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Abstract. A Steinberg group St(4, R) is defined by the data of a ring R and a root
system 4. This paper aims to study the relationship between the group-theoretic structure
of a Steinberg group and the associated ring. We introduce graded groups which are
groups satisfying some axioms that are basic properties of St(4, R), and then show that
these properties suffice to determine the structures of graded groups, by constructing a
ring out of a graded group. Also the central extensions of graded groups are studied.

Introduction. In this paper, the groups graded by finite root systems 4, or 4-graded
groups, are introduced. These are analogues of Lie algebras graded by finite root systems
which are studied by Berman and Moody [1]. The background is the structures of
Steinberg groups and Chevalley groups. The connection among A4-graded groups,
Steinberg groups and central extensions can be seen throughout the article.

Assume that our rings are always associative and with the identity element denoted
by 1. For each /> 1, all (/+1) x (/+ 1) invertible matrices over R form the general linear
group GL,, ;(R). Let E;; be the (i, j) matrix unit of GL,,,(R). Then the elementary group
E,,1(R), the subgroup of GL,, ;(R) generated by I+rE;; for re R and i#j, models the
definition of the Steinberg group St(4,, R), where 4, is a type of root systems. Both
St(4;, R) and E,, can be assigned a grading by the root system of Type 4, in terms
of the group commutators. Now the question is: without given a ring in advance, would
the graded property will determine the structure of such a group? This motivates our
definition for a A-graded group (cf. Definition (2.1)), where we assume that the root
system 4 is always one of the types 4,, />3, D, />4 and E,, [=6, 7, 8, unless otherwise
stated. We have:

(2.3) THEOREM. Let G be a group graded by A. Then there is an associative ring
R with 1, such that G is a homomorphic image of the Steinberg group St(4, R). Moreover,
R is commutative if A is of Type D, or E,.

Note that here all associative rings fit in here. For the proof, the critical point is
to define the ring R out of such a group. The main theme of the proof is set in [1] on
the Lie algebra level.

Then for each 4-graded group, we may attach a ring R. A 4-homomorphism of
A-graded groups is naturally understood to be a group homomorphism which preserves
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the A-grading. So in the category of A-graded groups, the morphisms involved are
A-homomorphisms.
Considering the central extensions of groups, we have:

(3.2) THEOREM. Let 4 be of Type A;, 1> 4, E, 1=6,7,8 or D, 1>5. Any covering
(U, ¥) of a A-graded group G is also A-graded and  is a A-homomorphism. Moreover,
there is a surjective homomorphism W from St(4, R) onto U such that

St(4, R) 2> U

N/

G

is commutative, where R is the ring attached to G.

(3.3) THEOREM. Let A be of Type A,, 1>4; D,, [>5; or E,, |=6,7,8. Let G and
G' be perfect and G A-graded. If there is a group which is a covering for both G and G',
then G' is also A-graded in such a way that G and G’ are A-homomorphic images of the
same Steinberg group St(4, R).

The paper is organized as follows. In §1, we present some preliminary notation
and define a set © whose elements act as a model for graded groups. Then we show
that for any element (G, r/;)e S, the Weyl group of 4 is a subquotient group G. In §2,
we define groups graded by finite root systems and prove Theorem (2.3). We show
Theorems (3.2) and (3.3) in §3.

CONVENTIONS. In a group G, write a’:=bab™! and the commutator (a, b):=
aba™'b™', and denote by Int b the conjugation by b, i.e. Intb.a:=a°. Write H<G if
H is a subgroup of G. - --) means a (sub)group generated by - - - .

The following formulas on commutators will be used later on.

0.1) (a,b)=(0ha)1
0.2) (ab, )=(b, (4, c)
(a, bc)=(a, b)(a, c)®
0.3) (ab, cd)=(b, ¢)(b, d)*(a, c)(a, d)°
0.4) (a, (b, O)(c, (a, b)), (¢, a) =1
0.5 (a,(b,c)=((a,b),c), if(ac)=1, ((a b), (b,c)=1, and ((b, c), ¢)=1.

ACKNOWLEDGEMENT. The author wishes to express his gratitude to his supervisor
Professor Robert V. Moody for directing him to the problem, for his insightful guidance,
and for his continuous support. Special thanks go to Professor S. Berman, the co-author
of the preprint [1], and to Professor A. Pianzola, the co-author of the book [6]. Also
comments made by Professor V. Deodhar are very much appreciated.

1. Preliminaries. In §1 and §2, we assume that A is a finite indecomposable
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simply-laced root system of rank />3, i.e. 4 is of Type A4, [>3, D, [>4, Eg, E,, or
Eg. Let Q be the root lattice spanned by A. The Weyl group invariant bilinear form
on @, so normalized that (oc|a)=2 for all ae 4, will be denoted by (- | +). This form is
positive definite. If a, fe 4, then («|B) takes the values +2, +1 and 0, respectively, if
and only if =+, aFfe4 and a+ ¢ 4u{0}, respectively. For each root a4, the
reflection in « is the linear map r,: 1> 41— (4| @)« on Q. Then the Weyl group, denoted
by W, is generated by all the reflections r,. In particular, W is generated by all the
simple reflections r,, where IT:={a,, ..., a;} is a base for the root system 4.

Let g be the simple Lie algebra over thé complex field C associated with 4 and
a Cartan subalgebra of g. Then

g=Dg",
aeQ

where g*={xeg|[h, x]=a(h)x, for all heh=g°} and g*+#(0) if and only if xe 4 u{0}.

Let {E, H;:aed, i=1,...,1} be a Chevalley basis of g (see [8, §1]). If
a, B, a+ e 4, then [E,, Egfl=c,4E, ., for some ¢, e {+1}. From the skew-symmetry
of the Lie bracket [-,-] and the application of the canonical anti-involution of g, we
have formulas

(1.1) Cap= —Cpa>
(12) Cop=—Crp-

We will see and use more formulas about c, 4’s later on. We fix a choice of a Chevalley
basis throughout this paper. In the case 4=A4;, a Chevalley basis is chosen as in the
following example.

(1.3) ExaMpLE. The description of the root system 4 of Type 4, is
{e;—g;| 1<i, j<I+1},

where {¢;,..., &4} is an orthonormal basis of R'*'. Let II={a;: i=1,...,/} be a
base for A4 with «;:=¢;—¢;,;. The Weyl group is the symmetric group S;,;. The
corresponding simple Lie algebra g is sl;, ;(C). The set {E;, i#j; H/=E;—E; 1 ;+1,
i=1,..., 1} is a Chevalley basis of s, ;(C) where E;; are the standard matrix units.

