PARAMETER SHIFT IN NORMAL GENERALIZED HYPERGEOMETRIC SYSTEMS

MUTSUMI SAITO*

(Received October 7, 1991, revised April 28, 1992)

Abstract. We treat the problem of shifting parameters of the generalized hypergeometric systems defined by Gelfand when their associated toric varieties are normal. In this context we define and determine the Bernstein-Sato polynomials for the natural morphisms of shifting parameters. We also give some examples.

Let \(A = \{ \chi_1, \ldots, \chi_N \} \subset \mathbb{Z}^n \) be a finite subset with certain properties. In [G], [GGZ], [GZK1], [GZK2], [GKZ] and so on, Gelfand and his collaborators defined and studied generalized hypergeometric systems \(M_\alpha \) associated to \(A \) with parameter \(\alpha \). Aomoto defined and studied a broader class of systems (cf. [A1]-[A4]). Generalized hypergeometric systems of this kind were also defined in [KKM] and [H], where they were named canonical systems. For \(1 \leq j \leq N \), there exists a natural morphism \(f_{x_j}: M_{x_j} \rightarrow M_\alpha \), which corresponds to the differentiation of solutions. In this paper, we treat the problem of determining when \(f_{x_j} \) becomes isomorphic under the condition that a certain associated affine toric variety is normal.

In §1 and §2, we define the system \(M_\alpha \) and the natural morphism \(f_{x_j} \), and give a necessary condition (Theorem 2.3) for the morphism \(f_{x_j} \) to be an isomorphism. In §3, we introduce an assumption, which we call the normality and keep throughout this paper. In §4, §5, and §6, we define an ideal \(B(\chi_j) \) of the \(b \)-functions for the morphism \(f_{x_j} \), and obtain a sufficient condition in terms of the \(b \)-functions (Corollary 5.4) for the morphism \(f_{x_j} \) to be isomorphic. The ideal \(B(\chi_j) \) turns out to be singly generated by a certain polynomial (Theorem 6.4). In §7, some examples are given.

The author would like to thank Professors Ryoshi Hotta and Masa-Nori Ishida for helpful conversation.

1. Generalized hypergeometric systems. First of all, we recall the definition of generalized hypergeometric systems following Gelfand et al. (cf. [GGZ]). Suppose we are given \(N \) integral vectors \(\chi_j = (\chi_{1j}, \ldots, \chi_{nj}) \in \mathbb{Z}^n \) \((j = 1, \ldots, N) \) satisfying two conditions.

(1) The vectors \(\chi_1, \ldots, \chi_N \) generate the lattice \(\mathbb{Z}^n \).
(2) All the vectors χ_j lie on some affine hyperplane $\sum_{i=1}^n c_i x_i = 1$ in \mathbb{R}^n, where $c_i \in \mathbb{Z}$.

We denote by L the subgroup in \mathbb{Z}^n consisting of those $a=(a_j)_{j=1}^N$ satisfying $\sum_{j=1}^N a_j x_j = 0$. Let (v_1, \ldots, v_N) be a coordinate system on $V = \mathbb{C}^N$. Let $W = W_V$ denote the Weyl algebra on V, i.e.,

$$W = W_V = C[v_1, \ldots, v_N, D_1, \ldots, D_N]$$

where $D_j = \partial/\partial v_j$ for $j = 1, \ldots, N$. We put for $a \in L$

$$\Box_a = \prod_{a_j > 0} D_j^{a_j} - \prod_{a_j < 0} D_j^{-a_j}.$$

For a parameter $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$ we define a generalized hypergeometric system M_α on V as a W-module to be W modulo the left W-module generated by $\prod_\alpha (aeL)$, i.e.,

$$M_\alpha = W\left/ \left(\sum_{i=1}^n W \left(\sum_{j=1}^n \chi_\alpha \theta_j - \chi_i \right) + \sum_{a \in L} W \Box_a \right) \right..$$

Here $\theta_j = v_j D_j$ for $j = 1, \ldots, N$, and $\sum_{a \in L} W \Box_a$ denotes the left W-submodule of W consisting of all sums $\sum_{a \in L} w_a \Box a$ with $w_a \in W$ such that only finitely many w_a are not zero. We denote by Q the Newton polyhedron, i.e., Q is the convex hull in \mathbb{R}^n of the points χ_1, \ldots, χ_N, by Λ the semigroup $\mathbb{Z}_0 \chi_1 + \cdots + \mathbb{Z}_0 \chi_N$, and by R the semigroup ring $C[\Lambda]$ regarded as a \mathbb{Z}^n-graded ring in an obvious way.

2. Saturated subsets. We now define saturated subsets of $\{1, \ldots, N\}$, which later turn out to correspond to faces of the polyhedron Q. Here the empty set \emptyset is regarded as a face of the polyhedron Q. One might refer to [D] or [O] for the theory of toric varieties.

Definition. Let I be a subset of $\{1, \ldots, N\}$. We call I a saturated subset when for any $a \in L$ either $I \cap \{i|a_i \neq 0\} = \emptyset$ or there exist $i, j \in I$ such that $a_i > 0$ and $a_j < 0$.

We can regard R as the quotient of $C[D_1, \ldots, D_N]$ by the $C[D_1, \ldots, D_n]$-submodule generated by \Box_a ($a \in L$). Let R_λ ($\lambda \in \Lambda$) denote the subspace of R generated by the image of $D_1^{b_1} \cdots D_N^{b_N}$ with $b_j \in \mathbb{Z}_0$ ($1 \leq j \leq N$) satisfying $\lambda = \sum_{j=1}^N b_j \chi_j$. Then we have

$$R = C[D_1, \ldots, D_N] / \sum_{a \in L} C[D_1, \ldots, D_N] \Box_a = \bigoplus_{\lambda \in \Lambda} R_\lambda.$$

Here $\sum_{a \in L} C[D_1, \ldots, D_N] \Box_a$ denotes the ideal of $C[D_1, \ldots, D_N]$ consisting of all sums $\sum_{a \in L} p_a \Box a$ with $p_a \in C[D_1, \ldots, D_N]$ such that only finitely many p_a are not zero. Clearly the images of $D_1^{b_1} \cdots D_N^{b_N}$ and $D_1^{b_1} \cdots D_N^{b_N}$ in R coincide if $\sum_{j=1}^N b_j \chi_j = \sum_{j=1}^N b_j \chi_j$. Hence the subspace R_λ of R is one-dimensional. Elements in R_λ are said to be
\(\Lambda\)-homogeneous, and the ideals generated by \(\Lambda\)-homogeneous elements are also said to be \(\Lambda\)-homogeneous. For a saturated subset \(I\), we denote by \(P(I)\) the \(\Lambda\)-homogeneous ideal of \(R\) generated by all \(D_i\) for \(i \in I\), where we use the same letter \(D_i\) for its image in \(R\).

