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COXETER ARRANGEMENTS ARE HEREDITARILY FREE

PETER ORLIK AND HIROAKI TERAO1

(Received February 24, 1992)

Abstract. A Coxeter arrangement is the set of reflecting hyperplanes in the reflection
representation of a finite Coxeter group. Arnold and Saito showed that every Coxeter
arrangement is free. We prove that any restriction of a Coxeter arrangement is again a
free arrangement. It explains why the characteristic polynomial of any restriction of a
Coxeter arrangement has only positive integer roots, which was observed by P. Orlik
and L. Solomon. We use the classification of Coxeter groups.

1. Introduction. Basic definitions below may be stated over an arbitrary field,
but we restrict attention to the real numbers in this paper. We refer to [8] for details.

Let V be a real vector space of dimension /. A hyperplane H in V is a subspace
of codimension one. An arrangement stf is a finite collection of hyperplanes in V. Let
L(srf) be the set of all intersections of elements of stf. We agree that L(s/) includes V
as the intersection of the empty collection of hyperplanes. We should remember that
if XeL(srf), then X^ V. Strictly speaking, these objects should have different names,
but it is always clear from the context which one is in consideration. If J ' g j / is a
subset, then 31 is called a subarrangement. For XeL(stf), define a subarrangement s/x

of stf by stfx = {HE stf I X^H}. Define an arrangement srfx in X by

We call stfx the restriction of s/ to X. Note that stfv = srf.
Let F* be the dual space of V, the space of linear forms on V. Let S=S(V*) be

the symmetric algebra of V*. Choose a basis {eu . . . , et} in V and let {xu . . . , xt) be
the dual basis in V* so xi(ej) = δiJ. We may identify S(V*) with the polynomial algebra
S=R[xu . . . , Xj]. Each hyperplane Hesrf is the kernel of a linear form αH, defined up
to a constant. The product

G O « O = Π *H

is called a defining polynomial of s4. An /^-linear map θ: S-+S is a derivation if
θ(fg)=fθ(g) + gθ(f) for f,geS. Let DerR(S) be the S-module of derivations of S.
Define an 5-submodule of ΌQTR(S), called the module of srf-derivations, by
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D{sJ) = {θc ΌerR(S) | 0 ( 0 e QS) .

The arrangement si is called free if D(si) is a free S-module [12]. If si is a free
arrangement, then the subarrangement s/x is free for all XeL(si). Recently, Edelman
and Reiner [4] constructed a free arrangement si which contains a hyperplane HE si
so that the restriction, siH is not free. We call si hereditarily free if s/x is free for all
XeL(si). The Edelman-Reiner example shows that not all free arrangements are
hereditarily free.

Let GL(V) denote the general linear group of V. An element se GL(V) is a reflection
if it has order 2 and its fixed point set is a hyperplane Hs. We call Hs the reflecting
hyperplane oΐs. A finite subgroup G^GL(V) is called a reflection group if it is generated
by reflections. These groups were classified by Coxeter and are often called finite Coxeter
groups. Let GczGL(V) be a finite Coxeter group. The set si = si(G) of reflecting
hyperplanes of G is called the Coxeter arrangement of G.

Arnold [1], [2] and Saito [9], [10] proved independently that Coxeter arrangements
are free. If si is a Coxeter arrangement and XeL(si), then the restriction six is not
always a Coxeter arrangement. Thus these restrictions are not automatically free.
Restrictions of Coxeter arrangements were studied in [6]. There is a close and still
unexplained connection between the numerical results in [6] and the Springer
representations of the corresponding Weyl groups, see [11] and [5]. The results of [6]
led to the conjecture that six is free for all XeL(si). In this paper we prove this
conjecture.

THEOREM 1.1. Coxeter arrangements are hereditarily free.

The argument uses the classification of finite Coxeter groups [3]. It follows from
[8, Proposition 4.28] that it suffices to prove the assertion for irreducible groups. We
proved Theorem 1.1 for the infinite families in [8, Section 6.4]. For the exceptional
groups we utilize additional facts. Every 2-arrangement is free [8, Example 4.20]. The
results in [12] and [8, Appendix D] imply that every 3-dimensional restriction of a
Coxeter arrangement is free. We proved in [7] that in a Coxeter arrangement the
restriction s/H is free for every hyperplane He si. Thus the assertion is true for
exceptional groups of rank <5.