Now we give Definition (1.4) and Lemma (1.5) which are taken from [1].

(1.4) DEerFINITION.  An ordered pair (8, ) € 4 X 4 is an A,-pair if (8| y)= — 1. Thus
(B, y) is an A,-pair if and only if it is a base for an 4, subroot system of 4. Two A,-pairs
B, v), (B',y') are equivalent, and written (f, y)~(f’, y"), if there is an element w of the
Weyl group W of 4 such that f'=wp, y"=wy. The equivalence class of (f, y) is denoted
by [(B, y)]. Also an ordered triple («, B, y) is called an A45-triple, if {a, f, y} forms a base
of an A, root system such that («|B)=(B|y)= —1, and («|y)=0. We define an ordered
quadruple (a, B, v, 8) to be A,-quadruple in a similar way.
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(1.5) LemmMma. (1) IfAisof Type D, or E, then there is only one equivalence class
of A,-pairs.

(i) If A is of Type A, there are exactly two equivalence classes of A,-pairs, which
are (cf. Example (1.3))

[y, 22)]={(e:—¢;, &5— &) | i,j, k distinct} ,
[(a, )] ={(e:— ¢}, & —&2) I i,j, k distinct} .
We call [(oy, o,)] the class of positive A,-pairs. Furthermore if (B, y) is an A,-pair then

(ﬂ’ 'y)~(—y, _ﬂ) s (ﬂ, )’)*(% ﬂ)
(iii) In all cases if (B, ) and (y, &) are A,-pairs with (8 | 0)=0 then

B, )~ )~ (B, y+0)~(B+7,90).
The unique equivalence class of 4,-pair for 4 of Types D,, E, are said to be positive.

(1.6) DeErINITION. Assume R is an associative ring with the identity 1. In the
cases where the root system 4 is of Type D, or E;, R is further assumed to be commuta-
tive. The Steinberg group is the abstract group with the following presentation:

generators: X,(r); aed, reR.

relations:

(RI) X, (NX(8) =X, (r+5),
R (5,0) »e,,(s))={ L it fedui0) . .
Xyr p(Caprs) » if (a, B) is a positive A4,-pair ,
where c, ; is given by a fixed Chevalley basis.

(1.7) ReMarks. (i) The above definition is the same as that in [4], [5], [7],
or [8].

(i) Although ¢, ; depends on the choice of a Chevalley basis, the Steinberg groups
do not (up to isomorphism).

For ae 4 and ue R™ (the units group of R), let

ﬁa(u) = ')/(‘:at(u)'>€j —a( —u l)ﬁa(u) ’ i‘a(u) = ﬁa(u)ﬁa( - 1) .

Then from [4], [5], [7] and [8], we have
(R3) A ()% () ™" =%, gu™®1r),
(R4) AWy )~ =5, 401 n ) =n_,(—u™),
(RS) 7, (hy(0)i, () ~* =h, ylnu™C1P0)h, pqu=P19) 1,
(R6)  hy(u)y(r)h () ™" =%, 1r),
R7) h(uig@hu) ™  =rpu® D) ; b )~ =h_,(u),
(R8) 1, ()hy(0)h, (1) * =Py )y (u®19) 1,
where u, ve R* ; re R and the elements in R appearing commute with each other, and
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where o, fe 4 and n=#(a, f) is such that

Ca,1p 5 if (“'.B)=¢1,
ne, f)=1 -1, if («|p)==2,
1, it (|p)=0.

The following are important subgroups of St(4, R).
N:={i,(u)|ue R, aed)
H:=(iza(u)|ueRx, aed)
1 =CE0|re R

i=y*(4,):={x*|aed.) for a positive system 4.

H

X

Let K be any commutative ring. We consider the Steinberg group St(4, K) in the
rest of this section.

Take a pair (G, ¢) where ¢ is a surjective homomorphism from St(4, K) onto a
group G and ¢ [x+ is one-to-one for some positive system 4 ,. Let S=&(4, K) be the
collection of all such pairs.

For (G, ¢) € &, denote ¢(£,(a)), p(,w)), p(h1)), d(N), $(H) by x,(a), n,(w), h(u),
N, H, respectively. Denote G*=¢(x*), G* = ¢(x*). From (R3) and (R6), we have

(1.8) n (W) GPn(u) ™t =G |
(1.9) h(W)GPhy(u) 1 =G" .

(1.10) LemMA. Let (G, ¢p)eS. The restriction of ¢ to §* :=x (4 ,) relative to any
positive system A, is one-to-one.

Proor. By definition, there is a positive system 4, of 4 such that ¢ is one-to-one
on y* which corresponds to 4. Suppose 4. is another positive system of 4. We need
to show that ¢ is one-to-one on #* which corresponds to A, . Recall that there is an
element we W, such that w(4,)=A4, (cf. [3]). Take a preimage Aie N of w. Then
AxA~tej*, for any £e ™. Now the lemma follows from the fact that ¢(x)=1 if and

only if ¢p(AtA~ 1) =1. O

Recall that in the Steinberg group St(4, R), x*:=x"(4,) has a unique de-
composition y*=[],.,. ¥ for an arbitrarily chosen linear order on 4, and each
x* is isomorphic to the additive group (R, +) (cf. [4] and [8]). Then in the case R=K,
these facts can be passed onto G* for (G, ¢)eS. Since the Weyl group W of 4 is a
Coxeter group, the map

(1.11) r o i) H

defines a homomorphism from W onto N/H. Moreover this is an isomorphism. By
means of it we will identify these two groups.
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(1.12) Lemma. Let (G, )€ . If a#p, then G*nGF=1.

ProOF. Choose a positive system A4, for 4 for which « is simple. If fe 4, then

we are done by Lemma (1.10). If fe 4_\{—a}, then «, f are in the positive system
r(—A4,) and we are done too. It remains to show G*nG~*=1. Since x* is isomorphic
to the additive group (R, +), we have x,(r)=1 if and only if r=0. Suppose x,(r) = x _ ,(s).
Take ye 4 with (« [ y)=—1. Then 1=(x_,(s), x,(1)) = (x,(r), x,(1)) = X4 ,(c,,,7) by (R2),
and hence r=0, and so s=0. O

(1.13) LemMA. Let (G, ¢)e S, and we keep the above notation. Then H<1 N, and
N/H is isomorphic to the Weyl group W.

