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Abstract. In this paper, I construct a new version of the halfway model for the
eversion of the sphere, called the closed halfway model, whose image can readily be
shown to be the set of zeros of an explicit polynomial of degree eight. For this purpose,
a 4-parameter family of halfway models is thoroughly investigated. This family also
contains the so-called open halfway model constructed in [A2]. The closed halfway
model is chosen among the immersions of this family whose multiple loci contain two
circles. Applied to the results of [Al], a similar study leads to notice that there exist
Boy surfaces depending on two parameters, each of which intersects a given sphere along
four circles (one parallel and three meridians). In the Appendix, Morin gives a coding
in differential topological terms, of a sphere eversion which turns out to be minimal in
many respects, so that, from now on, we no longer need to refer to pictures in order to
present the subject.

Introduction. The present paper is the first step in the program we would eventually
like to carry out. Indeed, the task we have in mind, is to construct an eversion of the
sphere in terms of a continuous family of immersions of S2 into R3 such that the images
of all members of the family be real algebraic surfaces, i.e., the sets of zeros of some
polynomials in three variables. Obviously, we are looking for surfaces with minimal
complexity (where the word complexity must be understood in a rather vague sense),
so that the singular locus of each surface could be controlled in such a way that
computations should lead to an easy description of such a homotopy. Assuming that
the eversion has some symmetry with respect to time, the first task, in order to solve
the problem, is to build a handy central step for the eversion. Here we present an
algebraic candidate for this so-called halfway model which turns out to be a good one
since it minimizes the complexity in many respects.

In fact, there are two differential types of the halfway model, the open halfway
model and the closed halfway model, as B. Morin called them. First, we obtain and
examine an algebraic version of the open halfway model, already mentioned in [A2],
by modifying the construction given in [Al] for the Boy surface, in such a way that
this threefolded symmetric object is now replaced by a fourfold surface. Instead of the
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immersion of P2 given in [A 1], we now get an immersion of S2 into R3 which has the
differential behavior of the open halfway model described in [M-P] (compare the
drawings shown there with the computer picture reproduced on the cover of [A2].

Unfortunately, the computations needed in order to study the singular locus of
such an open halfway model turn out to be rather complicated. Therefore, it is easy to
guess that, by trying to deform an object of this kind, one would be led into a tremendous
mess. In order to avoid a riding into this sort of trouble, we take advantage of the
amount of freedom left in the construction, and, thereby, get an algebraic version of
B. Morin's differentiable closed halfway model. The set of multiple points in this modified
immersion now splits in such a way that the necessary computations, in order to prove
the transversality statements, can easily be carried through. Moreover, we are able to
show that a certain polynomial of minimal degree (i.e., of degree eight,) vanishes exactly
on the image of our immersion.

Of course, there is still quite a lot to be done since it remains to construct a family
of rational algebraic surfaces connecting the immersion presented here, to some algebraic
embedding of S2 into R3. However, experience shows that such a task becomes much
easier when the halfway model has all possible nice properties. The present paper stems
out of conversations with B. Morin whose ideas permeate the subject. I also thank the
referee for his most pertinent and kind suggestions.

1. Notation and formulation of the problem. Let Jί, J>, β and ^ , be respectively

the sets of mappings, of immersions, of transverse immersions and of embeddings (of
class C1) of S2 into R3. The C^-norm on the vector space Jί turns it into a Banach
space in which J\ β and 0* are open subsets such that 0><^β' <^J'<^Jί. Recall that an
immersion is a C1-mapping everywhere of maximal rank, that a transverse immersion
has double and triple points with tangent planes in general position, and that an
embedding is a one-to-one immersion. Let us now say what one means by an eversion
of the sphere.

The open subset 0> of Ji has two connected components, one of which contains
the standard embedding, and the other, the antipodal embedding. Therefore, there exists
no path (i.e., no continuous mapping [—1, l]->^) connecting these two embeddings.
A result due to Smale [S] states that the open subset J> is connected, and hence, that
there exist paths in «/ starting at the standard embedding and ending at the antipodal
embedding. Such paths are called eversions of the sphere.

The story telling how various people tried to illustrate the paradoxical discovery
of S. Smale, can be found in [M-P]. However, the first explicit parametrization was
constructed by Morin [M] in 1978. The main trouble with Morin's parametrization
lies in the fact that his formulae are so complicated, that they allow no control on the
multiple locus of the evolving immersion. A full control on this multiple locus is indeed
a key point for a thorough understanding of the all procedure. The present paper intends
to be a step toward a more tractable answer to the problem.
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The open subset # ^ J of transverse immersions, has infinitely many connected
components; nervertheless, any eversion of the sphere can be approximated by an
eversion / : [—1, \~\-+J such that f~1(*f\f) has finitely many points, and there-
fore, such that it intersects only finitely many of these connected components. Now
tet /• [— Ul]-* ,/ be a path n-*ft in β. There exist an ambient isotopy
Ψ' L-l, l]-^Diff+(/?3) and an isotopy φ: [ -1 , l]->Diff+(S2) such that ^ O = 1 Λ 3 and
φ o =l S 2, and such that for all ίe[— 1, 1], one has ft = ψt

ofo°Ψt (where Diff+(M)
denotes the set of orientation-preserving C1-diίfeomorphisms of the orientable
C1-manifold M9 with the C1-topology). For any eversion of the sphere / : [— 1, 1]—>J
such that f~ι(J*\f) is a finite subset of [— 1, 1], one therefore readily sees that the
differentiable type of/,, and consequently its topological type vary only at f~ι{J*\f)
(i.e., when the deformation / passes from one connected component of / to another).
For any so-called generic eversion of the sphere (as well as for any generic regular
homotopy of a surface into R3) there are only six types of such transitions, the descrip-
tion of which can be found in [P] and [M-P] (see also Appendix below). Let us recall
what are the local models for these six types.

2. The six generic types of transitions between connected components of the space
of transverse immersions. Let / : [—1, l]->«/ be such that / f e / \ / for some
value of te~\ — 1, 1[, so that there exists at least one point meR3 such that f is not
transverse at m. By this, we mean that the set f^f/n) contains at least p elements
xί9..., xp, where p>2, such that the tangent planes at ft(xι), . . . , ft(xp), are not in
general position. Supposing that for such an m, the inverse image /t~

 ί(m) contains only
the points xί9..., xp, let gί9..., gp be continuous mappings of [— 1, 1] into C^/?2, R3)\

DEFINITION. One says that gι,. >,gp is a local model of f in neighbourhoods

of toe~\— 1, 1[ and of'xl9 . . . , xpeS2, when there exist ε > 0 such that ] / 0 — ε> *o + ε [ —
] — 1, 1[, open neighbourhoods Vl9...9Vp of O in R2, p continuous mappings
φi:]t0-ε9t0 + ε[^Όif[(Ui9xi;Vi9O) (where Diff(t/, x; K, O) denotes the set of
C^diffeomorphisms with the C^-topology from an open subset U of S2 onto an
open subset V of R2 mapping x to 0), as well as a continuous mapping
ψ: ]/0~

ε> /0 + ε[->DifT(/?3) such that for all te~\t0 — ε, /0 + ε[, the following diagram
commutes:

9ut

One says that the path / : [—1, l]-κ/ is generic when f_1 and fx are transverse,
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FIGURE 1. Transition of type Do or D2.

and when, for any couple (t0, m) such that ftQ is not transverse at m, there exists a local

model gί9 . . . , gp of / in a neighbourhood of t0 and in a neighbourhood of /," 1{m)9 of

one of the six following types:

Birth or death of a closed curve of double points: p = 2,

g! ,(w, v) = (w, 0, ί) ^ 2 t(u > v) = (u,v9u
2 + v2)

or

- ί )

The first transition is called a Wrίλ and is said to be of type Do. The second is

called a death and is said to be of type D2 (see Figure 1).

Surgery on the curve of double points: p = 2,

The transition called a surgery is said to be of

Birth or death of a pair of triple points: p = 3,

g2,t(u,v) = (u,v, -u + t)

or

, v, -u,-

Dγ (see Figure 2).

3tKμ9 υ) = (u, v, u2 + v2)

The first transition is called a birth of two triple points and is said to be of type

T+, the second, a death of two triple points, is said to be of type T~ (see Figure 3).
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FIGURE 2. Transition of type D1

FIGURE 3. Transition of type T+ or T~.

The quadruple point: p = 4,

gίt(u,v) = (u,v, -u-v + t) g2t(u,v) = (u,v,

and

03,t(u> v) = (M, υ, u - v) g^t(u, v) = (M, υ9 υ - u)
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FIGURE 4. Transition of type Q.

This transition, the eversίon of a tetrahedron, is said to be of type Q (see Figure 4).

Notice that, in particular, a generic regular homotopy

in the sense of Poenaru [P], determines a generic path [— 1, 1]—•</ in the present sense.

3. The open halfway model. The eversion of the sphere / : [—1, \~\-+J is said

to be generic, when the path / is generic in the sense given in §2. Notice that, as well

as in the case of nice functions in the sense of S. Smale, for a given value of the parameter

/ such that / t e / \ < / , we allow more than one point meR3 at which ft is not transverse.

Such a generic eversion of the sphere is described in [M-P] (see also §A2 below), up

to parametrization of the source sphere JS2 with the help of drawings. Notice, however,

that the eversion of [M-P] can easily be coded up to ambient isotopies both of the

source and of the target space, in purely differential topological terms, without the aid

of pictures. To such a coding, is associated that sequence of types used during the

deformation, but this sequence does not characterize completely the coding (see

Appendix below). In such sequences, parenthesis indicate those elementary moves that

may appear simultaneously. For instance, the main example of eversion of the sphere

described in [M-P], gives rise to the sequence

D0D0T+Γ+
D2D2

Recall that the eversion / of [M-P] satisfies the following equivariant condition:
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where pπ/2 denotes the rotation of R3 of ninety degrees around the vertical axis, and
p', the restriction to S2 of the composition of the rotation pπ / 2 by the orthogonal
symmetry with respect to the horizontal coordinate plane. Notice that, with this
requirement, if f_1 is assumed to be the standard embedding of S2 into R3, then fx

has to be the antipodal embedding, and that

f, = Pl,2°f,°p'2 W e [ - l , l ] ,

so that each model /, has a symmetry of order two. Moreover, when t = 0, one gets

fθ=Pπ/2°fθΌP' >

so that the halfway model f0 admits a fourfold symmetry. The halfway model /0,
thoroughly described in [M-P], is the so-called open halfway model. Of course, in [M-P],
this fourfold object is determined up to a parametrization of the source sphere S2, and
up to ambient isotopy of the target space R3.

More generally, one says that the eversion of the sphere/: [—1, Y\-*J is symmetric,
when there exist an isotopy φ: [0, l]->Diff+(/?3) and an isotopy φ : [0, l]->Diff_(5'2),
such that

f,=Ψ,°f-,°φ,
Then / 0 is the so-called halfway model for the eversion f

DEFINITION. The point meR3 is said to be of type Do 2 (resp. Dί9 7, Q) with
respect to the map foeJί, when mefo(S2) is such that fό^im) contains only finitely
many points xu ..., xpeS2, and when there exist diffeomorphisms φI GDiff(ί7I , xt; Vh O),
where JJi is an open neighbourhood of xteS2 and Ft an open neighbourhood of
Oe/?3, as well as a diffeomorphism φ eDiff(/?3), such that the following diagram
commutes:

φ

R3,
9i.o

where gx 0, . . ., gp0 are deduced from the g^s of §2 of the corresponding types Do or
D2 (resp. Du T+ or 7", β).

Notice that, it is not possible to distinguish between points of types Do and /) 2,
as well as between points of types T+ and T~. It is the reason for which we have defined
points of type D0t2 and T.