Lemma 2.1. \(\{P(I) \mid I \text{ is saturated}\}\) is the set of \(\Lambda\)-homogeneous prime ideals of \(R\).

Proof. We first prove that \(P(I)\) is prime. Since \(\dim R_\lambda = 1\) for all \(\lambda \in \Lambda\), it is enough to show that \(m_2 \in P(I)\) if \(m_1 \notin P(I)\) and \(m = m_1 m_2 \in P(I)\) for two monomials \(m_1, m_2\). Set \(m_1 = \prod_{j=1}^{N} D_i^{j_{1i}}, m_2 = \prod_{j=1}^{N} D_i^{j_{2i}}\) and \(m = \sum_{j=1}^{N} D_i^{j_1j_{2i}}\). Then we have \(\prod_{j=1}^{N} D_i^{j_{2i}} = \prod_{j=1}^{N} D_i^{c_{1i} + c_{2i}}\), and there exists \(i \in I\) such that \(b_i > 0\). Since \(I\) is saturated and \(b_i > 0\), there exists \(i' \in I\) such that \(c_{1i'} + c_{2i'} > 0\). Since \(m_1 \notin P(I)\), we have \(c_{1i'} = 0\). Thus we obtain \(c_{2i'} > 0\) and \(m_2 \in P(I)\).

We next assume \(P\) to be a \(\Lambda\)-homogeneous prime ideal. Denote \(I(P) := \{1 \leq i \leq N \mid D_i \in P\}\). Since \(\dim R_\lambda = 1\) for all \(\lambda \in \Lambda\), the \(\Lambda\)-homogeneous ideal \(P\) is generated by some monomials. Moreover, since \(P\) is prime, we see that \(P\) is generated by \(\{D_i \mid i \in I(P)\}\). For \(i \in I(P)\) and \(\alpha \in L\) such that \(\alpha > 0\), we see that \(\prod_{\alpha_j > 0} D_j^{\alpha_j} \in P\). Since \(\prod_{\alpha_j > 0} D_j^{\alpha_j} = \prod_{\alpha_j < 0} D_j^{-\alpha_j}\) and \(P\) is prime, there exists \(k\) such that \(a_k < 0\) and \(D_k \notin P\). We have thus proved \(I(P)\) to be saturated.

Let \(\Gamma\) be a face of \(Q\). We denote by \(P(\Gamma)\) the ideal of \(R\) generated by all \(D_j\) for \(j \notin \Gamma\).

Lemma 2.2 (cf. [1]). \(\{P(\Gamma) \mid \Gamma\text{ is a face of }Q\}\) is the set of \(\Lambda\)-homogeneous prime ideals of \(R\).

As a result, for a saturated subset \(I\), the \(\chi_j\) \((j \notin I)\) span a face of \(Q\). Conversely, for a face \(\Gamma\), \(I(\Gamma) = \{1 \leq j \leq N \mid \chi_j \notin \Gamma\}\) is a saturated subset. In particular, the set of nonempty minimal saturated subsets bijectively corresponds to the set of faces of codimension one. For a face \(\Gamma\) of \(Q\) of codimension one we denote by \(F_\Gamma\) the linear form for the hyperplane spanned by \(\Gamma\) such that the coefficients of \(F_\Gamma\) are integers, that their greatest common divisor is one, and that \(F_\Gamma(\chi) > 0\) for any \(\chi \in \Lambda\).

Definition. We call a point \(l = (l_1, \ldots, l_N) \in (\mathbb{Z}_{>0})^N\) a quotient point associated to a saturated subset \(I\) when \(I = \{j \mid l_j \neq 0\}\) and for any \(a \in L\) either \(I \cap \{i \mid a_i \neq 0\} = \emptyset\) or there exist \(i, j \in I\) such that \(0 < l_i \leq a_i\) and \(0 > -l_j \geq a_j\).

For \(\chi = \sum_{j=1}^{N} b_j \chi_j\) such that each \(b_j\) is a nonnegative integer, we denote by \(D^\chi\) the operator \(\prod_{j=1}^{N} D_i^{b_j}\). Since \(\sum_{j=1}^{N} \chi_i \theta_j - a_i)D^\chi = D^\chi(\sum_{j=1}^{N} \chi_i \theta_j - a_i - \sum_{j=1}^{N} b_j \theta_j)\), we have a natural morphism \(f_\chi : M_\alpha \to M_\alpha\) by multiplying \(D^\chi\) from the right.