PrOOF. Since H<1 N, we have H<1 N. There is a homomorphism y : NJH—N/H
which factors through the composite map N 3N—>N/H. Clearly, ¥ is surjective and
Y(h(rH)=ny(r)H. View § as the map from W onto N/H. Suppose y(w)=1=H for
we W. Express w=rgrs, - rp_as a product of reflections. Then (7, (1)7,,(1) - -
ﬁ,,k(l)ﬁ)=T. So, h:=ng; (ng,(1) - - - ng(1)e H. And by (1.9) and (1.8),

G*=hGh™ ' =ng (Dng,(1) - - ng (1)G*(ng,(Nng,(1) - - - ng (1))~ =G

So G"*=G*, for each o€ 4. Then wa=0a by the above lemma. Then w=1, hence ¥ is
an injection and an isomorphism. |

In the Steinberg group St(4, K), let
(1.14) No:={A,1)|aed),
(1.15) Hy:=<h(—1)|aed)y.

(1.16) Lemma. Let (G, $)e @ and Ny:=¢d(No), Hy:=¢(H,). Then No/H,=
No/Hy=W.

Proor. H, and H, are normal subgroups of N, and N,, respectively, by (R5).
As in (1.11), r - A (u)Hy > n(u)H, defines a homomorphism from W onto Ny/H,. It
is an isomorphism by the same proof as that of Lemma (1.13). O

(1.17) CoroLLARY. H,=N,nH.
PrROOF. By the second isomorphism theorem of groups, wé have
No/(Non HY=N,A/H=N/H=W=~N,/H, .
Since Hy<= N,n H, we have H,=N,nH. d
2. Groups graded by finite root systems. Let K be a commutative ring. We

maintain all previous notation and terminology for ©=&(4, K) and elements in &
(usually with overdots).
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(2.1) DErFINITION. A group G is said to be graded by a (finite) root system 4 (of
Type A,, [>3; D, [>4; or Eg, E,, Eg) or A-graded if there are subgroups G*, for all
@€ A and an element (G, q&) € € such that

(Grl) G=(G*|aed),

(Gr2) G*<G*°, for aed,

s p {1}, if a+p¢Au{0},

(Gr) (656 )g{ G0, if a+fed,

(Grd) G*nGP={1} if a#p,

(Gr5) n,(1)G’n (1)~ =G"*, for a, e 4 with («| )= —1,
where n,(1)= ¢(A,(1)) € G.

(2.2) ExampLE. Let R be an associative ring with the identity 1. When the root
system 4 is of Type D, or E,, assume further that R is commutative. Then St(4, R) and
the Chevalley group are 4-graded.

Our main result (see the restatement at the end of this section) is:

(2.3) THEOREM. Let G be a group graded by A. Then there is an associative ring
R with 1, containing K as a subring, such that G is a homomorphic image of the Steinberg
group St(4, R). Moreover, R is commutative if A is of Type D, or E,.

An outline of the proof is as follows. Fix a root ae 4. Then G* is abelian. Let
R=G?*, so R has an additive structure. For re R, write x,(r) to be the corresponding
element in G*. Elements x,(r) for other roots §, can be defined since G* and G* are
isomorphic as abelian groups. The multiplication in R comes from the commutator
relations (R2) and (Gr3). Such process will make {x,(r), f € 4, r e R} satisfy the relations
(R1) and (R2). Then (Grl) makes sure that G is a homomorphic image of St(4, R).

For each root « € 4, take a set 4* having the same cardinality as G*. Fix a bijective
map log, from G* onto A% By (Gr3), G* is abelian, thus 4* carries an additive abelian
group structure by making log, into an isomorphism. So, for x, ye G%, 0:=log, 1,
log, x +log, y:=log, xy. Let

1,:=log, x,(1),
where x,(1)=d(£,(1)) e G~

Set No=(Ny), Hy=p(H,) (see (1.13) and (1.14)). By Lemma (1.16), the map
n(u)Hy > r,, gives an isomorphism from N,/H, onto W. Let © be the composite map
from No—No/Hy— W.

(2.4) LeEMMA. Leta, feA. Then

(i) G=*1=(G* G, if (o p)=—1.

(ii) nGPn~'=G", where ne N, with n(n)y=we W.

(i) Ay (— Dxhy(— 1) 1=x"D" for xeGP.

ProoF. In this proof, (Gr3) is widely used. Suppose (oclﬁ)= —1, ie. a+pfe4d
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and xe G*. Since n,(1)=n_,(—1)=x_,(— Dx(Dx_,(—1), so by (Gr3),
XMW=y = x(x_ (= 1), (351, X))x(1), %) .

The right hand side belongs to G, ; by (Gr5). By (Gr4),

25 x(x_o(— 1), (x (), x))=1,

(2.6) x"D = (x,(1), x) .

(2.5) implies xe(G**#, G™*). This proves (i).

Similarly, we have x"(™1=x"-«D=x(x_, (1), (x,(—1), x))(x,(—1), x). Applying
(Gr3) to this equality, we get
(2.5) x(x_o(1), (x,(—1), x))=1,

(2.6) XD = (x (= 1), x) .
So n(—1)G*n,(1)c G**#. Putting this together with (Gr5), we get n,(e)G*n,(—e)=G"#
for all a, fed with (a I B)=+1 and ¢= +1. Hence to show (ii), it suffices to show
ny(e)G’ny(—e)=G~* for e= £ 1. By (i), G# =(G**#, G™*) for some a 4. Then applying
the conjugation with respect to ng(e) we get the result.

(i) holds if («|B)=0. Suppose («|B)=—1 and xeG*. So by (2.6) and (2.5)
el = el DD = (x (= 1), x)" D = (0 (1), X" D)= (x_o(1), (x(= 1), x))=x"1.
Since n,(e)=n_,(—e¢) by (R4) and h(e)=h_, ()" by (R7) for e= +1, (iii) holds for
(¢|B)=+1. Finally it suffices to prove x""V=x for xeG*. Take ac4 such that
o+ fe A. Then by (2.5) and the above step, we have

xhﬁ(_1)=((~xa(1)9 X), x—a(_ 1))hﬁ(_ 1)=((X“(]), X)_ 1’ x—a(_ 1)_1)
=((xaz(1)a X), x—a(— 1))=X B

where the second last equality follows from the identity (y, z)=(y "1, z7?) for ye G’
and ze G® with (y|8)=—1. a

For any aed, let W* be the stabilizer of o in W and N&:=n"!'(W*). Then
We={rz| e 4, (B|®)=0) and

2.7) Ng=<ny(1)| Bed, (Blo)=0)"H, .
Take ne N,. If n=]_[;‘=1 ng(¢;) and w=m(n), ;= £ 1, then from (R3) we have
2.8) nx,(Dn~=Int n.x,(1)=x,,(e) for some e=e(n, a)e{+1}.

