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GROUPS GRADED BY FINITE ROOT SYSTEMS1
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Abstract. A Steinberg group St(zl, R) is defined by the data of a ring R and a root
system A. This paper aims to study the relationship between the group-theoretic structure
of a Steinberg group and the associated ring. We introduce graded groups which are
groups satisfying some axioms that are basic properties of St(A, R), and then show that
these properties suffice to determine the structures of graded groups, by constructing a
ring out of a graded group. Also the central extensions of graded groups are studied.

Introduction. In this paper, the groups graded by finite root systems A, or A -graded
groups, are introduced. These are analogues of Lie algebras graded by finite root systems
which are studied by Berman and Moody [1]. The background is the structures of
Steinberg groups and Chevalley groups. The connection among zl-graded groups,
Steinberg groups and central extensions can be seen throughout the article.

Assume that our rings are always associative and with the identity element denoted
by 1. For each /> 1, all (/+ 1) x (/+ 1) invertible matrices over R form the general linear
group GLl + ί(R). Let Etj be the (ίj) matrix unit of GLl + l(K). Then the elementary group
El + ί(R), the subgroup of GLl + 1(R) generated by I+rEtj for reR and i^j, models the
definition of the Steinberg group St(Al9 R), where Al is a type of root systems. Both

St(Ah R) and El+1 can be assigned a grading by the root system of Type Al in terms
of the group commutators. Now the question is: without given a ring in advance, would

the graded property will determine the structure of such a group? This motivates our
definition for a zl-graded group (cf. Definition (2.1)), where we assume that the root
system A is always one of the types Al9 />3, Dt, l>4 and Eh 1=6, 7, 8, unless otherwise
stated. We have:

(2.3) THEOREM. Let G be a group graded by A. Then there is an associative ring
R with 1, such that G is a homomorphic image of the Steinberg group St(A9 R). Moreover,
R is commutative if A is of Type Dl or E^

Note that here all associative rings fit in here. For the proof, the critical point is
to define the ring R out of such a group. The main theme of the proof is set in [1] on

the Lie algebra level.
Then for each A -graded group, we may attach a ring R. A zl-homomorphism of

A -graded groups is naturally understood to be a group homomorphism which preserves

1 This is a part of the author's Ph.D. thesis at the University of Alberta, Edmonton, Alberta, Canada.
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the ,4 -grading. So in the category of A -graded groups, the morphisms involved are

zl-homomorphisms.
Considering the central extensions of groups, we have:

(3.2) THEOREM. Let A be of Type Al9 /> 4, Eh l=6,7,Sor Dh l> 5. Any covering

(U, ^) of a Δ-graded group G is also Δ-graded and ψ is a Δ-homomorphism. Moreover,
there is a surjective homomorphίsm Ψ from St(A, R) onto U such that

)-^-+ U

G

is commutative, where R is the ring attached to G.

(3.3) THEOREM. Let A be of Type Al9 />4; D^ />5; or Et, 1=6, 1, 8. Let G and

G' be perfect and G Δ-graded. If there is a group which is a covering for both G and G',
then G' is also Δ-graded in such a way that G and G' are Δ-homomorphic images of the
same Steinberg group St(A, R).

The paper is organized as follows. In §1, we present some preliminary notation
and define a set @ whose elements act as a model for graded groups. Then we show

that for any element (G, φ) e S, the Weyl group of A is a subquotient group G. In § 2,
we define groups graded by finite root systems and prove Theorem (2.3). We show
Theorems (3.2) and (3.3) in §3.

CONVENTIONS. In a group G, write ab: = bab~l and the commutator (a,b): =
aba~ίb~ί, and denote by Intfc the conjugation by b, i.e. Intb.a: = ab. Write H<G if
H is a subgroup of G. < > means a (sub)grouρ generated by .

The following formulas on commutators will be used later on.

(0.1) (a,b) = (b,aΓ1

(0.2) (ab,c) = (b,c)a(a,c)
(a,bc) = (a,b)(a,c)b

(0.3) (ab, cd) = (b, c)a(b, d)ac(a, c)(a, d)c

(0.4) (ac, (b, c))(cb, (a, b))(ba, (c, a)) = 1

(0.5) (a,(b,c)) = ((a,b),c), if (a,c)=l, ((a,b),(b,c))=l, and ((b,c),c)=l.

ACKNOWLEDGEMENT. The author wishes to express his gratitude to his supervisor
Professor Robert V. Moody for directing him to the problem, for his insightful guidance,
and for his continuous support. Special thanks go to Professor S. Berman, the co-author
of the preprint [1], and to Professor A. Pianzola, the co-author of the book [6]. Also
comments made by Professor V. Deodhar are very much appreciated.

1. Preliminaries. In §1 and §2, we assume that A is a finite indecomposable
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simply-laced root system of rank />3, i.e. A is of Type Ah />3, Db />4, E6, E7, or
Es. Let Q be the root lattice spanned by A. The Weyl group invariant bilinear form

on g, so normalized that (α | α) = 2 for all αezl, will be denoted by ( | •). This form is
positive definite. If α, βeA, then (α | β) takes the values ±2, ± 1 and 0, respectively, if
and only if α= ±β, u + βεA and a±βφA u{0}, respectively. For each root OLE A, the

reflection in α is the linear map ra: λ \— > λ — (λ \ α)α on Q. Then the Weyl group, denoted
by W, is generated by all the reflections rα. In particular, W is generated by all the
simple reflections rα. where 77 : = {αl5 . . . , αj is a base for the root system A

Let g be the simple Lie algebra over the complex field C associated with A and ί)
a Cartan subalgebra of g. Then

αeβ

where gα = {* e g [/ι, x] = α(A)jc, for all A e I) = g0} and gα φ (0) if and only if α e zl u {0}.
Let {Ea, Ht:oceA, / = ! , . . . , / } be a Chevalley basis of g (see [8, §1]). If

α, β, α + /?ezl, then [E^ Eβ] = cΛίβEa+β for some cα > / 5e{±l}. From the skew-symmetry
of the Lie bracket [ , •] and the application of the canonical anti-involution of g, we
have formulas

(1.1)

0-2) c-αjr

We will see and use more formulas about cαy s later on. We fix a choice of a Chevalley

basis throughout this paper. In the case A=Al9 a Chevalley basis is chosen as in the
following example.