Theorem 2.3. For \(j_0 \in \{1, \ldots, N\}\), the morphism \(f_{\chi_{j_0}}\) is not isomorphic if there exist a face \(\Gamma\) of codimension \(d\) and a quotient point \(l\) associated to \(I(\Gamma)\) such that \(\Gamma\) does not contain \(\chi_{j_0}\), and \(F_{\Gamma}(\chi) = \sum_{j \in I(\Gamma) - (j_0)} (l_j - 1)F_{\Gamma}(\chi)\) for \(k = 1, \ldots, d\), where \(\Gamma = \Gamma_1 \cap \cdots \cap \Gamma_d\) and the codimension of each \(\Gamma_k\) is one.
PROOF. Suppose that there exist a face \(\Gamma = \Gamma_1 \cap \cdots \cap \Gamma_d \) and a quotient point \(l \) associated to \(I(\Gamma) \supseteq J_0 \) such that \(F^{\Gamma_k}(x) = \sum_{j \in I(\Gamma) - \{j_0\}} (l_j - 1)F^{\Gamma_k}(x_j) \) for \(k = 1, \ldots, d \). Let \(J \) be the complement of \(I(\Gamma) \). Let \(C^{I(\Gamma)} = \{ (v_i) \mid i \in I(\Gamma) \} \), \(C^l = \{ (v_j) \mid j \in J \} \) and \(L_j := \{ a \in L \mid a_i = 0 \text{ for all } i \in I(\Gamma) \} \). Consider the quotient

\[
M' = \text{Coker}(f_{x_l}) \left/ \left(\sum_{j \in I(\Gamma) - \{j_0\}} W_{\chi_j} D_j^l + \sum_{j \in I(\Gamma) - \{j_0\}} W_{\chi_j} (l_j - 1) \right) \right.
\]

\[
= W_{\chi_l} \left/ \left(W_{\chi_j} D_{j_0} + \sum_{i=1}^n W_{\chi_j} \left(\sum_{j=1}^N \chi_{ij} \theta_j - \alpha_i \right) + \sum_{a \in L_j} W_{\chi_j} D_j^l \right. \right.
\]

\[
+ \sum_{j \in I(\Gamma) - \{j_0\}} W_{\chi_j} (l_j - 1) + \sum_{a \in L_j} W_{\chi_j} \right. \right.
\]

\[
= W_{C^l} \left/ \left(\sum_{i=1}^n W_{C^l} \sum_{j \in J} (\chi_{ij} \theta_j - \beta_i) + \sum_{a \in L_j} W_{C^l} \right) \right. \right.
\]

\[
\left(W_{C^{I(\Gamma)}} D_{j_0} + \sum_{j \in I(\Gamma) - \{j_0\}} W_{C^{I(\Gamma)}} D_j^l + \sum_{j \in I(\Gamma) - \{j_0\}} W_{C^{I(\Gamma)}} (l_j - 1) \right),
\]

where \(\beta_i = \alpha_i - \sum_{j \in I(\Gamma) - \{j_0\}} (l_j - 1) \chi_{ij} \). We have \(F^{\Gamma_k}(\beta) = 0 \) for any \(k \) and the module

\[
W_{C^l} \left/ \left(\sum_{i=1}^n W_{C^l} \sum_{j \in J} (\chi_{ij} \theta_j - \beta_j) + \sum_{a \in L_j} W_{C^l} \right) \right. \right.
\]

is a generalized hypergeometric system on \(C^l \) with respect to \(\chi_j \) \((j \in J)\).

Furthermore, the module

\[
W_{C^{I(\Gamma)}} \left/ \left(W_{C^{I(\Gamma)}} D_{j_0} + \sum_{j \in I(\Gamma) - \{j_0\}} W_{C^{I(\Gamma)}} D_j^l + \sum_{j \in I(\Gamma) - \{j_0\}} W_{C^{I(\Gamma)}} (l_j - 1) \right) \right.
\]

\[
= W_{C^{I(\Gamma)}} \prod_{j \in I(\Gamma) - \{j_0\}} v_j^{l_j - 1} = C[v_i]_{i \in I(\Gamma)}
\]

is not zero. We thus deduce that \(M' \), hence accordingly \(\text{Coker}(f_{x_l}) \) is not zero.

3. Normality assumption. For a \(\mathbb{Z}^n \)-graded \(R \)-module \(M \) we define a subset \(\Lambda(M) \subset \mathbb{Z}^n \) by \(\Lambda(M) := \{ \lambda \in \mathbb{Z}^n \mid M_{\lambda} \neq 0 \} \), when \(M = \bigoplus_{\lambda \in \mathbb{Z}^n} M_{\lambda} \). Since we have

\[
R_{\geq 0} \chi_1 + \cdots + R_{\geq 0} \chi_n = \bigcap_{\ell} \{ \chi \in \mathbb{R}^n \mid F_\ell(\chi) \geq 0 \},
\]
where \(\Gamma \) runs through the faces of codimension one, the following is the normality condition, i.e., the condition for the ring \(R \) to be normal (see, e.g., [S1]).

Normality Condition.

\[
\bigcap_{\Gamma} \{ \chi \in \mathbb{R}^n \mid F_{\Gamma}(\chi) \geq 0 \} \cap \mathbb{Z}^n = \Lambda,
\]

where \(\Gamma \) runs through the faces of codimension one. From now on, we always assume the normality.

Lemma 3.1. Let \(\chi_0 \in \Lambda \), and let \((D^{x_0}) \) be the ideal of \(R \) generated by \(D^{x_0} \). Then we have

\[
\Lambda((D^{x_0})) = \mathbb{Z}^n \cap \bigcap_{\Gamma} \{ \chi \in \mathbb{R}^n \mid F_{\Gamma}(\chi) \geq F_{\Gamma}(\chi_0) \}.
\]

Proof. Suppose that \(\chi \in \mathbb{Z}^n \) and \(F_{\Gamma}(\chi) \geq F_{\Gamma}(\chi_0) \) for any \(\Gamma \) of codimension one. Let \(\chi' = \chi - \chi_0 \in \mathbb{Z}^n \). Then we have \(F_{\Gamma}(\chi') \geq 0 \) for any \(\Gamma \). By the normality we see that \(\chi' \in \Lambda \). Therefore \(\chi \in \chi_0 + \Lambda = \Lambda((D^{x_0})) \). The other inclusion is clear.

4. Decomposition of ideals. Let \((\Gamma, \chi_0) \) be a pair of a face \(\Gamma \) of codimension one and \(\chi_0 \in \Lambda \). To such a pair \((\Gamma, \chi_0) \) we associate an ideal \(D(\Gamma, \chi_0) \) of \(R \) defined as the one generated by all \(\Gamma > \chi_0 \) such that \(F_{\Gamma}(\chi) \geq F_{\Gamma}(\chi_0) \).

