on the right side of (3.9) is $(2 x)^{-1 / 2} g_{\varepsilon}^{\theta}\left((2 x)^{1 / 2} / u\right)$ by $W_{\gamma}(t) \rightarrow 1 / t(\gamma \rightarrow+0)$ and $g_{\varepsilon}^{\theta} \in C_{c}^{\infty}$. Therefore, by the definition of g_{ε}^{θ} and a change of variables, we have an integral representation

$$
\begin{equation*}
G_{\varepsilon}^{\theta}(f)(x)=\frac{e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{1} v^{\alpha / 2-1}(1-v)^{\varepsilon-1+i \theta} f(x / v) e^{-x /(2 v)}(x / v)^{(\varepsilon+i \theta) / 2} d v \tag{3.10}
\end{equation*}
$$

for $\alpha>-1, \varepsilon>0$ and $-\infty<\theta<\infty$.

We shall evaluate the L^{p}-norm of $G_{\varepsilon}^{\theta}(f)$ for $\alpha \geq 0$. Let

$$
\begin{aligned}
& I_{\varepsilon}^{\theta}(f)(x)=\frac{1}{\Gamma(\varepsilon+i \theta)} \int_{x}^{\infty} \frac{f(t)}{t} e^{-(t-x) / 2} t^{(\varepsilon+i \theta) / 2}\left(1-\frac{x}{t}\right)^{\varepsilon-1+i \theta} d t, \\
& J_{\varepsilon}^{\theta}(f)(x)=\frac{1}{\Gamma(\varepsilon+i \theta)} \int_{x}^{\infty} \frac{f(t)}{t} e^{-(t-x) / 2} t^{(\varepsilon+i \theta) / 2}\left\{\left(\frac{x}{t}\right)^{\alpha / 2}-1\right\}\left(1-\frac{x}{t}\right)^{\varepsilon-1+i \theta} d t
\end{aligned}
$$

for $f \in C_{c}^{\infty}$. Then, we note that $G_{\varepsilon}^{\theta}(f)=I_{\varepsilon}^{\theta}(f)+J_{\varepsilon}^{\theta}(f)$. Since $\alpha \geq 0$, it follows that $\left|\left\{(x / t)^{\alpha / 2}-1\right\}(1-x / t)^{\varepsilon-1+i \theta}\right| \leq C$ for $t>x$, where C is a constant depending only on α. We have $\left|J_{\varepsilon}^{\theta}(f)(x)\right| \leq C|\Gamma(\varepsilon+i \theta)|^{-1} \int_{x}^{\infty}|f(t)| t^{\varepsilon / 2-1} d t$. We remark that we have $|\Gamma(\varepsilon+i \theta)|^{-1} \leq A(1+|\theta|) e^{\pi|\theta| / 2}$ by (2.4) and $\Gamma(\varepsilon+i \theta)^{-1}=(\varepsilon+i \theta) \Gamma(1+\varepsilon+i \theta)^{-1}$, where A is an absolute constant. It follows from Hardy's inequality that

$$
\begin{equation*}
\left\|J_{\varepsilon}^{\theta}(f)\right\|_{p} \leq C(1+|\theta|) e^{\pi|\theta| / 2}\left\|f(x) x^{\varepsilon / 2}\right\|_{p} \tag{3.11}
\end{equation*}
$$

for $1<p<\infty, 0<\varepsilon<1, \alpha \geq 0$ and $f \in C_{c}^{\infty}$, where C is a constant independent of ε, θ and f.
We next treat $I_{\varepsilon}^{\theta}(f)$. We extend $f \in C_{c}^{\infty}$ to the function on $(-\infty, \infty)$ which coincides with f on $(0, \infty)$ and vanishes on $(-\infty, 0]$. We also denote the function by f. We define

$$
\tilde{I}_{\varepsilon}^{\theta}(f)(x)=\int_{-\infty}^{\infty} f(t) Q(x-t) d t, \quad-\infty<x<\infty,
$$

where

$$
Q(u)=\frac{1}{\Gamma(\varepsilon+i \theta)} e^{-|u| / 2}|u|^{\varepsilon-1+i \theta} \chi_{(-\infty, 0)}(u) .
$$

The function $\chi_{(-\infty, 0)}(u)$ is the characteristic function of the interval $(-\infty, 0)$. We note that $\tilde{I}_{\varepsilon}^{\theta}\left(f(t)|t|^{-(\varepsilon+i \theta) / 2}\right)(x)=I_{\varepsilon}^{\theta}(f)(x)$ for $x>0$. We shall show that $\tilde{I}_{\varepsilon}^{\theta}$ is a singular integral operator. It follows from the formulas [8,1.4 (7) and 2.4 (7)] that the Fourier transform $\hat{Q}(y)=\int_{-\infty}^{\infty} Q(u) e^{-i u y} d u$ is given by

$$
\widehat{Q}(y)=\left(1 / 4+y^{2}\right)^{-(\varepsilon+i \theta) / 2} e^{i \varepsilon \tan ^{-1} 2 y} e^{-\theta \tan ^{-1} 2 y} .
$$