A result due to Banchoff and Max [B-M], unfortunately proved by referring to
pictures, implies that a generic halfway model, i.e., the halfway model of a generic
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symmetric eversion of the sphere, must have an odd number of quadruple points, i.e.,
of points of type Q. In order to construct a halfway model as simple as possible, this
fact leads us to look for examples of immersions of S2 into R2 admitting exactly one
quadruple point. In [A2, p. 104], an immersion fo of S2 into R3, with a fourfold
symmetry axis containing a point of type Q and a point of type Du is defined by the
formula:

) = 0 ~ \ Γ ^ s r n Ά c o s Ά s r n 2 $ ) (1/2X^/2"cos η — sin η) sin $ )

coŝ / /

where & e RjlπZ and η e [ — π/2, π/2] respectively denote the longitude and the latitude
on S2 with respect to an arbitrarly chosen reference meridian (a Greenwich meridian)
of S2. This model is a bouquet of ellipses entirely contained in (and actually equal to)
the set of zeros of the following polynomial Po of degree eight:

where A = Z{\-Z\ B = 2(X2+Y2), C=2(Y2-X2\ D = 2Z2 and E=4XY.
This immersion is a reasonable candidate for what should be called the canonical

open halfway model, since it satisfies all the properties imposed on such a model in
[M-P]. In particular, its multiple locus is of the required type. Indeed, this multiple
locus geometrically splits into two non symmetric threebladed propellers having their
triple points at the quadruple point of the model, and intersecting once more at the

FIGURE 5. Multiple locus of the open halfway model.
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FIGURE 6. Multiple locus of the closed halfway model.

point of type Dι of the model, one of them being obtained by applying to the other

the rotation pπ/2 (see Figure 5).

Unfortunately, this splitting is not algebraic, and therefore, the complication of

such an irreducible singular locus leads to theoretically feasible, but very messy,

transversality calculations. On the other hand, the proof that fo(S2)^R3 is exactly the

set of zeros of the polynomial Po, which can be obtained by sharpening the methods

used in §6 below, is too long to be inserted here, and would appear uselessly tedious.

In order to avoid this kind of trouble, we construct in §5 an explicit homotopy

which deforms fo into a new immersion fF of S2, called the closed halfway model. The

transversality calculations will become very easy, since the multiple locus of fF splits

into two ellipses, and into an algebraic fourbladed propeller, whose symmetry axis

coincides with the symmetry axis of the model (see Figure 6).

Let us first describe the 4-dimensional submanifold of J> in which the homotopy

leading from fo to fF can be easily defined (see §4). Next, we will be in position to

study in all details, fF itself (see §5).

4. The space of halfway models. In [A2], one can find a geometric construction

for a sequence of immersions with an arbitrarly high order of symmetry. In the quoted

book (see also §5 below), the construction is thoroughly described in the case where

the order of symmetry is equal to 3 (Boy immersion). Let us now recall how this

construction works in the case we are presently studying, i.e., in the case of the halfway

model, where the symmetry order is equal to 4. Actually, the construction depends on

four parameters, here called γ, α, /?, β, giving rise to an all family of immersions /α,p,^,y,

where (α, p, β, γ) ranges in a contractible open subset A of S1 x R3 (see Proposition 2

below). As noticed in [A2], halfway models can be generated by the images $$ of the

meridians of the sphere S2, where 8 is the longitude, and $& an ellipse for all SeR/2πZ.
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FIGURE 7. Generation of a general halfway model.

All these ellipses pass through the origin O (which is the image of the poles of S2), and
are tangent to the plane Z = 0 at O. The plane ^ containing the ellipse $$ is tangent
to a cone with vertex O whose intersection with the plane Z— 1 is a hypocycloid with
four cusps denoted by si. (A fourcuspidal hypocycloid is defined to be the curve generated
by a point K attached to a circle of radius, say γ > 0, with moving center ω, rolling
without gliding inside a circle of radius 4γ centered at a fixed point, say Ω.) The ellipse
$$, intersects the plane Z = 1 at two points J$ and J'&. The first point J$ of these two
points, runs along the circie of radius 2y inscribed inside si. Meanwhile, the second
point, J'^ generates an elongated hypocycloid si' (see Figure 7).

Recall what an elongated hypocycloid is assumed to be. With the previous notation,
let K! be any point attached to the moving line (ω, K). For each choice of the ratio
ε = \\ωK\\/γ, the point K generates an elongated hypocycloid of elongation ε:

for ε = 0, one gets the circle of radius 3y centered at Ω,
0 < ε < 1, the elongated hypocycloid is a smooth simple curve,
ε = 1, one gets the fourcuspidal hypocycloid,
1 < ε < 3, the elongated hypocycloid is a smooth curve with four double points,
ε = 3, the smooth curve admits a quadruple point, and
ε>3, the elongated hypocycloid is a smooth curve with eight double points
(see Figure 8).

By identifying the plane containing si to the complex line, so that Ω becomes 0
and m the complex number zm, one gets

for
for
for
for
for

where 5 e R/2πZ parametrizes the elongated hypocycloid (see Lemma 1 below). In order
to describe the motion of J& on its elongated hypocycloid, let us proceed as follow.

Since the line (Jd, J'9) = &>

9 n [Z= 1] envelopes si, by setting
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FIGURE 8. Elongated hypocycloids.

/2ycos#\

Λ = 2ysinθ ,

\ 1 /

the parametrization of stf reads

/4ycos3#

\

(For the halfway model fo,y— 1/2^/2 .) Notice that, at K$, up to sign, the unit tangent

vector to s/ is equal to

cos# \

-sin9 I .

0 /

Choose

/ cos 5 \

J's = Js + 2γρcos(2θ + oc)'l - s inθ ,

\ 0 /

where peR and αeR/2πZ, are respectively our second and first parameter. When p = 1
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and α = 0, one gets J'$ = K^. In order to obtain the open halfway model, set p = 1 and
α=-π/2.

LEMMA 1. The point J'$ generates an elongated hypocycloid of elongation

PROOF. By identifying the plane Z= 1 to the complex line, as above, one has

Zf^ = 2γe* + 2yp cos(20 + oc)e~* = y{2 + pei<x)e^ + ype~i(3d+α).

By setting 2 + peia = ρ'eia' where p ' > 0 and oc'eR/2πZ, and # 0 = —(α + α')/4, one gets

This relation shows that J's generates an elongated hypocycloid of elongation ε =

3p/p\ M

In order to parametrize the general halfway model, for the second variable, one

uses τ = tanj7 where ηe\_ — π/2, π/2] is the latitude on S2. Since the ellipse $& has to

satisfy four linearly independent conditions in the plane ^ , there remains only one

degree of freedom, say β, at our disposal (the third parameter in /α,p^,y) With these

conventions, the parametrization of S'# reads:

β(β - 2γτp cos(2# + α) + βτ2) ~' I (2y - jSτ) sin θ .

\ 1 /

Notice that, for the halfway model of §3, one has j8=l. Our construction yields a

4-parameter family of mappings /α,p,^,y from S1 x [ — π/2, π/2] into /?3 given by

\

L,P,β,y($, η) = β(β-19sin(2*/)cos(2θ + α))" x cos»/1 (2y cosn-βsin>/)sinθ ,

\ cos/7 /

where α e R/2πZ and p, β,γ> 0.

REMARK 1. Symmetry properties of the fatPtβty

9s. The family of mappings fa,p,β,γ

satisfy the following relations:

0) fa,p,β,y($ + πl2> -i) = Pπ/2°fΛ,p,β,y(&> n\ where ρ d still denotes the rotation of
angle 9 around OZ.

(n) fa,P,λβ,λγ(&i ri) = aλ° foL,p,β,y(βτ vί), where aλ is the linear mapping from R3 into
R3 represented by the matrix
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(iii) sx° fa,p,β,γ = f-(X,p,β,γoSχ where sx denotes the reflection with respect to the

plane X=0.

In addition, since the conic $$ has to be an ellipse, i.e., since the mapping /α,p>/ϊ>y

must be defined everywhere, one has to assume that β>yp. Let us set

A = {(<*, p, β, γ)eS1 x / ? 3 : s i n α < 0 , p > 0 , y>0, β>yρ, -2yJ 2 p s i n α > | 2 + pcosα|} .

PROPOSITION 1. If (on, p, β,y)eA then fa,Ptβtγ induces a C1-immersion of S2 into R3

whose image has a fourfold symmetry around OZ. Moreover, the mapping / : A-*J>

defined by (α, p, β, y)»—•/α>p>/J>y is continuous.

PROOF. The symmetric property is a consequence of the relation (i) above (see

Remark 1). In order to show that fa,Ptβtγ is a C1-immersion, set p = βp'/γ, so that

/ (2y cos η + β sin η) cos 9 \

fatpj,y(&> ri) = (l—p'sin(2fy)cos(25 + α))" 1 cosηI (2ycosη — βsin*/)sinS 1,

\ cos η )

where p'< 1. In order to control the rank of fapβ γ outside the poles, write

L,P,β,y&n)=r{99

τ) [ Y ] a n d

where r(S, τ) = (l + τ 2 - 2 τ p ' c o s ( 2 θ + α ) ) " 1 and τ = tan^y. Then equation of the critical

locus of g is βτ = 2ycos25. Along this critical locus, the jacobian matrix of

(g^ή'.S'xR^R*

has the same rank as the matrix

-sin,9(l+cos2£)

cos 9(1 - c o s 2θ)

v 2p' cos 2^ sin(2θ + α) 2y cos 29-βp' cos(23 + α) y

Since the upper 2 x 2 minor of this matrix vanishes, we replace the second row (row2)

by (row2)sin5 — (row^cosS, so that the lower 2 x 2 minor now reads

sin2θ -β

2p'cos 29 sin(2θ + α) 2γcos29-βpf cos(2θ + α)

= βp' sin α( 1 + cos2 2θ) + sin 23 cos 29(βρ' cos α + 2y).

If we multiply this expression by 1 + τ / 2 , where τ' = tan25, we get

βp 'τ'2 sin α + τ'(/?p' cos>α + 2y) + 2βp' sin α ,

a polynomial of degree 2 with respect to τ'. Since the discriminant of this polynomial
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is equal to

one sees that, outside the poles, the rank of fΛpβ y is equal to 2. In order to control the

behaviour of /α,p,^,y near each pole, set

w = cos#cos>/, u = sini9cos»j, and w = sinf;,

so that in a neighbourhood of the pole where w= + 1, the three following relations hold:

/ = ±βί -υ ] + vε(v), lim δj= ±β 0 j , lim dj= ±β\ - 1 ),

\ o / -~° \ o / - - 0 \ o /
where v = (u2 + v2)ί/2 and \imv_oε(v) = 0. These relations imply that / i s of class C 1 and

of rank 2 at each of the poles, so that we may conclude that / ^ ^ e i .

The above formulae yield that the derivative of /α,p,/?,γ: S
2^R3, depends con-

tinuously on the coefficients α, p, β, y, and hence, that / : Δ-*J is continuous. •

REMARK 2. Since when sinα = 0, the mapping fatPtβtγ cannot be an immersion,

the subset of all immersions /α,p^,y has two connected components. Now Remark 1

(iii) shows that the model f_apβγ(S2) is the mirror image of fapβy7(S2). On the other

hand, for the open halfway model / o , one has sinα= — 1, since f0 = foc,P,β,γ

( α , p , β y ) = (-π/2, 1,1/2, 1/2^2 )eA.

Hence, by discarding the α's such that s inα>0 we throw away the models having the

wrong twist.

PROPOSITION 2. The set A introduced in Proposition 1 is a contractible open subset

PROOF. By construction, A is an open subset of S1 x R3. In order to show that

A is contractible, set

We prove first that A x is a deformation retract of A, and next, that A λ is homeomorphic

to A\ x ]0, + oo[, where

, -2y/ 2 }

will turn out to be contractible. For all /e[0, 1], set βt = (\ — ήβ + y/ 2 typ. For

(α, p, β,γ)eA, one has (α, p, βt, y)eA so that the mapping

Hi'. ^ x [ 0 , l]->Zl

defined by
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FIGURE 9. The contractible set Δ\.