Proposition 4.1. We have the following decomposition of the ideal \((D^{x_0}) \):

\[
(D^{x_0}) = \bigcap_{\Gamma} D(\Gamma, \chi_0).
\]

Proof. Since \(D^{x_0} \) belongs to \(D(\Gamma, \chi_0) \) for any pair \((\Gamma, \chi_0) \), it is clear that \((D^{x_0}) \) is contained in the intersection \(\bigcap_{\Gamma} D(\Gamma, \chi_0) \). In order to show the other inclusion, it is enough to verify that the intersection \(\bigcap_{\Gamma} \Lambda(D(\Gamma, \chi_0)) \) is a subset of \(\Lambda((D^{x_0})) \). Suppose that \(\chi \in \mathbb{Z}^n \) does not belong to \(\Lambda((D^{x_0})) \). By Lemma 3.1 there exists a face \(\Gamma \) of codimension one such that \(F_{\Gamma}(\chi) < F_{\Gamma}(\chi_0) \). By the definition of the ideal \(D(\Gamma, \chi_0) \) we see that \(\chi \) does not belong to \(\Lambda(D(\Gamma, \chi_0)) \).

Let \(\Gamma' \) denote the left ideal of \(W \) generated by all \(\mathbb{R}^n \), \(\Gamma'(\chi_0) \) the one generated by \(\Gamma' \) and \(D^{x_0} \), and \(\Gamma'(\chi_0) \) the one generated by \(\Gamma' \) and all \(\prod_{b_j \geq 0} D^{b_j} \) such that \(\sum_{b_j \geq 0} F_{\Gamma}(\chi_j) \geq F_{\Gamma}(\chi_0) \). For a left ideal \(J \) of \(W \) we denote by \(\overline{J} \) the graded ideal with respect to the order filtration in \(W \).

Lemma 4.2. (1) Let \(J \) be a left ideal of \(W \) generated by homogeneous operators \(P_1, \ldots, P_s \) in \(C[D_1, \ldots, D_N] \). Then the graded ideal \(\overline{J} \) is generated by \(\overline{P_1}, \ldots, \overline{P_s} \) in the graded ring \(\overline{W} \), where \(\overline{P_j} \) is the image of \(P_j \) in \(\overline{W} \) for any \(j \).

(2) Let \(J \) and \(J' \) be two left ideals of the algebra \(W \). Suppose that \(J \subseteq J' \) and
\(J = J\). Then \(J\) coincides with \(J\).

The proof is straightforward.

Proposition 4.3. We have the following decomposition of the left ideal \(I'(\chi_0)\):

\[
I'(\chi_0) = \bigcap_I I'(\Gamma, \chi_0).
\]

Proof. Clearly \(I'(\chi_0)\) is contained in \(\bigcap_I I'(\Gamma, \chi_0)\). We thus have \(I'(\chi_0) = (\bigcap_I I'(\Gamma, \chi_0))^{-1} \subseteq \bigcap_I I'(\Gamma, \chi_0)^{-1}\). By Proposition 4.1 and Lemma 4.2 (1), we see that \((I'(\chi_0))^{-1} = \bigcap_I (I'(\Gamma, \chi_0))^{-1}\) in \(W\). We thus conclude that \(I'(\chi_0) = \bigcap_I I'(\Gamma, \chi_0)\) from Lemma 4.2 (2).

We denote by \(W[s]\) the noncommutative ring \(C[s_1, \ldots, s_n] \otimes C W\), where each \(s_i\) is an indeterminate central element. Let \(I\) be the left ideal of \(W[s]\) generated by \(\sum_{j=1}^N x_i \beta_j - s_i^2 (i = 1, \ldots, n)\) and \(\square_a (a \in L)\). We denote by \(M[s]\) the quotient \(W[s]/I\). Let \(I(\chi_0)\) be the left ideal of \(W[s]\) generated by \(I\) and \(D^{\chi_0}\), and \(I(\Gamma, \chi_0)\) the one generated by \(I\) and all \(\prod b_{j \geq 0} D_{j}^{b_{j}}\) such that \(\sum_{b_{j \geq 0}} b_{j} F_{j}(\chi) \geq F_{j}(\chi_0)\). To \(P = \sum_{c e W[s]}, \text{where } P e W\) and \(c = (c_1, \ldots, c_n) \in (Z_{>0})^n\) is a multi-index, we associate the element \(P' : = \sum_{c} P(\sum_{j=1}^N x_i \beta_j)^{c_1} \cdots (\sum_{j=1}^N x_i \beta_j)^{c_n} e W\).

Proposition 4.4. We have the following decomposition of the left ideal \(I(\chi_0)\):

\[
I(\chi_0) = \bigcap_I I(\Gamma, \chi_0).
\]

Proof. Clearly \(I(\chi_0)\) is contained in \(\bigcap_I I(\Gamma, \chi_0)\). Suppose that \(P\) belongs to \(\bigcap_I I(\Gamma, \chi_0)\). Since we have \([\sum_{j=1}^N x_i \beta_j \prod b_{j \geq 0} D_{j}^{b_{j}}] = (-\sum_{a_{j \geq 0}^r a_{j} \beta_{j}) \prod b_{j \geq 0} D_{j}^{b_{j}}\) and \([\sum_{j=1}^N x_i \beta_j \square a] = (-\sum_{a_{j \geq 0}^r a_{j} \beta_{j}) \square a, P e I(\Gamma, \chi_0)\) implies that \(P' e I'(\Gamma, \chi_0)\) for any \(\Gamma\). We thus see that \(P'\) belongs to \(I'(\chi_0)\) and accordingly \(P\) to \(I(\chi_0)\).

5. \(b\)-functions. Let \(B(\chi_0)\) be the kernel of the natural morphism \(C[s] \rightarrow W[s]/I(\chi_0)\). We call a nonzero element of \(B(\chi_0)\) a \(b\)-function of \(M[s]\) with respect to \(\chi_0\).