Therefore, we have $|\hat{Q}(y)| \leq 2 e^{\pi|\theta| / 2}=B_{1}$, say. We easily see that

$$
\left|\frac{d}{d u} Q(u)\right| \leq A \frac{(1+|\theta|)}{|\Gamma(\varepsilon+i \theta)|} u^{-2} \leq A(1+|\theta|)^{2} e^{\pi|\theta| / 2} u^{-2}=B_{2} u^{-2},
$$

say, for $u \neq 0$, where A is an absolute constant. By the Calderon-Zygmund theory of singular integrals (cf. [9, II. 5 Theorem 5.7]), we see that the Lebesgue measure of $\left\{x \in \boldsymbol{R} ;\left|\tilde{I}_{\varepsilon}^{\theta}(f)(x)\right|>\lambda\right\}$ is bounded by $A_{1}\left(B_{1}^{2}+B_{2}+1\right) \lambda^{-1}\|f\|_{1} \leq A_{2} e^{\pi|\theta|} \lambda^{-1}\|f\|_{1}=$ $B_{3} \lambda^{-1}\|f\|_{1}$, say, where A_{1} and A_{2} are absolute constants. The Marcinkiewicz interpolation theorem (cf. [9, II. 2 Theorem 2.11]) leads to

$$
\begin{equation*}
\left\{\int_{-\infty}^{\infty}\left|\tilde{I}_{\varepsilon}^{\theta}(f)(x)\right|^{p} d x\right\}^{1 / p} \leq\left\{\frac{2 p B_{3}}{p-1}+\frac{4 p B_{1}^{2}}{2-p}\right\}^{1 / p}\|f\|_{p}=M_{p}(\theta)\|f\|_{p} \tag{3.12}
\end{equation*}
$$

say, for $1<p<2$. We note that $M_{p}(\theta)$ is independent of ε and f, and satisfies the condition (\#) in Proposition 1. By the duality argument, we see that (3.12) holds for $2<p<\infty$ with $\quad M_{q}(\theta), \quad 1 / p+1 / q=1$. Since $\left\|I_{\varepsilon}^{\theta}(f)\right\|_{p} \leq\left\{\int_{-\infty}^{\infty}\left|\tilde{I}_{\varepsilon}^{\theta}\left(f(t)|t|^{-(\varepsilon+i \theta) / 2}\right)(x)\right|^{p} d x\right\}^{1 / p}$, it follows that

$$
\begin{equation*}
\left\|I_{\varepsilon}^{\theta}(f)\right\|_{p} \leq M(\theta)\left\|f(x) x^{-\varepsilon / 2}\right\|_{p} \tag{3.13}
\end{equation*}
$$

for $1<p<\infty, 0<\varepsilon<1,-\infty<\theta<\infty$, where $M(\theta)$ is independent of ε and f, and satisfies (\#). By (3.11) and (3.13), we have the inequality (3.3) to be proved.
4. L^{p}-estimate of $T_{\alpha, \varphi}^{\alpha+2+i \theta}(f), \alpha>-1$. Let

$$
\begin{aligned}
& \rho_{n}=\alpha+\frac{3}{2}+i \theta+\frac{-1 / 4}{\{(n+\alpha+2+i \theta)(n+\alpha+1+i \theta)\}^{1 / 2}+(n+\alpha+3 / 2+i \theta)}, \\
& \sigma_{n}=\left\{\frac{\Gamma(n+\alpha+3+i \theta)}{\Gamma(n+\alpha+1)}\right\}^{1 / 2},
\end{aligned}
$$

for $\alpha>-1,-\infty<\theta<\infty$ and $n=0,1,2, \cdots$. For the above square roots, we choose the branches positive for $\theta=0$. We define

$$
\begin{aligned}
& U^{\theta}(f)(x)=\sum_{n=0}^{\infty}\left(\rho_{n} / \sigma_{n}\right) a_{n}^{\alpha+2+i \theta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2} \\
& V^{\theta}(f)(x)=\sum_{n=0}^{\infty}\left(n / \sigma_{n}\right) a_{n}^{\alpha+2+i \theta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2}
\end{aligned}
$$

for $\alpha>-1,-\infty<\theta<\infty, f \in C_{c}^{\infty}$ and $x>0$. Then, we have $T_{\alpha, \varphi}^{\alpha+2+i \theta}(f)=U^{\theta}(f)+V^{\theta}(f)$. We shall estimate the L^{p}-norms of $U^{\theta}(f)$ and $V^{\theta}(f)$.