((μ,p,β,y)9t)\-+(a,p9βt9γ)

is a deformation retract of A to Ax. Moreover, the projection (α, p, β, y)ι—•(α, p, y),

yields a homeomorphism from A1 to

{(α, p)eS1xR:sinoι<0, p>0, -

Now, the mapping

(α, p

x]0, + oo[.

is a homeomorphism from {(α, p) e 5 1 x /?: sin α < 0, p > 0, — 2j 2 p sin α > 12 + p cos α |}

to zli. Clearly the subset A\ of C is convex and hence contractible (see Figure 9). •

The homotopy starting from fo and leading to the immersion /F, announced in

§3 and constructed in §5, is a path entirely contained in

5. The closed halfway model. The existence of the closed halfway model is

mentioned in [M-P]. Although topologically more complicated than the open halfway

model, it gives rise to a more compact eversion of the sphere, i.e., to a psychologically

shorter one, which one can grasp more easily, since, in the associated sequence of types,

all the transitions of type Dί occur simultaneously at the halfway stage:

D0D0T
+T+{ D,

D,

In order to define /F, we first impose a condition which splits the multiple locus of the

general immersion fatPtβίy into three algebraic curves. Since the singular locus of the

model we are looking for, must decompose into two ovals tangent at O to the plane

Z = 0 plus a third component, it is natural to require that the ovals should belong to

the family of ellipses (S'9). Since S§ and $& a r e coplanar if and only if
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9 = 9' (2π) or 9 = 9' = 0 (π) or 9 = 9' = π/2 (π),

one sees that the condition S$ contained in the multiple locus implies 9 = 0 (π/2). By

Remark 1 (i), if So is in the multiple locus, then S0 = Sπ and Sπj2 = S _π / 2.

PROPOSITION 3. One has So = Sπ if and only if 2 + p cos α = 0.

PROOF. For all fa,p,β,γ, the ellipse So intersects OZ at 0 and at a second point

denoted Q, corresponding to the value τ = tan η = — 2y/j8, since So and Sπ are symmetric

with respect to OZ, these two curves coincide if and only if their tangent at Q are

orthogonal to OZ, i.e., when

dZ
-Γ = 0 ,

a τ \τ=-2γ/β

where the third coordinate Z of the parametrization of So is equal to

Z=\ \—2pτ — cosα + r

Hence, one gets 2 + p cos α = 0. •

Since So and Sπ/2 are vertical, by applying the linear mapping aλ of Remark 1 (ii),

one may concentrate only on models where these two ellipses are circles.

PROPOSITION 4. The ellipse So, (and therefore the ellipse Sπ/2), is a circle if and

only if (i) 2 + pcosα = 0, and (ii) β2=l+4γ2. If such is the case, the intersection of

L,P,β,γ(S2) and of the sphere X2-\- Y2-\-Z2 = β2Z, is equal to Ή1\J(g2\J(g3 where

^>i —^Ό > y>2 = $πi2> and where ^ 3 is the circle generated by / d.

PROOF. The ellipse So is a circle if and only if its tangent at Q is horizontal and

its two axes are equal, and hence if and only if (i) 2 + pcosα = 0 (see Proposition 3),

and (ii) β 2 = l + 4 y 2 . When these two conditions are satisfied, we put 2y = sinhμ and

eia = (— 1 + / sinh v)/cosh v, so that we get

μ > 0 , v < 0 , β = cosh μ , and p = 2 cosh v .

Let us then set fatPtβ,γ(9, η) = fμ,y(9, τ) where τ = tan^/, so that

/ (sinh μ 4- τ cosh μ) cos 9 \

fμty(99 τ) = (l + τ 2 + 2τ tanhμ(cos 2d + sinh v sin 2θ))~1 I (sinhμ — τcosh μ) sin 9 .

If we replace X, Y and Z, by the three components of fμv, the equation X2 +

Y2 + Z2 = β2Z yields τ = 0 and sin2# = 0. Notice first that τ = 0 is the equation of the

equator of the source sphere S2 whose image is the circle (€z of radius 2y generated by
J&, and last, that sin 29 vanishes on the four meridians of longitude 9 = 0 (π/2) whose
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images are the double circles (€1 and ^ 2 (see Propositon 3). •

For convenience, let us call closed halfway models, the C1-immersions of S2 into
R3, induced by the mappings fμv introduced in the proof of Propositon 4, where μ and

v are assumed to satisfy

(*) μ > 0 , v < 0 , and sinhμ coshv<coshμ .

If we impose on (α, p, β, γ)eS1 x R3, to verify

eιa = (—1+zsinhv), p = 2coshv, β = coshμ, and y = — sinhμ,
cosh v 2

so that

then, the conditions (*) are equivalent to (α, p, β,y)eA. Therefore, we have defined a

one-to-one mapping from the set of (μ, v) satisfying the conditions (*), into A.

PROPOSITION 5. The multiple locus of the closed halfway model fμv, splits into two

circles, (^1 and ^2>
 and into the image ^0 of the two connected curves of S2, parametrized

by

sin σ cos σ) — π/2 J # _ x = σ — arcsinf^yi sin σ cos σ) + π/2

τ 1 = t a n h μ (cos2σ-( l+cos 2 2σ) 1 / 2 ) \ τ_γ = tanhμ (cos2σ-h(l +cos 2 2σ) 1 / 2 ) ,

where σeR/2πZ (see, for instance, Figure 11 below). Moreover, one has / μ > v (θ 1 ? τί) =

fμ,v(9-ι>τ-i)and

1(σ + π / 2 ) = - τ _ 1 ( σ ) .

PROOF. For a given longitude So, let us look for the points (θ, τ) e $$ n S^o where

τ = ϊΆnη. The image of the sphere, fμ,v(S2), meets the plane ^ d o at the ellipse $&0 and

at a second curve ^ d o given by

= tanh μ cos I I / cos I

If we set

and

r0 = (1 + τ

2 + 2τ tanh μ(cos 2θ 0 + sinh v sin 2θ0)) ~

r = (1 + τ I + 2τd tanh μ(cos 29 + sinh v sin 2S))"x
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Λ.v(θ0, τ) = r0 y 0 I and /„, V(S, τj = r • Γ

then, since /MtV(9, τ d ) e ^ d o , the relation /μ,v(#0>
 τ) = /μ,v(#> τa) is equivalent to

AΌsin90— 70 008^0 = ̂ 8 ^ ^ 0 - Ycosθ0 and ro"
1 = r " 1 .

The first of these two last equations yields

(I) τ = tanhμ cos( -I/cos
2 // \ 2

while, after ignoring the factor sin(# — 50), the second boils down to

(ii) c o 2

Let us next set

The equation (ii) now reads

sin22σ

or equivalently

sin ξ = ± yj/2 sin σ cos σ .

Meanwhile (i) can be written

τ = tanh μ = tanh μ (cos 2σ + J~2 cos ξ),
sinξ

since

cos2 ξ = 1 - sin2 f = — (1 + cos2 2σ),

we obtain the desired parametrizations. •

Definition of fF: In order to carry through a more detailed study of our object,

it is convenient to specialize the tuple (μ, v). We first impose to the maximum value,

Z m a x , of the third coordinate Z of fμv, to be equal to the corresponding value for the

open halfway model fo. Since the third coordinate Z of fatPtβtγ is equal to

2y
1 ——- τp cos(2# + α) + τ 2
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considered as a function of τ = tanτ/, it reaches its maximum (1 — (y2p2/β2)cos2(2$ +

α ) ) " 1 at τ = (yp/β)cos(2S + (x). If we vary both $ and τ, the maximum of Z is

β2

For the open halfway model, one has β2/(β2 — γ2p2) = 2, therefore, since /?, y, and p

are positive, for the closed halfway model, we are led to set β = J 2 γp, so that in terms

of μ and v, we get coshμ = Λ /2 sinhμcoshv. Since (α, p, β, γ)eA, we have s inα<0,

while Proposition 4 (i) yields cos α < 0. We therefore choose α = — 3π/4, so that we

eventually get

or equivalently

(α, p, /?, y) = (-3π/4, 2 / T , 2 / / T , 1/2/3")

(μ, v) = ίargsinh — argcosh^/ 2

By definition, the corresponding C1-immersion /α,p,^,y(θ, η) = fμ,v(9, τ) is called /fe closed

halfway model fF. Hence

( (1 / ^ / T )(cos η + 2 sin >/) cos S \

(l/yT)(cos?/-2sin^sin5 h
cos /̂ /

where 9eR/2πZ and f/G[-π/2, π/2] are as in §3 and §4.

The homotopy connecting fo to fF: With the previous notation J x (see proof of

Proposition 2 §4), the tuples (αo, ρo, βo,yo)
 a n d (ocF, ρF, βF,yF) respectively

corresponding to fo and / F clearly belong to Δx. In the proof of Proposition 2 §4, we

constructed a homeomorphism from A ί to zlΊ x ]0, + oo[. The images of (αo, p o , j5o, yo)

and (αF, p F , j?F, yF) by this homeomorphism can be connected by a segment contained

in A\ x ]0, + oo[ (see Figure 10).

- 2

FIGURE 10. The homotopy connecting fo to fF.
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This segment yields a regular homotopy from f0 to the immersion /F, which, as

we will see in Theorem 4 below, has four extra points of type D1.

REMARK 3. Overdosing procedure: The notion of general closed halfway models

fμ,v applies also to all immersions fatPtPt7 where

(α, p, β, y)eA° = {(oc,p, β,

since the multiple locus of such an immersion contains two ellipses (see Proposition 3).

Notice that, by definition, the /μ,v's are precisely the halfway models where these ellipses

are requested to be circles. Let us denote

A+={(<x, p, β, y)ezl:2 + ρcosα>0} and A~ = {(α, p, β, y)eA :2 + pcosα<0} .

By an argument similar to the one used in the proof of Proposition 2 §4, one can prove

that Δ° splits A into the two contractible open subsets A+ and A~. Since A+ contains

/ o , one is led to call open halfway models, all the immersions corresponding to

(α, p, β,y)eA +. The previous splitting induces a splitting of A\ into two contractible

open subsets, A\+ and A\~ defined by

A\+ = {zeA\: Mz> -2} and A\' = {(zeA\ : Mz< -2} .

Clearly, the segment of A\ previously used in order to obtain the homotopy from fo

to / f , starts in A\+ and interesects transversally the line $Rz= — 2 (corresponding to

A0), so that it can be extended in Δ\~ (see Figure 10). Therefore, one sees that the models

of A ~ are obtained by overdosing (so to speak) closed halfway models (see Remark 4

§A2).

Boy surfaces containing four circles: The method developped in order to construct

halfway models containing three circles (in fact five if we think in terms of multiplicity),

easily applies to Boy immersions which map the real projective plane P2 into R3,

obtained by generalizing the construction presented in [Al] . In fact, the construction

of Boy immersions is similar to the one given in §4, where the fourfold symmetry is

now replaced by a threefold symmetry, so that we get a 4-parameter family b^pβy of

CMmmersions of S2 into /?3, invariant under the antipodal action on S2, and hence,

factorizing through the canonical projection from S2 onto P2. Since the fourcuspidal

hypocycloid s/ has now to be replaced by a deltoid, we are led to set

( y cos η cos 29 + β sin η cos S \

y cos η sin 29 — β sin η sin 8 ,

cos?/ /

where, as ever, 9 and η respectively denote the longitude and the latitude on S 2 , and

A = {(<*, p, β, y)eSι x / ? 3 : s i n α < 0 , p > 0 , y>0, β>yρ, - 2 Λ / T p s i n α > | 3 + 2pcosα|} ,

so that we have
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PROPOSITION 6. The set A^S1xR3 is open and contractible. Moreover, for

(α, p, β, y)eA, the mapping b^pβy extends into a Cι-immersion of S2 into R3, which

induces a C1-immersion ofP2 into R3 whose image has a threefold symmetry around OZ.