Proposition 5.1. For a polynomial \(b(s) e B(\chi_0)\) there exists an operator \(Q e W\) such that \(b(s) = QD^{\chi_0}\) in \(M[s]\).

The proof is clear. In the situation of Proposition 5.1, we have \(b(x) = QD^{\chi_0}\) in \(M_\alpha\) for any \(\alpha \in C^n\).

Lemma 5.2. For \(d, e \in Z_{\geq 0}\) and any \(1 \leq j \leq N\), we have in \(W\)

\[
D_j^d v_j = \sum_{k=0}^{\min(d, e)} \binom{d}{k} \binom{k-1}{j-1} (e-r)^j D_j^{d-k},
\]

where \(v_j = a_{j, 0}^\alpha\).
and

\[\sum_{k=0}^{\min(d,e)} \binom{d}{k} \left(\prod_{r=0}^{k-1} (e-r) \right) \left(\prod_{q=0}^{e-k-1} (\theta_j-q) \right) = \prod_{r=0}^{e-1} (\theta_j+d-r). \]

The proof is omitted.

Proposition 5.3. Let \(d_1, \ldots, d_N \in \mathbb{Z}_{\geq 0} \), \(Q \in W \), and \(P \in C[\theta_1, \ldots, \theta_N] \). Suppose that we have in \(M[s] \)

\[QD_1^{d_1} \cdots D_N^{d_N} = P(\theta_1, \ldots, \theta_N). \]

Then we have in \(M[s] \)

\[D_1^{d_1} \cdots D_N^{d_N} Q = P(\theta_1 + d_1, \ldots, \theta_N + d_N). \]

Proof. Let \(e_1, \ldots, e_{2N} \in \mathbb{Z}_{\geq 0} \) satisfy \(\sum_{j=1}^{N} e_j = \sum_{j=1}^{N} (e_{N+j} + d_j) \). Then we have in \(M[s] \)

\[v_1^{e_1} \cdots v_N^{e_N} D_1^{e_1} \cdots D_N^{e_N} = \prod_{j=1}^{N} \prod_{r_j=0}^{e_j-1} (\theta_j + d_j - r_j). \]

By Lemma 5.2, we see in \(M[s] \)

\[D_1^{d_1} \cdots D_N^{d_N} v_1^{e_1} \cdots v_N^{e_N} D_1^{e_1} \cdots D_N^{e_N} = \prod_{j=1}^{N} \prod_{r_j=0}^{e_j-1} (\theta_j + d_j - r_j). \]

Since \(Q \) is a linear sum of terms of the form \(v_1^{e_1} \cdots v_N^{e_N} D_1^{e_1} \cdots D_N^{e_N} \) with the relation \(\sum_{j=1}^{N} e_j = \sum_{j=1}^{N} (e_{N+j} + d_j) \), we reach the assertion.

Corollary 5.4. Suppose that there exists a polynomial \(b(s) \in B(\chi_0) \) such that \(b(\alpha) \neq 0 \). Then the morphism \(f_{\chi_0} : M_\alpha \to M_\alpha \) is isomorphic.

Proof. Let \(\chi_0 = \sum_{j=1}^{N} d_j \chi_j \) with \(d_j \in \mathbb{Z}_{\geq 0} \) \((j = 1, \ldots, N)\). In this case, there exists an operator \(Q \in W \) such that

\[QD^{\chi_0} = QD_1^{d_1} \cdots D_N^{d_N} = b(s) = b(s_1, \ldots, s_n) = b\left(\sum_{j=1}^{N} \chi_1 \theta_j, \ldots, \sum_{j=1}^{N} \chi_N \theta_j \right) \]

is \(M[s] \). By Proposition 5.3, we see that

\[D_1^{d_1} \cdots D_N^{d_N} Q = b\left(\sum_{j=1}^{N} \chi_1 \theta_j + d_j, \ldots, \sum_{j=1}^{N} \chi_N \theta_j + d_j \right) = b(s + \chi_0) \]

in \(M[s] \). Hence we obtain \(QD^{\chi_0} = b(\alpha) \neq 0 \) in \(M_\alpha \), and \(D^{\chi_0} Q = b(\alpha - \chi_0 + \chi_0) = b(\alpha) \neq 0 \) in \(M_\alpha \). Therefore the morphism \(f_{\chi_0} \) is bijective.

Let \(B(\Gamma, \chi_0) \) be the kernel of the natural morphism \(C[s] \to W[s]/I(\Gamma, \chi_0) \). Since we have \(I(\chi_0) = \bigcap_{\Gamma} I(\Gamma, \chi_0) \), we obtain:
LEMMA 5.5.

\[B(\chi_0) = \bigcap_\Gamma B(\Gamma, \chi_0) . \]

We remark that \(B(\Gamma, \chi_0) = C_\phi \) for \(\chi_0 \in \mathbb{Z}_{\geq 0} \). Suppose that \(\chi_0 \) does not belong to \(\mathbb{Z}_{\geq 0} \). For \(\chi_0 \in \mathbb{Z}_{\geq 0} \), we denote by \(\Theta(\Gamma, \chi_0) \) the ideal of \(C_\phi \) generated by all \(\prod_{j > 0} \theta_j (\theta_j - 1) \cdots (\theta_j - b_j + 1) \) for \(\sum_{j > 0} b_j F_\Gamma(\chi_j) \geq m \). Clearly \(\Theta(\Gamma, F_\Gamma(\chi_0)) \) is contained in \(I(\Gamma, \chi_0) \). For \(\chi_0 \notin \mathbb{Z}_{\geq 0} \), there exists an integer \(c > 0 \) such that \(\chi_j F_\Gamma(\chi_j) \geq m \), and thus \(\theta_j (\theta_j - 1) \cdots (\theta_j - c_j + 1) \) belongs to \(\Theta(\Gamma, \chi_0) \). Consequently, we see that the zero set \(V(\Theta(\Gamma, \chi_0)) \) is a finite set contained in \(\mathbb{Z}_{\geq 0} \), and the multiplicity of \(C_\phi \) at each point of \(V(\Theta(\Gamma, \chi_0)) \) is one. Therefore \(\Theta(\Gamma, \chi_0) \) is a radical ideal. We define a finite subset \(\mathcal{Z}(\Gamma, \chi_0) \) of \(\mathbb{Z}_{\geq 0} \) by

\[\mathcal{Z}(\Gamma, \chi_0) := \left\{ \sum_{j > 0} v_j F_\Gamma(\chi_j) \in \mathbb{Z}_{\geq 0} \mid v \in V(\Theta(\Gamma, \chi_0)) \right\} . \]