We first deal with $U^{\theta}(f)$. Let $\Lambda=\left\{\rho_{n}\right\}_{n=0}^{\infty}$. Then, by the definition (3.1) of $G_{\varepsilon}^{\theta}(f)$ we see that $U^{\theta}(f)=\mathscr{M}_{A}^{\alpha}\left(G_{2}^{\theta}(f)\right)$. Since Λ is a quasi-convex sequence, \mathscr{M}_{A}^{α} is bounded in L^{p}. Indeed, let $\|\Lambda\|_{\text {bqc }}=\sum_{n=0}^{\infty}(n+1)\left|\Delta^{2} \rho_{n}\right|+\lim _{n \rightarrow \infty}\left|\rho_{n}\right|$, where $\Delta^{2} \rho_{n}=\rho_{n}-2 \rho_{n+1}$ $+\rho_{n+2}$. It follows from the result of Butzer, Nessel and Trebels [5, Theorem 3.2 and p. 139] that

$$
\begin{equation*}
\left\|\mathscr{M}_{A}^{\alpha}\left(G_{2}^{\theta}(f)\right)\right\|_{p} \leq C\|\Lambda\|_{\text {bac }}\left\|G_{2}^{\theta}(f)\right\|_{p} \tag{4.1}
\end{equation*}
$$

if $\alpha \geq 0$ and $1<p<\infty$, or if $-1<\alpha<0$ and $(1+\alpha / 2)^{-1}<p<-2 / \alpha$, where C is a constant depending only on α and p. We have to estimate $\|\Lambda\|_{\text {bac }}$.

Lemma 3. If $\alpha>-1$, then $\|\Lambda\|_{\text {bqc }} \leq C(1+|\theta|)$, where C is a constant depending only on α.

Proof. Let $\eta(x)=\{(x+a)(x+a+1)\}^{1 / 2}, a=\alpha+1+i \theta$, where the branch is so chosen that $\eta(x)$ is positive for $\theta=0$. Let $\rho(x)=(\eta(x)+x+b)^{-1}$ with $b=(2 a+1) / 2$. We have $\rho^{\prime \prime}(x)=\eta(x)^{-3}$. Thus, $\left|\Delta^{2} \rho_{n}\right| \leq 2 \max \left\{\left|\rho^{\prime \prime}(x)\right| ; n \leq x \leq n+2\right\} \leq 2(n+\alpha+1)^{-3}$. Since $\lim _{n \rightarrow \infty} \rho_{n}=\alpha+3 / 2+i \theta$, we complete the proof.
q.e.d.

To get the desired inequality for $U^{\theta}(f)$, it is enough to evaluate the L^{p}-norm of $G_{2}^{\theta}(f)$ for $\alpha>-1$. Applying Minkowski's inequality to the integral representation (3.10) of $G_{\varepsilon}^{\theta}(f)$ with $\varepsilon=2$, and changing variables, we have

$$
\begin{aligned}
\left\|G_{2}^{\theta}(f)\right\|_{p} & \leq \frac{1}{|\Gamma(2+i \theta)|} \int_{0}^{1} v^{\alpha / 2-2}(1-v)\left\{\int_{0}^{\infty}\left|f(x / v) e^{x(1-1 / v) / 2} x\right|^{p} d x\right\}^{1 / p} d v \\
& \leq \frac{1}{|\Gamma(2+i \theta)|} \int_{0}^{1} v^{\alpha / 2+1 / p-1}(1-v)\left\{\int_{0}^{\infty}\left|f(t) e^{t(v-1) / 2} t\right|^{p} d t\right\}^{1 / p} d v
\end{aligned}
$$

Since $e^{t(v-1) / 2} t \leq 2 e^{-1}(1-v)^{-1}$ for $t>0$ and $0<v<1$, it follows that $\left\|G_{2}^{\theta}(f)\right\|_{p} \leq 2 e^{-1}$. $|\Gamma(2+i \theta)|^{-1}\|f\|_{p} \int_{0}^{1} v^{\alpha / 2+1 / p-1} d v$. We remark that the integral on the right side is finite if $\alpha \geq 0$ and $1 \leq p$, or if $-1<\alpha<0$ and $p<-2 / \alpha$. Combining this inequality with Lemma 3 and (4.1), we get

$$
\begin{equation*}
\left\|U^{\theta}(f)\right\|_{p} \leq C(1+|\theta|) e^{\pi|\theta| / 2}\|f\|_{p}, \tag{4.2}
\end{equation*}
$$

for $-\infty<\theta<\infty$ and $f \in C_{c}^{\infty}$ if $\alpha \geq 0$ and $1<p<\infty$, or if $-1<\alpha<0$ and $(1+\alpha / 2)^{-1}<p<-2 / \alpha$. Here, C is a constant depending only on α and p.

We now estimate the L^{p}-norm of $V^{\theta}(f)$. Define

$$
V_{\varepsilon}^{\theta}(f)(x)=\sum_{n=0}^{\infty}\left(n \omega_{n}^{\alpha+2} / \sigma_{n}\right) a_{n}^{\alpha+2+\varepsilon+i \theta}(f) \tau_{n}^{\alpha} L_{n}^{\alpha}(x) e^{-x / 2} x^{\alpha / 2},
$$

for $\alpha>-1, \varepsilon>0,-\infty<\theta<\infty, f \in C_{c}^{\infty}$ and $x>0$, where $\omega_{n}^{\alpha+2}$ is as given in (3.2). Since $\lim _{\varepsilon \rightarrow+0} V_{\varepsilon}^{\theta}(f)(x)=V^{\theta}(f)(x)$ for every $x>0$, it is enough to show that