The Boy immersion described in [Al], corresponds to

(α, p, β9 y) = (-π/2, 3/2, JΎβ, 2/3).

The statement corresponding to Proposition 4, claims that

PROPOSITION 7. The image So = ba p β y(0, •) of the meridian of longitude 0, is a

circle if and only if

(i) l+pcosα = 0 and (ii) β 2 = l + y 2 .

If such is the case, baLpβy(S2)ϊ\\_X2+Y2 + Z2 = β2Z\ is the union of the four circles

^\ — d>o> ^2 = <̂ 2π/3> ^3 = < 4̂π/3» and ^4> where ^ 4 is given by the equations Z=\ and

X2 +Y2 = y2. Immersions satisfying (i) only, are exactly those for which the ellipses SQ,

£2πβ and $4π/3> n a v e a vertical axis of symmetry.

Since the proofs of Propositions 6 and 7 are analogous to those of Proposition

2 §4 and Propositions 3 and 4, they are left to the reader. By setting

where μ and v satisfy

μ > 0 , v < 0 , sinhμ cosh v<coshμ and — sinhv>

and where

ei<x — (—l+/sinhv), p = coshv, β = coshμ and y = sinhμ,
cosh v

Proposition 7 yields a 2-parameter family bμx of Boy immersions containing four

cospherical circles. Similar constructions can be given for immersions of S2 or P2 into

R3, having higher order of symmetry (see [Al] and [A2]).

Now, with the closed halfway model /F, computations become much easier and

enable us to prove the following claims:

6. Statements and proofs of the properties of the closed halfway model fF.

THEOREM 1. The mapping fF: S2-+R3 is an immersion of class C00 except at the

poles ofS2, where it is C1 but not C2, such that the vertical axis OZ is a fourfold symmetry

axis of fF{S2). Moreover fF(S2) is the union in R3 of a family of ellipses, all tangent to

the horizontal plane Z = 0 at the origin.

PROOF. Each ellipse $$ i s t n e image of the meridian of longitude $ in S2
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parametrized by the latitude η. Moreover S^ — ̂ ^ where ^ d is the plane of equation
Arsin,9+ Γcos# = Zsin2,9/Λ/ 3 . Two ellipses $& and £& a r e tangent at O if and only if
9 — 9'eπZ; in addition, . ^ = ̂ V if and only if 9 e (π/2)Z (see Figure 7). Therefore the
restriction of fF to a great circle containing the two meridians of longitudes 9 and 9 + π
is not of class C 2 at the poles of S2 whenever 9φ(π/2)Z. The remaining statements of
Theorem 1 are obtained by applying Proposition 1 (§4) to

(α, p, β, y) = (— 3π/4, 2J 2 , 2/^/ 3 , 1 /2χ/ 3 ).

In order to prove Theorems 2 and 3, it is convenient to state the following Lemma.

LEMMA 3. The set fF(S2) is contained in the real algebraic surface of equation PF = 0.

PROOF. Let us introduce an extra variable T in order to get the following
parametrization of fF(S2) now expressed in homogeneous coordinates

' X\
Y

z
T\

(lΛ/3)(l+2τ)cosθ

1

I Vl-τ(sin2θ-cos2#) + τ 2

where, as before, τ = tanτ/. With the quantities A, B, C, D, E and G introduced in the
statement of Theorem 3, where A and G are now homogenized by setting A = Z(T— Z)
and G = 3(Ar2+ 7 2 + Z 2 )-4ZΓ, one obtains

G = 4τsin25 and 3^=2(1 -4τ 2 ) sin 29 .

From these relations one gets the following relation

G - 6 £ τ - 4 τ 2 G = 0,

which is of degree two in τ. On the other hand, the following holds

The polynomial PF is obtained by eliminating τ between the two previous equations.

This result shows only that fF(S2) is contained in [PF = 0] but not that fF maps
S2 onto the set of real zeros of PF, a fact which will be proved in Theorem 3.

THEOREM 2. The intersection of fF(S2) with the sphere G = 0 (where G = 3(X2 +
Y2 + Z2) — 4Z) is the union of the three circles <βu ^2 and^^ of equations

« Ί : X=0 and

<£2: Y=0 and X

V3: Z = l and X2+Y2 =
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The multiple locus of fF is the union of the two circles ̂  and ^2

 and of the fourbladed

propeller ^0 parametrized by σe R/2πZ

I -(Λ/Y/Λ/T)cos2σcosσ \

^o : 4(4 + sin 4σ + cos 4σ) ~ * ( (y/J/y/J) cos 2σ sin σ J

^ 1 '

PROOF. We already know that, restricted to the sphere [G = 0], the sets [P F = 0]

and fF(S2) coincide, since, by Lemma 3

and since ζβ^c€2 and ^ 3 are images by fF of the great circles of S2 of equations

9 = π/2 (π) S = 0 (π) and η = 0.

Recall that Proposition 4 §5, already showed, in particular, that fF(S2) n [G = 0] =

# ! u ^ 2 u ^ 3 - I n order to finish the proof of Theorem 2, we have now to study the

multiple locus of fF. Since, as a consequence of Lemma 3, this multiple locus is contained

in the singular locus of [7^ = 0], one might consider to study this singular locus, i.e.,

to solve the system

\dxPF = 0

dYPF = 0

dzPF = 0

dτpF=o.

Unfortunately, the calculations needed in order to solve this system, turn out to be

utterly complicated. It is much more convenient to determine the apparent contour of

fF(S2) looked at from the origin. This is done by eliminating G between PF = 0 and

δτPF = 0, where T has been introduced in the proof of Lemma 3. From what precedes,

we already selected the following components of this apparent contour:

(i) the planes X=0 and F = 0 yielding to the circles (^1 and ^ 2 ,

(ii) the two imaginary lines X±iY=Z = 0 attached to the singularity of the

algebraic surface PF = 0 at the origin,

(iii) the cone enveloped by the planes ^ d , i.e., the union of all lines connecting

the origin with the fourcuspidal hypocycloid &f^{Z=T] (§4) whose equation

is

As we now proceed to show, the remaining part of the apparent contour is the cone

generated by the curve ^ 0 defined in the statement of Theorem 2. While eliminating G

between PF = 0 and δτPF = 0, we factor out the terms corresponding to the components

(i), (ii) and (iii) above, so that the remaining factor yields the equation
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3B3-2C2D = 0.

The intersection of the plane Z=T and of the cone given by the previous equation, is
a rational curve of degree six defined, in polar coordinates, by the relation

By lifting this curve on fF(S2), we get the following parametrization of ^ 0 :

(
— (y/Ύ/y/Ύ) cos 2σ cos σy

(Λ/27Λ/T)cos2σsinσ

1

Notice that the inverse image of ^ 0 in S2 has two connected components parametrized
by (see Figure 11)

ί = σ + arcsi^^/Y sin σ cos σ) — π/2 J $ _ x = σ — arcsinΐ^/T sin σ cos σ) + π/2

>1=(cos2σ-(l+cos22σ)1 / 2)/2 jτ_ 1=(cos2σ + (l +cos22σ)1/2)/2 ,

where σeRβπZ. •

The proof of Theorem 3 is based on the classical following fact:

LEMMA 4. Let PeC[x,y] be a non zero irreducible polynomial, for which there
exist two rational functions φ, φeC(t) satisfying the following conditions:

FIGURE 11. The inverse image of # 0 in S2.
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(i) P(φ(t), φ(t)) = 0for all teCfor which both φ and φ are defined,

(ii) The set DP = {t:lt'Φt such that φ(t) = φ(t') and φ(t) = φ(tf)} is finite,

(iii) φ and φ are not both constant.

Then, for all t e DP, the point (φ(t), φ{t)) is a singular point of the rational plane curve

defined by P = 0. Moreover, the set of zeros of P is equal to the image of Cu {00} under

(φ, φ).

PROOF. According to the Euler homogeneity formula, each singular point of the

curve P = 0 is determined by a solution of the following system

dxP =

Let toeC, and, for convenience, assume that φ(to) = φ(to) = 0. Let us first prove that,

if P(0, 0) is not a singular point, namely, if one of the partial derivatives of P (say dxP)

does not vanish at (0, 0), then toφDP. The implicit function Theorem asserts that, if

P(0,0) = 0 and dxP{b,0)Φ0,

then, in neighbourhoods of (0, 0) and of 0, there exist analytic functions g(x, y) and χ(y)

such that

P(x,y) = (x-χ(y))g(x,y) and g(090)Φ0.

Hence, in a neighbourhood of t0, one has φ(t) = χ°φ(f). Now, if tx is such that

φ(t1) = φ(t1) = O, then the relation φ(t) = χoφ(t) also holds in a neighbourhood of/x. In

particular, we see that φ cannot be constant, since, otherwise, φ would also be constant,

a impossible fact by the hypothesis (iii). The open mapping Theorem then states that

there exists ε > 0 such that φ^to — ε, /0 +
 εC and φ~\tλ— ε, / i + ε [ are neighbourhoods of

0. Therefore, there exists a sequence of mutually disjoint complex numbers

a n d h e n c e , t w o s e q u e n c e s tQn a n d t l n s u c h t h a t

Φ(to,n) = Φ(ti,n)=yn and \to-toJ,\ti-tUn\<ε.

Thus, for ε small enough, one has

<P(tθ,n) = X ° Φ(tO,n) = X ° Φ(h,n) = ψ(h,n)

Since the t0 n's are mutually distinct, while the set DP is assumed to be finite, there exist

m and n such that tOm = tln, and therefore

Hence, for ε sufficiently small, one gets to = t1, which brings to an end the proof that

toφDP.
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In order to prove now that (φ, φ) maps Cu{oo} onto the set of zeros of P, let

(x0, ^ 0 ) be such a zero, and write φ = φi/φ2 and Φ = Φi/Φ2, where the polynomials φ/s

and φi's are such that

gcd(φ1? φ 2 ) = 1 =gcd(^ 1 , φ2).

Since P is irreducible and satisfies P{φ, φ) = 0, Hubert's Nullstellensatz asserts that there

exists k> 1 such that Pk is the resultant of the two polynomials xφ2 — (Pi,yφ2 — φi€ C[ί]

Therefore, we are led to the following dilemma, each horn of which yields our conclu-

sion:

(i) either there exists toeC such that

) = 0 and

(ii) or the terms of higher degree in t of xφ2 — φ1 and yφ2 — φ1 vanish at t0, a

fact which reads x0 = φ(co) and >;o = ι

THEOREM 3. The set fF(S2) is equal to the set of real zeros of the polynomial PF

of degree eight

PF(X, Y, Z)= -

where A = Z(l-Z), B = (2X2+Y2\ C = 2(Y2-X2\ D = 2Z2, E=4XY, andG = 3(X2 +
Y2 + Z2)-4Z.

PROOF. In order to check that PF has no other real zeros than those belonging

to fF(S2), it suίRcies to show that the (real) intersections of the surface \_PF = 0] with

the planes ^ d o are in fF{S2). It is indeed sufficient since the union of the ^ d o ' s is equal

to R3. These planes intersect the surface [ZV = 0] along the curve of degree eight which

splits into the conic S^ and into the rational curve of degree six ^ d o which is the image

by fF of the curve contained in S2 and of equation

( S — 9 \
I + cos2# 0 ,

where 9eR/2πZ and ηe[_ — π/2, π/2] are as above. Since each real point lying on

and satisfying the equation of the conic <^do, belongs to <f d o, a real point m e \_PF = 0]

outside ^&0 u <f d o must satisfy the equation of ^ d o . Moreover, such a point m is not in

the image of the parametrization (φ, φ) obtained by replacing 2 tan 7/ by

( 9 — S \]

now considered as a function of tan(#/2). Since the parametrization (φ, φ) satisfies the

conditions of Lemma 4, the point m can be written m = (φ(t), φ(t)), where teC\R.