PROPOSITION 5.6. The polynomial \(b(\Gamma, \chi_0) \in C_\phi \) defined by

\[b(\Gamma, \chi_0) := \prod_{v \in \mathcal{Z}(\Gamma, \chi_0)} (F_\Gamma(s) - z) \]

belongs to \(B(\Gamma, \chi_0) \).

PROOF. We denote by \(b(\theta) \) the polynomial \(\prod_{v \in \mathcal{Z}(\Gamma, \chi_0)} (F_\Gamma(\chi_0) \theta - z) \) in \(C_\phi \). Then we see that \(b(v) = 0 \) for all \(v \in V(\Theta(\Gamma, F_\Gamma(\chi_0))) \). Since \(\Theta(\Gamma, F_\Gamma(\chi_0)) \) is a radical ideal, the polynomial \(b(\theta) \) belongs to \(\Theta(\Gamma, F_\Gamma(\chi_0)) \), in particular, to \(I(\Gamma, \chi_0) \). Since \(b(\Gamma, \chi_0) = b(\theta) \) in \(M_\phi \), we conclude that \(b(\Gamma, \chi_0) \in B(\Gamma, \chi_0) \).

COROLLARY 5.7. We define a polynomial \(b_{\chi_0} \in C_\phi \) by \(b_{\chi_0} := \prod_\Gamma b(\Gamma, \chi_0) \). Then the polynomial \(b_{\chi_0} \) belongs to \(B(\chi_0) \).

The proof is clear.

COROLLARY 5.8. Let \(j_0 \in \{ 1, \ldots, N \} \). Assume that for any \(a \in L \) and any face \(\Gamma \) of codimension one not containing \(j_0 \), we have either \(\sum_{a_j > 0} a_j F_\Gamma(\chi_j) = 0 \) or \(\sum_{a_j > 0} a_j F_\Gamma(\chi_j) \geq F_\Gamma(\chi_{j_0}) \). Then the morphism \(f_{\chi_{j_0}} : M_{\chi_{j_0}} \to M_{\chi} \) is isomorphic if and only if \(b_{\chi_{j_0}}(a) \neq 0 \).

PROOF. Suppose that \(b_{\chi_{j_0}}(a) = 0 \). Then there exists a face \(\Gamma \) of \(Q \) of codimension one not containing \(j_0 \) with \(b(\Gamma, \chi_{j_0})(a) = 0 \). Hence there exists \(v \in Z(\Gamma, F_\Gamma(\chi_{j_0})) \) such that \(F_\Gamma(\chi_{j_0}) = v \). In other words, there exists \(v = (v_j)_{j \in I(\Gamma)} \in V(\Theta(\Gamma, F_\Gamma(\chi_{j_0}))) \) such that \(F_\Gamma(\chi_{j_0}) = \sum_{j \in I(\Gamma)} v_j F_\Gamma(\chi_j) \). Define \(v' = (v'_j)_{j \in I(\Gamma)} = (v'_j)_{j \in I(\Gamma)} \) for \(j \notin I(\Gamma) \). Under the assumption, the condition \(v \in V(\Theta(\Gamma, F_\Gamma(\chi_{j_0}))) \) implies that \(v' \) is a quotient point associated to \(I(\Gamma) \). By Theorem 2.3, the morphism \(f_{\chi_{j_0}} \) is not isomorphic.

When \(b_{\chi_{j_0}}(a) \neq 0 \), the morphism \(f_{\chi_{j_0}} \) is isomorphic by Corollary 5.4 and Corol-
6. The set \(Z(\Gamma, m) \).

Lemma 6.1. The set \(Z(\Gamma, m) \) is contained in \(\{0, 1, \ldots, m-1\} \).

Proof. We use induction on \(m \). When \(m = 1 \), it is clear that \(\Theta(\Gamma, 1) \) contains \(\theta_i \) for any \(i \in I(\Gamma) \). We thus see that \(V(\Theta(\Gamma, 1)) = \{(0,\ldots,0)\} \) and \(Z(\Gamma, 1) = \{0\} \).

Let \(v^0 \in V(\Theta(\Gamma, m)) \) belong to \(\Theta(\Gamma, m) \). Suppose that \(v^0 \) is not in \(\Theta(\Gamma, m) \). We define \(v' \in V(\Theta(\Gamma, m)) \) by \(v'_i = 0 \) and \(v'_i = v_i \) for all \(i \in I(\Gamma) \). If \(F_\Gamma(\sum_{i \in I(\Gamma)} v^0_i - v'_i) \geq m - v^0_i F_\Gamma(\chi_i) \), then \(F_\Gamma(\sum_{i \in I(\Gamma)} v^0_i - v'_i) \geq m \), and thus \(\theta_{i_0} (\theta_{i_0} - 1) \cdot \ldots \cdot (\theta_{i_0} - v^0_{i_0} + 1) \times \prod_{i \in I(\Gamma) - \{i_0\}} \theta_i (\theta_i - 1) \cdot \ldots \cdot (\theta_i - b_i + 1) \) belongs to \(\Theta(\Gamma, m) \). Hence we obtain \(\prod_{i \in I(\Gamma) - \{i_0\}} v'_i (v'_i - 1) \cdot \ldots \cdot (v'_i - b_i + 1) = 0 \). We thus see that \(v' \in V(\Theta(\Gamma, m)) \) belongs to \(\Theta(\Gamma, m-v^0_i F_\Gamma(\chi_i)) \). By the induction hypothesis, \(\sum_{i \neq i_0} v'_i F_\Gamma(\chi_i) \) belongs to \(\{(0,\ldots,0), (v^0_i F_\Gamma(\chi_i), v^0_i F_\Gamma(\chi_i) + 1,\ldots, m-1)\} \). Therefore the sum \(\sum_{i \neq i_0} v'_i F_\Gamma(\chi_i) \) belongs to \(\{(0,\ldots,0), (v^0_i F_\Gamma(\chi_i), v^0_i F_\Gamma(\chi_i) + 1,\ldots, m-1)\} \).