$$
\begin{equation*}
\left\|V_{\varepsilon}^{\theta}(f)\right\|_{p} \leq M(\theta)\left\{\left\|f(x) x^{\varepsilon / 2}\right\|_{p}+\left\|f(x) x^{-\varepsilon / 2}\right\|_{p}\right\}, \tag{4.3}
\end{equation*}
$$

for $-\infty<\theta<\infty$ and $f \in C_{c}^{\infty}$ if $\alpha \geq 0$ and $1<p<\infty$, or if $-1<p<0$ and $(1+\alpha / 2)^{-1}<p<-2 / \alpha$, where $M(\theta)$ is independent of f and ε, and satisfies the condition (\#) in Proposition 1. We note that $V_{\varepsilon}^{\theta}(f)$ is $G_{\varepsilon}^{\theta}(f)$ with $n \omega_{n}^{\alpha+2} / \sigma_{n}$ and $\varepsilon+2$ in place of $\varphi_{n} \omega_{n}^{\alpha}$ and ε, respectively. Thus, $V_{\varepsilon}^{\theta}(f)$ has the form on the right side of (3.4) with $r=1$ and with substitutions as above. We apply the formula (2.2) with $\mu=\alpha+2, \nu=\varepsilon+i \theta$ and $m=n$ to $L_{n}^{\alpha+2+\varepsilon+i \theta}(y)$ in the representation. Thus, we have

$$
\begin{aligned}
V_{\varepsilon}^{\theta}(f)(x)= & \frac{e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} v^{\alpha+2}(1-v)^{\varepsilon-1+i \theta} \sum_{n=0}^{\infty} \frac{n t^{n}}{\Gamma(n+\alpha+2+1)} L_{n}^{\alpha+2}(v y) \\
& \cdot f(y) e^{-y / 2} y^{(\alpha+2+\varepsilon+i \theta) / 2} J_{\alpha}\left(2(t x)^{1 / 2}\right) e^{-t} t^{\alpha / 2} d v d y d t
\end{aligned}
$$

for $\alpha>-1$. The formula (3.5) leads to

$$
\sum_{n=0}^{\infty} \frac{n w^{n}}{\Gamma(n+\alpha+1)} L_{n}^{\alpha}(x)=e^{w}(x w)^{-\alpha / 2}\left\{w J_{\alpha}\left(2(x w)^{1 / 2}\right)-(x w)^{1 / 2} J_{\alpha+1}\left(2(x w)^{1 / 2}\right)\right\} .
$$

Using this identity and changing variables, we have

$$
\begin{aligned}
V_{\varepsilon}^{\theta}(f)(x)= & \frac{2 e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} u^{\alpha+3}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} \\
& \cdot\left\{s J_{\alpha+2}(s u z)-u z J_{\alpha+3}(s u z)\right\} g_{\varepsilon}^{\theta}(z) J_{\alpha}\left((2 x)^{1 / 2} s\right) d u d z d s,
\end{aligned}
$$

where $g_{\varepsilon}^{\theta}(z)$ is as given in (3.6). Let

$$
\begin{aligned}
& W_{\varepsilon}^{\theta}(f)(x)=\frac{2 e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} u^{\alpha+3}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} J_{\alpha+2}(s u z) g_{\varepsilon}^{\theta}(z) J_{\alpha}\left((2 x)^{1 / 2} s\right) d u d z d s, \\
& F_{\varepsilon}^{\theta}(f)(x)=\frac{2 e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} u^{\alpha+4}\left(1-u^{2}\right)^{\varepsilon-1+i \theta_{z}} J_{\alpha+3}(s u z) g_{\varepsilon}^{\theta}(z) J_{\alpha}\left((2 x)^{1 / 2} s\right) d u d z d s,
\end{aligned}
$$

for $\alpha>-1, \varepsilon>0,-\infty<\theta<\infty, f \in C_{c}^{\infty}$ and $x>0$. We see that $V_{\varepsilon}^{\theta}(f)=W_{\varepsilon}^{\theta}(f)-F_{\varepsilon}^{\theta}(f)$, since the iterated integrals in $W_{\varepsilon}^{\theta}(f)$ and $F_{\varepsilon}^{\theta}(f)$ are finite. Indeed, we can change the order of the integrals in z and u. Furthermore, if $\beta \geq 0$ and $h \in C_{c}^{\infty}$, then

$$
\begin{equation*}
\left|\int_{0}^{\infty} h(z) J_{\beta}(s u z) d z\right| \leq C(s u)^{-2} \quad(s u \geq 1) \quad \text { and } \quad \leq C(s u<1) \tag{4.4}
\end{equation*}
$$

which is easily proved by integration by parts and the formula $(d / d t)\left(t^{\beta+1} J_{\beta+1}(a t)\right)=$ $a t^{\beta+1} J_{\beta}(a t)$ (cf. [7, $\left.7.2(50)\right]$).