Since x4(r)=1in G for re K implies r=0, ¢ is uniquely determined by # and o.
For any «, f€ 4, choose an element ne N, such that n(n)u=p. Assume that ¢ is
uniquely given by n and « according to (2.8). Define

(2.9 Apai=¢""logs.Intn.log, ' .
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Then by Lemma (2.4ii), A, is an isomorphism from A4* onto A” such that the diagram

Intn

G* 0 G*
(2.10) log, J J ¢ log,
Ax 2, g0
commutes.

(2.11) LemMA. For any o, €4, there is a unique isomorphism Az, from A* to
AP, given by (2.9). In other words, L, , is independent of the choice of nenN,.

PROOF. Let n'€ N, be another element with n(n)x=p, and ¢’ be determined by
' as in (2.8). Note that n(n~'n')a=0o, and hence n(n~'n')e W*. So, n~'n’' € Ni. Hence
by (2.7) there are n” € {n,(1) | yed, (y | «)=0) and h € H, such that n~'#’=n"h. By Lemma
(2.4ii), there is ce { £+ 1}, satisfying Int h.x=x° for any xe G*. Note that Int »"=1 on
G*, since n” commutes with G* by (Gr3). Thus for any re 4%,

Apa(r):=¢"""logg.Int n’'.log, *(r)=¢'"" logs.Int n.Int n”.Int A.log, (r)
=¢'" ' log.Int n.(log, '(r) =¢""tecAy ,(r) .
Now A ,(1,)=¢"""logg.Int n’'. x,(1)=logs. x4(1)=1,. Also 4, ,(1,)=1,. Thus &'~ 'ec=1,
and hence Ap,=45, - O

Note that the sign ¢~ " in (2.9) is also uniquely determined by the fact 4, ,(1,)=1,.
The following corollary is a direct consequence of the above lemma.

(2.12) COROLLARY. (i) A, 5=Ag,, (i) A, pp,=2,, (i) 4,,=Id.
Proor. The maps on both sides of all three equalities are of the form as in (2.9)

with possible different signs. The result follows from the application on 1. (]

Now let us fix a root e 4. Let R:=A* Since for each fe 4, the map 1+ x4(t) €
G’ =G’ is an injection from (K, +) into G, the map 1, defined by ¢ x(#) > log, x4(?)
is an injection from (K, +) into A”. We identify K with its image inside A° via 1.
Then

(2.13) Apalx=1d.

In fact, for any €K,

AB,a
1 1,()=1og, x,()) &~ " logs.Int n.x, (1)=&~ " logy x,(et) = 1,(1) —— 1,

! =x,(et), where ne N, is so chosen that n(n)a=f and ¢ is determined by

since nx,(H)n~
nin (2.8).

For any re R, let (for the fixed root «)
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(2.14) x(r):=log; 'r
and for any root f,
(2.15) xp(r) : =logg (A5.4(r)) -

Since 4,,=1d, the definition of x,(r) is consistent with the cases where =« and re K.
Then

xp(r+8)=logg (g (r+5)) =logs (A .(r) + A 4(s))
=logy (Ap..(r) -1ogg *(Ag,4(5)) = x5(r)x4(5) ,
that is,
(2.16) xXp(r+5) =x5(r)x4(s) .

Consequently xz(—r)=x4(r)"".
We are ready to define a multiplication for R. For any given A4,-pair (f, y), define
a multiplication m; ,,: Rx R—R on R by

2.17) (xp(r), x,(8)) = Xxg1,(cp 5.7, 5)) -

This definition is motivated by (R2). Note that m , restricted to K x K is the usual
multiplication in K.

(2.18) LeMMA. Let (B, y) be an A,-pair. Take ne N, so that n(f)="y. Let e=¢(n, p)
be determined by n as in (2.8). Then for re R,

nxy(r)n~*

=x,(er) .
ProoF. Note both x,(er) and nx,(r)n~! are in G” by (R3). Then we have
nxy(rn~'=Intn.logs '.2,,(r)  from (2.15)
=log; '.eA, 5. 45 ,(r) from (2.9)
=log, '.&A, (r) from (2.12)
=log, .4, ,(er)
=x,(er) from (2.15).
]

(2.19) LemMA. Let (B, y) be an A,-pair. Then my , is biadditive, i.e. for r,s,te R
and m:=mg . we have m(r+s, t)=m(r, t) +m(s, t) and m(r, s+t)=m(r, s) +m(r, t).

Proor. From (2.17), (2.16) and (Gr3), we have
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Xg4,(cpm(r+s, 1)) =(x5(r +5), x,(£)) = (x5(r)x,(5), x,(1))
= x5(r)(xg(s), x,(0)x5(r) " (x4(r), x,(2)) by (0.2)
= X)X 1€ (S, D)%) X Cp i, 1)
=Xg4,(Cp,,m(r, 1) + 5 m(s, 1)) .
So m(r+s, t)=m(r, t) +m(s, t) and similarly m(r, s+ t) =m(r, s) + m(r, t). O
(2.20) Lemma. If(B,y)and(B’, y’) are equivalent A,-pairs of A, thenmg ,,=mg ..

PROOF. Put m=my, and m'=m . Choose neN, so that n(n)=we W and
wB=p', wy=y'. Suppose that

Intn.xy(1)=xp(a), Intn.x,(1)=x,(0), Intn.xz,,(1)=xp,,(c),
where a=¢(n, f), b=¢(n, y), c=e(n, f+y)e {+ 1} (cf. (2.8)). Let &, =c¢; ,, &, =cp . Then

by calculating the equality Intn.(xs(1), x,(1))=(Int n.x4(1), Int n.x,(1)), we have
X 4 y(81€) =Xy 4, (abe,). Hence

(2.21) g,=g.,ca” b1,
Then
X4y (£ (1, 8)) = (x5.(7), X,/(5)) by the definition of m'

—(logj . Ay () logr A, () by (2.15)
=(logz ' . Ap p-Ap(r), logrt A, 4, () by (2.12)
=(Int n.logg "(a™'25,(r)), Int n.log; (b7 14, (r))) by (2.9)
=(Intn.xz(a"'r), Intn.x,(b"'s)) by (2.15)
=Intn.(x4(a™'r), x,(b™'s))
=Int n.xg, (cs,m(a'r, b~ 's)) by (2.17)
=xXg 4, (ce;a” b7 'm(r,s)) by (2.19) and (2.18)
=Xg 4 (em(r, 5)) by (2.21).