This leaves the arrangements for Coxeter groups of types Er, r = 6, 7, 8 and in the
arrangement si(Er), restrictions to subspaces X of dimensions 4,..., r — 2. The rest of
this paper is devoted to proving that these 19 arrangements are free. In Section 2 we
collect the basic tools needed in our constructions. Given si, we apply the
Addition-Deletion Theorem 2.3 to build si from a known free arrangement J* adding
hyperplanes one-by-one, each time satisfying the conditions of Theorem 2.3. We consider
the arrangements in the order of Table 1. In 13 cases we can find ^ so that the
hyperplanes may be added in any order. We call these pairs {si, 0$) pure and consid-
er them in Section 3. In the remaining six cases the order of the hyperplanes is essential.
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TABLE 1. Structure formulas.
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typej/

EA2

E{I

EΛ>

EM*A*

EU\Y

ESf*γ

EA2

EA2

E°<

Ei<

EtXA*

Ep
E$*«

t y p e ^

DAι

DAι

EA\

Ef
E*

E£I

EAι

EAι

EU\Y

EAι*A2

Euir

E-,'* 2

Eγ'y

E?

%

type s/ — type @

2EA

6>
XA2

3E{l + EAlXA2

E(AιXAiY

3EΛi«Λ2 + EΛl

EA' + 4EA2χA2

6EAX + E(

Ί

AIXA*Y

5EAiXA2

6Eί

Ί

Ah" + 2EAιXA2-3EAί

0

4EΪ*A<

4EA2χA> + 2EA2XA>

4Eiι A2 + 5EAl Ai-4EAi Λl A3-4EAι Al

A x A2

These require more detailed study and we treat them in Section 4. The largest is a

6-arrangement with 68 hyperplanes. The corresponding addition tables are collected in

Section 5. The results may be summarized as follows.

THEOREM 1.2. The 19 restrictions to subspaces of dimensions 4, . . . , / * —2 in the

Coxeter arrangements ofEr, r = 6,7, 8 are free and satisfy the structure formulas in Table 1.

2. Basic tools. The set L(s#) is partially ordered by reverse inclusion. The

Mόbius function μ: L(s/)-+Z is defined by μ(V)=\ and for Y> V we obtain μ(Y)

recursively from £ z < y μ ( Z ) = 0. Let t be an indeterminate. Define the Poincarέ

polynomial of si by

π(.«/,0= Σ μ(X)(-t)riX).
XeL(sί)

It follows from [8, Theorem 2.47] that π(s/91) has nonnegative coefficients. Let | si \

denote the number of hyperplanes in si. Then | si \ is the coefficient of / in π(si, t).
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Next we define deletion and restriction. Let si be a nonempty arrangement and let
Hoesi. Let si' = si\{H0) and let si" = siHΌ. We call (sJ,si',si") a triple of ar-
rangements and Ho the distinguished hyperplane. The next result was proved in [8,
Theorem 2.56].

THEOREM 2.1. If (si, si', si") is a triple of arrangements, then

π(si, t) = π(si', t) + tπ(si",1).

Let GaGL(V) be a finite Coxeter group with reflection arrangement si = si(G).
The group G acts by permutation on the poset L(si). A complete set of orbit types
was determined in [6]; see also [8, Appendix C]. The type T of Xe L(si) is the Coxeter
group which fixes X pointwise. If two orbits have type T, we label them T, T". This
determines the structure of L(si) and the structure of the restriction L(six) for all
XeL(si). We identify a restriction stx by a pair (G, T) and write type s/x = (G, T) or
type six = Gτ. Here G is the Coxeter group of the reflection arrangement si = si(G)
in which we are restricting and T is the orbit type of the subspace XeL(si) whose
restriction six is in consideration. The results of [6] give the following.