Since the coefficients of the rational functions φ and φ are real, one has
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FIGURE 12. The intersection [/>

f =

a fact which, according to Lemma 4, proves that m is a singular point of ^ d o .

Let us now prove that all points of this type belong to fF(S2). Notice first that

when # 0 = 0 (π/2), the intersection [ P F = 0] n ̂ o splits into the union of one of the

double circles <^1 and # 2 , with a rational quartic having two singular points, namely,

an ordinary singular point at Q = (0, 0, 4/3) and a tacnode at the origin (see Figure 12).

Therefore, when So = 0 (π/2), there exists no real singular point of \_PF — 0] n ^ d o

not contained in fF(S2) so that, in order to complete the proof, one may assume that

s i n 2 θ o / 0 . With this assumption, the equation of # d o reads

where

A0=l Sy/TzE2(Xsm 3S0 + Y cos 3S0)/sin2 23

A ί = 4D sin 290(D sin 2^0 - 3£) + 3B(3B - AD)

A2 = sin So — Ycos # 0 ) ,

and where A, B, C, D, £, G, have the same meaning as in the statement of Theorem 3.

This formula shows that the origin is the unique real zero of PF belonging to the plane

Z=0. It therefore suffices to look for singular points of %>$0 whose third cooordinate

Z is different from 0. Such points are solutions of the following system (considered as

linear with respect to the unknowns 1, G, G 2):
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After the multiplication by the quantity 2 ~ 1 4 3~ 5 s in 5 2# 0 , the determinant of this

system becomes equal to

XY(X(cos So - sin θ0) + ^(cos So + sin 90))( F(cos »0 - sin θ0) - X(cos &0 + sin 90))D0 .

Now, if we multiply by — 2~2 O 3 ~ 8 s i n 8 2 5 o , the resultant of the two last equations of

the system regarded as polynomial of degree two in G, we get

X2 Y2(X(cos 90 - sin So) + F(cos # 0 + sin θo)X F(cos ̂ 0 - sin θ0) - ^(cos % + sin S0))R0 .

The two linear factors

X(cos # 0 — sin #0) + Y(cos So + sin So) and Γ(cos &0 — sin #0) — ^(cos ^ 0 4- sin θ0)

correspond to the two points where the fourbladed propeller ^ 0 intersects the plane

^ d o . On the other hand, after a suitable combination of the equations Do = 0 and Ro = 0,

if we set

0 , 0 , 0 and ^ =

we get

where

The rotation pn/2 of angle π/2 around Zλ? which maps (c, s, x, y) onto (s, c, ^, x), yields

a new equation of degree two

where

d' = 25s4 -1005 3 + 86s2 + 28s + 25 .

The resultant of the previous polynomial and this new polynomial is equal to

2 8 3 2 ( l - / 2 ) ( 2 5 ί 7 - l l ί 6 - 1 1 4 ί 5 - 7 0 ί 4 + 89ί3 + 237ί2 + 256ί+100),

where / = cΛ = sin2 2θ 0 . One readily sees that the factor of degree seven of this expression

does not vanish on ]0, 1[, by noticing that this can be written

+ 170ί + 81)r 2 ( l- ί )+156ί 2 - f256ί+100.



EVERSION OF THE SPHERE 1 31

Last, one checks that for t2 = 1, i.e., for S0 = π/4 (π/2), there are no real singular points
in [PF = 0] n ^ d o not belonging to the image of fF. This brings to an end the proof of
Theorem 3. •

THEOREM 4. The two circles <€ι and ^2 of the multiple locus of fF intersect at

O = (0, 0, 0) and at the point Q = (0, 0, 4/3) G ^ 0 , which is the quadruple point of fF, at

which the tangent planes to fF of equations

7 = 4 , 3Z-2y/3Y=4,

are in general position, so that Q is of type Q. Each of the four blades of the propeller %>0

intersects one of the four meridians contained in <^1 u ̂ 2 \{^» Q} at a point D\ (1 < i< 4)
such that, ifD\=(4y/ 2 /5-J 3 , 0, 4/5), one obtains the other D\'s by applying to D\ the
fourfold symmetry of fF. The five points O and D\'s are all of type Z>t. On the
self-intersection curve of fF, each point PφO, Q, D\, . . ., D\ is such that the two sheets
of fF intersecting at P have tangent planes transverse to each other.

PROOF. On the closed halfway model /F, with the notation of §5, one has

G = 4τsin2θ (l-τ(sin2θ-cos2θ) + τ 2 ) " 2 where τ =

Therefore, when they cross each other along the circles (€1 and ^2?
 t n e t w o sheets of

the model also cross the sphere G = 0. Using an orientation-preserving local
diffeomorphism around the origin in R3 of class C1, but not C2 at the origin, which
maps a neighbourhood of the origin in the sphere G = 0 into the horizontal plane Z = 0,
one therefore gets that the origin O is of type Dx in fF. The expression of the 4-jet of
PF around the point Q = (0, 0, 4/3)

shows that this point is of type Q. The 3-jet of PF at the point D\ = (4y/Ύ/5y/Ύ9 0, 4/5)
has the form

where

l=2x^fβ-2y^fβ+z, Z = x + 4 λ / T / 5 v / y , Y=y, and Z = z + 4/5.

The quadric showing up in the expression of this jet, is a saddle with tangent 1=0 at
D\, so that this point is of type D1 (as well as the other D\'s for symmetry reasons).

A tangent vector tσ to the fourbladed propeller ^ 0 , at the point mσ of parameter
σ, is given by the expression

tσ = —— q2 - — where q = 1 + (sin 4σ + cos 4σ)/4 .
4 dσ



132 F. APERY

Similarly, the vectors

tt = (sin 2σ(cos 2σ + sin 2σ) — 2ti cos 2σ) ύi

where

(—cos2σcosσ\ /sir

cos2σsinσ j , tf.=( cos σ ^ - s i n 2 σ) J,

and where / = 1, 2, are respectively tangent to the ellipses S^ and S^2 intersecting each

other at mσ. Since the determinant

y T ^ 2 ( l+cos 2 2σ) 1 / 2 sin32σ,

of the three vectors tu t2, and tσ, is not equal to 0 when mσφQ, D{,..., D\, one sees

that fF is transversal along ^0\{Q, D\, ..., D\). The 2-jet of PF at the point

(Xσ, 0, Z ( T )G < ^ 2 ? where

σ ( ) ( ) / χ and Z σ = ( ) ,

is given by

48Jr 2 Z^{4σ/TjZ σ + (2(j - 1 )(3xXσ + z(3Zσ - 2))}

x {- 4(σ + 1 )^JyZ + (2σ + 3)(3xXσ + z(3Zff - 2))} ,

where

=j>, and Z = z + Zσ.

This shows that the immersion / F is transversal along ^ 2 except at the points such that

4σ2 + 4σ— 1 =0, namely, at the points of type Dx belonging to ^ a t t n e origin, and

at the quadruple point. For symmetry reasons, fF is also transverse along ^ except at

four points. •
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Appendix by Bernard MORIN

Al. Coding of a generic differentiable regular homotopy from a surface into a
3-dimensional manifold. This paragraph introduces the needed ingredients in order to
be able to say in §A2 along which differentiable tracks the algebraic programme
mentioned in the introduction should be carried out.

General background: generic homotopies and generic regular homotopies.
(a) The following is needed in order to state (e) ii. Let r>2 be an integer or

infinity. Recall that on a Cr manifold W(with r>2) a Morse function his a, differentiable
function whose Hessian (the determinant of the Hessian matrix of its second derivatives
with respect to any chart) does not vanish at singular points Dh = 0 of h. In particular,
this requirement implies that the critical points of h are isolated, and hence finite
whenever W is compact. The index of a critical point of a Morse function is the index
of its Hessian matrix. Hence, for a surface, the points of index 0 are the local minima,
the points of index 1 the saddles and the points of index 2 the local maxima of the
function, while for a curve, the points of indices 0 and 1 are the local minima and the
local maxima of the function respectively.

(b) Let M be a closed Cr surface and Ka 3-dimensional Cr manifold; let Cr(M, V)
denote the space of differentiable mappings M into V equipped with Cr topology (a
topology which poses no problems since M is assumed to be compact). Let /_ γ and
/i be differentiable mappings from M into V and let ft: M-+ V, te [— 1, 1] be a family
of mappings connecting f_x to f1. Let /: Mx [— 1, l]->Fx [— 1, 1] be defined by
f(m, t) = (ft(m), t) for all (m, t)eMx [ - 1 , 1]. The map / will be referred to as the map
associated to {/,}. We say that the family {/J is a differentiable deformation or a
differentiable homotopy when the associated map / is differentiable. The differentiable
homotopies are the differentiable paths in Cr(M, V). While studying the homotopy
groups of Cr(M, F), a well-known fact asserts that it suffices to restrict one's attention
to differential deformations of differentiable homotopies.

(c) In the case where f_x and fx are immersions, we say that the differential
homotopy {ft} is a (differentiable) regular homotopy, when all the /f's are immersions,
namely when / is an immersion. The regular homotopies are the differentiable paths
in the subspace Im(M, V) e Cr(M, V) of C immersions M into V. By differentiably
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deforming such paths, one can study the homotopy properties of Im(M, V).
(d) The following is needed in order to state (e) i. The differentiable immersion

/ of the 3-dimensional manifold Mx[—1,1] into the 4-dimensional manifold
F x [ - 1 , 1] is said to be a transverse immersion, if the following two conditions hold:

i. The map / has only double, triple and quadruple points at which the tangent
hyperplanes are in general position.

ii. The mapping / has no quadruple points on V x {— 1, 1} = <3( V x [ — 1, 1]). At
a simple, double or triple point of/ lying on d(Vx [— 1, 1]) the tangent hyperplanes
are also in general position with the tangent hyperplane to d(Vx [— 1, 1]).

If such is the case, all the ft are immersions and /_ x and fx are transverse. More-
over, the multiple locus of/(Mx [— 1, 1]) is an immersed surface D contained in Fx
[—1, 1] transversely intersecting d(Vx [— 1, 1]) along its boundary dD. The multiple
locus of D is an immersed curve T intersecting itself at a finite set Qa K x ] - 1 , 1[
of quadruple points and intersecting 3(Fx[— 1, 1]) transversely at its boundary dT,
which is also a finite set. Notice that D is not transversely immersed since along T\Q
three sheets of D intersect in such a way that six of them meet at every point of Q.
Each point of Q is also a quadruple point for the immersed curve T which, by this
reason, is not transverse in Vx [— 1, 1].

(e) Here we define the central notion of this section. Denote by τ)D and τ ) Γ the
restriction of the projection τ: F x [ - l , l ] - > [ - l , l ] to D and T respectively. In the
case where the immersions /_ x and fλ are transverse (see §1), the regular homotopy
{ft} is said to be a generic (differentiable) regular homotopy when the associated map-
ping / satisfies the following three conditions:

i. The differentiable mapping / is a transverse immersion.
ii. The functions τ)D and τ ) Γ are Morse functions with no critical points at dD

and dT.
iii. For each /e] — 1, 1[, the image of ft in Vx {ή contains at most one point

belonging either to the singular set Sing(τ|D) of t|D, either to the singular set Sing(τ)Γ)
of T|Γ or to Q.

