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Abstract. Here we solve Durfee's conjecture for 2-dimensional hypersurface
singularities of multiplicity 3. We show that the Milnor number is greater than or equal
to six times the geometric genus plus two in this case. The equality holds if and only if
it is a simple elliptic singularity. For the proof, we consider an analog for triple coverings
of Horikawa's canonical resolution for double coverings. We express these invariants in
terms of our resolution process and the covering base surface.

Introduction. This paper consists of two parts. In the former (§§ 1 and 2), we
consider an analog for triple coverings of Horikawa's canonical resolution for double
coverings [HI, §2]. In the latter (§§3 and 4), we apply our method to normal
2-dimensional hypersurface singularities of multiplicity 3. Especially, we solve Durfee's
conjecture [D, p. 97] in this case.

Horikawa introduced a method of resolving singularities of normal surfaces of
double section type in the total space of a line bundle over a surface. This method is
sometimes useful for global or local study of surfaces (cf. [HI], [H2], [H3], [P], [Tl],
etc.). We generalize this method to a normal surface S of triple section type in a certain
form. The cyclic version of our method is already in [AK, §3].

In §1, we construct some reduction process of singularities on S as follows: First
we "transpose" an isolated singularity of multiplicity 3 on S to a codimension-one
singularity supported on a line by an easy base change. Next we produce the elementary
transformation of the ambient vector bundle along this line, and obtain another surface
whose singularities are improved. By applying this process successively finitely many
times, we obtain a surface Sr whose singularities are "standardized" in some sense
(Theorem 1.9). Namely, Sr has singularities of three types, i.e., relative nodes, relative
cusps (these are codimension-one singularities supported on projective lines which are
the relativization of curve singularities of ordinary double points and simple cusps,
respectively) and some isolated singularities of multiplicity 2.

In §2, we study topological properties of the exceptional sets and triple covering
structure which the resolution S* of Sr naturally possesses. We have formulas for

— χ(®s) a n d ωs*~ωs (Proposition 2.4).
In §3, for a germ (V,p) of a normal 2-dimensional hypersurface singularity of
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multiplicity 3, we express the geometric genus pg(V,p) and the Milnor number μ(V,p)
in terms of our canonical reduction process and the covering base surface (Proposition
3.5). Three examples (Examples 3.6-3.8) are also presented.

§4 is devoted to the "geographical" problem concerning (pg9 μ) which was posed
by Durfee [D], who studied the signature of the intersection form of the 2-homology
for the Milnor fiber of a 2-dimensional hypersurface singularity. He also conjectured
the inequality μ>βpg, and proved that this inequality implies the negativity of the
signature. For this problem, Xu and Yau [XY1] proved μ>\2pg — 4 for weakly elliptic
hypersurface singularities, and recently they [XY2] also proved μ > 6pg + v — 1 for
weighted homogeneous hypersurface singularities of multiplicity v. Tomari [T2] proved
μ>%pg+\ for hypersurface singularities of multiplicity 2.

With respect to some special classes of hypersurface singularities, Fukuhara-
Matumoto-Sakamoto [FMS] and Neumann-Wahl [NW] proved an equality for the
signature σ and the Casson invariant of the link of the singularities, which induce the
negativity of σ in this case. Note that Wahl [W, p. 240] showed that some non-
complete-intersection singularities have positive signature.

Saito [S2] generalized Durfee's conjecture from the viewpoint of his theory of
exponents.

Our result is the following:

THEOREM. Let (V,p) be a normal 2-dimensional hypersurface singularity of
multiplicity 3. Then we have

Especially the signature of the Milnor fiber of(V,p) is negative.
Moreover, the equality μ( V, p) = 6pg( V, p) + 2 holds if and only if(V,p) is a simple

elliptic singularity of type Eβ in the sense of Saito [SI].

Our proof proceeds as follows: We first express the number μ — 6pg — 2 as the sum
of some numbers dt (\<di<r) which are determined by each step of our canonical
reduction process of the singularity, and then estimate these numbers dt.

Note that we have (pg, μ) = (l, 8) for £ 6 . So a sharper inequality is likely to exist.
Concerning this point, see Remark 4.13.
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1. Canonical reduction by triplet blow-ups. The aim in this section is to improve
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the singularities of normal surfaces of triple section type by the method analogous to

[HI, §2]. The cyclic version of our method is already in [AK, §3].

1.1. Let W be a nonsingular complex analytic surface and L a line bundle on W.

We denote by π: L=P{ΘW®ΘW(L))^W the /^-bundle associated with L. We set

T=ΘΪ(\). Let S be an irreducible reduced divisor on L which is linearly equivalent to

3Γ. We call (S, W, L) a triple section surface.

Let T^ be the oo-section of π. T^ is linearly equivalent to T-π*L. Let Yoe\T\

(the complete linear system of T) and Y1 e | T^ | be the canonical members associated

with the projections to each direct summand of (9W®ΘW{L).-The pair (Yo, 7X) induces

a system of homogeneous fiber coordinate of π. Then by the isomorphism

tf°(L, 3T)~H°(W, Symm3(Θw@Θw(L)),

the equation of S is given by

ΣΦiLYo3-ΎΪ = 0,
i = 0

where φiLeH°{W,Θw{iL)) for 0</<3. Now by putting Z o = Y0 + (\β)φLY1e\ T\,
Z1=Y19 ψ2L = Φ2L-(lβ)ΦleH0(W,Θ(2L)) and φ3L = φ3L l
H0(W, Θ(3L)), the equation of S is given by

The divisors G = (Φ2L) a n d H={φ?)L) on W are called the assistant curves of S with

respect to the fiber coordinate (Zo, Z x). We also call the divisor G + i/ the assistant

divisor of S. By the irreducibility of S, H is not identically zero, although G may be

identically zero. We denote by To the member of | T\ which is associated with (Zo).

We also put Δ : = 4φlL + 2ΊφlL, which is the discriminant locus for S. The divisor

associated with Δ is linearly equivalent to 6L.

Since π = π | s : £-• W is a finite triple covering, the fiber consists of one, two or three

distinct points. We easily have the following:

LEMMA-DEFINITION 1.2. Let P be a point on W. The following two conditions are

equivalent, and we call such P a target point on W\

(1) IfG^O, then both G and H pass through P.IfG = 0, then H passes through P.

(2) The fiber (π)~1(P) consists of one point P which is the point of intersection of

π~\P)andT0 on L

1.3. Let Q be a singular point on S. Set Q = π(Q). Let mQ be the maximal ideal

at Q. Then by Miranda [Mir, Lemma 5.1], one of the following conditions is satisfied:

(1) φ2LexnQ and φ3Lexn2

Q,

(2) φ2LφmQ, φ3LφmQ and Δexn 2

Q.

If the case (1) occurs, then Q is a target point. We call such Q a target singularity.

Assume that the case (2) occurs. Then ( π ) " 1 ^ ) consists of two points Q and Q such
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that Q is a singularity of multiplicity 2 and Qf is a nonsingular point. We call such
Q an inner double point.

The aim of this section is to construct a certain "reduction process" for target
singularities.