(1.3) EXAMPLE. The description of the root system A of Type Al is

where {ε1? . . . , εz + 1} is an orthonormal basis of Rl + 1. Let 77 = {α f: / = ! , . . . , /} be a
base for A with α ί: = εί — eί + 1. The Weyl group is the symmetric group Sl+ί. The
corresponding simple Lie algebra g is sI/ + 1(C). The set {Eίp iφj\ Hi = Eiί — Eί + lfί+l,
/ = ! , . . . , /} is a Chevalley basis of s!z + 1(C) where Etj are the standard matrix units.

Now we give Definition (1.4) and Lemma (1.5) which are taken from [1].

(1 .4) DEFINITION. An ordered pair (β, γ) e A x A is an A2-pair if (β \ γ) = — I . Thus
(jβ, y) is an A2-pair if and only if it is a base for an A2 subroot system of A. Two A2-pairs
(β, 7), (/?', y') are equivalent, and written (/?, y)~(/?', /), if there is an element w of the

Weyl group W of zl such that /Γ = M J?, γ ' = wy. The equivalence class of (β, γ) is denoted

by [(j8, y)]. Also an ordered triple (α, β, y) is called an A^triple, if {α, /?, y} forms a base
of an A 3 root system such that (α | /?) = (β \ y) = - 1 , and (α | y) = 0. We define an ordered
quadruple (α, β, y, <3) to be A4-quadruple in a similar way.
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(1.5) LEMMA, (i) If A is of Type Dl or El then there is only one equivalence class

of A2-pairs.

(ii) If A is of Type Al there are exactly two equivalence classes of A2-pairs, which

are (cf. Example (1.3))

[(<*ι> «2)] = {(£i~εp e/-e*) I i,j, k distinct} ,

[(α2, αj] = {(β£ - e, , εfe - εt ) | ij, k distinct} .

We call [(α1? α2)] the class of positive A2-pairs. Furthermore if(β, γ) is an A2-paίr then

(iii) /« #// cαs es //(/?, 7) αwtf7 (y, (5) are A2-pairs with (β\ <5) = 0

The unique equivalence class of ^2-pair for A of Types Dh El are said to be positive.

(1.6) DEFINITION. Assume R is an associative ring with the identity 1. In the

cases where the root system A is of Type Dl or El9 R is further assumed to be commuta-

tive. The Steinberg group is the abstract group with the following presentation:

generators: xΆ(r) α e A , rεR .

relations:

(R 1) xΛ(r)xΛ(s) = xΛ(r + s) ,

, x , , Λ , x x ί 1 > if α + β£Ju{0},
(R2) (xa(r), Xβ(s)) = <

I xΛ+β(cΛ9βrs), if (α, β) is a positive ^42-pair ,

where cα>j3 is given by a fixed Chevalley basis.

(1.7) REMARKS, (i) The above definition is the same as that in [4], [5], [7],

or [8].

(ii) Although c^β depends on the choice of a Chevalley basis, the Steinberg groups
do not (up to isomorphism).

For aeA and ueR* (the units group of R), let

n«(u): = XΛ(U)X-Λ(-u~l)xa(u) , ha(u): = ήΛ(u)ήΛ(-1).

Then from [4], [5], [7] and [8], we have
/I?'IΛ -Λ (ιj\γ (Y\W flJί ~~ V ίMIJ '" Γ^'Kl
\ * *^/ ύt\ ) β\ ) Λ\ ) — ΐ β\ I /'

i R Si "fί ίlJίh l ί ) ι H ίlJί — /ί (YI1J '^ι ' ί ) l/ϊ (tΊIJ 'r *'§
I JVw/1 ''α\ / β\ ) Λ\ ) ~~ r β\ I i / J f l p β\'ι*/l ) )

(R6) J^/rWte"1- "
(R7) X«(«)
(R8) ^(M)

where u,veR* reR and the elements in /? appearing commute with each other, and
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where α, βeA and η = η(a, β) is such that

-ϊ,' if (α|)8)=±2',
1, if (α|/0 = 0.

The following are important subgroups of St(zl, jR).

> for a positive system A + .

Let K be any commutative ring. We consider the Steinberg group St(A9 K) in the
rest of this section.

Take a pair (G, φ) where φ is a surjective homomorphism from St(A, K) onto a
group G and φ\χ+ is one-to-one for some positive system A + . Let ® = ®(zl, K) be the
collection of all such pairs.

For (G, φ) e S, denote 0(*β(a)), φ(AΛ(u)\ φφM), Φ(&), </>(#) by xa(ά), nΛ(ύ), hΛ(u),
N, H, respectively. Denote Gα = φ(χα), G± =φ(χ±). From (R3) and (R6), we have

(1.8) nΛ(u)GβnΛ(uΓl = Gr *.

(1.9) hΛ(u)G*hΛ(uΓ* = G*.

(1.10) LEMMA. Let(G, φ)eQ. The restriction of φ toχ+ : = χ + (A+) relative to any
positive system A+ is one-to-one.

PROOF. By definition, there is a positive system A + of A such that φ is one-to-one
on χ+ which corresponds to A + . Suppose J+ is another positive system of A. We need
to show that φ is one-to-one on χ+ which corresponds to A + . Recall that there is an
element we W9 such that w(A+) = A+ (cf. [3]). Take a preimage ήeN of w. Then
ήxή'1 eχ+, for any xeχ + . Now the lemma follows from the fact that φ(x)= 1 if and
only if φ(ήxή~1)=l. Π

Recall that in the Steinberg group ,St(A9 R), χ+: = χ + (A+) has a unique de-

composition χ+ = Y\oieA+Xa, for an arbitrarily chosen linear order on A+ and each
χα is isomorphic to the additive group (R, +) (cf. [4] and [8]). Then in the case R = K,

these facts can be passed onto G+ for (G, </>)e®. Since the Weyl group W of A is a
Coxeter group, the map

(1.11) rΛ^ΛΛ(u)A

defines a homomorphism from W onto N/ίf. Moreover this is an isomorphism. By
means of it we will identify these two groups.
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(1.12) LEMMA. Let(G,φ)€&.Ifotϊ=β,thenG*nGβ = \.

