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Abstract. A Coxeter arrangement is the set of reflecting hyperplanes in the reflection
representation of a finite Coxeter group. Arnold and Saito showed that every Coxeter
arrangement is free. We prove that any restriction of a Coxeter arrangement is again a
free arrangement. It explains why the characteristic polynomial of any restriction of a
Coxeter arrangement has only positive integer roots, which was observed by P. Orlik
and L. Solomon. We use the classification of Coxeter groups.

1. Introduction. Basic definitions below may be stated over an arbitrary field,
but we restrict attention to the real numbers in this paper. We refer to [8] for details.

Let V be a real vector space of dimension /. A hyperplane H in V is a subspace
of codimension one. An arrangement &/ is a finite collection of hyperplanes in V. Let
L(s/) be the set of all intersections of elements of /. We agree that L(</) includes V'
as the intersection of the empty collection of hyperplanes. We should remember that
if Xe L(«/), then X< V. Strictly speaking, these objects should have different names,
but it is always clear from the context which one is in consideration. If Z= .o/ is a
subset, then & is called a subarrangement. For X € L(&/), define a subarrangement .oy
of o/ by o/y={He /| X<=H}. Define an arrangement /% in X by

S¥={XnH|He oA —sty} .

We call o/* the restriction of o/ to X. Note that o/¥ =.o/.

Let V* be the dual space of ¥V, the space of linear forms on V. Let S=S(V*) be
the symmetric algebra of ¥'*. Choose a basis {e,, ..., ¢} in ¥ and let {x;, ..., x;} be
the dual basis in V* so x;(e;) =6, ;. We may identify S(V*) with the polynomial algebra
S=R[x,, ..., x;]. Each hyperplane He &/ is the kernel of a linear form ay, defined up
to a constant. The product

()= 1_[ 4
Heo
is called a defining polynomial of /. An R-linear map 6: S—S is a derivation if
0(fg9)=f0(g)+gb(f) for f,geS. Let Derg(S) be the S-module of derivations of S.
Define an S-submodule of Derg(S), called the module of o/-derivations, by
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D(s/)={0eDerg(S)|0(Q)e QS} .

The arrangement o/ is called free if D(sf) is a free S-module [12]. If o/ is a free
arrangement, then the subarrangement o/ is free for all Xe L(</). Recently, Edelman
and Reiner [4] constructed a free arrangement .o/ which contains a hyperplane He o/
so that the restriction, «#¥ is not free. We call o hereditarily free if o/* is free for all
XeL(s/). The Edelman-Reiner example shows that not all free arrangements are
hereditarily free.

Let GL(V) denote the general linear group of V. An element se GL(V) is a reflection
if it has order 2 and its fixed point set is a hyperplane H,. We call H; the reflecting
hyperplane of s. A finite subgroup G = GL(V) is called a reflection group if it is generated
by reflections. These groups were classified by Coxeter and are often called finite Coxeter
groups. Let G GL(V) be a finite Coxeter group. The set o/ =/(G) of reflecting
hyperplanes of G is called the Coxeter arrangement of G.

Arnold [1], [2] and Saito [9], [10] proved independently that Coxeter arrangements
are free. If o/ is a Coxeter arrangement and X € L(%/), then the restriction /% is not
always a Coxeter arrangement. Thus these restrictions are not automatically free.
Restrictions of Coxeter arrangements were studied in [6]. There is a close and still
unexplained connection between the numerical results in [6] and the Springer
representations of the corresponding Weyl groups, see [11] and [5]. The results of [6]
led to the conjecture that «/* is free for all Xe L(«/). In this paper we prove this
conjecture.

THEOREM 1.1. Coxeter arrangements are hereditarily free.

The argument uses the classification of finite Coxeter groups [3]. It follows from
[8, Proposition 4.28] that it suffices to prove the assertion for irreducible groups. We
proved Theorem 1.1 for the infinite families in [8, Section 6.4]. For the exceptional
groups we utilize additional facts. Every 2-arrangement is free [8, Example 4.20]. The
results in [12] and [8, Appendix D] imply that every 3-dimensional restriction of a
Coxeter arrangement is free. We proved in [7] that in a Coxeter arrangement the
restriction /¥ is free for every hyperplane He.of. Thus the assertion is true for
exceptional groups of rank <35.