Let P be a target point on W. If G#0, then we put w = multP(G) (the multiplicity
of the curve G at P). If G Ξ O , then we let ra= + oo. We also put « = multP(//). We set

l1=jχήn(lm/2]9[n/3'])9

where [ra/2] is the greatest integer not exceeding m/2. We call lx the twisting order.
Now let τ x : W^Wbe the blow-up at />, and set E1=τ~1(P). We put

Set π1: Lx = P(ΘWι Θ ύV^i))-* ^ i We denote by G' (resp. Hr) the proper transform
of G (resp. H) by τx. Set

Hγ=H'+ {n-

Then Gi (resp. /fj is linearly equivalent to 2LX (resp. 3LX).

1.4. From now, we construct naturally a triple section surface Sx on Lx whose
assistant curves are Gx and // l 9 and a birational morphism τ L : SX^S such that the
following diagram commutes:

^ < L ^

where πί is the restriction of πx to S .̂
First, let τ ( 0 ) : L(0)->L be the blow-up along π " 1 ^ ) - Then L(0) is isomorphic to

P((9Wί © ΘWl(τfL)) with the diagram
T(0)

L — L<°>
J, π I π(0)

cartesian, where π ( 0 ) is the bundle projection. Let S{0\ T^0) and Γ^0) be the proper
transforms of S(0\ To and Γ^, respectively. Then S(0) is the triple section surface on
L(0) such that τ fG and τf//are assistant curves of S{0) with respect to the fiber coordinate
associated with (Γ<$0), Γ^0)).

If lί=0, then by putting S1 = Si0\ we obtain the desired diagram.
Assume that /x >0. Let Γ be the line on L(0) which is the intersection of Γ^0) with

^i0) = (π(0))~1(E1). We produce the elementary transformation along Γ as follows: Let

f(0). £(0)_>L(0) b e t h e blow-up along Γ, and let S{0) and # ( 0 ) be the proper transform
of Si0) and ${0), respectively. The P1 -bundle ${0) is smoothly contractible to a line (see
[FN]). Let τ ( 0 0 ) : L ( 0 ) ^L ( 0 ) be the contraction. Then L(1) is isomorphic to
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Set S ( 1 ) = τ ( 0 0 )(S ( 0 )). It is easy to see that S(0) does not intersect / ( 0 ) . Therefore the
biraionalmapτ^o^ 0 0*)" 1 : L(1)-*L(0) induces a birationalmorphismτ(1): Sa)-+Si0).

The local description of S{1) is as follows: Let (x, t) be a local coordinate on W1

such that £ 1 ? G' and H' are given by / = 0, #'(x, ί) = 0 and Λ'(x, ί) = 0. Let ξ be the
inhomogeneous fiber coordinate of π ( 0 ) such that 7^0) is given by ξ = 0. With respect
to the local coordinate (ξ, ί, x) on L(0), the surface 5r(0) is given by

Then, with respect to the local coordinate (ξ\ x, t) with ξ' = ξ/t on L(1), the surface S{1)

is given by

We set Giί) = G' + (m-2)E1 and 7/(1) = i// + (n-3)£'1, which are linearly equivalent to
2(τfL-£ 1) and 3(τfL-£ 1), respectively. Note that the images by τ ( 0 0 ) of the proper
transforms of 7^0) and T£] by τ ( 0 ) defines a member of 10L(n(l) | and an oo-section on
L(1), respectively, so that they determine a system of homogeneous fiber coordinates of
L{1)-^W1. Then S{1) is the triple section surface on L(1) whose assistant curves are G ( 1 )

and H(1) with respect to such fiber coordinates.
We apply this "elementary transformation" process successively for lλ times. Then

the /^"bundle L(h) obtained is isomorphic to Lί9 and the surface Sί : = S(lί) obtained
is the triple section surface whose assistant curves are Gx and H1. Thus by putting
τ 1 =τ ( 0 ) o oτ ί ω , we obtain the desired diagram.

Note that the local equation of S1 with respect to the coordinate (ξl9x91) with
ξί = ξ/tli on Lx is written as

The surface Sx is isomorphic to the strict transform of S(0) by the blow-up of L(0) along
the ideal C/Γ(°>, {^sw)h), where fT^ and «/,«» are the defining ideals of T^0) and ${0)

on L(0), respectively.
We denote this process by

* ! = ( * ! , T J : (5 l 9 ^ , ^ ^ ( 5 , W,L)

and call it the triplet blow-up at P. We remark that, even if S is normal, Sί is not
necessarily normal.

REMARK 1.5. In [AK, § 3], our process was vague for lack of the use of elementary
transformations of ambient projective bundles. Especially, the Lines 1-2 on p. 236
should be corrected as follows:

" tensoring ΘVχ{ — {rnJ^E^) induces a rational map μx: Xγ->X. Since
S is not contained in the set of points of indeterminacy of μu we get a birational
morphism μ1=μ\Si: S^S"



182 T. ASHIKAGA

1.6. For later use, we define the following: Let C be any irreducible reduced curve
on W. If G φ 0, then we denote by ac the multiplicity of C in the divisor G. If G = 0,
then we put ac = + oo. We also denote by bc the multiplicity of C in the divisor H. We set

and call it the Z2-weightίng with respect to (G, H). (We often write this as Z2(Q if
there is no confusion.)

If C is not a component of the divisor G + H, then (ac, bc) = (0, 0). If S is normal,
then we have either ac = 0 or 0 < bc < 1 for any C.

Next let C1 be an irreducible reduced curve on W1. We consider the Z2-weighting
of Cι with respect to (G l5 //J. If C t is the proper transform by τx of a curve C on W,
then Z2

GuHι)(Cί) coincides with Z2

GJί)(C). If Cx is the exceptional curve Eί9 then we
have Z2

GuHi)(C1) = (m — 2l1,n — 3l1). Therefore if S is normal, then we have either
0<tf C l <l or 0<bCί<2 for any Cv

So we classify the curve Cγ into the following six types according to its Z2-weighting:

(1) type C if the Z2-weighting is (α, 2) for α>2,
(2) type N if the Z2-weighting is (1, β) for β>2,
(3) type I if the Z2-weighting is (7, 1) for γ > 1,
(4) type G if the Z2-weighting is (<5, 0) for δ > 1,
(5) type H if the Z2-weighting is (0, ε) for ε > 1,
(6) type O if the Z2-weighting is (0, 0).

We sometimes say ίiC1 is of type Cα" instead of "Z2-weighting ofC1 is (α, 2)", and so on.
From now on, we are always assuming that a triple section surface is normal, or

is obtained by a succession of triplet blow-ups of a normal one.

DEFINITION 1.7. Let (Si9 J¥h Lt) be a triple section surface with its assistant curves
(Gf, Hi). Let Pe Wt be a target point. Let {Cl9..., Cs} (for s> 1) be the set of irreducible
reduced components of the assistant divisor Gt + H{ which pass through P. We say P is
good if one of the following conditions is satisfied:

(1) One of C l 5 . . . , Cs is of type C, and the others are all of type G.
(2) One of C l 5 . . . , Cs is of type N, and the others are all of type H.
(3) One of Cu . . . , Cs, say C1? is of type I or H l 5 and the others are all of type G.

Moreover, Cι is nonsingular at P.
A bad target point is a target point which is not good.