PROOF. Choose a positive system Δ+ for A for which α is simple. If βeA + , then

we are done by Lemma (1.10). If βezl_\{ — α}, then α, /? are in the positive system
rα( — A+) and we are done too. It remains, to show (?αn G~a= 1. Since χα is isomorphic
to the additive group (R, + ), we have xΛ(r) = 1 if and only if r = 0. Suppose xα(r) = ;c_α(,y).
Take ye A with (α | y)= - 1. Then 1 =(*-.(*), xy(l)) = (xβ(r), *y(l)) = xα+y(cα,/) by (R2),
and hence r = 0, and so s = Q. Π

(1.13) LEMMA. Let (G, φ) e S, and we keep the above notation. Then H<3 TV, and
N/H is isomorphic to the Weyl group W.

PROOF. Since Ή<3 N, we have H<3 N. There is a homomorphism ψ : N/H^N/H
which factors through the composite map N ^N-^N/H. Clearly, ψ is surjective and
\l/(ήΛ(r)ΉΓ) = nΛ(r)H. View ψ as the map from W onto N/H. Suppose ψ(w) = Ί = Hfor
weW. Express w = rβίrβ2 - rβk as a product of reflections. Then ψ(nβί(l)ήβ2(l) -
ήβk(l)H) = Ί. So, h:=nβί(l)nβ2(l) - n,k(l)etf. And by (1.9) and (1.8),

So Gwα = (jα, for each αezl. Then wα = α by the above lemma. Then w^l, hence ψ is
an injection and an isomorphism. Π

In the Steinberg group St(A, K), let

(1.14) 7V0: = <

(1.15) ^0: = <Λ

(1.16) LEMMA. Let (G,φ)e<5 and NQ: = φ(NQ\ HQ: = Φ(HQ). Then N0/H0^
N0/H0^W.

PROOF. HQ and H0 are normal subgroups of 7V0 and 7V0, respectively, by (R5).
As in (1.11), rΛ\-^ήa(u)H0\-*na(u)H0 defines a homomorphism from Pronto N0/H0. It
is an isomorphism by the same proof as that of Lemma (1.13). Π

(1.17) COROLLARY. H0 = N0 n H.

PROOF. By the second isomorphism theorem of groups, we have

Since H0^N0r\ H, we have H0 = N0πH. Π

2. Groups graded by finite root systems. Let IT be a commutative ring. We
maintain all previous notation and terminology for <5 = Q(A,K) and elements in ®
(usually with overdots).
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(2.1) DEFINITION. A group G is said to be graded by a (finite) root system A (of
Type Al9 />3 Dt, />4; or E6, EΊ, Es) or zl-graded if there are subgroups Gα, for all

α e A and an element (G, φ) g Q such that
(Grl) G = (G«\aeAy,
(Gr2) Gα<ΞG«, forαezl ,

1!; lf
α + / > y if

(Gr4) G α nG^{l}i fα^)8,

(Gr5) /ie(l)G V(l)~ * = GΓα/?, for α, 0 e A with (α | β) = - 1 ,
where Λα(l) = 0(

(2.2) EXAMPLE. Let jR be an associative ring with the identity 1. When the root

system A is of Type Dl or Eh assume further that R is commutative. Then St(zl, R) and

the Chevalley group are A -graded.

Our main result (see the restatement at the end of this section) is:

(2.3) THEOREM. Let G be a group graded by A. Then there is an associative ring
R with 1, containing K as a subrίng, such that G is a homomorphic image of the Steinberg
group St(zl, R). Moreover, R is commutative if A is of Type Dl or Et.

An outline of the proof is as follows. Fix a root αe^d. Then G" is abelian. Let
Λ = Gα, so R has an additive structure. For reR, write xΛ(r) to be the corresponding
element in G*. Elements xβ(r) for other roots β, can be defined since Gα and Gβ are
isomorphic as abelian groups. The multiplication in R comes from the commutator
relations (R2) and (Gr3). Such process will make {xβ(r)9 βeA,reR} satisfy the relations
(Rl) and (R2). Then (Grl) makes sure that G is a homomorphic image of St(zl, R).

For each root αezl, take a set Aa having the same cardinality as Gα. Fix a bijective
map logα from Gα onto A*. By (Gr3), Gα is abelian, thus A* carries an additive abelian
group structure by making logα into an isomorphism. So, for x, yeGα, 0: = logα 1,
logax + logaj;: = logaxy. Let

l a: = logaxa(l),

where xΛ(l) = φ(xa(l))cG«.

Set N0 = φ(N0), H0 = φ(H0) (see (1.13) and (1.14)). By Lemma (1.16), the map
/?α(w)//0 1— > rα, gives an isomorphism from NQ/HQ onto W. Let π be the composite map

(2.4) LEMMA. Let α, βeA. Then

( i) Gα +MGα,GV/H£)=-l.
(ii) nGβn~l = Gwβ, where neN0 with π(n) = we W.

(iii) hΛ(

PROOF. In this proof, (Gr3) is widely used. Suppose (α |/0=— 1, i.e. a
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and xeGβ. Since «α(l) = /z_α(-l) = *_α(-lK(l)x_α(- 1), so by (Gr3),

x».α) = x»-(-i) = χΛ_β(_ 1), (Xβ(i), jc))(xβ(l), x) .

The right hand side belongs to GΛ+β by (Gr5). By (Gr4),

(2.5) x(x_β(- !),(*.(!), *))=!,

(2.6) ^1> = (jcβ(l),x).

(2.5) implies xe(Gα+/?, G~α). This proves (i).

Similarly, we have x"a(~1) = x"-a(1) = x(x_a(l), (xa(-l), x))(xa(-l), x). Applying

(Gr3) to this equality, we get

(2.50

(2.60 ^-^(Xαί-l),*)-

So wα(-- l)G*na(l)c:Ge + *. Putting this together with (Gr5), we get na(ε)GβnΛ(-β) = Gr*β

for all a, βεA with (α | β) = ± 1 and ε = ± 1 . Hence to show (ii), it suffices to show

np(ε)Gβnβ(-ε) = G~β for ε= ± 1. By (i), Gβ = (G«+β, G~α) for some αezJ. Then applying

the conjugation with respect to nβ(ε) we get the result.