Notice that by construction TO/: Mx[—1, l]-»[— 1, 1] has no critical points. All
the immersions of a generic regular homotopy {/,} are transverse except a finite number
of them corresponding to the values of the parameter t for which either

i. T|D has a minimum and hence ft a point of type Do

ii. T|D has a saddle and hence ft a point of type Dx

iii. tjx) has a maximum and hence ft a point of type D2

iv. T|Γ has a minimum and hence ft a point of type T+

v. T|T has a maximum and hence ft a point of type T~
vi. ft has a quadruple point, namely a point of type Q.
If we weaken the notion of generic regular homotopy by replacing iii of the defini-

tion by
iii'. Γn Sing(τ|D) = Q n Sing(T,r) = 0 ,
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then we are led to a slightly more general class of regular homotopies of great interest,
since one can then look for deformations for which τ)D and τ ) Γ are nice functions in
the sense of S. Smale (see his work on the Poincare conjecture in high dimensions). The
regular homotopies satisfying i, ii and iii' will be called quasigeneric.

(f) For the sake of completeness let us mention the following notions. A generic
differentiable map f: M-+ V is a transverse immersion except at a finite number of
simple points called cusps or pinch points around which there exist local charts both in
M and F, where / reads

(x, y)-+(x, xy, y2).

A generic deformation (or generic homotopy) {ft} from a generic map /_ x to a
generic map fγ can be defined in such a way that the associated surface D has new
boundary points corresponding to the various cusps and confluence of cusps of the //s.
Associated to each cusp point of /_! and / l 5 the surface D has corners (see types and
archetypes below). The restriction of τ to the closure of the curve dD n Vx ] — 1, 1[ has
to be a Morse function whose extrema correspond to the hyperbolic and elliptic
confluences of cusps studied in [A2]. Moreover, D is no longer immersed, but has pinch
points all contained in Kx] —1, 1[ at which the curve T has boundary points. These
points correspond to births and deaths of single triple points. Such births and deaths
occur when a moving pinch point of {ft} hits another sheet of the deformed surface.
Of course, the condition similar to (e) iii should also be written down. In order to
control such generic deformations, one therefore has to introduce 6 additional types of
modifications, corresponding respectively to births and deaths of pairs of cusps (both
in the hyperbolic and elliptic case) as well as births and deaths of single triple points.
Of course, conditions similar to (e) iii' can be written in order to yield the notion of
quasigeneric homotopy. An example of quasigeneric homotopy is Apery's Romboy
homotopy (see [A2]).

(g) With the help of the previous definitions, we are able to state the following
well-known claims. The subspace Gen(M, V) of generic differentiable mappings of M
into V is open and dense in Cr(M, V). The subspace Im(M, V) of Cr(M, V) is open
but not dense in the space Cr(M, V); moreover, it is not contained in Gen(M, V). The
subspace lmt(M, V) of transverse immersions is open and dense in Im(M, V)\ moreover,
lmt(M, K) = Im(M, K)nGen(M, V) is an open and closed subset of Gen(M, V). The
subspace of generic homotopies of M into V is open and dense in the space of
differentiable homotopies. The subspace of generic regular homotopies of M into V is
open and dense in the space of regular homotopies, while the set of quasigeneric regular
homotopies is, of course, dense but not open. The set of quasigeneric deformations is
dense, while the set of generic homotopies is open and dense in the space of differentiable
paths in C(M, V).

(h) The following is intended to provide the reader with a good intuition of the
geometry of Cr(M, V). Since, by compactness of M, the space Cr(M, V) is a Cr manifold
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modeled on the Frechet space Cr(M, /?3), (which turns out to be Banach when r< oo),
the following considerations make sense. As noticed above, along a generic regular
homotopy all immersions ft are transverse except a finite number of them called
immersions of codimension 1. According to the general theory of differentiable
singularities due to John Mather, these exceptional immersions lie on the strata of
codimension 1 of the stratified object Im(M, F)\Im t(M, V). A generic regular
homotopy ft hits these strata transversely. The strata are of four types

i. the type DO f 2 corresponding to extrema of the Morse function τ)D

ii. the type X)t corresponding to saddles of τ\D

iii. the type % corresponding to extrema of the Morse function τ ( Γ

iv. the type Q corresponding to quadruple points of /.
Since the strata of type T)o 2 and % have a prescribed preferred side Do and % +

(corresponding to the minima of X\D and T|T), by calling the opposite side ΐ>2 and 3Γ,
we are led to the list of six modifications given in §2 with their local chart. The space
C(M, F)\Gen(M, V) is also a stratified object which contains the previous one. In
addition to the four types of strata of codimension one listed above, it has strata of
three new types with preferred sides corresponding respectively to the hyperbolic
confluence of cusps, to the elliptic confluence of cusps and to the birth or death of a
single triple point.

(i) One further wishes to deform generic homotopies and generic regular ho-
motopies in a generic manner. In particular, it is most interesting to check whether or
not a generic homotopy connecting transverse immersions /_ x and fx can be deformed
to a generic regular homotopy. Such deformations yield also obstructions which can
be defined in terms of singularities and which show up when it is impossible to deform
a generic regular homotopy into another one by using only immersions. In order to
carry out such a programm in the case of generic regular homotopies, one has to
introduce immersions of codimension 2 and therefore to assume r>3. In particular,
one is led to modify by surgeries both the curve T and the surface D. One also has to
deform Morse functions on regular parts of T and D and hence to use techniques similar
to those introduced by J. Cerf in his work on the group Γn. Following the same tracks,
one can also define quasigeneric deformations of either quasigeneric homotopies or
quasigeneric regular homotopies. Statements similar to those given in (g) concerning
generic and quasigeneric families of mappings and immersions hold for an arbitrary
number of parameters in the family.

The notion of quasigeneric deformation of quasigeneric regular homotopies is a
tool of great practical interest which will be needed at the end of [A2]. For example,
in 1967 the French physisict Marcel Froissart imagined an eversion of the sphere which
was a simplification of Antony Phillips' eversion [PH]. In order to be able to com-
municate Froissart's eversion it turned out to be indispensable to specify it into a
generic regular homotopy. By deforming quasignerically this generic eversion, it became
very easy to discover the open and closed halfway models and to device several variations



EVERSION OF THE SPHERE 137

for the eversion. One of these has been used by Michael Pugh when he constructed the
eight models used by Nelson Max in order to produce his celebrated movie.

(j) While working on regular homotopies, the replacement of (e) iii by (e) iii' also
forces one to introduce immersions with finite codimension k, (where k is the number
of points in Fat which a given ft(M) is not transverse but only of codimension 1). But
contrary to what happens while deforming Morse functions, such immersions of
codimension k do not require r>3. They lie on strata which are normal crossings of
smooth hypersurfaces in the manifold Im(M, V) entirely contained in the stratified
object Im(M, K)\Im°(Λf, V).

Of course, as for the explicit immersions studied in the present paper (see § 3 and
§4), when it is impossible to assume r>2, the notion of stratum of type T)o 2, £>i and
X becomes fuzzy, a case which yields complications (see §2). However, one may always
speak about topological extrema and saddles of functions of class C1.

(k) Now, the space lmt(M, F) = Im°(M, V), as well as the union lm1(M, V) of
strata of codimension 1, (and also the further Imk(M, V) hinted at lately) split into
connected components which are orbits under the action of the group Diffo(M) x
Diίfo(F), where Diff0 denotes the connected component of the identity of the group of
diffeomorphisms and Diίf c

0 the same component in the group of diίfeomorphism with
compact support. Hence one may consider the graph whose vertices are the connected
components of Im°(M, V) and whose edges (later called modifications, see Lemma 5)
are those of Imx(M, V). The following material is introduced in order to investigate
this graph since a generic regular homotopy is entirely coded, up to isotopy both of
source and target, by a path in this graph.

Types and archetypes.
Let T)o be the closed unit interval of the real line R, let X^ be the intersection in

the real plane R2 of two closed disks of radius 1 each of them being centered at one
of the two ends of D 0 ^/?^/? 2 , let D 2 ^ e t n e intersection in R3 of two distinct closed
balls of radius 1 centered at the ends of T) 0^/? 2^/? 3, let ϊ+ be the convex hull of an
equilateral triangle of/?2 having sides of length 1 and let 2~ be the intersection in R3

of three distinct closed balls of radius 1 centered at the vertices of ϊ + c/? 2 c/? 3 . Let
& be the convex hull of some regular tetrahedron in R3 with sides of length equal to
1. These six objects are examples of compact manifolds with boundary, edges and
corners of dimensions 1, 2 and 3 as defined in [D]. In the sequel these six manifolds
with corners will be called archetypes and will be denoted by using capital gothic letters.

Let g: M-> Kbe a transverse immersion of the previously introduced closed surface
M into the 3-dimensional manifold V defined up to isotopies both of M and of V. Let
Nj (1 <j<s) be the closures of the finitely many connected components of V\g(M)
and notice that each Nj is a 3-dimensional manifold with corners.

Let Dg be the multiple locus and Tg the set of triple points of g so that the Dg\Tg

is the set of double points of g. With this notation the open faces of each Nj are
contained in g(M)\Dg, the open edges in D \T and the corners in T Recall that
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there exists a notion of embedding of a manifold with corners 91 into a manifold with

corners N mapping corners of codimension k into corners of codimension k with obvious

transversality conditions along the image of <39I (where the corners of codimension 0

are by definition the connected components of the manifold itself). Now let τ : δ l - ^

be an embedding of manifolds with corners defined on an archetype 31 with values in

one of the previously defined N/s. With the help of a tubular neighbourhood U of

τ(9I) adapted to the manifold with corners Np one associates to τ an elementary

modification gt of g = g~ι in the following manner. Let

and

5 = 4 if δl = Q.

Let Ux and U2 be open balls such that U<^U1 and UίczU2^V and such that

for ^f~1(ί/I ) is the union of s non intersecting open disks in M. For /= 1, 2 let M~

g~1(V\Ui) and assume that gt\M2 = g\λf2 for all ί e [ — 1 , 1]. In [^ choose local

coordinates adapted to U and prescribed that for these coordinates gt\Uί is of the form

given in §2 clearly corresponding to the shape assumed by the archetype 91. Then gt

can be extended to an immersion of M into V diίferentiably depending on t. The family

{gt} is a generic regular homotopy such that gt is transverse for all tΦO and that g0 is

of the type corresponding to 9ί. Notice that gt is completely characterized up to isotopy.

LEMMA 5. (i) Up to isotopy the possible elementary modifications of the transverse

immersion g (namely the arrows of the graph mentioned in (k) above starting at the vertex

defined by g) are in one-to-one correspondence with the isotopy classes of the various τ's

modulo any reparametrization of the source 91 ofτ; (ii) up to isotopy, any generic regular

homotopy from a transverse immersion gx to a transverse immersion g2 of M into V,

decomposes into a sequence of such elementary modifications.

While coding a regular homotopy, we allow ourselves to perform simultaneously

a finite number of elementary modifications associated to maps τ f : 9lf-•#,-., provided

that the images 1,(91,) are disjoint (see §2). In such a case the homotopy is no longer

generic but only quasigeneric (see (e)).

A2. Coding of an eversion of the sphere. Let M=S2 and V=R3, and let f_1

and /Ί be the standard and the antipodal embeddings of the sphere. The present

Paragraph uses the previous material of §A1 in order to code a quasigeneric eversion

of the sphere (/,). Although defined up to isotopy of the source S 2 and of the target

R3, the eversion (f) will be assumed to satisfy the equivariant condition given in §3,

which reads

f-t = Pπ/2°ft°P' W e [ - 1 , 1].