LEMMA 1.8. Let P be a target point on W{ as above. Then P is nonsingular on St if

and only if the condition (3) in Definition 1.7 is satisfied.

PROOF. Assume that P is a target point on W{ such that P is nonsingular. Let C,
be any one of C l 5 . . . , Cs. Then C, is neither of type C nor of type N, for otherwise St

is singular along ( π ; ) " 1 ^ ) . Since Cj is a component of the assistant divisor, C3 is not
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of type O. So C) is one of types G, H and I. Moreover, one of Cί9..., Cs, say Cu is

of type I or of type H, for otherwise P is not a target point.

Assume that Cx is of type I. If one of C2, . . . , Cs is of type I or of type H, then P

is singular. So any one of C 2 , . . . , Cs is of type G. Furthermore, C x is nonsingular at

P, for otherwise P is singular on St.

Assume that C1 is of type H and any one of C 2 , . . . , Cs is of type H or of type G.

Then one of C 2, . . , Cs, say C2, is of type G, for otherwise P is not a target point.

Moreover, if one of C 3 , . . . , Cs is of type H, then P is singular. So any one of C 2 , . . . , Cs

is of type G. Furthermore, if Z 2 (C 1 ) = (0, ε) for ε > 2 or Cx is singular at P, then P is

singular on St. Therefore the condition (3) in Definition 1.7 is satisfied.

The converse is clear. q.e.d.

We note that the number of bad target points on a normal triple section surface

(S, W9 L) is finite, because it coincides with the number of isolated target singularities

on S.

Let τ i + 1 : (Si + l9 Wi+ί9 Li+ι)->(Si9 Wi9 L() be the triplet blow-up at a bad target

point Pe Wt. Then the number of bad target points on Ei+ί=τ[+\(P) is finite. In fact,

if 5 i + 1 has only isolated singularities along π[+\(Ei+ι), the assertion is clear. Assume

that Si+ί is singular along n[+\(Ei+1). Then Ei+ί is of type C or N. Since the number

of points of intersection ofEi+ί with the proper transform of the assistant curve Gi + Hi

by τ ί + 1 is finite, the assertion is also clear.

Now we produce a process to improve singularities of a normal triple section

surface (S, W, L) by a succession of triplet blow-ups. We first apply triplet blow-ups

at all the bad target points on W. Then the triple section surface (Siί9 Wiι9 Ltl) obtained

has finite bad target points. Next we apply triplet blow-ups at all the bad target points

on Wiχ9 and obtain (S ί 2, Wi2, Lh) whose bad target points are finite. We continue this

process successively in the same way. Our next claim is the termination of this process.

THEOREM 1.9. Let (S, W9 L) be a triple section surface such that S is normal. Let

(S9 W9 L) «-L_ (Sl9 Wl9 LO - ^ - ^ - (S r, Wr9 Lr)
r + l

be the reduction process by successive triplet blow-ups at bad target points introduced

above. Then this process terminates in finite steps. Namely, there exists r such that

(Sn Wr, Lr) has no bad target points.

PROOF. Step 1. We may assume that, for a sufficiently large number r, the

reduced scheme (Gr + Hr)red of the assistant divisor of (Sr, Wr9 Lr) has simple normal

crossing at any bad target point on Wr.

Indeed, let P be a bad target point on Wr at which (Gr + Hr)TCd does not have simple

normal crossing. Let fr+1: (Sr+l9 Wr+U Lr+1)^(Sr, Wr, Lr) be the triplet blow-up at

P. If there exist bad target points on Er+ x = τ~+x(P) at which (Gr + x + Hr+ ! ) r e d does not
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have simple normal crossing, we apply triplet blow-ups at these points and obtain
another triple section surface (Sr+h Wr+hLr+i) for some i. We continue this process
successively in the same way. Then, since the reduced scheme of the total transform of
Gr+j + Hr+j by τr+j+1 coincides with (Gr+j+ί +Hr+j+1)red or ( G r + j + 1 + / / r + J + 1 ) r e d +
Er+j+ί for any j , there exists s such that (Gr+S + Hr+S)red of (Sr+S, Wr+S, Lr+S) has simple

normal crossing at any bad target points on Wr+S. So replacing r by r + s, the assertion
follows.

Step 2. In the situation of Step 1, let P be a bad target point on Wr9 and let C
and D be the irreducible components of (Gr + Hr)Ted which pass through P. We show
that, by replacing r by a sufficiently large number if necessary, the Z2-weighting (ac, bc)
(resp. (aD, bD)) of C (resp. D) with respect to (Gr, Hr) satisfy one of the following two
conditions:

(A) 0 < α c < l , 0 < α D < l and (ac, aD)φ(0, 0),
(B) 0 < £ c < 2 , 0<6 D <2 and (bc, ftD)#(0, 0).
Indeed, suppose that ac>2, 0<bc<2, 0<aD<\ and bD>3. Then define

which is not less than 5.
Now let P(CnD) be the point of intersection of C and D. Let τ r + 1 : (SΓ + 1, Wr+U

Lr+ί)-+(Sr, Wr, Lr) be the triplet blow-up at P(CnD), and let Er+ί be the exceptional
curve for τ Γ + 1 . We denote by C and D' the proper transform by τ r + 1 of C and Z),
respectively. We remark that the twisting order lr+1 is greater than 0.

Since C+D has normal crossing at P, the reduced scheme of the total transform C" +
Er + ί+D'byτr+ί has normal crossing along Er+ί9 and further we have Z?Gr +uHr+^(C') =
(ac,bc), Z (

2

G r + 1 > H r + l ) , (Er+1) = (ac + aD-2lr+ubc + bD-3lr+1)9 ZfGr+uHr+ι){Df) = {aD,bD).

For simplicity, we say in the above situation that the Z2-weighted graph changes as

(αc, bc)—(aD, bD) <= (ac, bc)—(ac + aD-2lr+u bc + bD-3lr+ί)—(aD, bD).

If /Γ+1 coincides with [(ΛC + ΛD)/2], then we have 0<ac + aD — 2lr+l< 1. For the
first pair (C, Er+ι)9 we have

diag(C, ^ r + 1 ) = diag(C, /))-(3/Γ + 1-A c)«iiag(C, D),

and the second pair (D\ Er+1) satisfies the condition (A). If the point P(C nEr+1) is a
bad target point, then we apply the next triplet blow-up at this point. Otherwise, we
stop the precess.

On the other hand, if / r + 1 coincides with [,(bc + bD)/3], then we have

diag(£r+1,D')<diag(C,Z>),

and the pair (C, Er+1) satisfies the condition (B). If P(D'r\Er+1) is a bad target point,
we produce the next triplet blow-up at this point.

Then after a finite succession of this process, the "diag" becomes less than 5. We
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remark that, if ac = aD = 0 or bc = bD = 0, then P(CnD) is not a target point. Hence by

replacing r by a sufficiently large number, the condition in Step 2 is satisfied.

Sept 3. We show that the above conditions (A) and (B) are reduced to the

following conditions (A') and (B') by replacing r by a sufficiently large number.