PROPOSITION 2.2. Let GaGL(V) be a finite Coxeter group with reflection ar-
rangement si= si(G). For each XeL(srf) with dim(Ar)=/7, there exist positive integers
bx,...,bx such that

The values of bf are tabulated in [6] and [8, Appendix C] for all exceptional
groups and all orbit types. We make frequent use of these tables in this paper.

The ^-module ΌeτR(S) is free with basis Dt = d/dx^ Thus any derivation θ e ΌετR(S)
is expressed uniquely as

θ = fίD1+- +fιDι, fu...,fιeS.

We grade Der^S) by polynomial degree. Thus θeΌeτR(S) is homogeneous of pdegree
q if the polynomials / 1 ? . . . , fx are homogeneous of degree q. In this case we write

If si is free, then by [8, Proposition 4.18] there exists a homogeneous basis
{θί9 ...,θt}{oτ D(stf). The polynomial degrees of a basis (with multiplicity but neglecting
the order) depend only on si. We call pdeg θί9..., pdeg θt the exponents of si and write

exp si = {pdeg θl9..., pdeg θt} .

The following fundamental result is needed in our calculations [12], [8, Theorem 4.51].

THEOREM 2.3. Suppose si is nonempty. Let {si, si', si") be a triple. Any two of
the following statements imply the third:
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si is free with exps/ = {bu . . . , ^_ 1 ? bt} ,

si' is free with expj^' = {b1,..., bι_ί, bι— 1} ,

si" is free with exp si" = {bl9..., bx_ J .

If we assume that si1 and si" are free, then the result is called the Addition
Theorem. If we assume that si and si" are free, then the result is called the Deletion
Theorem. The following Factorization Theorem was proved in [13], [8, Theorem 4.137].

THEOREM 2.4. If si is a free arrangement with εxpstf = {b1,..., 6J, then

Comparison of Proposition 2.2 and Theorem 2.4 shows that if six is free, then its
exponents must equal b\,..., b*.

In the explicit calculations we need coordinates for the remaining arrangements.
Define

Pm= Π (xι-xj) Π (
l<i<j<m l<i<j<k<m

Let sm=Y™=lXi- Cartan's coordinates are as follows.

7) = Λ Π ( * 7 - * I ) ,

The inner product on V* is given by:

'8/9 if i=y,

—1/9 otherwise.

3. Pure pairs of arrangements. Suppose si is one of the 19 arrangements in
consideration. It follows from Proposition 2.2 that n(s/, t) = Y\\ = 1(\+ait) for positive
integers au...,av We want to prove that si is free with exp si = {aί9..., αz}. We
choose a subarrangement 0$<^si with the following properties:

(1) 0b is a restriction of a Coxeter arrangement which is already known to be free
with Qxp$ = {bί,..., bt}9

(2) after a suitable permutation of the subscripts we have b^a^ for as many
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indices as possible.

DEFINITION 3.1. Given an ordering of the hyperplanes of si — 0b, say Hί9..., Hm,

we set sio = ̂  a n ^ Λ/, = Λ U {/fls..., Ht) for /= 1,. . . , m. We call an ordering of the

hyperplanes in si — 0& admissible if we can apply the Addition Theorem 2.3 adding one

hyperplane at a time in the given order to 06 to show that si is free.

We must consider the restrictions of the successive arrangements sif \ The most

favorable situation is if these restrictions are already known and do not depend on the

hyperplanes to be added. This notion is stated precisely below. The next two definitions

and three propositions are valid for all arrangements.

DEFINITION 3.2. Suppose Hί9 H2 are two distinct hyperplanes not in 0$. We call

the hyperplanes Hί9 H2 compatible with respect to 0$ if there exists Ke08 so that

Equivalently, the hyperplanes Hί9 H2, ΛΓare dependent. The next result is immediate

from this definition.

PROPOSITION 3.3. If two distinct hyperplanes Hl9 H2 are compatible with respect

to Λ, then ^H2 = {^\{HX})H2 for any arrangement <g with Λv{Hl9 H2}^<#.

DEFINITION 3.4. Call the pair (s/9 0ί) pure if any two hyperplanes in si — 01 are

compatible with respect to 0&. We call the pair ( J / , 0ί) mixed if it is not pure.