Lemma 6.2. Fix a face \(\Gamma \) of codimension one. Then there exists \(k \in \{1, \ldots, N\} \) such that \(F_\Gamma(\chi_k) = 1 \).

Proof. Since the greatest common divisor of the coefficients of \(F_\Gamma \) is one, there exists \(\chi \in \mathbb{Z}^n \) such that \(F_\Gamma(\chi) = 1 \). If necessary, translate \(\chi \) by an element of \(\mathbb{Z}^n \) such that \(F_\Gamma(\chi) = 1 \). By the normality assumption, we conclude that there exists \(k \in \{1, \ldots, N\} \) such that \(F_\Gamma(\chi_k) = 1 \).

Lemma 6.3. \(Z(\Gamma, m) = \{0, 1, \ldots, m-1\} \).

Proof. Suppose that \(F_\Gamma(\chi_k) = 1 \) and \(j \in \{0, 1, \ldots, m-1\} \). Define \(v \in (\mathbb{Z}^n)_{1(I)} \) by \(v_k = j \) and \(v_i = 0 \) for all \(i \in I(\Gamma) - \{k\} \). Then \(v \in V(\Theta(\Gamma, m)) \). Hence \(j \) belongs to the set \(Z(\Gamma, m) \).

Theorem 6.4. The ideal \(B(\chi_0) \) is singly generated by the polynomial \(b_{\chi_0} \).

Proof. Let \(\chi \in \mathbb{C}^n \) satisfy \(F_\Gamma(\chi) \notin \mathbb{Z}^n \) for any face \(\Gamma' \) of codimension one different from \(\Gamma \). Suppose that \(F_\Gamma(\chi) = 1 \). Since \(F_\Gamma(\chi_0 - F_\Gamma(\chi_0) \chi_k) = 0 \), we see that \(\chi_0 - F_\Gamma(\chi_0) \chi_k \) belongs to \(Z \Gamma \). Hence the morphism \(f_{\chi_0} : M_\chi - \chi_0 \rightarrow M_\chi \) is isomorphic if and only if \(F_\Gamma(\chi) \neq 0, 1, \ldots, F_\Gamma(\chi_0) - 1 \).

Remark (cf. [S2]). When we are given an example explicitly, we can calculate not only the \(b \)-functions but also operators \(Q \) in the notation of Proposition 5.1. This calculation gives us the contiguity relations which generalize the relations of the following type:
(c-a)F(a-1, b; c; x) = \left\{ x(1-x) \frac{d}{dx} - bx + c - a \right\}F(a, b; c; x),

where F is the classical hypergeometric function.

7. Examples. All of the following examples satisfy the normality assumption (see [S1]). We denote \(f_j \) (resp. \(b_j \)) instead of \(f_{x_j} \) (resp. \(b_{x_j} \)).

EXAMPLE 1. Let \(V = C^{2p} \), and

\[
M_{ab} = W \left(\sum_{i=1}^{p} W(\theta_i + \theta_{2p} - \alpha_i) + \sum_{i=1}^{p-1} W(\theta_{p+i} - \theta_{2p} - \beta_i) \right).
\]

(1) Let \(1 \leq i \leq p \). Then \(b_i(\alpha, \beta) = \alpha_i(\alpha_i + \beta_1)(\alpha_i + \beta_2) \cdots (\alpha_i + \beta_{p-1}) \), and \(f_i \) is isomorphic if and only if \(\alpha_i \neq 0, \alpha_i + \beta_1 \neq 0, \ldots, \alpha_i + \beta_{p-1} \neq 0 \).

(2) Let \(1 \leq i \leq p-1 \). Then \(b_{p+i}(\alpha, \beta) = (\alpha_1 + \beta_i)(\alpha_2 + \beta_i) \cdots (\alpha_p + \beta_i) \), and \(f_{p+i} \) is isomorphic if and only if \(\alpha_1 + \beta_i \neq 0, \ldots, \alpha_p + \beta_i \neq 0 \).

(3) \(b_{2p}(\alpha, \beta) = \alpha_1 \alpha_2 \cdots \alpha_p \) and \(f_{2p} \) is isomorphic if and only if \(\alpha_1 \neq 0, \ldots, \alpha_p \neq 0 \).

EXAMPLE 2. Let \(V = C^{(k+1)l} = \{(v_i) | 1 \leq i \leq l, 0 \leq j \leq k \} \) and

\[
M_{ab} = W \left(\sum_{j=1}^{k} \left(\sum_{i=1}^{l} \theta_{ij} - \alpha_i \right) + \sum_{i=1}^{l} W(\sum_{j=0}^{k} \theta_{ij} - \beta_i) + \sum_{i \neq j, j \neq j'} W(D_{ij}D_{ij'} - D_{ij}D_{ij'}) \right).
\]

We put \(\alpha = \sum_{j=1}^{k} \beta_i - \sum_{j=1}^{k} \alpha_i \). Then \(b_i(\alpha, \beta) = \alpha_i \beta_i \), and \(f_{ij} \) is isomorphic if and only if \(\alpha_i \neq 0 \) and \(\beta_i \neq 0 \).