(iii) holds if (α|0) = 0. Suppose (α|j8)=-l and xεGβ. So by (2.6') and (2.5')
*M-i) = J^<-i).M-i) = (jCβ^^

Since Λβ(ε) = w_β(-ε) by (R4) and Aα(ε) = A_α(ε)"1 by (R7) for ε= ±1, (iii) holds for

(α| /?)=+!. Finally it suffices to prove xhβ(~l} = x for xeGβ. Take aeA such that

l. Then by (2.5) and the above step, we have

where the second last equality follows from the identity ( y 9 z ) = (y~1

9z~1) for yeGγ

and zeGδ with (γ\δ)= — l. Π

For any αezl, let W* be the stabilizer of α in W and TVg^π'1^"). Then
W« = (

(2.7)

Take neN0. If « = Π*=ι n^(β«) and w = τc(«), ε£= ± 1, then from (R3) we have

(2.8) «xa(l)«~1=Intw.xa(l) = xwa(6) for some ε = ε(n, a)e{±l} .

Since xβ(r)= 1 in G for re^Γ implies r = 0, ε is uniquely determined by n and α.

For any α, βezl, choose an element «eJV0 such that π(n)a = β. Assume that ε is
uniquely given by n and α according to (2.8). Define

(2.9) ^.^β-
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Then by Lemma (2.4ii), λβtΛ is an isomorphism from A" onto Aβ such that the diagram

G«^Gβ

(2.10) logα

commutes.

(2.11) LEMMA. For any a,βeA, there is a unique isomorphism λβ^from A* to

Aβ, given by (2.9). In other words, λβtΛ is independent of the choice ofneN0.

PROOF. Let nΈN0 be another element with π(n')a = β, and ε' be determined by

n' as in (2.8). Note that π(/Γ V)α = α, and hence n(n~lri)eW«. So, «~ VeTVg. Hence
by (2.7) there are n" e <flv(l) | γ e A, (γ \ α) = 0> and h e H0 such that n~ln' = n"h. By Lemma
(2.4H), there is ce{ + l}, satisfying lnth.x = xc for any xeG*. Note that Int«"=l on
Gα, since n" commutes with G* by (Gr3). Thus for any re A",

Now ^fβ(lβ) = ε /- 1log / ϊ.Int/ι /.jcβ(l) = log/l.x/?(l)=l/,. Also λM(lβ)=l / ϊ.Thusε /-1εc=l,
and hence λβtΛ = λβtΛ. Π

Note that the sign ε"1 in (2.9) is also uniquely determined by the fact λβtΛ(lΛ) = lβ.
The following corollary is a direct consequence of the above lemma.

(2.12) COROLLARY, (i) λΛtβ = λj*, (ii) λytβλβtΛ = λy^, (iii) Aα,α = Id.

PROOF. The maps on both sides of all three equalities are of the form as in (2.9)
with possible different signs. The result follows from the application on lα. Π

Now let us fix a root cue A. Let R: = AΛ. Since for each βeA9 the map tι-+xβ(i)e
Gβ c Gβ is an injection from (K, +) into Gβ, the map ιβ defined by 11-> xβ(t) ι-* log^ xβ(i)
is an injection from (K, +) into Aβ. We identify K with its image inside Aβ via z^.
Then

(2.13) A / ϊ f β K = Id.

In fact, for any ί e ΛΓ,

/1-> ϊβ(/) = logα xΛ(t) h-̂ > ε -λ log/?. Int n. xΛ(ί) = ε -1 log^ xβ(εί) = ̂ (0 1 f ,

since nxΛ(t)n~1=xβ(εt), where «e7V0 is so chosen that π(«)α =/? and ε is determined by

Λ in (2.8).

For any reR, let (for the fixed root α)
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(2.14) jcβ(r):

and for any root β,

Since /l^ = Id, the definition of xβ(r) is consistent with the cases where β = a and reK.

Then

xβ(r + s) = logβ \λβιa(r + j)) = log^ l(λβtΛ(r) + ̂ (s))

= log^ \λβ^(r)} - logβ^λβ^s)) = Xβ(r)xβ(s) ,

that is,

(2.16)

Consequently xβ( — r) = xβ(r)~1.
We are ready to define a multiplication for R. For any given v42-pair (β, γ), define

a multiplication m(β >y) : Λ x ^-^/^ on /? by

(2. 1 7) (x/r), Λ:y(j)) = xβ + y(cβtym(βty}(r, s)) .

This definition is motivated by (R2). Note that m(β >y) restricted to JΓx JίΓ is the usual
multiplication in K.

(2. 1 8) LEMMA. Let (β, y) be an A2-pair. Take neN0so that n(β) = y. Let ε = ε(n, β)

be determined by n as in (2.8). Then for reR,

nxβ(r)n~l=xy(&r) .

PROOF. Note both xy(εr) and nxβ(r)n~l are in Gy by (R3). Then we have

nxβ(r)n ~ 1 = Int n . logβ 1 . λβ^(r) from (2. 1 5)

= logy-
1.alyi/I.A/| fβ(r) from (2.9)

^log'^eA^ίr) from (2.12)

= xy(sr) from (2.15).

D

(2.19) LEMMA. Let (β, γ) be an A2-paίr. Then #%>y) is bίaddίtive, i.e. for r,s,teR

and m : = rn(β^ we have m(r + s,i) = ra(r, t) + m(s, t) and m(r, s + i) = m(r, s) + m(r, t).

PROOF. From (2.17), (2.16) and (Gτ3), we have
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xβ + y(cβ>ym(r + s, 0) = (xβ(r + s), xy(tj) = (xp(r)xp(s), xy(t))

= xβ(r)(xβ(s)9 x7(t))xβ(rΓ\xβ(r), *y(0) by (0.2)

= Xβ(r)xβ + y(Cβ,ym(s, t))xβ(r) ~1xβ + y(cβtym(r9 £))

= xβ + y(cβtym(r, 0 + cβtγm(s, ί)) -

So m(r + s, ί) = m(r, ί) + m(s9 f) and similarly ra(r, 5 + ί) = m(r, s) + m(r, ί). Π

(2.20) LEMMA. If(β, y}and(β', y ') are equivalent A2-pairs of Δ,

PROOF. Put m = m(β^ and m' = m(β,y>y Choose neN0 so that π(ri) = weW and
wβ = β', wy = y'. Suppose that

lntn.xβ(l) = xβ,(a) , Intn.xy(l) = xy,(b) , lΏ.tn.xβ + y ( l ) = xβ> + y,(c) ,

where a = ε(n, β), b = ε(n, y), c = ε(n, β + y)e{± 1} (cf. (2.8)). Let ε1 = cβ>Γ ε2 = cβ,>y,. Then
by calculating the equality Int n.(xβ(\\ x y ( l j ) = (lnt n.xβ(l), Int n.xy(l))9 we have

). Hence

(2.21) ε2

Then

'̂ + y'(^2m'(r^ s)) = (xβ'(r)> xγr(sϊ) by the definition of rri

1 . V,«W, logy-
 1 . Ay,») by (2. 1 5)

V,,̂ ..M, logy'1 A/tyAy>)) by (2.12)

= (Int/ι.log/Γ
1(fl-1λ/,iβ(r)), Int /i.logy-H*"1^^))) by (2.9)

= (Intn.xβ(a~1r)9Intn.xy(b-1s)) by (2.15)

= Int n.xβ + y(cβ9Ίm(a~*r9 b~ls)) by (2.17)

= ̂  + /(ce1fl-1ft-1/w(r,s)) by (2.19) and (2.18)

= xβ + y.(e2m(r9sy) by (2.21) .