This leaves the arrangements for Coxeter groups of types E,, r=6, 7, 8 and in the
arrangement 2/ (E,), restrictions to subspaces X of dimensions 4, ..., r—2. The rest of
this paper is devoted to proving that these 19 arrangements are free. In Section 2 we
collect the basic tools needed in our constructions. Given ., we apply the
Addition-Deletion Theorem 2.3 to build .« from a known free arrangement # adding
hyperplanes one-by-one, each time satisfying the conditions of Theorem 2.3. We consider
the arrangements in the order of Table 1. In 13 cases we can find # so that the
hyperplanes may be added in any order. We call these pairs (<7, #) pure and consid-
er them in Section 3. In the remaining six cases the order of the hyperplanes is essential.
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TABLE 1. Structure formulas.

type &/ type # type & —type #
E& D& 2B A
E& D 3B B4
E# EQ% Eipx 4o
Efix4a E& 3E4ix 424 E43
Egd” Ef E4i p gpata
Eid EA 6EAL 4 Ehrx A5y
E4: EH SEf1*42
Eft Ef 6EYD" +2E41* 4 34
ER: EYY 0
E’g‘ E;:"Az 4E§‘x"‘
Efix4 E‘#?"' 4Eg%us+25§zu3
E Ef1*4 QE§1* 434 SE4*As _4Ef <A< ds g i 43
Eg%xAz E(7Ai)' 8EM x A3
Eg‘: E%‘b' SEQ% x A2
Ef E# BE§ 4
Efr= Eft 8E4I* 42 4 4Ef3 4 Ef1* 4 — 12E§1* A2 _gEf1* 43
Ef Ef 6E#I+9E§i* 42 i< As _24Efix 4 _4pp<4i
Ef Ef L6E#1 %42 4 E§>—40E$1* 42
Ef EH ISE§ +TE{* 42 _4SES _30E <42

These require more detailed study and we treat them in Section 4. The largest is a
6-arrangement with 68 hyperplanes. The corresponding addition tables are collected in
Section 5. The results may be summarized as follows.

THEOREM 1.2. The 19 restrictions to subspaces of dimensions 4,...,r—2 in the
Coxeter arrangements of E,, r= 6,7, 8 are free and satisfy the structure formulas in Table 1.

2. Basic tools. The set L(&/) is partially ordered by reverse inclusion. The
Mobius function p: L(/)—Z is defined by u(¥)=1 and for Y>V we obtain u(Y)
recursively from ) ,_,u(Z)=0. Let ¢t be an indeterminate. Define the Poincaré
polynomial of </ by B

n(l, )= MX)(—1y®.

XelL(«)

It follows from [8, Theorem 2.47] that n(/, ¢) has nonnegative coefficients. Let | o/ |
denote the number of hyperplanes in /. Then | &/ | is the coefficient of ¢ in n(, t).
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Next we define deletion and restriction. Let ./ be a nonempty arrangement and let
Hoe . Let of'=o\{H,} and let o=/ We call (&, o', &") a triple of ar-
rangements and H, the distinguished hyperplane. The next result was proved in [8,
Theorem 2.56].

THEOREM 2.1. If (4, ', L") is a triple of arrangements, then
(s, t)=n(L', t)+tn(L", t) .

Let GcGL(V) be a finite Coxeter group with reflection arrangement & =./(G).
The group G acts by permutation on the poset L(</). A complete set of orbit types
was determined in [6]; see also [8, Appendix C]. The type T of X € L(/) is the Coxeter
group which fixes X pointwise. If two orbits have type T, we label them 7', T". This
determines the structure of L(&/) and the structure of the restriction L(&/*) for all
Xe L(s/). We identify a restriction «/* by a pair (G, T) and write type #/* =(G, T) or
type /% =GT. Here G is the Coxeter group of the reflection arrangement « = #/(G)
in which we are restricting and T is the orbit type of the subspace Xe L(«/) whose
restriction /% is in consideration. The results of [6] give the following.