(A') "ac = 0 and aD=\" or "aD — 0 and ac—Y\

(B) "bc = 0 and 1 <bD<2" or "bD = 0 and 1 <bc<T\

We first assume the condition (A) in Step 2. Assume that ac = aD = 1. We produce

the triplet blow-up τ r + 1 at P(CnD) as in Step 2. We have lr+1 < 1. If lr + 1 = 1, then the

pairs ( C , £ r + i) and (Z)', Er+ί) satisfy the condition (A'). Assume that / r + 1 = 0 . Then

we may assume that bc = bD=l. In this case, by applying triplet blow-ups three times

in total, our condition is satisfied, i.e., the Z2-weighted graphs change as follows:

(1, 1)—(1, 1) <= (1, 1)—(2, 2)-<l , 1) < = (1, \y-(1, 0)—(2, 2)—(1, 0)—(1, 1).

We next assume the condition (B) in Step 1. We may assume ac + aD > 2. (Otherwise

the condition (A') is satisfied.) We need to consider the following cases:

(1) bc = bD= 1, (2) bc= 1, bD = 2 , (3) bc = bD = 2, ac + aD = 2,

(4)bc = bD = 2,ac+ aD>3.

In each case, our condition is satisfied after a finite succession of triplet blow-ups.

For example, assume that the case (4) occurs. Then the Z2-weighted graph (αc, 2)—(aD, 2)

changes to

(αc, 2)—(2ac + αD - 4, 0)—(ac + aD-2, \)—{ac + 2aD-4, 0)—(aD, 2)

after three triplet blow-ups. We omit the proof of the other cases.

Step 4. Under the conditions (A') or (Br) in Step 3, the point P(CnD) is a bad

target point if the types of (C, D) is one of the following:

(G, H 2 ) , (G 1 ? Hε) for ε > 2 , (I 1 ? H), (N2, G ) ,

where "(C, D) is of type (G, H 2 ) " , for instance, means that one of C and D is of type

G and the other is of type H 2 .

However we can reduce these points to good target points and non-target points

by a succession of triplet blow-ups.

Indeed, we first assume that (C, D) is of type (G^, H 2 ) . If δ >4, then the Z2-weighted

graph changes to

G<5 Cδ G2δ - 4 1<5 - 2 G<5 - 4 H 2

after a succession of triplet blow-ups four times. By applying this process inductively,

we may assume that 1<<5<3. In these cases, the Z2-weighted graph changes to the

following:

(1) ^ l . G r - C 2 — G i — I j — O — N 2 — H 2 ,

(2) <5 = 2, G 2 — C 2 — O — H x — H 2 ,

(3) (5 = 3, G 3 — C 3 — G 2 — I i — O — N 2 — H j — N 3 — H 2 .
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Any point of intersection of two components of the above graph is a good target point

or is not a target point. Thus the case (G, H 2 ) is settled.

Assume that (C, D) is of type ( G 1 ? H ε ) for ε > 2 . If ε>4, then after two triplet

blow-ups, the Z2-weighted graph changes to Gt—Hε_3—Nε—Hε. By applying this

process inductively, we may assume that ε < 3 . If ε = 3, then after two triplet blow-ups,

the Z2-weighted graph changes to G1— O — N 3 — H 3 . If ε = 2, then after five triplet

blow-ups, the Z2-weighted graph changes to G1—C2—Gx—11—O—N2—H2.

Assume that (C, D) is of type ( I l 9 H ε). If ε>2, then after two triplet blow-ups, the

Z2-weighted graph changes to I x — H ε _ x — N ε + 1 — H ε . So we may assume that ε= 1. In

this case, after two triplet blow-ups, the Z2-weighted graph changes to I x — O — N 2 — H 1 .

Assume that (C, D) is of type (N 2, G^). After four triplet blow-ups, the Z2-weighted

graph changes to N2—Gδ^x—1^—G2 δ~1—Cδ + 1—Gδ. Therefore after triplet blow-ups

4(5 times in total, our assertion is satisfied.

This completes the proof of Theorem 1.9.

The triple section surface (Sr, Wr, Lr) which enjoy the condition in Theorem 1.9

for the least number r is clearly unique, although one has many choice for the order

oftriplet blow-ups to obtain 5,.. For such r, wesetτ = τro • of l J τ = τΓo oτ 1 ,π Γ : Lr^Wr

and π r = π r | S r . We obtain a commutative diagram:

L^S — SraLr

iπ i πr

w <—^- wr

We simply denote this diagram by f = (τ, τ): (Sr, Wr, Lr)^>(S, W, L), and call it the

canonical reduction.

The surface Sr is not necessarily normal, but the multiplicities of the singularities

on Sr are at most 2. We will discuss this point in detail in the next section.

The following lemma is proved by the same argument as in [AK, Proposition 3.6]:

LEMMA 1.10. Let (Sn Wr, Lr) be the canonical reduction of(S, W, L). Let l{ be the

twisting order at the i-th step of this process. Then we have

where ωs is the dualizing sheaf of S.

2. Singularities on Sr. Let f = (τ, τ): (5 r, Wr, Lr)-*(Sθ9 Wo, L0) = (S, W, L) be

the canonical reduction of a triple section surface (S, W, L) such that S is normal. The

aim of this section is to study the singularities on Sr and the topological properties of
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the exceptional set of the resolution of Sr.

2.1. Let E be the exceptional set on Wr with respect to τ, and let $ be an irreducible
component of E. We denote by <ί* the set-theoretic pull-back of £ by πr.

(1) Assume that S is of type C. Let P be any point on S. Then (πr)~ 1(P) consists
of one point P = π~ 1(P) n To. We choose a local parameter (ξ, x, t) at P of Lr as follows:
(x, t) gives a local parameter at P of Wr such that $ is defined by t = 0, and £ is an
inhomogeneous fiber coordinate of πr such that To is defined by ξ = 0. Further, we can
choose a local parameter so that the local equation of Sr at P is written as

Let σ: M->Lr be the blow-up with the center ^*. Let S' be the proper transform of
Sr, and σ: S'->Sr the natural morphism. The surface S' is nonsingular along σ~ι($*).
We call this singularity a relative cusp. We consider the triple covering π' = πro(τ: £"-•
Wr. Let # be the set-theoretic pull-back of $ by π'. Since the scheme-theoretic pull-back
π'*$ coincides with 3#, it follows that

Moreover by the same argument as in [AK, Proposition 3.6], we have

l-y^ 2 , ω|,-ωf = 8 .

(2) Assume that $ is of type N. In the same way as in (1), the local equation at
any point on $* is written as

for β>2. Let σ: M->Lr be the blow-up with center £**. Let S' be the proper transform
of S by σ, and σ: S' -+S the natural morphism. The surface S" is nonsingular along
σ~ι(β*). We call this singularity a relative node. The curve σ" 1 ^*) consists of two
disjoint nonsingular rational curves N' and N". Set π' = πroσ: S'^Wr. Around one of
N' and N", the morphism π' is locally a double covering. When N" is the curve, we
have π'*£> = N' + 2N". Thus similarly as in 2.1, (1), we have

Moreover, we have the following:

= 1 , ω|, - ω| r = 8 + 1 - ^2 .