Then m'(r, s) = m(r, s) and m(^ jy) = m(β.jyΎ Π

(2.22) LEMMA. L^/ (β, γ) be an A2-pair. Then (y, β) defines the opposite mul-
tiplication of m(β^yγ In particular, if Δ is of Type Dl or Ely then m(β^ is commutative.

PROOF. Let m = m(βiy) and m' = m(y>β). For r,seR,

xβ + γ(cβ9ym(r9 s)) - (xβ(r\ xy(s)) = (xy(s)9 xβ(r)) ~ ί

= xβ + γ(- cytβm'(s9 r)) = xβ + y(cβtym'(s9 r)) ,
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where we note — cytβ = cβty from (1.1). Then m(r, s) = m'(s, r). When A is of Type Dl or
El9 there is only one equivalence class of ^42-pairs by Lemma (1.5), hence tn(βty) is
commutative. Π

(2.23) LEMMA. Let (β, γ) be an A2-paίr. With respect to the multiplication
m = m(β,y)> R is associative and with the unit element 1 = lα.

PROOF. Associativity. Since rank A = l>39 there is a root δ such that (y, <5) is an

^42-pair and (j8| <S) = 0. By Lemma (2.20) and Lemma (1.4), m = m(βtV) = m(β + ytδ) = m(ytδ) =
m(βίy+δ). Applying the commutator relation (0.5) to a = xβ(r)9 b = xy(s)9 c = xδ(f)9 r,s,teR
and (Gr3), we have

((xp(r), xγ(s))9 xδ(t)) = (xβ(r\ (xy(s\ xδ(t)))

(Xβ + y(cβ,ym(r, s))9 xδ(t)) = (xβ(r)9 xy + δ(cy,δm(s, ί)))

βfγm(r, s), i)) = xβ + γ+δ(cβtγ+δm(r, cytδm(s, ί))) .

By calculating the identity \_[Eβ9 Eγ], E6~\ = [Ep, \_Er Eδ~\~\ (see the definition of Chevalley
bases), we get cβtycβ + ytδ = cβίy+δcyjδ. Also m is biadditive by Lemma (2.19). Thus
m(m(r9 s), t) = m(r9 m(s, ί)), that is, m is associative.

Identity. We show l = l α eJίΓis the unit element of R. Take an element weW
such that wβ = a (the fixed root). Let δ = wγ. Then m = m(βty} = m(atδ) and

^«+ί(c«y) = /ιβ(l)^(rK(-l) by Lemma (2.18)

= xΛ(l)x-a(- l)xΛ+δ(catδm(l, r))xδ(r)x-Λ(l)xΛ(- 1) by the definition of m

_.(- 1), ^+,(cβiyw(l, r))K+,(cα,,m(l, ̂ ))̂ K(- 1) by (Gr3)

δ(-C-ΛtΛ+δ(cΛtδm(l, m(\9 r))))xΛ+δ(cΛtδm(l9 r))xδ(r)xΛ(-l) .

Now by (Gr3), (Gα, G"+*) = (Gδ, G*+δ)=l, thus bringing the conjugation with respect
to xα(l) to the left hand side the last equality, we get

l, r)) .

So r = m(l,r) by (Gr4). By considering xΛ+δ(cδtΛr) = nδ(l)xΛ(r)nδ(—l) and using
m(*tδ)(r> s) = m(δ,*)(s> r\ we 8et r = W(ίfβ)(l, r) = m(r, 1). This proves that 1 is the unit ele-
ment of R with respect to the multiplication m. D

Now we can conclude Theorem (2.3). Here is its restatement.

(2.3) THEOREM. Let G be a group graded by a finite root system Δ (of Type Ah

/>3, Dl9 l>4 or E6, EΊ, E8) relative to an element (G, 0)e® = ©(J, K), where K is a
commutative ring. Fix any root αezl and let R = GΛ as an abelian group. Relative to a
Chevalley basis {Eβ}βeA u {Ht}

l

issi define the maps λβja : G*-+Gβ of '(2.9) and the elements
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Xβ(r), βeA, reR of (2.15). Any positive A2-paίr (β, γ) define the multiplication in R by
(2.17). Then R is an associative ring with 1, containing K as a subring, and the generators
Xβ(r)'s satisfy the relations (Rl) and (R2) ((2.16) and (2.17)). In particular, G is a
homomorphic image of the Steinberg group St(zl, R). In addition, R is commutative if A
is of Type Dl or Et.

(2.24) REMARK. If we start with K— Z/nZ, then any ring could possibly appear

here. The chosen R is independent of the choice of the root α up to isomorphism, since
λβ >α's are ring isomorphisms.

3. Central extensions of A -graded groups. In this section we study central
extensions of A -graded groups. Let us recall some notion about central extensions of
groups (cf. [8]). A surjective group homomorphism φ from U onto G is a central
extension of G if the kernel is contained in the center of U. A central extension (φ9 U)
of a group G is called a covering of G if U is perfect, that is, (£7, U)=U. A central
extension (φ, U) of a group G is said to be universalifit covers all other central extensions
of G, i.e. if (φ', G") is any central extension of G, then there is a homomorphism φ
from U into G' such that φ = φ'φ. Any perfect group has a universal central extension
which is unique up to isomorphism. Two perfect groups are said to be centrally ίsogenous
if they have the same (isomorphic) universal central extension. We will use the previous
notation unless otherwise specified.