PROPOSITION 3.5. Let 0$*^ si. The following five conditions are equivalent.

(1) {si, 0k) is pure,

(2) for an arbitrary linear order of si — $ we have siHi = (sii)
Hi,

(3) there exists a linear order of si — 0$ so that siHi = (sii)
Hi,

(4) πGfi/, 0 = πO», O + ' Σ H ^ - ^ ( ^ H > 0,
(5) siH = (<%u{H})H foranyHεsi-<%.

PROOF. (1) => (2): Since Ht and Hi + ί are compatible with respect to J , we have

by Proposition 3.3. Next, since H{ and Hi+2 are compatible with respect to J^, we

similarly have (sii + 1)
Hi = (sii+2)

Hi. Repeating this process, we finally have (2) because

(2) => (3): Obvious.

(3) => (4): Apply Theorem 2.1 to obtain

π(s/h /)-*!(.«/,_!, t) = tπ((ssίi)
Hi, t)

for i= 1, . . . , m. Combining these equalities, we have
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(4) => (5): Give a linear order to s/-£ = {Hl9..., Hm} such that H=H1. Since

t Σ *(G< )Hi, t) = π(s/9 t)-π&, t) = tΣ π(^H\ t),

we have

by comparing the coefficients of t2. In general, each (sii)Hi is a subarrangement of s/Hi.

Therefore we have (sii)
Hi = siHi for i— 1, . . . , m. When /= 1 this is the assertion in (5).

(5) =>(l): Note that H1nH2esiHl = (Λu{#i}) H l . Thus there exists Ke@ such

that //x nH2 = Hίn K. Π

PROPOSITION 3.6. Suppose ffl^stf. If

(1) π(^,0 = Π!=i( 1 +^0,
(2) ^ w/r^e with exp(^) = {α 1 ? . . . , ^ _ l 5 ^

(3) s4H is free with exp( j/ H ) = {α1, ....a^^ for all

then any arrangement Ή with ^ ς ^ ς i is free with exp(#) = {α l 9 ...9aι_uaι — \

\&9\}. In particular, si is free and any ordering of the hyperplanes in si — 38 is admissible.

We express this with the symbolic structure formula

type si - type @ = Σ t v P e ^H

PROOF. It is easy to check that

By Proposition 3.5, (si, &) is pure. Let <€ = $ u {Hl9 ...9HP} and si^&lu {Hl9..., H(}
(/= 1,...,/?). Since (*, J?/) is also pure, we have stfi = s/i_1u{Hi} and (sii)

Hi = siHi for
/= 1,...,/? by Proposition 3.5. Apply the Addition Theorem 2.3 repeatedly. •

EXAMPLE 3.7. Consider the arrangement si = (E6, A
2). We see from the tables in

[6] and [8, Appendix C] that π(st9 0 = 0 + 0 0 + 4 0 ( 1 + 5 0 ( 1 + 7 0 - We show that si

is free with exps i = {l9 4, 5, 7}.

Recall Q(E6) and let j81 = x 3 - x 4 , β2 = χ5-χ6. Let ̂  = kerβ t for /=1,2. With

respect to the inner product, the two hyperplanes are orthogonal. Thus the reflections

in Kx and K2 commute. If X=KX f)K2, then si = si(E6)
x. Choose coordinates xί9 x2,

x3, x5 on X. Then Q(^i) = Q(E6)\X3=X4 X5=X6 where subscripts indicate restrictions. Thus
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= Xl + X2 + X3 + *4 + X5 + X6

Let@ = (D5, AJ and note that P5\X3=X4 = Q(@). We get from [8, Proposition 6.85] that
0b is free with exp J^ = {1, 3, 4, 5}. Thus 0b satisfies conditions (1) and (2) of Proposition
3.6. We check (3). Let / / ^ k e r ^ for i= 1, 2, 3, 4. The type of stEi is the subgroup
generated by the reflections in the hyperplanes {Kl9 K2, H^. For ι== 1, 2, 4, the three
hyperplanes J£l9- # 2 , /ί, are orthogonal to each other, so that
(E6, A\). For H3, the angle θ between H3 and Kx satisfies