Indeed, let ^ c M b e the exceptional divisor for σ. We have S'~σ*Sr — 23). From
the exact sequences
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we have χ(Θs) - χ(Θd*Sr) = - χ(Θ^( -S'- &)) - χ(Θ®( - S')). On the other hand, we have

Moreover, since —S' — Q) is linearly equivalent to Q) — σ*Sr and @ is an exceptional

divisor which can be identified with a P1-bundle over S, we have χ(@®( — S' — <2>)) = 0.

Note that we have ΘΘ( — S')~ΘΘ( — N' — N"). Therefore from the exact sequences

we get χ(@g( — S'))=—χ(ΘN( — N")). Since N' and N" are disjoint, we have

χ(ΘN) = χ(ΘN>( — Nff))~ 1. Therefore we get the first assertion.

On the other hand, the sheaf &s(
σ*ωsr) is isomorphic to Θs>(ω + Nf + N"). Thus

by the virtual genus formula, we get

ω £ = (σ*ωS r)
2 = ω2

s. - 8 - (TV')2 - (Λ^")2 ,

which proves the second assertion.

LEMMA 2.2. If the point Q is an inner double point (in the sense of 1.3) of

(Sr, Wr, LΓ), then Q is an isolated singularity.

PROOF. We may assume that Q = πr(Q) lies on an exceptional set £ for τ of type

O, for otherwise the assertion is clear, because S is normal. Then $ is the proper

transform by τί+1<> *°τΓ of the exceptional curve Ei — τl'1(Pi-1) for some / ( 0 < ΐ < r ) ,

where Pi_ί is the center of the blow-up τ f.

We have mί = 2// and nt = 3lh where m—multp^^Gi-i) and n—multp^^H^^.
Moreover Gt and Ht coincide with the proper transforms of Gi^1 and Hi_1 by τh

respectively. Thus the discriminant divisor Δf for πi coincides with the proper transform

by τf of the discriminant divisor A f_ t for ni_x. Especially, the exceptional curve Et is

not a component of the divisor Δt. Therefore the generic point of (πr) ~ 1(S>) is nonsingular.

Note that none of the components of type C and type N intersect $ at Q. Hence

the assertion is clear. q.e.d.

The following lemma is now clear.

LEMMA 2.3. There is no singularity on Sr except relative cusps, relative nodes and

isolated inner double points.

To resolve singularities on Sr9 we first blow-up all the locus of relative cusps and

relative nodes. We then resolve all inner double points in such a way that the reduced

scheme of the total transform of π*E has simple normal crossings. Let p: S*^>S be
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such a resolution. Note that S* is not necessarily minimal even if S is minimal.
We denote by the symbol "Inn" the set of inner double points on Sr. Denote by

{Ci\ 1 <i<n(C)} (resp. {Nt| 1 < i< w(N)}) the set of the reduced curves on Wr of type C
(resp. type N). From the previous argument and by Lemma 1.10, we have:

PROPOSITION 2.4.

^ π(N)

- Σ N? + Σ
2 i=ί Qslnn

where pg(Q) is the geometric genus of the singularity Q and ZQ is a certain divisor on S*

supported on (p)1

REMARK 2.5. With respect to isolated inner double points on a triple section
surface, one can also construct a reduction process similar to § 1. Since one chooses a
member of | T\ which passes through this singular point, one should not use
Tschirnhausen transformation as in § 1, However this process is not needed for the main
purpose of this paper.

2.6. For later use, we introduce some notation: Let (Sh Wi9 Lf) be the triple section
surface appearing for the z-th step (0</<r) of our reduction process. Let C be an
irreducible reduced curve on W{. For instance, a point P on C is said to be of type
P(CnC) if another component of type C intersects C at P. Denote by «(CnC) the
cardinality of the points of type P(CnC) on C. We use similar notation for the other
types N, I , . . . , etc.

Assume that C is of type O. Let {C, |l<y<«(C)}, {Nk\ 1 <k<n(N)} and
{Is\l<s<n(ί)} be the set of irreducible reduced curves on Wt of types C, N and I,
respectively. Then the discriminant divisor Δf decomposes as

π(C) «(N) «(I)

Δ, = Σ 4C,.+ Σ 3#fc + Σ 2/s + Δ;.
j=ί k=ί s=l

where Δ| is an effective divisor. Let Q be a point at which A[ and C intersect each other.
Then (πΓ)~1(β) consists of two points Q and Q such that

(a) πr is a local isomorphism around Q\ and
(b) the other point Q is either a nonsingular point or an inner double point.

We say Q is of type P(CnA") or P(Cnlnn) according as Q is a nonsingular point or an
inner double point, respectively. We set «(CnΔ") (resp. n(Cn Inn)) to be the cardinality
of the points of type P((fnΔ") (resp. P(Cnlnn)).

2.7. Now we set ρ = πr°p: 5*->H^r, which is a triple covering. Let $ be the
set-theoretic pull-back of £. We calculate the topological Euler number e{$) of S.

(1) If S is of type I, then S is a nonsingular rational curve, i.e., <?(#) = 2.
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(2) Assume that $ is of type G. If P is a point of type C or I, then the fiber
p~1(P) consists of one point. Otherwise it consists of three points. We apply the Hurwitz
formula (in the irreducible case) and the Mayer-Vietoris exact sequence (in the reducible
case) to ϊ. Then we have

(3) Assume that S is of type H. If P is a point of type P(^nN), then ρ'x(P)
consists of two points. Otherwise it consists of three points. It follows that

(4) Assume that $ is of type O. Then $ decomposes as

where EQ is the exceptional set for the inner double point Q on S.
The fiber of ρ' = p\s>'. S'^S over P consists of one, two, one and two points

according as P is a point of type P(δ n C), P(g n N), P(β n I) and P{β n Δ"), respectively.
If Q is a point of type P(β n Inn), then let v be the number of points in the fiber p ~ 1 ( 0 ,
which is equal to 2 or 3. We have

where Q runs through the points of type P($r\\nn). From the Mayer-Vietoris exact
sequence, it follows that

e(ϊ) = e(n + Σ e(EQ) - £ (3 - v(β))
Q Q

3. Local invariants and examples. In this section, we mainly calculate the Milnor
number of normal 2-dimensional hypersurface singularities of multiplicity 3 by our
method, and give some examples.

Let (V,p) be a germ of a hypersurface 2-dimensional analytic space V with an
isolated singularity/?. Assume that the multiplicity of (V,p) is 3. Let ^ = 0 be a defining
equation of (V, p) at the origin of the complex affine 3-space. Then we have the following:

LEMMA 3.1. There exists a triple section surface (S, W, L) and a target singularity
Po on S such that the local analytic equation ofS at Po coincides with 3F (in the completion
of the local ring at Po with respect to its maximal ideal).

PROOF. By the Weierstrass preparation theorem and the Tschirnhausen trans-
formation, £F is written as
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Moreover, we may assume that <&{$£, <&) and ^f {9C, <3f) are polynomials by the
well-known argument. (See, e.g., [Mil, p. 89].)