Let G be a group graded by A (of Type Al9 />3, Dl9 />4, or E6, EΊ, Es) with
(G9φ)e<5 = <5(A9K). Then there is an associative ring R such that G is a homo-
morphic image of St(A9 R). R is chosen for a fixed root with its multiplication de-
fined by any fixed positive A2-pair. We will simply write rs instead of m(r, s) for
r,sεR. Now we give the following definition and the main result Theorem (3.2) of
this section.

(3.1) DEFINITION. Let K be a commutative ring. Suppose G1 and G2 are A-

graded groups relative to (G1? φ±) and (G2, ^2) e ®(^> K)> respectively. A group homo-
morphism σ from G1 to G2 is a Δ-homomorphism i

(3.2) THEOREM. Let A be of Type Al9 />4, El9 1=6, 7, 8 or Dt, l>5. Any covering
(U, ψ) of a A -graded group G is also A -graded and ψ is a A-homomorphism. Moreover
there is a surjective homomorphism Ψ from St(A9 R) onto U such that

9— u

G,

where R is chosen as above for G.
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Our proof will be constructive and the relations (Rl) and (R2) play a major role
in the proof. Note that G has a set of generators (xΛ(r) \oceA,reR} which satisfies (Rl)

and (R2). We will define a set of generators {xΛ(r)\oceA, re R} in U which satisfies the
relations (Rl) and (R2). Then U is a homomorphic image of St(A, R). The idea of this
proof is based on showing that St(R)-+E(R) (the elementary group in the Chevalley

group) is a universal central extension (cf. [5], [8], [7]). Technically, [7] has been
very helpful. Before going to the proof, we state a consequence. Again we give the

proof later.

(3.3) THEOREM. Let A be of Type Al9 />4; Dt, />5; or Eh 1=6, 7, 8. Let G and

G' be perfect, and G Δ-graded. If there is a group which is a covering for both G and G1 ' ,
then G' is also Δ-graded in such a way that G and G' are Δ-homomorphic images of the
same Steinberg group St(zl, R). In particular, if G and G' are centrally ίsogenous and G
is Δ-graded, then G' is also A -graded.

The proof of Theorem (3.2) will be given later as a consequence of a series of
preliminary results.

Let (U, ij/) be a covering of a ^J -graded group G and C the kernel of the central
extension ψ : £7->G. First note that G is perfect. Indeed, for any α e A, there is an A2-pair

(β,y) such that β + γ = a. Since xΛ(r) = (xp(l),xy(cβtyrj)9 we have G" = (Gβ,Gy). So
Gα^(G, G). By (Grl), we have G = (G, G). The perfectness makes sure the existence of
a covering.

The following standard lemma, sometimes called the central trick, is technically
important. It will be used repeatedly.

(3.4) LEMMA (the central trick). Let p \ H±-+H 2 be a central extension of a group

H2. Ifx1,x2,yι,y2eHι so thatpx1=px2,py1=py2, then (xl9yi) = (x2,y2)'

For any αezl, let

(3.5)

and

(3.6) G(α): = <

Then G(α) is contained in the centralizer of Gα.

(3.7) LEMMA, (i) When A is of Type Al9 l>4, or Eh l>6, 1, 8 for any two roots

α, β with (α |/0 = 0, there are y,δeA such that (α, y,β,δ) is an A ^-quadruple.
(ii) In Db l> 5, for any two A2-pairs (β, y) and (β', y'), there exists a third A2-pair

(β", y") such that {β, y, β', y'} and{β', y', β", y"} are contained in some (possibly different)
At_λ-subroot systems of Dt.

PROOF. Examine the explicit constructions of these root systems in [2]. Π

(3.8) LEMMA. Assume that A is of Type Ah />4, or El9 1=6, 1, 8. Let α, βeA
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with (α|jβ)>0, α^jβ. Then Gβ^(G(a), G(α)).

PROOF. We discuss two cases (α | β) = 1 and (α | β) = 0. In the first case, take a root
y such that (α, —β,y) is an ^43-triρle. Without loss of generality, we may assume
α = ε1 — ε2, — β = 82~ε3> y — εa~£4 (cf. Example (1.1)). Then for some ce{±l},

V) = (̂ 3-.̂ ), *.4-.2(l))e(G(α), G(α)),

since ta —ε2 |ε3 —ε4) = 0 and (ε1— s2 |ε4 — ε2) = 1 are nonnegative. In the second case
when (α | j?) = 0, we may take two roots y, δ such that (α, y, β, δ) is an v42-quadruple by
Lemma (3.7). Without loss of generality again, we may assume oc = εί — ε2, y = ε2 —ε3,
β = ε3 —ε4 and δ = ε4 — ε5. Since (B!— ε2 ε3 —ε5) = 0 and (ε t— ε 2 |ε 5 — ε4) = 0 are
nonnegative, then for some CE {± 1},

V'Hί**-.,("•)> *βfl-β4(l))e(G(α), G(α)).

So the result follows. Π

(3.9) LEMMA. Assume that Δ is of Type Al9 />4, or El9 1=6, 7, 8. Let α, βeΔ
anda^β. 7/(Gα, G*) = l, fλέ?Λ (U\ ΰβ) = l (cf. (3.5)).

PROOF. (G",Gβ) = l implies (α|jS)>0. Then G^G(α). Let jc, j be arbitrary
preimages of xeG α and jμeG(α), respectively. Then by Lemma (3.4), (x,y) depends
only on x9 y. Furthermore, (£, y) is in C since (ψ(x, y)) = (x, y) = 1. Define a map λx

from G(α) to C by A x (y) : = (x, j), where y is any preimage of y. Since C is central,
we see from (0.2) that λx is a group homomorphism and hence Ax{(G(α), G(α))} = l.
But Gβ^(G(a), G(α)), so 4(Gθ=L Thus (Jc, Uβ)=l. Since Jc is arbitrary, we have
(UΛ

9U*) = \. D

For the generators xα(r), reR, αezl, let jα(r)e ί/ be any preimage of xa(r). For
αe J, choose any two roots β, y with α = /? + y. Define

(3.10) *«W:KMW)>

So by the central trick

(3.11) *α(r) = (^W),

Let UΛ = {xa(r)\rεR}.

(3.12) LEMMA. Le/ A be of Type Al9 /> 4, £"ί? /= 6, 7, 8 or D,, /> 5. 77ze« Jcα(r) w

independent of the choice and the order of β, y.