Also <α3, jS2> = 0. This implies s/H3~(E6, Ax *A2). Thus ,δ/Hi is free with expj/H i =
{1, 4, 5} for 1 <i<4 from [8, Appendix D]. Therefore the conditions of Proposition
3.6 are satisfied. The corresponding structure formula is

4. Mixed pairs of arrangements. Suppose si is one of the arrangements (EΊ, A f),
(E8, Al), (E8, Aγ x A2), (E8,Al), (E8, A2\ (E8, Aj). Choose @ as indicated in Table 1.
We want to prove that s/ is free. Since the pair (s/9 $) is mixed, we must find an
admissible order of the hyperplanes in s/ — 31. In order to apply the Addition Theorem,
we must know the restrictions of the successive arrangements to the hyperplanes to be
added.

We encode the information necessary to find an admissible order in the pxp
compatibility matrix C associated to si and $. The rows and columns are labeled by
the hyperplanes H^stf — ̂ . There is no entry Cu if i=j or if Hi9 Hj are compatible
with respect to J*. If Hh Hj are not compatible with respect to J ,̂ then Ctj = type stfHi nHj.
Note that C is a symmetric matrix which depends on the order of the hyperplanes in
si-Λ.

PROPOSITION 4.1. The structure formulas for the six mixed pairs are independent
of the admissible order of the hyperplanes in $4 — 011.

PROOF. Choose the admissible orders given in the addition tables. If Hi and Hj
(j=i+ 1,..., m) are compatible with respect to 0b, then s/fi = s/Hi. Otherwise, j/ff is
a subarrangement oϊsrfHi. We want to apply the Deletion Theorem to srfHi the necessary
number of times to show that j/ff is free before we can proceed to stf{. Direct computa-
tion shows that the pair (j/f \ s/Hi) is always pure so we have
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type siHi - type stψ = £ type stx .

Thus we can apply the Deletion Theorem to show that siff is free. Next we can apply
the Addition Theorem to show that si itself is free. We have

type si — type J^= £ type siψ .
i=ί

We substitute and collect terms to obtain

type si- type J>= £ typej/H-—-
® 2 ij

The sum of the entries of C is independent of the admissible order. Π

EXAMPLE 4.2. Consider the arrangement si = (E8, Al). We see from the tables in

[6] and [8, Appendix C] that π(s/9 0 = 0 + 0(1 +70(1 + 110(1 + H 0 We show that
jtf is free with expjtf = { 1,7, 11, 11}.

Recall Q(E8) and let βi=x3-x4r, β2 = χ4-χ5, jS3 = x 6 -x 7 , β^ = χΊ-χ8. Let

t for i= 1,2,3,4. If X= f|̂ = χ iζ., then si = si{E8)
x. Then βCs/) =

=x4=x5,x6=χ7=χ8 w n e r e subscripts indicate restrictions. Thus

72=^8+%!,

= s8-xί-x5

Let $ = {EΊ, Aγ x Λ2). Then 31^si and it follows from our earlier work that 31 is free
with exp J1 = {1, 5, 7, 8}. Let G£ = ker γt. The compatibility matrix C is presented in Table
2. Here we use the symbols 7\ = (£8, ^ x x ̂ 2 x ̂ 3 ) and Γ2 = (£8, v4 \ x ̂  | ) . Table 2 also
includes a column for the type of the restriction siGi. Here we use the symbols
S1=(E89 A1xAl) and S2 = (E8, A2 xA3). We see from [6] and [8, Appendix C] that
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TABLE 2. Compatibility matrix for (Eg*, i

G2

G3

G4

G5

G6

G7

σ8
G9

Gi G2

Γ2

^ 2

T l

Ά

T2

σ 3 G 4

Γ2 Γ,

Γ2

Γ,

G 5 σ 6

7-2

71,

G 7 G 8 G9

Ά

Si

•5i

Si

S 2

s2
Si

5 2

5 2

Si

Ί = {l,7, 11} and expS 2 = {l, 7,9}.