Now we set W=P2, and fix a point Po on W. Let g{x, y) = 0 (resp. £(x, y) = 0) be
the plane curve of degree dί (resp. degree d2) such that the local equation at Po coincides
with <S(%9 <T) = 0 (resp. tf(%9 $0 = 0). We choose nonnegative integers (d, sl9 s2) with
2d=d1+s1 and 3ί/=ί/2 +

 52 Let Hί9..., 7/Sl, //ί,..., H'S2 be general hyperplanes on W
which do not pass through Pθ9 and set

The divisors G and // are linearly equivalent to Θp2(2d) and Θp2(3d), respectively.
Let L = Θp2(d) and let π: £-• W be the associated /^-bundle. Let (S, W, L) be the

triple section surface such that G and H are its assistant curves with respect to some
homogeneous fiber coordinate (Zo, Z J of π. Then the point Po — {(Zo = 0)nπ~1(Po)}
satisfies the desired property. q.e.d.

3.2. Now we first apply the triplet blow-up τί=(τl9 τx): (Sl9 Wu LJ-^iS, W, L)
at Po as in Lemma 3.1. Next we apply the triplet blow-up τ 2 : (52, W2, L2)->(S1, WX,L^)
at one of the bad target points on Eί=τ^1(P0). In this way, we continue to apply
triplet blow-ups only at the points which are infinitely near to Po. Let
f = (f 9 τ ) : (5rJ p^r? LΓ)^(5, W, L) be the composite of these triplet blow-ups so that there
is no bad target point on Wr which is infinitely near to Po, and we take r to be the
least number which enjoys this property. We call (Sr9 Wn Lr) the canonical reduction
for Po.

Let D be the total transform by τ of the assistant divisor G + H for S. We decompose
D as

D=E+B,

where E is the exceptional set for τ and Z? is the proper transform of G + H by τ.
Let p: S * - ^ be the resolution of singularities on the locus τ " 1 ^ ) °f ^ a s m

§2, i.e., the reduced scheme E of the pull back p*E for p = πrop: S*-+W has simple
normal crossings. E is the exceptional set for Po by our resolution.

Next we calculate the topological Euler number e(E) of E. Let us denote, for
instance, by n(G) (resp. n(GE), resp. n(GB)) the cardinality of the set of irreducible
reduced curves of type G in the components of D (resp. E, resp. B), and so on. We
denote, for instance, by n(GE n IB) the cardinality of the set of points of intersection of
curves of type G in E and curves of type I in B, and so on. We also denote by n(GE n GE)
the cardinality of the set of points of intersection of mutually distinct curves of type G in
E.



192 T. ASHIKAGA

LEMMA 3.3.

e(E) = - «(C) + «(N) - «(I£) + 3κ(GE) + 3«(HE) + 3n(OE) + 3 - 2«(GE n IB)

- 2 » ( O E n I B ) - « ( O E n Δ ; ' ) + Σ (e(EQ)-2).
Qelnn

PROOF. Let E=Y^i=1$i be the decomposition into irreducible components, and

let <?i be the reduced pull-back of &i by p for 1 <i<r. Then from the argument in 2.7,

if follows that

Σ έ*<?ι) = 2Λ(C) + 4Λ(N) + 2n(lE) + 6/i(G£) - 2n(GE n C) - 2«(G£ n I) + 6/i(H£)

- «(H£ n N) + 6/i(O£) - 2«(O£ n C) - n(OE n N) - 2«(OE n I)

-«(O £ ΠΔ;')+ Σ (^e)-2) .
geϊnn

Furthermore, by the Mayer-Vietoris exact sequence for the topological manifold E, we

have

e(E) = Σ e(#d ~ Λ ( G E n C) - n(GE n I£) - 3«(G£ n G£) - 2AZ(H£ n N)

- 3«(H£ n H £ ) - n(OE n C) - 2n(OE n N) - n(OE n I£) - 3n(OE n G£)

- 3n(OE n H £ ) - 3«(O£ n O £ ) .

Note that the cardinality of the set of irreducible components in E coincides with the

cardinality of the set of double points in E plus 1. Thus by an easy calculation, the

desired formula follows.

3.4. Next we calculate the geometric genus Pg(P0) and the Milnor number μ(P0)

of Po. We note that pg{PQ) = -χ(&s*) + X(®s)' Moreover by [L], we have

We remark that this formula holds even if the resolution is not minimal. So by Proposition

2.4 and Lemma 3.3, we obtain the following:

PROPOSITION 3.5.

_ 1 r 1 n(C) _

PjίPo)=T Σ /, (5/i-3)-«(C)-«(N) + - Σ Cf+ Σ P^Q),
I i = 1 J i = 1 Qelnn

= Σ 3 ( 6 / . 2 - 2/,— 1) - 5«(C) - 3«(N) - n(IE) + 3n(GE) + 3n(HE)
i= 1

n(C) 3 «(N)

+ 3n(OE) + 4 Σ C ? + — Σ ΛΓ ;

2-2«(GEnIB)-2«(OEnIB)

- « ( O E Π Δ ; ' ) + Σ
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We now give some examples for resolving singularities defined by ζ3 + g(x, y)ξ
+ h(x, y) = 0 by our method and calculate pg and μ:

EXAMPLE 3.6. ^ 3 +

Set G = (x4) and H=(y2). After four triplet blow-ups, the total transform of G + H
by τ ^ °τ4 becomes

( H 2 ) - O - I 2 - G 4 - C 4 - ( G 4 ) ,

where (H2) and (G4) are the proper transforms of G and //, respectively. The
self-intersection numbers of the exceptional curves O, I2, G4 and C4 are — 1, —3, — 1
and —3, respectively. Therefore the dual graph of the exceptional set on S* is

C — 3 ] — ( — 1)—( — 3 ) — ( — 1).

Since «(OnΔ4) = 4, the curve [ — 3] is elliptic. The other three curves are rational.
Contracting (—l)-curves three times, we get an elliptic curve with self-intersection
number — 1 as the exceptional set of the minimal resolution of this singularity. This is
called a simple elliptic singularity of type E8 (cf. [SI]).

In this case, we have pg= 1 and μ —10.

EXAMPLE 3.7. ξ

Set G = (xy) and H=(x5+y3). After eight triplet blow-ups, the total transform of
becomes

( G 1 ) - C 2 - G 1 - I 1 - O - N 2 - H 3 - N 3 - O - ( G 1 )

The self-intersection numbers of the exceptional curves C2 , . . . , O are —3, — 1,
3, — 1, — 6, — 1, — 2 and — 3, respectively. The dual graph of the exceptional set on S* is

(-1)—(_

All these curves are rational. Contracting (— l)-curves nine times, we get

as the minimal resolution.
In this case, we have pg= 1 and μ= 10.

EXAMPLE 3.8. ξ3HUV=Λx + W))ξ + I\5lΛx + βjy) = O> w h e r e «i> >03i a r e

mutually distinct complex numbers. After one triplet blow-up, our resolution process
is completed. The exceptional set consists of only one curve of genus g = 3l—2 with
self-intersection number —3. In this case, we have/7^ = /(5/— 3)/2 and μ = 2(3/— I)2.
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4. Proof of the main theorem.

4.1. The situation is the same as in the previous section. We fix a number / with

1 <i<r, and consider the i-th triplet blow-up at Λ - i Assume that the component &i

is the proper transform of Ei = (τi)~1(Pi_1) by τfo oτΓ. Then we define the number

θt as follows:

(1) If gt is of type C or I, then θt=-l.

(2) If gt is of type N, then θt = 3/2.

(3) If g.χ is of type G, then 0£ = 3 - 2«(/I n Iβ).