We express $W_{\varepsilon}^{\theta}(f)$ as a sum of two integrals. Define

$$
\begin{aligned}
D_{\varepsilon}^{\theta}(f)(x)= & \frac{4(\alpha+1) e^{x / 2}}{\Gamma(\varepsilon+i \theta)(2 x)^{1 / 2}} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} u^{\alpha+3}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} J_{\alpha+2}(s u z) g_{\varepsilon}^{\theta}(z) \\
& \cdot J_{\alpha+1}\left((2 x)^{1 / 2} s\right) d u d z d s \\
E_{\varepsilon}^{\theta}(f)(x)= & \frac{2 e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} u^{\alpha+3}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} s J_{\alpha+2}(s u z) g_{\varepsilon}^{\theta}(z) \\
& \cdot J_{\alpha+2}\left((2 x)^{1 / 2} s\right) d u d z d s
\end{aligned}
$$

for $\alpha>-1, \varepsilon>0,-\infty<\theta<\infty, f \in C_{c}^{\infty}$ and $x>0$. Then, it follows from the identity $J_{\alpha}\left((2 x)^{1 / 2} s\right)=2(\alpha+1)(2 x)^{-1 / 2} s^{-1} J_{\alpha+1}\left((2 x)^{1 / 2} s\right)-J_{\alpha+2}\left((2 x)^{1 / 2} s\right)$ (cf. [7, 7.2 (56)]) that $W_{\varepsilon}^{\theta}(f)=D_{\varepsilon}^{\theta}(f)-E_{\varepsilon}^{\theta}(f)$. We note also that the integrals in $D_{\varepsilon}^{\theta}(f)$ and $E_{\varepsilon}^{\theta}(f)$ are finite. Therefore, we have $V_{\varepsilon}^{\theta}(f)=D_{\varepsilon}^{\theta}(f)-E_{\varepsilon}^{\theta}(f)-F_{\varepsilon}^{\theta}(f)$.

We first evaluate the L^{p}-norm of $E_{\varepsilon}^{\theta}(f)$. We see by (3.6) that $E_{\varepsilon}^{\theta}(f)$ is equal to $G_{\varepsilon}^{\theta}(f)$ with $\alpha+2$ in place of α. Since $\alpha+2>1 \geq 0$ when $\alpha>-1$, we can use the inequality (3.3), and so we have

$$
\begin{equation*}
\left\|E_{\varepsilon}^{\theta}(f)\right\|_{p} \leq M(\theta)\left\{\left\|f(x) x^{\varepsilon / 2}\right\|_{p}+\left\|f(x) x^{-\varepsilon / 2}\right\|_{p}\right\} \tag{4.5}
\end{equation*}
$$

for $\alpha>-1,1<p<\infty, 0<\varepsilon<1,-\infty<\theta<\infty$ and $f \in C_{c}^{\infty}$, where $M(\theta)$ is independent of f and ε, and satisfies the condition (\#) in Proposition 1.

We next express $F_{\varepsilon}^{\theta}(f)$ as an integral. By the inequality (4.4) and the asymptotic formula (3.7), we see that

$$
\begin{aligned}
F_{\varepsilon}^{\theta}(f)(x)= & \lim _{\lambda \rightarrow+0} \frac{2 e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} u^{\alpha+4}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} z J_{\alpha+3}(s u z) g_{\varepsilon}^{\theta}(z) \\
& \cdot J_{\alpha}\left((2 x)^{1 / 2} s\right) s^{-\lambda} d u d z d s
\end{aligned}
$$

The factor $s^{-\lambda}, 1>\lambda>0$, enables us to invert the order of integration in the above iterated integral. This fact is obtained by an argument analogous to that for integral (3.6). It follows that

$$
F_{\varepsilon}^{\theta}(f)(x)=\lim _{\lambda \rightarrow+0} \frac{2 e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{1} \int_{0}^{\infty} u^{\alpha+4}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} g_{\varepsilon}^{\theta}(z) z R_{\lambda}(u, z ; x) d z d u,
$$

where

$$
R_{\lambda}(u, z ; x)=\int_{0}^{\infty} J_{\alpha+3}(u z s) J_{\alpha}\left((2 x)^{1 / 2} s\right) s^{-\lambda} d s
$$

By the Weber-Schafheitlin integral [16, 13.4 (2)], we have

$$
\begin{align*}
R_{\lambda}(u, z ; x)= & \frac{(2 x)^{\alpha / 2} \Gamma(\alpha+2-\lambda / 2)}{2^{\lambda}(u z)^{\alpha+1-\lambda} \Gamma(\alpha+1) \Gamma(2+\lambda / 2)} \tag{4.6}\\
& \cdot{ }_{2} F_{1}\left(\alpha+2-\lambda / 2,-1-\lambda / 2 ; \alpha+1 ; \frac{2 x}{(u z)^{2}}\right) \quad \text { for } \quad(2 x)^{1 / 2}<u z, \\
R_{\lambda}(u, z ; x)= & \frac{(u z)^{\alpha+3} \Gamma(\alpha+2-\lambda / 2)}{2^{\lambda}(2 x)^{(\alpha+4-\lambda) / 2} \Gamma(\alpha+4) \Gamma(\lambda / 2-1)} \tag{4.7}\\
& \cdot{ }_{2} F_{1}\left(\alpha+2-\lambda / 2,2-\lambda / 2 ; \alpha+4 ; \frac{(u z)^{2}}{2 x}\right) \quad \text { for } \quad(2 x)^{1 / 2}>u z,
\end{align*}
$$