PROOF FOR At OR Et. Independence of the choice. Suppose α = β' + y' is another
such representation of α with {/?, y} ̂  {/?', y r} (set-theoretically). 1 = (α | β) = (β' + y' | β) =

(β'\ft + (y'\β) So' either 08 / |/ϊ) = l, (y'|j8) = 0, or(/?' |/ϊ) = 0, (y'|j8) = l. We study these
cases separately.

Case 1: (j8' | j8)=l, (y / | j8) = 0. We may and will apply the commutator formula
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(0.5) with a=yβ(εr), b=yβ,-_β(ηεε'), c=yy,(\) where e = cβt7, ε' = cβ,ty,, η = cβtβ>-β, because

we have (]5|/) = 0, (β'\β'-β + y) = 0, (y'\β'-β + y) = Q and Lemma (3.9). So

(yβ (*'r),

where η' = cy-y,ty., and the central trick has been applied. Now the following calcula-
tion yields that ηη'εε' = l: cβ.ty.cβj,-βEβ, + y, = \_[_Eβ, Eβ,.β~\, Ey^ = \_Eβ, \Eβ,_β9Ey^\ =
Cβ^cy_y^yΈβ + y. So, xΛ(r) is independent of the choice of /?, 7- in this case.

Case 2: (βr \ β) = 0, (γ '\ β) = 1 . By using Lemma (3.9), and then (0.5) and the central
trick, we have for any r e R,

=CM-i),^-wVr))^
where ε = cβty9 &r = cβ,ty,9 η = cyj>-r η' = cβt-y,ty . Also the Jacobi identity,

and (1.1) imply ε= —ε'ηη'. Then it follows that xΛ(r) is independent of the choice of β, y.
We still have to show that xa(r) is independent of the order of β, y. By examining

Example (1.1), we see that in an Al9 />3, there are at least two distinct representations
a = β + y = β' + y'. We chose such a pair {β', y'} not equal to {β, y} as sets. Then by the
independence of choice,

= (yy(cVtβr),

This shows that xΛ(r) is independent of the order of β, y.

PROOF FOR Dt. For />5, A=Dt contains two subroot systems of Type Al_l

(/— 1>4), whose union contains a base for A and whose intersection is an Al_2-
subroot system of A .

With this observation, we see from Lemma (3.7) that given two representations
α = jβ' + γ' = j8 + y, we may always find a third distinct representation of a = β" + y" such
that {β, 7, β", y"} and {β', y', β", y"} each lie in an ^_rsubroot system (/- 1)>4) of
A. Then we can apply the result for Al_^ (/— 1 <4), and get

= (yβ»(cβ»tγ >r), yy»(iy) = (yβ (cβ,ty,r),

D

(3.13) LEMMA. Let A be of Type Al9 l>4,El9l= 6, Ί9^orDl9l>5. The generators
xa(r), rεR.ueA satisfy the relations (Rl) and (R2).

PROOF FOR AI OR E{. Let α = /? + y, a9β,yeA. We use the notation defined ia
(3.10). Then for ε = cβtΓ
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xa(r + s) = (yβ(cβ,y(r + s)\ yy(l)) = (yβ(cβ,yr)yβ(cβ,ys\ yy(l)) by the central trick

l(yβ(Cβ9yr)9 y y ( l j ) by (0.2)

= xa(s)xΛ(r) = xΛ(r)xa(s) .

So (Rl) holds for Jcβ(r)'s.

If (α|<5)>0, then by Lemmas (3.8) and (3.9) and the central trick we have

(xΛ(r)9xδ(s)) = l.
Now we assume (α | <5)= — 1 and (α, δ) is a positive y42-ρair. It remains to show

(xa(r)9 xδ(s)) = xΛ+δ(cΛtδrs) .

Case 1: A=At. We need to show (Jcίι7 (r), xjk(s)) = xik(rs) f°r i>Λ ^ distinct, where

Xij(r): = xBi-εj(r)9 etc. (cf. Lemma (1.5)).
Take m not equal to ί, 7, fc. Then applications of the central trick and (0.5) (see

(3.11) as well) yield

Case 2: zl =£'ί. There is only one class of positive ^42-pairs. Choose β' eΔ so that

(oc,δ,βf) is an Λ3-triple. Then β: = δ + βf satisfies (β\δ)=l and (j8|α)=-l. Hence

y : = δ-β, α + jSeJ. Thus

where ε = cβfΓ εf = cΛ>β, η = ca+βίr As before, we have ηεε' = cΛ)δ. So (R2) is satisfied by
xα(r)'s.

PROOF FOR Dj. We will need an ^-quadruple (cf. Lemma (3.7)). That is why we
assume /> 5. The relation (Rl) follows from the same proof as that for Al and Et. For
(R2), suppose a9δeA, r,seR.

If (α I <5) = 2, i.e. α = δ, then (jcβ(r), Jcα(,s))= 1 from (Rl).
If (α| δ)= 1. Lemmas (3.8) and (3.9) hold for α, δ by replacing α, β there. Using

(Gα, G*) = 1, we have (*β(r), xδ(s))=l.
If (α 1 5) = — 1 , we know that {α, δ } can be imbedded into a subroot system of Type

4_!. Then (xβ(r), ̂ (5)) = ̂ +^ )̂.
Finally, assume (α | <5) = 0. We will use the explicit construction for the root system

A=Dl9 that is,

where {εj is the standard basis of Rl (cf. [2]).
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Recall that A has only one J^-orbit of roots. Without loss of generality, assume

a = εi— ε2. Then δ is one of the following roots.

We claim that if δe{±εi±εp3<i^j<l}9 there exist two roots β,yeA such that

(α, β, (5, y) is an ̂ -quadruple. Indeed, if δ = εf + εj9 take /? = ε2 - ε{, 7 = εk - ε,- if δ = εt — εp

take β = ε2-£i, y = £j — ε k ; i f δ = -ε^ + ε^ take j8 = ε2 + ε£, y = -ε^ + εfe; if δ= -εf — sp take

jβ = ε2 + εί? γ^εj + εfc where 3</J, /c</ and 1,7, fe are distinct. Also it is clear from the

point of view of the Weyl group, since W=Slx2l~1 where Sl is the symmetric group

on / letters and 2/-1 consists of an even number of sign changes. Then applying the

result on Al (/>4), we get (xα(r), xδ(s)) = 1 for δε{±si±εp 3<i^j<l} (α = ε1-ε2).