The only hyperplane compatible with all others is G5 with restriction of type S2

and exponents {1, 7, 9}. Since exp J f={ l , 5, 7, 8}, we cannot add G5 to $ using the

Addition Theorem. In this example we can start with any other hyperplane, but in each

case the restriction is a proper subarrangement of Sί or S2.

We add G9 first. Let s/ι=&g\j{G9}. Since G9 is compatible with all hyperplanes

except G6, the difference between j / G 9 ~ S 2 and J / ? 9 is the hyperplane G9nG6estfGg.

The restriction to this hyperplane has type Tί. Since exp 7\ = {1, 7} and exp S2 = {1, 7, 9},

the Deletion Theorem 2.3 shows that J / ? 9 is free with expstf^ = {1, 7, 8}. We write this

symbolically as type ^ 9 = S2 — T1. Now we use the Addition Theorem to show that

sii is free with e x ρ j / 1 = {l, 6, 7, 8}, and we write type srfx — type& = S2 — T1.

The hyperplanes may be added in several different orders. We choose the admissible

order G9, G8, G7, G4, G5, G6, G3, G2, Gx. This order is labeled HU...,H9 in the

corresponding addition table, Table 5. At each step the restriction must be checked as

above. The symbolic formula becomes type srf — type 31 = (S2 — 7\) + (S2 — 7\) + (5*2 —

Ti) + (S2- 7\) + S2 + (St -2T2) + (Sx - T2) + (SΊ - T 2 ) + SΊ. We collect terms symboli-

cally to get the structure formula

It follows from Proposition 4.1 that this formula is independent of the admissible order.

5. Addition tables. We present addition tables for the six mixed pairs. Table 3

lists our choice of coordinates.
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TABLE 3. Coordinates.
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typejs/

Ef

EA,XA2

Eg
Ep

Ef>

X4. — X

X3 — X

xA-x

X3-X

X6-X

X5 — X

5, X6— Xη

4^4-^5,

5,*6-*7,

4^5-^6,

7,JC 7-X 8

6>*7~*8

X6 Xη, Xη X g

Xη~X8

xΊ-x8

type^

E?
J?A\ x A2

E?
EA*

EA*

EA>

*4-*5

x3-xA,xA-x5,x6-xΊ

X4 — X5, X6—Xη

X3 X4, X$ Xβ

X6~Xη

X5-X6

TABLE 4. Addition from Eiι to E^.

e x p ^ . ,

1, 5, 7, 4,

1, 5, 7, 5,

1, 5, 7, 6,

1, 5, 7, 7,

1, 5, 7, 8,

1, 5, 7, 8,

1, 5, 7, 9,

1, 5, 7, 9,

1, 5, 7, 9,

8

8

8

8

8

9

9

10

11

* 4 + * 6 + * 7

57-JC5

*7-*3

Sη-X2

Sη-X,

* l+*6+*7

x 2 + x 6 + x 7

JC3 + * 6 + * 7

Eϊ

EA>

ESA

Eψ

Eψ

Eψ

VηA

E^A

*A2

*A2

h"_EAt

\Y'_EA

\)"-EA\

?)"

b"

b"

exp

1,

1,

1,

1,

1,

1,

1,

1,

5, 7, 8

5,7,8

5,7,8

5, 7, 8

5, 7, 8

5,7,9

5,7,9

5,7,9

TABLE 5. Addition from E^1 XAl to

e x p ^

1, 7, 5, 8

1, 7, 6, 8

1, 7, 7, 8

1, 7, 8, 8

1, 7, 8, 9

1, 7, 9, 9

1, 7, 9, 10

1, 7, 10, 10

1, 7, 10, 11

1,7, 11, 11

s 8 - x 2 - x 5

Sg-JCi-Xs

J 8 + X 3

* 8 + * 6

5 g _ X i _ X 2

S8 + X2

*8+*l

X(> + X i + X s

Ei>**>-

EA2«A3_

EA2*A3_

EA2«A3_

EA2»A3

E A l X A i -

EAί x.A2_

EΛi»Λl_

E8

ίX

EΛ**Λ2«ΛΛ

EΛ* ******

EΛί*Λ2xΛΛ

EA^A2^Ai

1EA\*A\

EA\*Λ\

E£*Λ>

exp sύψ

1, 7, 8

1,7,8

1,7,8

1,7,8

1,7,9

1,7,9

1, 7, 10

1, 7, 10

1,7, 11
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TABLE 6. Addition from Ef1 to EAί xA\

exp s/i _!