This requirement will force us to perform simultaneously more than one elementary
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modification.
Since we also want the halfway model / 0 to be the closed halfway model, in a

neighbourhood of 0 in [—1, 1] we will have to perform simulatneously six of these
elementary modifications. The sequence of types associated to the eversion /, that we
intend to describe is

(Do DoDoM+T+XD^ D,Q D.D.tΊ T)(D2D2 D2),

where the spaces between groups of types inside a given parenthesis indicate that the
simultaneity is possible although not imposed by the equivariance constraint. Our
journey (which starts in the connected component /0^lmt(S2, R3) of the standard
embedding, and ends in the component /A of the antipodal embedding) will therefore
visit four other connected components of Imf(S2

5 R
3) denoted by βΏ, β>, ^'Ύ, and fD.

One enters in /D through a stratum of codimension 3, in #τ through a stratum of
codimension 2, in β'τ through a stratum of codimension 6, in J>'Ό through a stratum
of codimension 2, and in βA through a stratum of codimension 3. Although not
described, this quasigeneric eversion is mentioned in [M-P]. This eversion uses 16
elementary moves, while [M-P] describes an alternative version with only 14 elementary
modifications (see §3 and §5). After describing the three steps leading to the central
model of the present eversion, we will give the reasons why in fact, among equivariant
quasigneric eversions, / is simpler than the eversion thoroughly described in [M-P]
although it looks slightly more complicated. By carefully controlling the behaviour of
the saddle points of the third coordinate function restricted to each ft, one is able to
apply Nelson Max's criterion in order to prove the main result of [B-M] without
referring to pictures. A polyhedral regular eversion of the suitably triangulated
cuboctahedron has been deviced. Handmade models of this eversion have been
constructed by Richard Denner. Each model, including the halfway model which is
closed, has therefore twelve vertices and twenty triangles. The polyhedral eversion
mimics the present one in an almost generic manner where the phrase "almost generic"
has a precise meaning (to appear later).

First step: The coding of the D0 's of the eversion.
Let « = (0, 0, 1) and s = (0, 0, — 1) be the poles of the standard oriented sphere S2

in R3. Let

= (0,l,0), e + = ^ - ( - 1 , 1 , 1 ) , e_ = ^ ( 1 , 1, - 1),

= (0, -1,0), w + = ^ - ( l , - 1 , 1 ) , and w_ = ^ — ( - 1, - 1, - 1),

which all belong to S2. Let Ce and Cw be the two segments in R3 connecting respectively
e_ to e+ and w_ to w+. Let Co be the complement in R3 of the intersection with the
open unit ball of the circle centered at n and containing e and w. Notice that Co, Ce
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and Cw hit S2 transversally. Assume that these three curves are the images of D o by

three embeddings of manifolds with corners τ 0 , τe and τw, and perform equivariantly

the three modifications of type Do associated with these embeddings in such a way that

the three births of these modifications occur at time /= — 2/3. Assume, moreover, that

no new modification occurs before the time /= — 1/3. For each /e] —2/3, —1/3[ the

transverse immersion ft belongs to βD and is such that R3\ft(S2) has five connected

components. The closure of three of these components No, Ne, and Nw are diffeomorphic

to the archetype T)2. Denote by D(e) and D(w) the faces of No containing respectively

the points e and w, by D(e+) and D(e_) the faces of Ne containing respectively the

points e+ and £_, and by D(w+) and D(w_) those containing respectively the points

w+ and vv_. These six faces are disks in ft(S2). The complement of these six disks will

be called the nomaris land of ft(S2). The fourth connected component N' of/?3 \ft(S2)

is bounded by the noman's land and by D(e) and D(w). Moreover, N' is homeomorphic

to the interior of a 3-dimensional ball to which two handles have been attached. The

last of these five connected components TV" is the unbounded one which has the

homeomorphic type of an open solid torus minus one point, the point at infinity. Call

Γo, Γe and Γ w the respective creases of 7V0, Ne and Nw. Of course the equivariance

requirement imposes that pπ(Γ0) = Γ0 and pπ(Γe) = Γw, where pπ denotes the rotation

of R3 of angle π around the vertical axis.

Call Ce and Cw the shortest oriented geodesic arcs connecting respectively e_ to

e+ and vv_ to w+. It is convenient to assume that ft(Ce) (resp. ft(Cw)) has a double

point aeeΓe (resp. flweΓJ. Let Le and Lw be the oriented embedded subloops of ft(Ce)

and ft(Cw) starting and ending respectively at άe and at άw. Assume further that, in

N' u No, the loops Le and Lw bound teardrops, i.e., smooth disks with respective corners

at άe and άw. Let {bw, cw) equal Le n Γ o and {be, ce} equal Lw n Γo; in the closed curve

Γ o the pair {be, ce} links the pair {bw, cw}. Suppose last that Le and Lw have linking

number equal to 1. With linking number — 1, one would be constructing mirror images

of the models we have in mind.

Second step: the coding of the T+ 's of the eversion.

For all f'e/D, let N'<^R3\f'(S2) be as in the previous step and let N' be its

closure. Let τ'e\ %+^>N' (resp. τ'w: % + ^>N') denote an embedding of manifold with

corners mapping one of the corners of 2 + into a point aeeΓe (resp. aweΓw) and the

two other corners into points be and ce (resp. bw and cw) all belonging to the curve Γ o .

Let X^/D be the fiber space of ordered pairs (τ'e, τ'w) of embeddings with non

intersecting images and such that the pair {be, ce) links the pair {bw, cw} in Γ o.

LEMMA 6. (i) With its canonical Cx -topology, the quotient fiber space X^/D of

X under the action of the group of reparametrizations of the disjoint union of the two

copies of%+ is arcwise connected, (ii) The subspace Xo of X of ordered pairs (τ'e9 τ'w)

such that pπoτ'w = τ'e is nonempty and has two distinct connected components.

Notice that if τ'e and τ'w are as in Lemma 6, the triangular submanifolds τ'e(%+)
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and τ̂ (̂ X + ) of the manifold with corners N' necessarily have two of their sides contained
in the noman's land of f'(S2), while the last sides of τ χ i + ) and τ'w(%+) must be
respectively contained into D(w) and D(e).

Lemma 6 (ii) implies that, while forcing the ordered pair {τ'e, τ'w) to satisfy τ'w =
pπ°τ'e, one has to make a choice between the two components of Xo. The choice
we want to make here is obtained by setting ae = άe, aw = άw,... and cw = cw where
ά, b, c have been defined in the previous step.

Perform equivariantly and therefore simultaneously the two modifications of type
T+ associated to τe and τw with τe and τw as defined in the previous step. This should
be done in such a way that the contact giving birth to the two pairs of triple points
occur at time ί= —\/3 and that no other modifications occur before the time t = 0.

We are now in the component fT. For all te~\ — 1/3, 0[ the complement in R3 of
the image of S2 by ft has seven connected components. The closures of four of these
components are diffeomorphic to the archetype X ~. The closure Nq of another one is
diffeomorphic to the archetype Q. The two remaining components stemming from the
previous Nf and N" are respectively diffeomorphic to the open ball and to the open
solid torus minus one point (the point at infinity) and still denoted by N' and N".

For two vertices a and b of the differentiate tetrahedron Nq, denote by E\β, b~\
the (possibly curved) edge of Nq9 connecting these two vertices. The equivariance
constraint forces the tetrahedron Nq to satisfy the relation pπ{Nq) = Nq. Hence, the Z-axis
hits two opposite edges of the tetrahedron at their midpoints mι and m2. Choose the
indexing so that s,n,mx, and m2 are above each other. By construction there exist two
vertices εx and ε2 (resp. ωι and ω2) of Nq such that £[ε 1 ? ε2] ^Γe (resp. E[ωu ω2] ^Γ w ) .
Choose the indexing in such a way that mt is the midpoint of E[βh ω j for /= 1, 2. With
the choice made on the linking number of the loops Le and Lw at the end of the previous
step, the orientation defined on Nq by the sequence (ε1? ε2, ω l 5 ω2) is the standard one.

For te] —1/3, 0[, the four disks D(e+), D(e_), D(w+) and £>(w_) are decomposed
by arcs A(e+) = D(e+)nΓ0, A(e_) = D(e_) n Γ0, A(w+) = D(w+) n Γ\> and A(wJ) =

D(w_)nΓ0, respectively, into two submanifolds with corners D\e+) and D"{e+),
D\e_) and D"(e_), D'(w+) and D'\w+), D\w_) and D"(w_). These eight objects
are diffeomorphic to the archetype ΐ>t. The four half discs D" share an edge with the
tetrahedron Nq. Let us denote by Γ'e and Γ'w be the open arcs Γ e \£ ' [ε 1 ,ε 2 ] and
Γw\E[ω1,ω2\ so that the components D\e+), D'(e_), D'(w+) and Z)'(w_) are
respectively bounded by Γf

euA(e+),Γ'eΌA(e-),Γ'w\jA(w+) and Γ'WΌA(W_). The
immersed surface ft(S2) is decomposed by its multiple locus Dt into fifteen submanifolds
with corners. Four of these are diffeomorphic to the archetype X+ (the four faces of
the tetrahedron Nq). Ten others are diffeomorphic to the archetype D l 5 namely, the
eight half disks already described plus two others (bounded respectively by the curves
A(e+)uA(e_) and A(w+)uA(w_)).

The last component called Λf0, is what remains of the noman's land. The manifold
with corners Mo is diffeomorphic to the cylinder and its boundary splits into two
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immersed piecewise diίferentiable closed curves. Along each of these closed curves Mo

has eight kinks and two opposite sides identified with each other. Equipped with the
orientation inherited through ft from the canonical orientation of S2, the two octagonal
boundary components δi(M0), decompose respectively into the eight following arcs:

first component ^(M o ) :

Γ'e, £'[ε1,ω2], A(w_), £[ω l 5 ε j , Γ'e, £[ε2, ω j , A(w+), £[ω 2 , ε2]

second component <92(MO):

> E[εu ω j , Γ'w, £[ω 2 , ε j , 4(e+), £[ε2, ω2] .

Notice last that the curve Γo is decomposed by the four vertices of the tetrahedron Nq

into the eight following curves: A(e-), Elεί, ω 2], ^4(w+), £[ω l 5 εx], A(e+), E[β2, ω j ,
4̂(w_) and £[co2, ε2].

Third step: the coding of the Z)'s of the eversion.

Assume te~\ —1/3,0[. Introduce four points α(e+)Gv4(e+), a(e-)eA(e-),
a(w+)eA(w+) and α(w_)ev4(w_). On the closure of the open arc Γ'e oriented from ε1

to ε2, choose points b(e+), d(e) and b(e_) in such a way that the sequence
ε l5 &(e+), <ί(e), &(e_), ε2 is increasing. Similarly, on the closure of the open arc Γ'w
oriented from ω^ to ω2, choose points b(w+), d(w) and &(w_) in such a way that the
sequence ωl9 b(w+), d(w), b(w-), ω2 is increasing. Choose disjoint curves C'(e+), C'(β_),
C'(w+) and C(w_) contained respectively in D'(e+), D\e_), D'(w+) and Z)'(w_), and
connecting respectively α(e+) to b(e+), a(e_) to 6(e_), a(w+) to ^(w+) and «(w_) to
b(wJ). In Mo choose also non intersecting curves C(e+), C(e_), C(w+) and C(w_)
connecting respectively a(e+) to Z?(β+), α(^_) to b(eJ), a(w+) to 6(w+), and a(w_) to
6(w_), in such a way that the four closed curves C"(e+)uC(e+), C'(e_)uC(e_),
C"(w+)uC(w+) and C'(w_)uC(w_) bound disks in the closure of the open punctured
torus TV". Let τe + ,τ e _,τ w + and τw_ be four embeddings of manifolds with corners
having disjoint images and mapping T)x into N". These four embeddings decompose
the open torus N" into four connected components all homeomorphic to the open ball
except one which is homemorphic to the punctured open ball. Choose these mappings
equivariantly, and hence so that the punctured component of the complement of their
images in N", namely, the unbounded component, lies between τe+(T)1) and τw+(T)1).
(Notice that, without the equivariance constraint, one can also make ones way to the
central model by choosing the mappings so that the unbounded component lie between
τβ_(Dχ) and τ^CDi).) Let N' be the closure of the component N' of R3\ft(S2)
homeomorphic to the open 3-ball which has been described in step 2. Let τγ: T)x^Nf

be an embedding of manifolds with corners mapping the corners of Ί)1 to de and dw,
such that T^Di) does not intersect the images of the previously defined maps
τ e +, τe_, τw + , and τw_. Notice that one edge of τe+,τe_,τw+ and τw_ as well as the
two edges of τx are curves in Mo connecting the two components δf(M0) for /= 1, 2 of
the boundary of Mo. Notice also that the present construction is unique up to isotopy
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and reparametrization and can be done equivariantly. We are therefore in a position
to perform simultaneously and equivariantly the modifications of type Dx associated
to τe+, τe _, τw + , τw_ and τx as well as the modification of type Q obtained by shrinking
to a point the tetrahedron Nq. The equivariance constraint forces these six modifications
to occur at time / = 0. This brings our work to an end since what happens on the closed
interval [0, 1] is already determined by applying the equivariant formula of §3 (see also
the beginning of the present Paragraph) to the construction we made on the interval
[-1,0].