EXAMPLE 3. Let \(V = C^{n(n-1)/2} = \{(v_{ij}) | 1 \leq i < j \leq n \} \) (\(n \geq 4 \)), and

\[
M_{a} = W \left(\sum_{k=1}^{n} W(\sum_{i=1}^{k-1} \theta_{ik} + \sum_{j=k+1}^{n} \theta_{kj} - \alpha_k) + \sum_{1 \leq i < j < k \leq n} W(D_{ij}D_{kl} - D_{ik}D_{jl}) \right)
+ \sum_{1 \leq i < j < k \leq n} W(D_{ij}D_{jl} - D_{ij}D_{kj}) + \sum_{1 \leq i < j < k \leq n} W(D_{ij}D_{kl} - D_{ik}D_{jk}).
\]

Then \(2^{n-2} : b_{s}(\alpha) = \alpha_{s} \alpha_{t} \prod_{k \neq s, t} (\sum_{i \neq k} \alpha_i - \alpha_k) \). \(f_{st} \) is isomorphic if and only if \(\alpha_s \neq 0, \alpha_t \neq 0 \) and \(\sum_{i \neq k} \alpha_i - \alpha_k \neq 0 \) for any \(k \neq s, t \).

EXAMPLE 4. Let \(V = C^{n(n+1)/2} = \{(v_{ij}) | 1 \leq i \leq j \leq n \} \) (\(n \geq 2 \)), and

\[
M_{a} = W \left(\sum_{k=1}^{n} W(\sum_{i=1}^{k-1} \theta_{ik} + \sum_{j=k+1}^{n} \theta_{kj} - \alpha_k) + \sum_{1 \leq i < j < k \leq n} W(D_{ij}D_{kk} - D_{ik}D_{jk}) \right)
+ \sum_{1 \leq i < j < k \leq n} W(D_{ij}D_{kk} - D_{ik}D_{jk}) + \sum_{1 \leq i < j < k \leq n} W(D_{ij}D_{kk} - D_{ik}D_{jk}).
\]
\[
\sum_{1 \leq i < j < k \leq n} W(D_{ij}D_{jk} - D_{ik}) + \sum_{1 \leq i < k < l \leq n} W(D_{ik}D_{jl} - D_{jk}D_{il}).
\]

(1) \(b_{ss}(x) = \alpha_s(x_{s-1})\), and \(f_{ss}\) is isomorphic if \(\alpha_x \neq 0, 1\), and not isomorphic if \(\alpha_s = 0\).

(2) \(b_{ss}(x) = \alpha_s \alpha_t\) for \(s < t\), and \(f_{ss}\) is isomorphic if and only if \(\alpha_s, \alpha_t \neq 0\).

Example 5. Let \(V = C^{2n-2} = \{(v_i) | i = \pm 1, \pm 2, \ldots, \pm (n-1)\}\) (\(n \geq 4\)) and

\[
M_\alpha = W\left(\sum_{i=1}^{n-1} W(\theta_i - \theta_{i-1} - \alpha) + W\left(\sum_{i=1}^{n-1} (\theta_i + \theta_{i-1} - \alpha_n) + W(D_{i}D_{i-1} - D_{j}D_{j-1})\right)\right).
\]

For a subset \(I\) of \(\{1, 2, \ldots, n-1\}\), we denote by \(I'\) the complement of \(I\).

(1) \(2^{n-2}. b_0(\alpha) = \prod_{I \neq I'}(\alpha_n + \sum_{i \in I'} \alpha_i - \sum_{i \in I} \alpha_i)\) for \(s > 0, f_s\) (\(s > 0\)) is isomorphic if and only if \(\alpha_n + \sum_{i \in I} \alpha_i - \sum_{i \in I'} \alpha_i \neq 0\) for any \(I \neq I'\).

(2) \(2^{n-2}. b_{-s}(\alpha) = \prod_{I \neq I'}(\alpha_n + \sum_{i \in I'} \alpha_i - \sum_{i \in I} \alpha_i)\) for \(s > 0, f_{-s}\) (\(s > 0\)) is isomorphic if and only if \(\alpha_n + \sum_{i \in I} \alpha_i - \sum_{i \in I'} \alpha_i \neq 0\) for any \(I \neq I'\).

Example 6. Let \(V = C^{2n-1} = \{(v_i) | -(n-1) \leq i \leq -(n-1)\}\) (\(n \geq 2\)) and

\[
M_\alpha = W\left(\sum_{i=1}^{n-1} W(\theta_i - \theta_{i-1} - \alpha) + W\left(\sum_{i=1}^{-(n-1)} \theta_i - \alpha_n + \sum_{i=1}^{n-1} W(D_{i}D_{i-1} - D_{j}D_{j-1})\right)\right).
\]

As in Example 5, \(I'\) denotes the complement of \(I\) in \(\{1, 2, \ldots, n-1\}\).

(1) \(b_0(\alpha) = \prod_{I} (\alpha_n + \sum_{i \in I} \alpha_i - \sum_{i \in I'} \alpha_i)\), and \(f_0\) is isomorphic if and only if \(\alpha_n + \sum_{i \in I} \alpha_i - \sum_{i \in I'} \alpha_i \neq 0\) for any subset \(I\) of \(\{1, \ldots, n-1\}\).

(2) \(b_0(\alpha) = \prod_{I \neq I'}(\alpha_n + \sum_{i \in I'} \alpha_i - \sum_{i \in I} \alpha_i)\) for \(s > 0, f_s\) (\(s > 0\)) is isomorphic if and only if \(\alpha_n + \sum_{i \in I} \alpha_i - \sum_{i \in I'} \alpha_i \neq 0\) for any \(I \neq I'\).

(3) \(b_{-s}(\alpha) = \prod_{I \neq I'}(\alpha_n + \sum_{i \in I'} \alpha_i - \sum_{i \in I} \alpha_i)\) for \(s > 0, f_{-s}\) (\(s > 0\)) is isomorphic if and only if \(\alpha_n + \sum_{i \in I} \alpha_i - \sum_{i \in I'} \alpha_i \neq 0\) for any \(I \neq I'\).

References

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
HOKKAIDO UNIVERSITY
SAPPORO 060
JAPAN