Then m'(r, s)=m(r, s) and m , =mg . O

(2.22) LeMMA. Let (B,y) be an A,-pair. Then (y, B) defines the opposite mul-
tiplication of m . In particular, if A is of Type D, or E,, then m ., is commutative.

PrOOF. Let m=m,, and m'=my, ;. For r,seR,
Xp4(Cpym(r, ) =(0g(r), x,(8)) = (x,(5), x5(r)) ™"

= xﬂ + y( - Cy,ﬁm’(s9 r)) = xﬂ + 'y(cﬂ,ym,(sa r)) s
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where we note —c, y=c,, from (1.1). Then m(r, s)=m'(s, r). When 4 is of Type D, or
E,, there is only one equivalence class of A,-pairs by Lemma (1.5), hence my , is
commutative. U

(2.23) LemmA. Let (B,7) be an Aj-pair. With respect to the multiplication
m=my ,, R is associative and with the unit element 1=1,.

PROOF.  Associativity. Since rank 4=1/>3, there is a root é such that (y, d) is an
A,-pair and (f | 0)=0. By Lemma (2.20) and Lemma (1.4), m=m; ,, =m; ., 5=m, 5=
Mg, +5)- Applying the commutator relation (0.5) to a=x,(r), b=x.(s), c=x,(?), 1, s, tER
and (Gr3), we have

((x(r), x,(5)), x5(2)) = (x4(r), (x,(), X5(1))) ;
(xﬁ+y(cﬁ,ym(r, S))a xé(t)) = (xﬂ(r)7 xy +(§(cy,6m(ss t))) 5
Xp4y+8(Cp4y,6(Cp,m(r, 8), D) =Xp4,45(Cp,y+smUTs ) 5m(s, 1)) .
By calculating the identity [[Ej, E,], E;]=[E,, [E,, E;]] (see the definition of Chevalley
bases), we get ¢;,C51,5=Cp,+5C,s Also m is biadditive by Lemma (2.19). Thus
m(m(r, s), t)y=m(r, m(s, t)), that is, m is associative.
Identity. We show 1=1,eK is the unit element of R. Take an element we W
such that wB=u (the fixed root). Let 6 =wy. Then m=my, ,=m, ; and
X+ 6(Ca,at) = e(1)X5(r)n,(—1) by Lemma (2.18)
=x,(1)x — o — Dx(D)x5(r)xo(— Dx _ (Dx,(— 1)
=X,(1)x - (= Dxp 4 5(c, sm(1, 1)x5(r)x - (1)x,(—1) by the definition of m
= xa(l)(x—az( - 1)5 xa+6(ca,6m(1 s r)))xa+é(ca,5m(19 r))xé(r)xa(_ 1) by (Gr3)
=X (1)X5(— € g0+ 5(C,sm(1, m(1, 1))))Xy 4 5(Cm(1, 1))x5(r)x,(—1) .
Now by (Gr3), (G* G**%)=(G? G**%) =1, thus bringing the conjugation with respect
to x,(1) to the left hand side the last equality, we get
x&(r - C—a,az+6(ca,6m(l’ m(l ’ r)))) = xaz+¢§(ca,6r_ ca,ém(ls r)) .

So r=m(l,r) by (Gr4). By considering x,.;(csqr)=ns1)x,(r)ns(—1) and using
M, 5)(F 8)=M5 (5, ), We get r=ms (1, r)=m(r, 1). This proves that 1 is the unit ele-
ment of R with respect to the multiplication m. O

Now we can conclude Theorem (2.3). Here is its restatement.

(2.3) THEOREM. Let G be a group graded by a finite root system A (of Type A,
1>3, D, I>4 or Eg, E,, Eg) relative to an element (G, $)e S=6(4, K), where K is a
commutative ring. Fix any root o€ A and let R=G* as an abelian group. Relative to a
Chevalley basis {E}p. 4U{H;}}-, define the maps Ay ,: G*—>G* of (2.9) and the elements
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x4(r), Be A, re R of (2.15). Any positive A,-pair (B, y) define the multiplication in R by
(2.17). Then R is an associative ring with 1, containing K as a subring, and the generators
x4(r)’s satisfy the relations (R1) and (R2) ((2.16) and (2.17)). In particular, G is a
homomorphic image of the Steinberg group St(4, R). In addition, R is commutative if A
is of Type D, or E,.

(2.24) Remark. If we start with K=Z/nZ, then any ring could possibly appear
here. The chosen R is independent of the choice of the root & up to isomorphism, since
Agq 'S are ring isomorphisms.

3. Central extensions of A-graded groups. In this section we study central
extensions of A-graded groups. Let us recall some notion about central extensions of
groups (cf. [8]). A surjective group homomorphism ¢ from U onto G is a central
extension of G if the kernel is contained in the center of U. A central extension (¢, U)
of a group G is called a covering of G if U is perfect, that is, (U, U)=U. A central
extension (¢, U) of a group G is said to be universal if it covers all other central extensions
of G, i.e. if (¢, G”) is any central extension of G, then there is a homomorphism ¢
from U into G’ such that ¢ =¢’}. Any perfect group has a universal central extension
which is unique up to isomorphism. Two perfect groups are said to be centrally isogenous
if they have the same (isomorphic) universal central extension. We will use the previous
notation unless otherwise specified.

Let G be a group graded by 4 (of Type 4,, (>3, D,, I>4, or E4, E,, Eg) with
(G, $)e S=8(4, K). Then there is an associative ring R such that G is a homo-
morphic image of St(4, R). R is chosen for a fixed root with its multiplication de-
fined by any fixed positive A,-pair. We will simply write rs instead of m(r, s) for
r,s€ R. Now we give the following definition and the main result Theorem (3.2) of
this section. “

(3.1) DeriNiTION. Let K be a commutative ring. Suppose G; and G, are 4-
graded groups relative to (G,, ¢,) and (G,, ¢,) € &(4, K), re.spectively‘ A group homo-
morphism ¢ from G, to G, is a A-homomorphism if 6, =¢,.