when $(\alpha+3)+\alpha+1>\lambda>-1$. To invert the order of the limit $\lim _{\lambda \rightarrow+0}$ and the integral $\int_{0}^{1} \int_{0}^{\infty} d u d z$ in $F_{\varepsilon}^{\theta}(f)$, it is enough to show that, for fixed x and $0<a<b<\infty$,

$$
\begin{align*}
& \left|R_{\lambda}(u, z ; x)\right| \leq C \quad\left(0 \leq u \leq 1, a<z<b,(2 x)^{1 / 2}>u z\right) \tag{4.8}\\
& \left|R_{\lambda}(u, z ; x)\right| \leq C\left\{\log \left(1-\frac{2 x}{(u z)^{2}}\right)^{-1}+1\right\} \quad\left(0 \leq u \leq 1, a<z<b,(2 x)^{1 / 2}<u z\right)
\end{align*}
$$

for $0<\lambda \leq 2(\alpha+1)$, where C is a constant depending only on α. In the case $(2 x)^{1 / 2}>u z$, we have by the formula [7, 2.12 (1)] that

$$
\begin{aligned}
& { }_{2} F_{1}\left(\alpha+2-\lambda / 2,2-\lambda / 2 ; \alpha+4 ; \frac{(u z)^{2}}{2 x}\right) \\
& \quad=\frac{\Gamma(\alpha+4)}{\Gamma(2-\lambda / 2) \Gamma(\alpha+2+\lambda / 2)} \int_{0}^{1} t^{1-\lambda / 2}(1-t)^{\alpha+1+\lambda / 2}\left\{1-t \frac{(u z)^{2}}{2 x}\right\}^{-\alpha-2+\lambda / 2} d t
\end{aligned}
$$

$$
\leq \frac{\Gamma(\alpha+4)}{\Gamma(2-\lambda / 2) \Gamma(\alpha+2+\lambda / 2)} B(2-\lambda / 2, \lambda)=\frac{\Gamma(\alpha+4) \Gamma(\lambda)}{\Gamma(2+\lambda / 2) \Gamma(\alpha+2+\lambda / 2)}
$$

when $\alpha+4>2-\lambda / 2>0$. This inequality and (4.7) give (4.8). In the case $(2 x)^{1 / 2}<u z$, we use the formula [7, 2.12 (2)]. It follows that

$$
\begin{gathered}
{ }_{2} F_{1}\left(\alpha+2-\lambda / 2,-1-\lambda / 2 ; \alpha+1 ; \frac{2 x}{(u z)^{2}}\right)=\frac{i e^{i \pi(1-\lambda / 2)} \Gamma(\alpha+1) \Gamma(2-\lambda / 2)}{2 \pi \Gamma(\alpha+2-\lambda / 2)} \\
\cdot \int_{0}^{(1+)} t^{\alpha+1-\lambda / 2}(1-t)^{-2+\lambda / 2}\left\{1-t \frac{2 x}{(u z)^{2}}\right\}^{1+\lambda / 2} d t
\end{gathered}
$$

when $\alpha+2-\lambda / 2>0$ and $-1+\lambda / 2 \neq 1,2,3, \cdots$. Here, the integral is taken along a contour which starts from the origin, encircles the point 1 once counter-clockwise and returns to the origin. All singularities of the integrand except 1 are outside the contour. This formula and (4.6) lead us to (4.8'). Since ${ }_{2} F_{1}(\alpha, \beta ; \gamma ; z)$ is a continuous function in (α, β) for fixed z and γ, we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow+0} R_{\lambda}(u, z ; x) & =\frac{(\alpha+1)(2 x)^{\alpha / 2}}{(u z)^{\alpha+1}}{ }_{2} F_{1}\left(\alpha+2,-1 ; \alpha+1 ; \frac{2 x}{(u z)^{2}}\right) \\
& =\frac{(\alpha+1)(2 x)^{\alpha / 2}}{(u z)^{\alpha+1}}\left\{1-\frac{\alpha+2}{\alpha+1} \frac{2 x}{(u z)^{2}}\right\}
\end{aligned}
$$

for $(2 x)^{1 / 2}<u z$, and $\lim _{\lambda \rightarrow+0} R_{\lambda}(u, z)=0$ for $(2 x)^{1 / 2}>u z$. Therefore, we have

$$
\begin{aligned}
& F_{\varepsilon}^{\theta}(f)(x)= \\
& \quad \frac{2^{1+\alpha / 2}(\alpha+1) e^{x / 2} x^{\alpha / 2}}{\Gamma(\varepsilon+i \theta)} \\
& \quad \cdot \int_{0}^{1} \int_{(2 x)^{1 / 2 / u}}^{\infty} u^{3}\left(1-u^{2}\right)^{\varepsilon-1+i \theta} g_{\varepsilon}^{\theta}(z) z^{-\alpha}\left\{1-\frac{\alpha+2}{\alpha+1} \frac{2 x}{(u z)^{2}}\right\} d z d u \\
& =\frac{(\alpha+1) e^{x / 2}}{\Gamma(\varepsilon+i \theta)} \int_{0}^{1} \int_{x / v}^{\infty} v(1-v)^{\varepsilon-1+i \theta} f(y) e^{-y / 2} y^{(\varepsilon+i \theta) / 2}(x / y)^{\alpha / 2}\left\{1-\frac{\alpha+2}{\alpha+1} \frac{x}{y v}\right\} d y d v .
\end{aligned}
$$