(4) If gt is of type H, then 0f = 3.

(5) Assume that <f f is of type O. Assume further that another component gj in

E of type O intersect Ei at Q, such that there exists an inner double point Q of Sr over

Q. Moreover, assume that gj is the proper transform of Ej = (τj)~1(Pj-ί) by τ^ oτr

with i<j. We call such Q a negligible inner double point on S^ Denote by " P I N / ' the

set of "not" negligible inner double points on π " 1 ^ ) . Then we put

DEFINITION 4.2. We define the number dt by

+ li-\)-2n(EinC)-—n(EinN) + θi.

LEMMA 4.3. μ(/>0)-6pβ(F0)-2 = ̂ = 1 rf(.

PROOF. It follows from Proposition 3.5 that

i= 1

C) 3 n(N)

Σ C,2 + — Σ
i = l 2 i = l

Thus by considering the contribution of the blow-up τf to the decrease of the

self-intersection numbers of curves of type C and N, the desired formula follows, q.e.d.

LEMMA 4.4.

(1) If Et is of type C or I, then we have d{ > 31? + 3/f - 8.

(2) If Et is of type N, then we have d x > 31? + 3/£— 11/2.

(3) If Ei is of type G or O, then we have dt > 31? - 3/t,

(4) If Et is of type H, then we have dt > 31? + 3/f - 4.

Especially, /// ί >2, then we always have dι>0.

PROOF. Since the curves of types C and N are always exceptional, we have
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From this, we have the assertions (1), (2) and (4).

Assume that Et is of type G. It follows that Λ2£ = 3/£. Moreover, we have

rii > 2n(Ei nC) + 2n{E{ n N) + n(Et n I ) ,

/!(£,. n I) >/!(<?,. n I B ) .

From this, the former part of (3) follows.

Assume that Ei is of type O. We clearly have n(&iΓ\ Δ")<n(EiΓ\ Δ[). Hence from

the argument in 2.6, it follows that

2n{Si n IB) + n{Si n Δf

r

f) + 2n(Et nC) + - n(Ei n N) < 2n(Ei n I) + n(Et n Δ/)

Note that μ(Q) - 6pg(Q) -1 > 0 for an inner double point Q by [T2]. Thus the latter

part of (3) follows. q.e.d.

4.5. For studying the case /,< 1, we need new definitions and notation:

Let P= {Po,..., Pr-x} be the set of the centers Pj-^e W}_t for the blow-ups %j

(1 <j<r). For fixed j , let Pj={Pj9 Ph, , PJM} (J=Jo<J\ < <Λ) b e t n e subset of P

consisting of the points which are infinitely near to Pj. We define

d(Fj)' = Σ djk+1.

If Pj is an isolated singularity on Sj, then d(Pj) coincides with μ(Pj) — 6pg(Pj) — 2 by

Lemma 4.3.

We say Pj is positively combined if there exists an integer s' < s such that

Note that if dj+ι > 0 or d(Pj)>09 then Pj is positively combined.

Let {Cj}1<j<t be the set of local analytic branches at Pi__ί of the assistant divisor

Gt _ ! + Ht _ x. Assume that the Z2-weighting of Ĉ  with respect to (Gt _ x, 7/f _ x) is (α,-, jS^.

Then we simply say that the branches at Pi_1 are {C/α^ , βj)}ι<j<t

We denote by Cj, C j ' , . . . , Cf] the proper transform of C, byτ i ,τ i oτ i + 1 , . . . , τ ( o

o τ j + k _ l 5 respectively.

LEMMA 4.6. / w α normal 2-dimensional hyper surface singularity P of multiplicity

2, we have μ(P) > 6pg(P) + 1. Moreover, the equality μ(P) = 6pg(P) + 1 holds if and only

if P is a rational double point of type Ax.

PROOF. If PJP)>1, the assertion follows from Tomari [T2]. If P is a rational
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double point, the assertion follows from an explicit calculation. q.e.d.

LEMMA 4.7. Assume /f = 0. IfFi-1 is an isolated singularity of Si.1, then we have

^(Λ_i)> — 1. Moreover, the equality d(Fi_1) = — 1 holds ifand only ifone ofthe following

three conditions is satisfied:

(1) The branches at Pi_ί consist ofC^l, 0), C2(0, 1) and C3(0, 1) such that

(i) Cj (1 <j<3) is nonsingular, and

(ii) if we denote by 3~ j the tangent line of Cj at P(-l9 then 3~\ is distinct from ^~2

and £Γτ> (β~2 may coincide with &~3).

(2) The branches at Pi_ί consist ofC^l, 0) and C2(0, 1) such that

(i) Cx is nonsingular and C2 is a reduced irreducible curve of multiplicity 2, and

(ii) the tangent lines 3~ x of 'Cί and 2Γ2 °f Ci a r e distinct from each other.

(3) The branches at Pi_1 consist of CΊ(1, 0) and C2(0, 2) which are nonsingular and

meeting transversally.

PROOF. Since /, = (), the multiplicity of the singularity Fi-1 is 2. Therefore the first

assertion follows from Lemma 4.6. To prove the second assertion, it sufficies to show

that Pi-χ is an Ax-singularity if and only if one of the conditions (1)~(3) is satisfied.

Let

j>2

be the local equation at P{_ l 5 where gU) and hU) are homogeneous polynomials of degree

j . Then one of the following conditions is satisfied:

(a) h(2) is a product of two linear functions distinct from each other such that

(al) g{1) coincides with one of them, or

(a2) g(1) does not coincide with any of them, or

(a3) g{1) is identically zero.

(b) h{2) is the square of a linear function such that

(bl) g(l) coincides with it, or

(b2) g(l) does not coincide with it, or

(b3) g(l) is identically zero.

(c) hi2) is identically zero and g{1) is not identically zero.

In each case, the degree 2 part of/ is written as

(al) xξ + xy, (a2) xξ + {x + cy)y for cφΰ , (a3) xy,

(bl) xξ + x2, (b2) j ^ + x 2 , (b3) x2, (c) x ξ .

Note that the rank of the above quadratic forms (al), . . . , (c) are 2, 3, 2, 2, 3, 1 and

2, respectively. Thus/defines an A x -singularity if and only if (a2) or (b2) is satisfied.

From this, the second assertion follows. q.e.d.

LEMMA 4.8. Let k be a positive integer. Assume that there appear over Et exactly

k target singular points of type Aγ after the triplet blow-up τt . Then we have di — )
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PROOF. By the argument in Lemma 4.7, Et is one of types Gu H l 5 H 2 and O.

Especially lt > 1.

First assume that Ei is of type O. Since the types of the assistant divisor at any

^-target singularity on Et is one of (l)-(3) in Lemma 4.7, it follows that

Therefore we have

Since we have 4/t > 2n{Ei n N) 4- (8/3)Λ(^£ n C) + (4/3)«(^ n I) + (2/3)/f(^ n ΔJ) by fc > 0, it

follows that

4 - & > 3/t

 2 - 3/f + — «(£,- n N) + 2/i(£; nC) + 2(«(^ n I) - «(<ί < n IB))

We next assume that Et is of type Gx. Since n{ = 3lh we have

0 < 2fc < 3/, - 2 Λ ( ^ n N) - 2«(£ί n C) - n(Et n I ) .