(3.2) THEOREM. Let A be of Type A, 1=4, E,,1=6,7, 8 or D}, [>5. Any covering
(U, ¥) of a A-graded group G is also A-graded and \ is a A-homomorphism. Moreover
there is a surjective homomorphism ¥ from St(4, R) onto U such that

St(4, R)— U

WL

G,

where R is chosen as above for G.
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Our proof will be constructive and the relations (R1) and (R2) play a major role
in the proof. Note that G has a set of generators {x,(r) | a€ 4, re R} which satisfies (R1)
and (R2). We will define a set of generators {X,(r) | aed, re R} in U which satisfies the
relations (R1) and (R2). Then U is a homomorphic image of St(4, R). The idea of this
proof is based on showing that St(R)— E(R) (the elementary group in the Chevalley
group) is a universal central extension (cf. [5], [8], [7]). Technically, [7] has been
very helpful. Before going to the proof, we state a consequence. Again we give the
proof later.

(3.3) THEOREM. Let A be of Type A, I=4; D, I=5; or E,, [=6,7,8. Let G and
G’ be perfect, and G A-graded. If there is a group which is a covering for both G and G',
then G’ is also A-graded in such a way that G and G' are A-homomorphic images of the
same Steinberg group St(4, R). In particular, if G and G' are centrally isogenous and G
is A-graded, then G’ is also A-graded.

The proof of Theorem (3.2) will be given later as a consequence of a series of
preliminary results.

Let (U, ) be a covering of a A-graded group G and C the kernel of the central
extension Yy : U—G. First note that G is perfect. Indeed, for any a € 4, there is an 4,-pair
(B,7) such that B+y=o. Since x,(r)=(xs(1), x,(cz,r), we have G*=(G*, G”). So
G*< (G, G). By (Grl), we have G=(G, G). The perfectness makes sure the existence of
a covering.

The following standard lemma, sometimes called the central trick, is technically
important. It will be used repeatedly.

(3.4) LemMma (the central trick). Letp: H,— H, be a central extension of a group
H,. If x4y, X3, y1, y2 € Hy 50 that px;=px,, py;=py,, then (x1, y1)=(X3, y,).

For any ae 4, let

(3.5 U=y ~4G,
and
(3.6) G(0):=<G*|Bed, (B|x)=0)<G.

Then G(a) is contained in the centralizer of G

(3.7) LeMMA. (1) When A is of Type A,, >4, or E,, 1>6,7, 8 for any two roots
o, B with (ocl B)=0, there are y, 6 € A such that («, vy, B, 8) is an A -quadruple.

(ii) In D, I=5, for any two A,-pairs (B, y) and (f’,y), there exists a third A,-pair
(B",y") such that {B,y, ', y'} and {B',v', B, y"} are contained in some (possibly different)
A,_(-subroot systems of D,.

Proor. Examine the explicit constructions of these root systems in [2]. |

(3.8) LeEMMA. Assume that A is of Type A,, I=>4, or E,, [=6,7,8. Let o, fe4
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with (| B) =0, a#B. Then G*<(G(x), G(a)).

Proor. We discuss two cases (x| )=1 and («| B)=0. In the first case, take a root
y such that (¢, —f,y) is an A;-triple. Without loss of generality, we may assume
a=g;—&,, —Pf=¢€,—&;3, y=¢&3—&, (cf. Example (1.1)). Then for some ce{+1},

xp(r) = (Xgy - 4(¢1); Xgy (1)) € (G(2), G(@))

since (e, —&,|&3—&,)=0 and (¢, —&,|e,—¢,)=1 are nonnegative. In the second case
when (o l f£)=0, we may take two roots y,  such that («, y, B, ) is an 4,-quadruple by
Lemma (3.7). Without loss of generality again, we may assume a=¢&; —&,, y=¢&, — &3,
B=¢;—e, and S=g,—es. Since (g;—¢,|e3—e5)=0 and (g, —&,|e5s—¢e,)=0 are
nonnegative, then for some ce{+1},

Xp(r) = (Xey - e(CT), Xey—, (1) €(G (), G(a)) .
So the result follows. O

(3.9) LeMMA. Assume that A is of Type A, I>4, or E, [=6,7,8. Let a, fe4
and a# B. If (G*, G*)=1, then (U*, UF)=1 (cf. (3.5)).

PrOOF. (G% G*)=1 implies (x|f)>0. Then G*=G(w). Let %, j be arbitrary
preimages of xe G* and ye G(a), respectively. Then by Lemma (3.4), (%, ) depends
only on x, y. Furthermore, (X, y) is in C since (Y(%, 7))=(x, y)=1. Define a map A,
from G(x) to C by A,(y):=(X, ), where y is any preimage of y. Since C is central,
we see from (0.2) that A, is a group homomorphism and hence A.{(G(a), G(x))}=1.
But G*<(G(a), G()), so A (G*)=1. Thus (%, UP)=1. Since % is arbitrary, we have
(02, 0% =1. 0

For the generators x,(r), reR, ae 4, let y,(r)e U be any preimage of x,(r). For
o€ 4, choose any two roots f8, y with a=f+7. Define

(3.10) Xo(r) :=(yp(cp,,r), y,(1)) -
So by the central trick
(3.11) Xo(r) = (Xg(cp,yr), X,(1)) .

Let U*={X,(r)|reR}.

(3.12) LemMaA. Let A be of Type A;, =4, E,, 1=6,7,8 or D;, [>5. Then x,(r) is
independent of the choice and the order of B, y.

ProOOF FOR 4, OR E,. Independence of the choice. Supposea=p’+y’isanother

such representation of o with {, y} # {B’, y'} (set-theoretically). 1 = (x| B)=(8'+7'| B)=

(B[ B)+(2'| B). So, either (8’| B)=1, (y'| B)=0, or (8| B)=0, (' | B)=1. We study these
cases separately.

Case 1: (B'|p)=1, ('

B)=0. We may and will apply the commutator formula
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(0.5) with a=yg(er), b=yp _4(nee’), c=y,(1) where e=cy ,, &' =cg , 1=Cp g _ 5, because
we have (8]7)=0, (8’| B'—B+7)=0, (| B'—B+y)=0 and Lemma (3.9). So
(Yp(e'r), y, (D) =((ygler), yg - p(nee"), y, (1))
=(yp(er), (¥ - p(nee’), y, (1)) = (yy(er), y,(nn'ee")) ,
where #'=c,_, ., and the central trick has been applied. Now the following calcula-
tion yields that nn'ee’=1: cg 5 _pEp+=[1Es Eg_gl, E,1=[E; [Ep 4, E,]]=
Cp,4Cy—y .y Epg+y. SO, X,(r) is independent of the choice of B, y in this case.