Changing the order of integration, we get

$$
\begin{align*}
F_{\varepsilon}^{\theta}(f)(x) & =\frac{(\alpha+1) e^{x / 2}}{\Gamma(\varepsilon+1+i \theta)} \int_{x}^{\infty} S_{\varepsilon}^{\theta}(x, y) f(y) e^{-y / 2} y^{(\varepsilon+i \theta) / 2}(x / y)^{\alpha / 2} d y, \tag{4.9}\\
S_{\varepsilon}^{\theta}(x, y) & =\left(1-\frac{x}{y}\right)^{\varepsilon+i \theta}\left\{1-\frac{\alpha+2}{\alpha+1} \frac{x}{y}-\frac{\varepsilon+i \theta}{\varepsilon+1+i \theta}\left(1-\frac{x}{y}\right)\right\},
\end{align*}
$$

and thus,

$$
\begin{equation*}
\left|F_{\varepsilon}^{\theta}(f)(x)\right| \leq \frac{C}{|\Gamma(\varepsilon+1+i \theta)|} \int_{x}^{\infty}|f(y)| y^{\varepsilon / 2}\left(\frac{x}{y}\right)^{\alpha / 2} e^{-(y-x) / 2} d y, \tag{4.10}
\end{equation*}
$$

for $\alpha>-1,1>\varepsilon>0,-\infty<\theta<\infty, x>0$ and $f \in C_{c}^{\infty}$, where C is a constant depending only on α. We define a convolution operator K by $K(h)(x)=\int_{-\infty}^{\infty} h(y) k(x-y) d y$ for h on $(-\infty, \infty)$, where $k(u)=e^{-|u| / 2} \chi_{(-\infty, 0\rangle}(u)$. We reduce the estimate for $F_{\varepsilon}^{\theta}(f)$ to that for $K(h)$.

By (4.10) we have

$$
\left|F_{\varepsilon}^{\theta}(f)(x)\right| \leq \begin{cases}\frac{C}{|\Gamma(\varepsilon+1+i \theta)|} K\left(|f(y)||y|^{\varepsilon / 2}\right)(x) & (\alpha \geq 0) \tag{4.11}\\ \frac{C}{|\Gamma(\varepsilon+1+i \theta)|} K\left(|f(y)||y|^{(\varepsilon-\alpha) / 2}\right)(x) \cdot|x|^{\alpha / 2} & (-1<\alpha<0)\end{cases}
$$

for $x>0$. Here, f is extended to the whole real line so that $f(x)=0$ for $x<0$. When $\alpha \geq 0$, we have by Minkowski's inequality that

$$
\begin{equation*}
\left\{\int_{-\infty}^{\infty}\left|K\left(|f(y)||y|^{\varepsilon / 2}\right)(x)\right|^{p} d x\right\}^{1 / p} \leq C\left\|f(x) x^{\varepsilon / 2}\right\|_{p} \tag{4.12}
\end{equation*}
$$

for $1 \leq p<\infty$, where C is a constant depending only on p. For $-1<\alpha<0$, we use a weighted norm inequality for a regular convolution transform. Since $|x|^{\eta}$ is an $A_{p^{-}}$ weight for $-1<\eta<p-1$, we have

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left|K\left(|f(y)||y|^{(\varepsilon-\alpha) / 2}\right)(x)\right|^{p}|x|^{\alpha p / 2} d x \tag{4.13}\\
& \quad \leq C \int_{-\infty}^{\infty}\left\{|f(x)||x|^{(\varepsilon-\alpha) / 2}\right\}^{p}|x|^{\alpha p / 2} d x=C\left\|f(x) x^{\varepsilon / 2}\right\|_{p}^{p}
\end{align*}
$$

for $-1<\alpha p / 2<p-1$ and $1<p<\infty$, where C is a constant depending only on α and p (cf. [9, IV. 3 Theorem 3.1]). Note that we may also obtain (4.13) by dividing the integral on the right side of (4.10) to a sum of the integrals over $\left(2^{k} x, 2^{k+1} x\right)$, $k=0,1,2, \cdots$ and estimating them pointwise. It follows from (4.11), (4.12) and (4.13) that

$$
\begin{equation*}
\left\|F_{\varepsilon}^{\theta}(f)\right\|_{p} \leq \frac{C}{|\Gamma(\varepsilon+1+i \theta)|}\left\|f(x) x^{\varepsilon / 2}\right\|_{p} \tag{4.14}
\end{equation*}
$$

for $1>\varepsilon>0,-\infty<\theta<\infty$ and $f \in C_{c}^{\infty}$ if $\alpha \geq 0$ and $1 \leq p<\infty$, or if $-1<\alpha<0$ and $1<p<-2 / \alpha$, where C is a constant independent of ε, θ and f.