Hence

+ ~li—
l-n(EinN)-n(EinC) + — n(EinT)

> 3/f

2 - 3/f + — n(Ei n N) + iniE, n C) + 2(«(£I

i n I) - n{Si n IB)) > 0 .

When Et is of type Hί or H 2 , the argument is similar, and is left to the reader.

q.e.d.

LEMMA 4.9. Assume that /,= (). If the singular locus ofSi_1 is not isolated at P f _i,

then Pt _ x w positively combined.

PROOF. Since Pi^ί is a bad target point, the types of local branches {CjYJS=ί of

the assistant divisor at Pi_1 which satisfy the assumption is uniquely determined as

follows: One of {Cj}, say C 1 ? is of type N 2 and the others C 2, . . . , Ct(t>2) are all of type

G.

Then Eι is of type C, and we have dt = -11/2. Set Pt = Et n C[ and apply the next

triplet blow-up τ i + 1 . Then Ei+1 is of type I, and so di+ί = —3/2. Let El be the proper

transform of Ei by τ f + 1 , and set Pi+1 =Ei + ί nE[. We apply τ ί + 2 . Then Ei + 2 is of type

G, and we have rf. + 2 = 4. Set />

ί + 2 = (τί + 2 ) " 1 ( £ ' ί + 1 nCJ') and apply τi + 3. Ei + 3 is of type
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G or type O. In the former case, we have di+3 = 9/2, while in the latter case, we have

From this, we have ί/f+ +rfi + 3 > 1/2, i.e., Pi_1 is positively combined, q.e.d.

Next we consider the case lx = 1. The following lemma is a consequence of the

argument in the proof of Lemma 4.4.

LEMMA 4.10. Assume that lt=\. Then we have dt<0 if and only if one of the

following conditions is satisfied:

(1) Ei is of type C or I such that

(la) n(Et n C) = 2 and d x = -2, or

(lb) n(Et n C) = n{Et n N) = 1 and dt = - 3/2, or

(lc) n(Ei nN) = 2 and dx = -1, <?r

(Id) /i(£ lnC)=lαwέ/έ/ ί = 0.

(2) Ei is of type G such that n{St n IB) = 3 and dt = 0.

(3) £; w 0/ type O swcλ /Λα/ /ι(<f £ n Δ^) = 6 ««ύf d{ = 0.

LEMMA 4.11. If the condition (\) in Lemma 4.10 is satisfied, then Pi_1 is positively

combined.

PROOF. Case (la-I), i.e., Et is of type I such that the condition (la) is satisfied:

The branches at Pi_ί are

CX(OL19 2), C2(α2, 2), C3(δ3, 0), . . . , Ct(δt, 0),

where OLJ>2 (j= h 2) and δj> 1 ( 3 < 7 < 0 ( C 3 , . . . may not exist.) Put P { = £,.nCl. After

the triplet blow-up τ ί + 1 , let />

ί + 2 = ( τ ί + 1 ) " 1 ( £ ' I nC 2 ) . Then Ei+1 and ^ i + 2 are of type

G, and so di+1=di+2

 = ^- There is no bad target point on Si+2 which is infinitely near

to Px-1. Hence we have J(P i _ 1 ) = 6.

Case (la-C): The branches at Pi_1 are

CJμl9 2), C2(α2, 2), C3(y, 1), C4(<54, 0 ) , . . . , Ct(δt, 0)

with γ > 0 . C 3 does not intersect C[ or C 2, say Q . Then we put Pi = EinC[. We have

Λ) = 6 by (la-I).

Case (lb-I): The branches at Pi^1 are

(α, 2), C 2 (l, 2), C 3(^ 3, 0 ) , . . . , Ct(δt9 0 ) .

Set P ^ ^ nCi. Then Ei+ι is of type G, and so di+1=4, hence 4 + ί/ ί + 1 >0.

Case (lb-C): Letting C1 to be the curve of type C passing through Pt-U we set

Pi = EinC[. Then τ ί + 1 satisfies the condition (la).

Case (lc-I): The branches at Pi_1 are

C x (l, 2), C 2 (l, 2), C 3(^ 3, 0 ) , . . . , Ct(δt, 0 ) .

Set P^EiΠ C[. Since ^ ί + 1 is of type G or O, we have di+1>7/2.
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Case (lc-C): Letting C1 and C 2 to be the curves of type N passing through Pi-1,

we set Pi = E x n C[ and Λ +1 = (τi +1) ~ H^Ί n Q ) . Since Pt and Px + ί are positively combined

by (lb).

Case (ld-C): Letting Cx to be the curve of type C passing through Λ - i , we set

P—E^C'γ. Then by (la), Pt is positively combined.

Case (ld-I): The branches at Pi^ι are one of the following:

(1) d ( α , 2), C2(y2, 1), C3(y3, 1), C 4(5 4, 0), . . . , C t(ί t> 0),

(2) d ( α , 2), C2(0, 2), C3(<53, 0), . . . , Q φ , 0).

In the case (2), we have already shown that the point Pi = EinC[ is positively

combined.

So we assume that the case (1) occurs. Set P£ = £ f n C i . If both C 2 and C 3 , or

neither C 2 nor C 3, pass through Ph then we have already shown that Pt is positively

combined. Assume, say C 2, passes through Pt. We have di+ι = 0. We repeat triplet

blow-ups for sufficiently many times (say k times) so that the proper transform of C x

does not meet the proper transform of C 2 . Then rff= • = di+k = 0 and P / + Λ is positively

combined.

This completes the proof of Lemma 4.11.

THEOREM 4.12. Let (V,p) be a germ of a normal 2-dimensional hyper surface

singularity of multiplicity 3. Then we have

Especially the signature of the Mίlnor fiber of (V, p) is negative.

Moreover, the equality μ(V,p) = 6pg(V,p) + 2 holds if and only if(V,p) is a simple

elliptic singularity of type E6.

PROOF. By Lemmas 4.3, 4.4, 4.7, 4.8, 4.9, 4.10 and 4.11, the inequality μ>6pg + 2

is clear. Assume that the equality holds. Then the first triplet blow-up τ1 satisfies the

condition (2) or (3) of Lemma 4.10. If the condition (2) is satisfied, then the branches

at Po are

), C2(y2, 1), C3(y3, 1), C4((54, 0 ) , . . . , C t(ί t> 0)

with jj> 1 (1 <j<3) such that C l 9 C 2, and C 3 is nonsingular. In this case, our resolution

process is complete already at τ1. The exceptional curve Ex is a nonsingular elliptic

curve of self-intersection number —3, i.e., this is a simple elliptic singularity of type

E6. If the condition (3) is satisfied, we also have the assertion by a similar argument.

The negativity of the signature comes from Durfee [D, p. 97].

This completes the proof of Theorem 4.12.

REMARK 4.13. For a normal 2-dimensional hypersurface singularity of multi-

plicity 3, there is a possibility that we may always have
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From the viewpoint of our method of resolution, the singularities in Example 3.8 seem

to be the simplest, and they satisfy 5μ + ̂ /2μ = 36pg + S. Moreover, if one lets /= 1 in

Example 3.8, then we obtain Eβ.
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