1,7, 11,5,9

1,7, 11,6,9

1, 7, 11, 7, 9

1, 7, 11, 8, 9

1, 7, 11,9,9

1, 7, 11, 9, 10

1, 7, 11, 10, 10

1,7, 11, 10, 11

1, 7, 11, 10, 12

1,7, 11, 10, 13

1,7, 11, 11, 13

1,7, 11, 12, 13

1, 7, 11, 13, 13

1,7, 11, 13, 14

S8 X^ Xζ

s8 + χi

S8+X2

s8+x3

S8 +
 X6

s8-x3-x5

s8-x2-x5

S8-Xί-x5

*8 + *4

x6 + xΊ+x8

s8-x2-x3

ss-x1-x3

s8-xί-x2

E$**-*E$**-E?**

Ef'A'-3EiixA'-Ei''A'

EiUΛ,_3Eil*Λ,_Eit*Λi

EAι Al — 3E8

l Al-EAl Al

pΆi x A3

pΆ2 pΆι x A2

EAί-EAίXA*

EAl-EAlXAl

E£-EA*XA2*

E£XA*

EAUA2

EA\*A2

Ei2χA*

exp j/f1

1,7, 11,9

1,7, 11,9

1,7, 11,9

1, 7, 11,9

1,7, 11,9

1,7, 11, 10

1,7, 11, 10

1,7, 11, 10

1,7, 11, 10

1, 7, 11, 13

1, 7, 11, 13

1, 7, 11, 13

1, 7, 11, 13

TABLE 7. Addition from EAι to EAι.

e x p ^

1,7, 11,5,9

1,7, 11,6,9

1,7, 11,7,9

1,7, 11,8,9

1,7, 11,9,9

1, 7, 11,9, 10

1, 7, 11, 10, 10

1, 7, 11, 10, 11

1,7, 11, 11, 11

1,7, 11, 11, 12

1,7, 11, 12, 12

1,7, 11, 12, 13

1,7, 11, 13, 13

1,7, 11, 13, 14

1, 7, 11, 13, 15

1, 7, 11, 13, 16

1, 7, 11, 13, 17

α i

s8-xA-x6

s8+x3

s8+x5

*8 + *l

*8 + *2

S8-Xl-χ6

*8-*l-*4

s8-χ2-χt

s8-x3-xA

ss-x2-x6

ss-x5-x6

5 8 + JC7

X3+XΊ+X8

X5+X7+X8

X 1 + X 7 + X 8

X2 + XΊ+X8

EΪ*A>

EA\ x A2 3/Mi x A2 f Ai x A\

T?A2v-A ΊJ?A3XA I?A x A2

h8 J^8 ^8

E8

ι—4E8

ι*

E£-4EA*XA2

EΛΪ*Λ2_2EΛ\*Λ2__EΛιxΛl

EflXA2-2EflXA2-EAlXAi

EAUA2_2£AUA2

E£-2EA*XA*

p<A\*A2_pA\*A2
^8 £ 8

EAX-E£XA*

E£XA2

EAUA2

EΛ\xΛ2

EA*

e x p ^

1,7, 11,9

1,7, 11,9

1, 7, 11,9

1,7, 11,9

1, 7, 11, 9

1,7, 11, 10

1,7, 11, 10

1,7, 11, 11

1,7, 11, 11

1,7, 11, 12

1, 7, 11, 12

1, 7, 11, 13

1, 7, 11, 13

1,7, 11, 13

1,7, 11, 13

1, 7, 11, 13
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1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1,