It remains to show (xα(r), xό(s)) = 1 for (5=+(ε1+ε2) (α = ε1-ε2). Applying the

conjugation with respect to nδ(\) and the central trick, we need only to prove

(xΛ(r\ xδ(s)) =\ for δ = ̂  + ε2.

Let β= -ε1+ε3. Then (α, β, δ) is an ^3-triple. Note that (xa(r), xδ(s)) is central
since ψ( t/α, Uδ) = (G\ Gδ} = \. Then

(Jcβ(r), Jca(j)) = (Jcβ(r), Jc,(j))^(1)

= (xβ + Λ(cβ.Λr)xΛ(r), xβ + Λ(^,^)^(J))

=(jcβ(r), ^+,(^,^))^+a(c^arK(^w, χΛ(s)γ*+*' **'+*c^ χβ+*(Cβ,*sy)
'(xβ+«(Cβ,Λx6(s)rβ + 6(Cβ'όS) by (0.3)

= ̂ α+/?+ί(cM+^Mrj) (Jcα(r), x9(s))'(xβ+Λ(cβtΛr)9 xp+Λ(Cβίδs))'XΛ+β+δ(cΛtβ + δcβtδrs) .

Note that the middle two terms of the last expression are central. Again by calculating

the Jacobi identity, [[Eβ, EJ, Eδ]=-lEΛ9 [Eβ, EJ], we have cΛtβ+δcβtδ= -cΛtβ+δcβtδ.

Then (xa(r\xδ(s)) = (xΛ(r),xδ^ and (xβ+Λ(cβtar),xβ+δ(cβtδs)) =

1. Since r, s are arbitrary, we have (xβ+a(r)9 Xβ+δ(s))= 1 f°r all r,seR. Now applying
the conjugation by ^(1) and the central trick, we have (xa(r), ̂ (j))= 1 for all r,seR.

D

(3.14) LEMMA. f/=<t/ α |αez l>. ^«cβ (Grl) holds for U.

PROOF. Let £/': = < E / α | α e 2 l > and C be the kernel of ψ from 17 onto G. Since

= G, then U=U'C, then C/=(J7, t/) = (C//C, U'Q = (U', U')=U', where the last

equality follows from the relations (Rl) and (R2) for Jcα(r)'s. Π

PROOF OF THEOREM (3.2). Up to now, we have constructed a surjective homo-

morphism ψ from St(J, R) onto C7 by sending jfα(r) to xα(r). Let ί7 be the subgroup gen-

erated by (xΛ(r) I α 6 J , r e ΛΓ} and ί/α = (xα(r) | r e ΛΓ} for each α e zl . We show ί7e S.

Clearly, άα(r)->Jcα(r) defines a surjective homomorphism, denoted by φM, from

, A") onto J7. So the diagram commutes.
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St(A,K)
Φu u

St(zJ,tf)—>G.

Since GeS, so φ, restricted to χ+ =χ+(K) relative to a positive system A+ of A, is an

isomorphism. The commutative diagram implies φu restricted to χ+, is an isomorphism
as well. This implies (U, φu)e (S.

It remains to verify the axioms (Grl) through (Gr5). (Grl) follows from Lemma

(3.14). (Gr2) is clear by the definition of U*. (Gr3) follows from Lemma (3.13). (Gr4)

holds for [/, since it holds for St(zl, R) and G. (Gr5) is from the relation (R3). It is clear
from the construction that φ is a A -homomorphism. Π

PROOF OF THEOREM (3.3). Let R be the associative ring relative to G, Let φ

(resp. φ'): £/->G (resp. G') be the universal central extension of G (resp. G'). By

Theorem (3.2), Uis graded by A. Moreover, the set of the generators [xΛ(r) \<xEA,rER}

in G can be lifted to a set of generators {jcα(r)|αe^5 reR} in U which satisfies the
relations (Rl) and (R2). Denote the element in <5 = <5(A, K) relative to G (resp. £7) by

(G, φ) (resp. (U, φu)). The meanings of t/α, U* (relative to a positive system of A), nΛ(u),
hΛ(u), U", U±, etc. are defined as before in an obvious manner. Pass these objects to
G' by the central extension homomorphism φ', for example, G/a: = φ'(Ua)9 x'a(r): =

φ'(xΛ(r)), G': = φ'(U), Gf±=φ'(U±), etc. Then φ': = φ'φu is a homomorphism from

St(A,K) onto G'. We will show that G' is zl-graded relative to (G'9φ
f). It suffices

to show that (G', φ')e<5 = <5(A, K) and that the axiom (Gr4) holds, since the other

axioms are direct consequences of the relations (Rl) and (R2) and the fact that φ' is a

homomorphism.

To be clear, we describe the relations of above maps by the following commutative
diagrams with the generators:

St(A,R);xΛ(r) G ,xΛ(t)

and

Now arbitrarily fix a positive system A+ of A. Then φu\x+(K) is injective since
(U, φje^by Theorem (3.2). Recall that the center of χ + (K) is trivial ([4], [8]). Then

the center of U+ is trivial. Suppose xE χ+(K) n Ker(φx) Then φu(x) e U+ n Ker φ'. Since
Keri^' is central by hypothesis. So φu(χ)=\9 and x=]. So φ'\χ + (K} is injective. This

proves (G', φ'}e&.

We show that G'*nG'β=\9 if α/j8. Let xf

Λ(r) = x'β(s). Then xΛ(r) = xβ(s)z for some
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zeKer ^'^Center(t/). It suffices to show r = s = Q. We need to consider four cases:

If α=-β take y e Λ so that (α|y)=-l. Then by (R2), 1 = (x.Λ(s)z9 Jcy(l)) =

(xα(r), x/l)) = *α+y(cα,yr). Thus r = 0 and j = 0.

If (α|/9=-l, i.e. α + /?eJ, then 1 = (*β(r), xβ(l)) = (*,(*χ *α(l)) = V«(w)
Hence ,y = r = 0.

If (α I /?)=!, we take yezl so that (α, — /?, y) is an ^3-triple. Then 1 =

(xα(r),x_y(l)) = (x/ϊ(j)z,^_y(l)) = ̂ _y(c/ ? f_yj). So s = Q and r = 0.
Finally if (α | ]S) = 0, then there exists a third root y so that (α, y, jS) is an ^43-triρle.

Then

but (α + y I β + y) = 1 . Thus r = s = 0 follows from the third case. So (Gr4) holds. Π
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