REMARK 4. (i) The halfway stage / 0 is well defined and belongs to the class of
halfway models namely to an orbit of codimension 6 of Όiffo(S2) x Din°o(^3) (see §A1
(i)). In Ci(S2, R3), this orbit embeds into the corresponding C^-orbit which contains
the family {/μ,v} of §5 above.

(ii) Assume now that we perform the two modifications associated to τe_ and
τw_ at time say /= —1/6 and those associated to τ1 and to τq: Q-+Nq at time / = 0. The
equivariance constraint forces the modifications corresponding to τe+ and τw+ to occur
at time /= 1/6. In such a case, the halfway stage is C1-equivalent to the open halfway
model fo of §3 above. Similarly, by peforming the modifications associated to τe+ and
τw + at time t— —1/6 we are led to a halfway stage corresponding to an overdosed
version of the halfway model (see Remark 3 §5). The mirror image of the open halfway
model is also the image of the overdosed halfway model by an inversion centered
anywhere on the Z-axis, but inside the model.

(iii) Suppose next we refuse to perform the modification associated to τ l 5 which,
in the equivariant situation, has to occur at time / = 0. In such a case, we are led to a
quasigeneric eversion with sequence of types

(Do DoD^T+TKDiD, Q D^^T T )(D2 D2)

In spite of the fact that this eversion is not equivariant, one has ft = pπ

oft

o pπ fc>r each
of its models ft. If we apply to this eversion the symmetry with respect to the origin
in R3 x [— 1, l ]c/? 4

? we get mirror image of the nonequivariant eversion mentioned
in [M-P] whose sequence of types is

(Do D0)(T+T+)(D1D1)Q{D1D1)(T-T-)(D2D2 D2)

If we introduce the opposite of the modification of type Dγ associated to τ1 in this
last eversion, we end up with the equivariant quasigeneric eversion thoroughly described
in [M-P] and whose sequence of types has been given in the very beginning of the
present Paragraph. (By the mirror image of a deformation {/,} we mean the deformation
{μ° ft°μ} where μ is the symmetry with respect to the plane Y=Q in R3.)

(iii) These last remarks as well as later manipulations are based on the fact that
the modification associated to τx can occur before the modifications of type T+ and
also after those of type T~.
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How to look at the complexity of an eversion.
In the [M-P] case, as well as in the present case, the triple and quadruple locus

of the quasigeneric equivariant eversion, is an immersed circle in R3 x ] — 1, 1[. More
precisely, it is a fourbladed propeller for which the restriction of the function τ has two
minima lying on opposite blades and two maxima on the other blades. For any
quasigeneric eversion, since the multiple locus is an immersed closed surface in
/? 3x] —1, 1[, the Morse formula which computes the Euler characteristic χ of the
surface apply. One gets χ = no — n1 + n2 where n^ is the number of points of type D( of
the eversion, for 0</<2. Hence, in the present case, χ=l, while χ= — l in the [M-P]
case. Moreover, by looking at the multiple locus of the closed or open halfway models
(where the branches intersecting at the quadruple point have been separated from each
other), one sees that our two multiple loci are immersed connected surfaces. Furthermore
(as can be checked with the help of the pictures of § A3), in the present case, the inverse
image in S2 x ] — 1, 1[ of the immersed projective plane, is the image, by a transverse
immersion, of a sphere Σ. The inverse image in Σ of the multiple locus of the closed
halfway model, is the union of two orthogonal great circles intersecting, say at the north
and south poles, and of the tropics. This union of four circles split Σ into four rectangles
decomposing the equatorial zone, and into two systems of four triangles, each of these
systems decomposing one of the polar region. At the center of each of these twelve
polygons, sits the inverse image of a point of type Do or D2 in such a way that, on the
two sides of a given edge the two types are distinct. In Σ, the inverse image of the
fourbladed propeller splits into two immersed circles having each four double points
and intersecting each other at four extra double points. The complement in Σ of this
inverse image has fourteen connected components. The closure of four of these
components look like four rhombi centered at the inverse images of points of type Do 2.
Each of these rhombi is contained in one of the rectangular region, with vertices at the
midpoints of the sides of the rectangles. Teardrops are attached to the vertices of the
rhombi lying on the tropics. Each teardrop lies in one of the eight polar triangles and
does not contain the point of type D02 of that triangle. The two remaining components
are what remains now of the nothern and southern hemispheres. The closure of each of
these, is a dodecagon with pairs of consecutive vertices identified to each other in order
to surround the teardrops. In the [M-P] case, the four pairs of triangles touching each
other at the poles, have to be replaced by two hexagons each containing one point of
type />o,2 Hence, Σ is now replaced by a surface of genus two.

Assume that {ft} is the quasigeneric equivariant eversion used by Max in his movie
and recall that the corresponding sequence of types is

(DoXDoW+XD^ T+WtΰKT- D1D1)(T)(D2)(D2)

This variation of the eversion (whose central model is the open one) has been deviced
in order to minimize the amount of hidden happening during the process. For all
/e[l, 3] let /f = μ°/ 2_ f °μ, where μ is defined in Remark 4 (iii). The loop {gt} obtained
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by identifying f_1 and f3 is freely homotopic in Im(S2, R3) to a loop {g't} parametrised
by S1, and having the sequence of types

(In particular see Lemma 6.) The multiple locus of {g't} is a nonorientable surface with
χ= — 4. The triple locus of {g't}, which has two connected components, is embedded in
R3 x S1, and covers S1 four times. The loop {g't} is another good candidate one which
the Max criterion can be applied in order to formalize the proof given in [B-M] of the
following basic result:

LEMMA 7. The loop {gt} generates the fundamental group of!m(S2, R3).

Therefore, any quasigeneric eversion can be quasigenerically deformed into the
path {gt} composed n times with itself and followd by {/J where {/,} is as in the movie
and neZ. The eversion is said to be minimal when n= — 1 or 0. Clearly, this Lemma
implies that the space of eversions has two connected components (compare with Lemma
6). (However, it should be noted that the space of equivariant eversions has much more
than two connected components; for instance, the [M-P]-eversion as well as the one
used by Max, which are equivariantly equivalent to each other, can be deformed into
the present one but not equivariantly.) During any deformation of the eversion (see
§A1 (i)), the number of quadruple points as well as the characteristic χ remains constant
modulo 2.

Hence, any quasigeneric eversion has at least one quadruple point, and its multiple
locus is, at least, an immersed porjective plane. When the eversion has only one critical
point, its triple locus is of course nonempty, and contained at least two points of type
T+ and two others of type T~. When the minimal situation is attained for the point
of type Γ, by §A1 (e) iii', the triple and quadruple locus of the eversion, has to be a
fourbladed propeller in the equivariant case.

While quasigenerically deforming a quasigeneric eversion the multiple locus (as
well as its inverse image in S2 x ] — 1, 1[) gets modified by surgery (see §A1 (i)). A clear
understanding and a complete list of the types of surgeries that may occur lead one to
assert the following. The surface whose immersed image is the multiple locus of a
minimal quasigeneric eversion has exactly one connected component with odd Euler
characteristic. Moreover, the universal cover of this nonoriented component is
transversely immersed onto the inverse image in 5*1 x ] — 1, 1[ of that component.

Since any eversion necessarily has a point of type T+ of a prescribed type (details
have to be omitted here), it must also have at least two points of type Do occuring at
values of the parameter less than the one at which the first point of type T+ occurs.
These two points must have the same type of coding either as those shown in the Max
movie or as those drawn in [M-P]. Notice that in the [M-P]-case, the coding is the
same as the one prescribed by τ0 and say τe in the first step above. By reversing the
time orientation, one gets that the eversion must also have at least two points of type
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D2 occuring after the last point of type T~ and related to each other either as the Max
movie or as in [M-P]. Useful points of type Dx can occur neither before the first point
of type T+ nor after the last point of type T~.

The number of points of type Z)t of an equivariant quasigeneric eversion is equal
to 1 modulo 4 and at least equal to 5. Hence, among all equivariant quasigeneric ever-
sions, the one thoroughly described in [M-P], as well as the one presented in the
movie, has the minimum number of modifications, while, with the condition χ = 1,
the eversion described in this Paragraph is minimal in that respect.

Among all quasigeneric eversions, the nonequivariant one mentioned in [M-P]
and characterized in Remark 4, seems to be minimal in all respects. In order to verify
this statement, one should show that there exists no quasigeneric eversion with sequence
of types containing exactly, two />0's, two Γ+'s, two Γ~'s, two Z>2's, one (?, and three
ZVs, an exercise which, for the moment, I am forced to leave to the reader.

A3. Stereographic representations of the inverse images in S2 of the multiple loci
of the various f's of our eversion. Using the facilities offered by the stereographic
projection we can give 2-dimensional representations of curves in S2. These re-
presentations are meant to help the reader in checking the correctness of claims made
in Step 1, 2 and 3. On the other hand, the present set of pictures summarizes the many
notations which had to be introduced in order to present the constructions. Moreover
by piling on top of each other obvious interpolations of pictures 1-3, one is easily able
to visualize the inverse image in S2 x ] — 1, 0] of the multiple locus D intersected with
R3 x ] — 1, 0]. Figure 0 is intended to prepare the reader to interpret stereographic views.
Figure 5 helps the reader to visualize what is explained in the beginning of the section
entitled "How to look at the complexity of an eversion" in §A2. Of course §A2 is
supposed to be self-contained. Therefore in principle it does not require the help of any
pictures. Nevertheless since a well-known Chinese proverb asserts that a picture is worth
one hundred messages, we hope the five present ones will save five hundred tedious
explanations.

Anyhow I thank the team of the Topology Seminar of the Kyushu University (K.
and T. Motegi, H. Nishi, T. Takata, M. Wakui and Y. Yokota) who was patient enough
to listen to my thousand explanations in order to produce under the direction of T.
Kohno the following beautiful examples of what should be a full series of drawings
illustrating differential topological expositions of the present kind.
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FIGURE 0. A stereographic projection of S 2 on the plane. The origin corresponds
to the north pole of the sphere. Two tetrahedra and a cube inscribed on the
sphere are projected on the plane.

FIGURE 1. After three modifications of type Do

at time t= — 2/3. Six circles in the picture re-
present the inverse image of the double locus.
We see that R3 — ft(S

2) has five connected com-
ponents.
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d(e-)

FIGURE 2. After two modifications of type
T+ at time / = —1/3. As in the previous
picture, six curves represent the inverse
image of the double locus.

FIGURE 3. See also Figure 11. The halfway
model at / = 0. Five modifications of type
Z>! and a modification of type Q are
performed.
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FIGURE 4. After the halfway model. We see that the picture is symmetric to Figure 2.

FIGURE 5. In the sphere Σ, the inverse image of the fourbladed propeller splits into
two immersed circles. Each of them has four double points.
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