1

1

e x p ^

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, Π, 13,

7, Π, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

7, 11, 13,

5,9

6,9

7,9

8,9

9,9

9, 10

9, 11

10, 11

11, 11

11, 12

11, 13

12, 13

13, 13

13, 14

14, 14

14, 15

14, 16

14, 17

TABLE

s8 + x6

s* + x5

s8 + x4

S8+X3

S8 + X2

S8+Xί

s8-Xί-χ2

Ss-χl~X3

S8-χl~X4

Ss-χl~X5

s8-x2-x3

s8-x2-x4

s8-x2-x5

S8 -* 3 XA

s8-x3-x5

S8 ~ XA ~ X5

X6 + XΊ+X8

8. Addition from E

EAlxA2_5EAl

EP*A*-5E£

EA^A2-5E£

EAί*A2-5EA]

EAIXA2_$EA]

jrAi x A2 "3 JPA
^8 —3£<8

E8

l*A2 — 3E8

E8

ι 2 — 3E8

EA>XA>-3EA

EA^A2-EA^

Et*A*-EA*

EA^A2

EAιXA>

EMXA2

EMxA2

A i to Ei2.

xA2

xA2

xA2

xA2

xA2

xA2

xA2

xA2

xA2

<A2

<A2

<A2

exp j/f*

1, 7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1, 7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

1,7, 11, 13,

9

9

9

9

9

9

11

11

11

11

13

13

13

14

14

14

14
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TABLE 9. Addition from EAl to 2

1, 7, 11, 13, 5,9

1,7, 11, 13,6,9

1,7, 11, 13,7,9

1,7, 11, 13,8,9

1, 7, 11, 13,9,9

1, 7, 11, 13, 9, 10

1,7, 11, 13, 10, 10

1,7, 11, 13, 10, 11

1, 7, 11, 13, 10, 12

1, 7, 11, 13, 10, 13

1, 7, 11, 13, 10, 14

1, 7, 11, 13, 11, 14

1,7, 11, 13, 12, 14

1,7, 11, 13, 13, 14

1, 7, 11, 13, 14, 14

1,7, 11, 13, 14, 15

1,7, 11, 13, 14, 16

1, 7, 11, 13, 15, 16

1,7, 11, 13, 16, 16

1,7, 11, 13, 16, 17

1, 7, 11, 13, 17, 17

1, 7, 11, 13, 17, 18

1,7, 11, 13, 17, 19

xί+x7 + x8

X 2 +*7 + *8

X3+X7+X8

X4 + X 7 +JC 8

x 5 + x 7 + x 8

s8-Xl-x5

s8-x2-x5

*8-*3-*5

58-X4-X5

ss-x5-x6

S8+Xι

S8+X2

S8+X3

*8+*4

•*8+*5

S 8 +JC 7

*8-*l-*2

s8-xί-x3

SS -"-1 -"-4

58-X2-*3

ss-x2-x4

*8-*3-*4

EA'-6EA'-2EfxA2

EA'-6E{l-2EA'xA2

EA'~6EA'-2EA'XA2

EA*-6EAi-2E£xA2

^8 J^8

EiiXA>-4E$XA*

EtXA2-4E$XA2

EA1»A2_4EA
2

1XA2

E$-6EA*-E£XA2

E£-3EA*

E£-ΪEA*

Efι-3EA1

E8

ι — 3E8

ι

EAίXA2

EtXA2

E£-EA*

E£-EA*

E£-EA*

EAl

E£

Eύ

expj/f'

1,7, 11, 13,9

1, 7, 11, 13,9

1,7, 11, 13,9

1,7, 11, 13,9

1,7, 11, 13,9

1,7, 11, 13, 10

1, 7, 11, 13, 10

1, 7, 11, 13, 10

1,7, 11, 13, 10

1,7, 11, 13, 10

1,7, 11, 13, 14

1,7, 11, 13, 14

1, 7, 11, 13, 14

1, 7, 11, 13, 14

1,7, 11, 13, 14

1,7, 11, 13, 14

1,7, 11, 13, 16

1, 7, 11, 13, 16

1,7, 11, 13, 16

1, 7, 11, 13, 17

1,7, 11, 13, 17

1,7, 11, 13, 17
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