We obtain the integral representation

$$
D_{\varepsilon}^{\theta}(f)(x)=\frac{(\alpha+1)}{\Gamma(\varepsilon+1+i \theta)} \int_{x}^{\infty} f(y) e^{-(y-x) / 2} y^{(\varepsilon+i \theta) / 2}\left(\frac{x}{y}\right)^{\alpha / 2}\left(1-\frac{x}{y}\right)^{\varepsilon+i \theta} \frac{d y}{y}
$$

for $D_{\varepsilon}^{\theta}(f)$ and thus, we have

$$
\left|D_{\varepsilon}^{\theta}(f)(x)\right| \leq \frac{2(\alpha+1)}{|\Gamma(\varepsilon+1+i \theta)|} \int_{x}^{\infty}|f(y)| y^{\varepsilon / 2}\left(\frac{x}{y}\right)^{\alpha / 2} \frac{d y}{y},
$$

for $\alpha>-1,1>\varepsilon>0,-\infty<\theta<\infty, x>0$ and $f \in C_{c}^{\infty}$. The proof is similar to that of (4.9) and is omitted. By Hardy's inequality, we have

$$
\begin{aligned}
& \int_{0}^{\infty}\left\{\int_{x}^{\infty}|f(y)| y^{\varepsilon / 2}\left(\frac{x}{y}\right)^{\alpha / 2} \frac{d y}{y}\right\}^{p} d x=\int_{0}^{\infty}\left\{\int_{x}^{\infty}|f(y)| y^{(\varepsilon-\alpha) / 2-1} d y\right\}^{p} x^{\alpha p / 2} d x \\
& \quad \leq\left\{\frac{p}{1+\alpha p / 2}\right\}^{p} \int_{0}^{\infty} x^{p+\alpha p / 2}|f(x)|^{p} x^{(\varepsilon-\alpha) p / 2-p} d x=C\left\|f(x) x^{\varepsilon / 2}\right\|_{p}^{p}
\end{aligned}
$$

and thus,

$$
\left\|D_{\varepsilon}^{\theta}(f)\right\|_{p} \leq \frac{C}{|\Gamma(\varepsilon+1+i \theta)|}\left\|f(x) x^{\varepsilon / 2}\right\|_{p}
$$

for $1 \leq p<\infty, \alpha p / 2>-1$ and $f \in C_{c}^{\infty}$, where C is a constant depending only on α and p. Therefore, by (4.5), (4.14) and the last inequality, we have (4.3). The inequalities (4.2) and (4.3) lead us to the desired estimate $\left\|T_{\alpha, \varphi}^{\alpha+2+i \theta}(f)\right\|_{p} \leq M(\theta)\|f\|_{p}$ for $-\infty<\theta<\infty$ and $f \in C_{c}^{\infty}$ if $\alpha \geq 0$ and $1<p<\infty$, or if $-1<\alpha<0$ and $(1+\alpha / 2)^{-1}<p<$ $-2 / \alpha$, where $M(\theta)$ is independent of f, and satisfies the condition (\#) in Proposition 1.

References

[1] R. Askey, A transplantation theorem for Jacobi coefficients, Pacific J. Math. 21 (1967), 393-404.
[2] R. Askey, A transplantation theorem for Jacobi series, Illinois J. Math. 13 (1969), 583-590.
[3] R. Askey and S. Wainger, A transplantation theorem for ultraspherical coefficients, Pacific J. Math. 16 (1966), 393-405.
[4] R. Askey and S. Wainger, A transplantation theorem between ultraspherical series, Illinois J. Math. 10 (1966), 322-344.
[5] P. L. Butzer, R. J. Nessel and W. Trebels, On summation processes of Fourier expansions in Banach spaces. I: Comparison theorems, Tôhoku Math. J. 24 (1972), 127-140.
[6] J. DŁugosz, L^{p}-multipliers for the Laguerre expansions, Colloq. Math. 54 (1987), 287-293.
[7] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, 3 volumes, McGraw-Hill, New York, 1953.
[8] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of integral transforms, Vol. I, McGraw-Hill, New York, 1954.
[9] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, New York, Oxford, 1985.
[10] J. E. Gilbert, Maximal theorems for some orthogonal series I, Trans. Amer. Math. Soc. 145 (1969), 495-515.
[11] D. L. Guy, Hankel multiplier transforms and weighted p-norms, Trans. Amer. Math. Soc. 95 (1960), 137-189.
[12] I. I. Hirschman, Jr., A convexity theorem for certain groups of transformations, J. Analyse Math. 2 (1952/53), 209-218.
[13] B. Muckenhoupt, Transplantation theorems and multiplier theorems for Jacobi series, Mem. Amer.

Math. Soc. 64 (1986), No. 356.
[14] S. Schindler, Explicit integral transform proofs of some transplantation theorems for the Hankel transform, SIAM J. Math. Anal. 4 (1973), 367-384.
[15] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications, 1975.
[16] G. N. Watson, A treaties on the theory of Bessel functions, Cambridge University Press, London, 1966.

Department of Mathematics
College of Liberal Arts
Kanazawa University
Kanazawa, 920
Japan