Case 2: (p’ | B=0,(’ | B)=1. By using Lemma (3.9), and then (0.5) and the central
trick, we have for any re R,

p(e'r), y, (D) =¥y (= 1)s yp - (=11, y, (D)) = (y,(—= 1), (¥ - ,(—18'T), y,(1)))
=y (= 1), p(—mm'eN) =y, ()L, yslnn'e'r) ™) =(yp(nn'e'r), y,(1))

where e=cy ,, &'=cp ,, N=0C, g, N'=Cp _, .. Also the Jacobi identity,

[[EV’ [Eﬁ"v]’ Ev’] =[Ev’ [EB’—)” E),]] 5

and (1.1) imply e= —¢&'nn’. Then it follows that X,(r) is independent of the choice of f3, y.

We still have to show that x,(r) is independent of the order of f, y. By examining
Example (1.1), we see that in an A4;, />3, there are at least two distinct representations
a=p+y=p"+7". We chose such a pair {f’, '} not equal to {f, y} as sets. Then by the
independence of choice,

XN =(yp(cp,r), », (1) =(yplcp 41, Y (D) =(y,(c,,p), yp(1)) -
This shows that x,(r) is independent of the order of S, y.

ProOF FOR D,. For [>5, A=D, contains two subroot systems of Type 4,_,
(!I—1>4), whose union contains a base for 4 and whose intersection is an A4,_,-
subroot system of 4.

With this observation, we see from Lemma (3.7) that given two representations
o=pB'+y =B+y, we may always find a third distinct representation of a=p"+7” such
that {B,y, f”,y"} and {f’,y’, B”,»"} each lie in an A,_,-subroot system (/—1)>4) of
A. Then we can apply the result for 4;,_, (/—1<4), and get

xa(r) = (yﬂ(cﬂ,yr)’ y'y(l)) = (yﬂ"(c/i’”,y”r)i yy”(l)) = (yB’(cﬂ’,y’r)$ yy'(l)) .
O

(3.13) LEMMA. Let A be of Type A,,1>4, E,,1=6,7, 8 or D}, |>5. The generators
x,(r), re R, a€4 satisfy the relations (R1) and (R2).

PROOF FOR A4; OR E;. Let a=f+7y, a, f,yed. We use the notation defined in.
(3.10). Then for e=¢y,,,
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X (r+8)=(yp(cp,,(r+9)), y,(1))=(yp(cp, )y p(cp,,9), (D) by the central trick
Iyﬁ(cﬁ,yr)(yﬂ(cﬁ,ys)’ yy(l))yﬂ(cﬂ,vr) - l(yﬂ(cﬂ,yr)9 yy(l)) by (0.2)
= (yﬁ(cﬂ,ys)> yy(l))(yﬁ(cﬂ,yr), yy(l)) = x—a(s)xa(r) = xa(r)ja(s) .
So (R1) holds for x,(r)’s.
If (a | 0)>0, then by Lemmas (3.8) and (3.9) and the central trick we have
(%4(r), X5(s))=1.

Now we assume (o | 0)=—1 and (a, d) is a positive 4,-pair. It remains to show

('fa(r)s iﬁ(s)) = Xla +6(Ca,6rs) .

Case 1: A=A, We need to show (X;;(r), X;(s)) =Xy(rs) for i, j, k distinct, where
Xi(r) :=X,,_, (1), etc. (cf. Lemma (1.5)).

Take m not equal to i, j, k. Then applications of the central trick and (0.5) (see
(3.11) as well) yield

(-iij(r)9 fjk(s)) = (fij(")’ (xjm(s)a X(1))) = (()Zij("), xjm(s))’ X(1)) = (X (75), Xpi(1))
=(Yim(r$), V(1)) = Xy (rs) .

Case 2: A=E,. There is only one class of positive 4,-pairs. Choose '€ 4 so that
(2,8, B') is an As-triple. Then B:=0+p’ satisfies (8|6)=1 and (ﬁ[ o)=—1. Hence
y:=0—p, a+feAd. Thus

(R0, Fl5)) = (), (Fyles), (1) = ((El0), Fples)), %,(1)
= (T p(&erS), T(1) =%, 4, (NEE'7S) .

where e=c¢; ,, &'=c, g, N=C445,,- As before, we have nee’=c, ;. So (R2) is satisfied by
X (r)’s. '

PrOOF FOR D,;. We will need an 4,-quadruple (cf. Lemma (3.7)). That is why we
assume /> 5. The relation (R1) follows from the same proof as that for 4, and E,. For
(R2), suppose o, 6e 4, r,se R.

If («|8)=2, i.e. a=4, then (X,(r), X,(s))=1 from (R1).

If (oc|6)= 1. Lemmas (3.8) and (3.9) hold for «, § by replacing «, f there. Using
(G*, G% =1, we have (X,(r), X;(s))=1.

If (x| 5)= — 1, we know that {«, 8} can be imbedded into a subroot system of Type
A, 1. Then (X,(r), X,(5)) =Xy +5(Ca,s7'S)-

Finally, assume (x| 8)=0. We will use the explicit construction for the root system
A=D,, that is,

A={+e+e|1<i#j<I},

i —

where {¢;} is the standard basis of R' (cf. [2]).
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Recall that 4 has only one W-orbit of roots. Without loss of generality, assume
a=¢; —&,. Then ¢ is one of the following roots.

{£(e+¢y), Tete, 3<i#Aj<I}.

We claim that if de{+e+¢;,3<i#j<I}, there exist two roots f,yeA such that
(o, B, 0, 7) is an A4-quadruple. Indeed, if 6 =¢;+¢;, take f=¢, —¢;, Y=g, —¢;; if =8¢, —¢;,
take f=¢,—¢;, y=¢;—&;if 0= —¢;+¢;, take f=e,+¢;, y= —¢;+ & if 6= —¢;—¢;, take
B=¢,+e&;, y=¢;+¢ where 3<i,j, k<l and i, j, k are distinct. Also it is clear from the
point of view of the Weyl group, since W= S,><2'"! where S, is the symmetric group
on / letters and 2'~! consists of an even number of sign changes. Then applying the
result on A4, (/>4), we get (X,(r), X;(s))=1 for de{+e;+¢;, 3<i#j<I} (a=¢,—¢,).

It remains to show (X,(r), ¥s(s))=1 for 6= +(¢; +¢,) (¢=¢; —¢,). Applying the
conjugation with respect to 7ig(1) and the central trick, we need only to prove
(%,(r), X5(s))=1 for 6 =¢, +¢,.