PROPOSITION 2.2. Let G GL(V) be a finite Coxeter group with reflection ar-
rangement of =4(G). For each X e L(</) with dim(X)=p, there exist positive integers
bY, ..., b} such that

(™, =] (1 +b%1) .
i=1

The values of b¥ are tabulated in [6] and [8, Appendix C] for all exceptional
groups and all orbit types. We make frequent use of these tables in this paper.

The S-module Derg(S) is free with basis D;= 0/0x;. Thus any derivation § € Derg(S)
is expressed uniquely as

0=fD+ - +fD;, fi,..., fiES.

We grade Derg(S) by polynomial degree. Thus 6 € Derg(S) is homogeneous of pdegree
q if the polynomials f}, ..., f; are homogeneous of degree ¢. In this case we write
pdegf=gq.

If o/ is free, then by [8, Proposition 4.18] there exists a homogeneous basis
{6, ..., 0,} for D(=/). The polynomial degrees of a basis (with multiplicity but neglecting
the order) depend only on /. We call pdeg6,, ..., pdeg 6, the exponents of o/ and write

exp o/ ={pdegb,, ..., pdeg0,} .
The following fundamental result is needed in our calculations [12], [8, Theorem 4.517.

THEOREM 2.3. Suppose </ is nonempty. Let (A, ', L") be a triple. Any two of
the following statements imply the third:
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o is free withexp o ={by,...,b,_1, b},
' is free with exp ' ={by,...,b,_1,b,—1},
A" is free with exp L' ={by, ..., b,_,}.
If we assume that &/’ and /" are free, then the result is called the Addition

Theorem. If we assume that o/ and /" are free, then the result is called the Deletion
Theorem. The following Factorization Theorem was proved in [13], [8, Theorem 4.137].

THEOREM 2.4. If o is a free arrangement with exp o/ ={b,, ..., b,}, then
]
(o, =[] A +b;1).
i=1

Comparison of Proposition 2.2 and Theorem 2.4 shows that if /% is free, then its
exponents must equal b7, ..., b%.

In the explicit calculations we need coordinates for the remaining arrangements.
Define

P,= l—[ (xi—x;) l_[ O+ x4 x) -
1<i<j<m 1<i<j<k<m

Let s, =) I, x;. Cartan’s coordinates are as follows.

Q(D5)=P5 )
O(Eg)=PeSe »

;
Q(E;)=P, I;ll (57—x3),

8
O(Eg)=Pg 1;11 (ss+x) |1 (s —x;—x;) .

1<i<j<8

The inner product on V* is given by:

8/9 if i=j,
—1/9 otherwise .

X xj>={

3. Pure pairs of arrangements. Suppose &/ is one of the 19 arrangements in
consideration. It follows from Proposition 2.2 that n(«/, t)=]]!_, (1 +a;¢) for positive
integers ay, ..., a. We want to prove that o is free with expo/={a,,...,q,}. We
choose a subarrangement % < o/ with the following properties:

(1) 4 is a restriction of a Coxeter arrangement which is already known to be free
with exp Z=1{b,, ..., b},

(2) after a suitable permutation of the subscripts we have b,=q; for as many
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indices as possible.

DEerFINITION 3.1.  Given an ordering of the hyperplanes of & — %, say H,, ..., H,,
we set o =% and o/ ;=BU{H,, ..., H;} for i=1, ..., m. We call an ordering of the
hyperplanes in &/ — % admissible if we can apply the Addition Theorem 2.3 adding one

hyperplane at a time in the given order to # to show that & is free.

We must consider the restrictions of the successive arrangements .o/, The most
favorable situation is if these restrictions are already known and do not depend on the
hyperplanes to be added. This notion is stated precisely below. The next two definitions
and three propositions are valid for all arrangements.

DEerFINITION 3.2. Suppose H,, H, are two distinct hyperplanes not in #. We call
the hyperplanes H,, H, compatible with respect to # if there exists Ke%# so that
H,nH,=H,nK=H,nK.

Equivalently, the hyperplanes H,, H,, K are dependent. The next result is immediate
from this definition.

PropoSITION 3.3. If two distinct hyperplanes H,, H, are compatible with respect
to B, then €= (¢ \{H,})"* for any arrangement € with Bu{H,, H,} <%.

DEerFINITION 3.4. Call the pair (/, %) pure if any two hyperplanes in &/ — % are
compatible with respect to 4. We call the pair («/, #) mixed if it is not pure.