Let f= —&,+e3. Then («, B, ) is an A;-triple. Note that (X,(r), Xs(s)) is central
since Y(U® U% =(G* G°)=1. Then

(X1, %o(8)) = (Eor), X5(8))™#D = ((Fp(1), X1))Xo(r), (X(1), X5(r))X5(5))

= (fp +a(c[i,ar )Xo (1), Xg +5(Cﬂ,as)3_ca(s))

= (%,(r), fﬁw(c’a,as))iﬂ +elos ’“r)'(ia(" ), f&(s))iﬂ +alepaTp o0 ’6s)'(fp+a(cﬁ,ar ), fp+é(cp,as))

“(Xg+a(Cp o), X5(s))Fe+olcs.69 by (0.3)

=)Ea+ﬁ+6(ca,ﬁ+5cﬁ,6rs) ((Xy(1r), X5(5)) - (xﬂ-%a(cﬁ,ar)’ fp+5(cﬁ,as)) Xytp +a(ca,ﬁ+acp,ars) .
Note that the middle two terms of the last expression are central. Again by calculating
the Jacobi identity, [[Ey, E,], E;]1= —[E,, [Es, E;]]1, we have ¢, 5.5¢5 5= — €, 515055
Then (%,(r), X5(5)) = (X.(r), fa(s))(fﬁm(cp,a”)a fgm(cp,as)), and (?Ep +a(cﬁ,ar), X'ﬂ+6(cﬁ,6s)) =
1. Since r, s are arbitrary, we have (X;.,(r), X545(s))=1 for all r, se R. Now applying

the conjugation by #,4(1) and the central trick, we have (X,(r), Xs(s))=1 for all r, se R.

O
(3.14) LemMA. U={U*|aed). Hence (Grl) holds for U.

ProoF. Let U':={U*|aed) and C be the kernel of ¥ from U onto ‘G. Since
Y(UN=G, then U=U'C, then U=(U, U)=(U'C, U'C)=(U’, U')=U’, where the last
equality follows from the relations (R1) and (R2) for x,(r)’s. O

Proor orF THEOREM (3.2). Up to now, we have constructed a surjective homo-
morphism ¥ from St(4, R) onto U by sending £,(r) to %,(r). Let U be the subgroup gen-
erated by {X,(r)|ae 4, re K} and U*={x(r)| re K} for each ae 4. We show Ue .

Clearly, %£,(r)—>X,(r) defines a surjective homomorphism, denoted by é,, from
St(4, K) onto U. So the diagram commutes.
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St(4, K) -2 U

ot

St(4, K) -2 G .
Since Ge &, s0 ¢, restricted to y* =y *(K) relative to a positive system A4, of 4, is an
isomorphism. The commutative diagram implies ¢, restricted to y*, is an isomorphism
as well. This implies (U, ¢,) e S.

It remains to verify the axioms (Grl) through (Gr5). (Grl) follows from Lemma
(3.14). (Gr2) is clear by the definition of U (Gr3) follows from Lemma (3.13). (Gr4)
holds for U, since it holds for St(4, R) and G. (Gr5) is from the relation (R3). It is clear
from the construction that ¥ is a A-homomorphism. O

Proor oF THEOREM (3.3). Let R be the associative ring relative to G, Let
(resp. Y¥'): U-G (resp. G') be the universal central extension of G (resp. G'). By
Theorem (3.2), U is graded by 4. Moreover, the set of the generators [x,(r) | a€d, re R}
in G can be lifted to a set of generators {)Za(r)loceA, re R} in U which satisfies the
relations (R1) and (R2). Denote the element in ©=&(4, K) relative to G (resp. U) by
(G, ¢) (resp. (U, $,)). The meanings of U?, U* (relative to a positive system of 4), 7i,(u),
h,(u), U* U*, etc. are defined as before in an obvious manner. Pass these objects to
G’ by the central extension homomorphism ', for example, G'*:=y'(U%), x(r):=
Y (X (r), G :=y'(U), G'* =y'(U*), etc. Then d3':=t//’¢3u is a homomorphism from
St(4, K) onto G'. We will show that G’ is Ad-graded relative to (G, ¢3’). It suffices
to show that (G', (15’)66:6(11, K) and that the axiom (Gr4) holds, since the other
axioms are direct consequences of the relations (R1) and (R2) and the fact that ' is a
homomorphism.

To be clear, we describe the relations of above maps by the following commutative
diagrams with the generators:

St(4, R); £,(r) — G x,(r) S(4, )3 20—+ 65 5,0
J \l// ] and él x J
G,; x;(") T U; Xa(r) ) Gl, x;(t) 7 U’ xa(t) :

Now arbitrarily fix a positive system A4, of A. Then qﬂu]x”,() is injective since
(U, ¢,) € S by Theorem (3.2). Recall that the center of y*(K) is trivial ([4], [8]). Then
the center of U™ is trivial. Suppose £ € * (K)nKer(¢’). Then ¢, (£)e U* nKer y'. Since
Ker y' is central by hypothesis. So ¢ (%)=1, and £=1. So q5’|x+(,“ is injective. This
proves (G, $") e S.

We show that G*nG"? =1, if a# . Let x,(r)=xj(s). Then X,(r)=X(s)z for some
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zeKer y’ =Center(U). It suffices to show r=s=0. We need to consider four cases:
a=—p; (@|B)=—1; (x| B)=—1; and («|B)=0.

If a=—p, take yed so that («|y)=—1. Then by (R2), 1=(X_,(s)z, %,(1))=
(X,(r), x,(1)) =X, ,(cq,,7). Thus r=0 and s=0.

If (oc]ﬁ)= —1, ie. a+fed, then 1=(x,(r), X,(1))=(X5(5)z, X,(1)) =X+ ,(Cp oS).
Hence s=r=0.

If (x|f)=1, we take yed so that (o, —pB,y) is an As-triple. Then 1=
(X(r), x_ (1)) = (Xp(8)z, X_ (1)) =X _,(cg,—,5). So s=0 and r=0.

Finally if (« ‘ B)=0, then there exists a third root y so that (a, 7, f) is an A4;-triple.
Then

xa+'y(ca,yr) = (xa(r)’ iy(l)) = ()—C:ﬂ(S)Z, jy(l)) = fﬂ +y(cﬂ,ys) ’

but («+7y|B+7)=1. Thus r=s5=0 follows from the third case. So (Gr4) holds. O
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