PrOPOSITION 3.5. Let B< 4. The following five conditions are equivalent:
(1) (A, B) is pure,

(2) for an arbitrary linear order of s/ —# we have /%= (o)™,

(3) there exists a linear order of o/ — R so that /™= ()%,

@) (AL, )=T(B, ) +1) gy gL, 1),

(5) AH=(BU{H}" for any He oA — AB.

Proor. (1)=>(2): Since H; and H;,, are compatible with respect to %, we have
(di)Hi=(Mi+ 1\{Hi+ 1})Hi=(di+ 1)Hi

by Proposition 3.3. Next, since H; and H;,, are compatible with respect to %, we
similarly have (7, )"'=(o,, ,)"'. Repeating this process, we finally have (2) because
A =.

(2)=(3): Obvious.

(3)=(4): Apply Theorem 2.1 to obtain

(L, 1) —1(A -y, 1) = tn((4 )", 1)

for i=1, ..., m. Combining these equalities, we have

n(el, 1) (B, )=t Y, (L), 1).
i=1
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(4)=(5): Give a linear order to & —#={H,, ..., H,} such that H=H,. Since

13

t i (L), ) =n(st, 1) — (B, 1) =1
i=1

13

(L8, 1),
=1
we have
IRICAEDWESY
i=1 i=1

by comparing the coefficients of ¢2. In general, each («/;)" is a subarrangement of /.
Therefore we have (o ,)¥ =" for i=1, ..., m. When i=1 this is the assertion in (5).

(5)=(1): Note that H,n H,e o/¥ =(Bu{H,})!'. Thus there exists Ke# such
that H,n H,=H, nK. 0

ProPOSITION 3.6. Suppose B< .. If

() n(#, )=]T;-, A +a),

(2) & is free with exp(B)={ay, ..., a_1, aq—| AL |+| 2|}, and

(3) A" is free with exp(s/®)={a,,...,a,_,} for all He oA — B,
then any arrangement € with B<€ </ is free with exp(€)={ay,...,aq_,q—|¥|+
| B|}. In particular, o/ is free and any ordering of the hyperplanes in o/ — % is admissible.
We express this with the symbolic structure formula

type o/ —type B= Y, types/H.

Hed - B

Proor. It is easy to check that

(A, )—n(B, )=t Y n(L1).
HedAd - B
By Proposition 3.5, («/, #) is pure. Let ¢ =#u{H,, ..., H,} and & ;=BU{H,, ..., H;}
(i=1,...,p). Since (¥, &) is also pure, we have &/;=.o/, _, U{H,} and ()= o/" for
i=1,..., p by Proposition 3.5. Apply the Addition Theorem 2.3 repeatedly. O

ExaMPLE 3.7. Consider the arrangement &/ = (Eq, A1). We see from the tables in

[6] and [8, Appendix C] that n(sZ, t)=(1+1)(1+4¢)(1+5¢)(1+7¢t). We show that o/
is free with exp & ={1, 4, 5, 7}.

Recall Q(Eq) and let f,=x;—x,, B,=x5—x¢. Let K;=kerp; for i=1,2. With
respect to the inner product, the two hyperplanes are orthogonal. Thus the reflections
in K; and K, commute. If X=K, nK,, then o/ =./(E¢)*. Choose coordinates x,, x,,
x3, x5 on X. Then Q()=Q(Ee)x, = x,.xs=x, Where subscripts indicate restrictions. Thus

Q("d) = PS |x3=x4(a1a2a3a4) Ix; =X4,X5=Xg

Ot1=x1+x5 +x6 5
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0C2=x2+x5+x6 5
a3=X3+x5+x6 N
Ug=X1+X,+X3+X4+ X5+ Xg .

Let #=(Ds, A,) and note that Py |x3=x4 = Q(%). We get from [8, Proposition 6.85] that
A is free with exp #={1, 3, 4, 5}. Thus & satisfies conditions (1) and (2) of Proposition
3.6. We check (3). Let H,=kera; for i=1,2,3,4. The type of o/H: is the subgroup
generated by the reflections in the hyperplanes {K;, K,, H;}. For i=1, 2, 4, the three
hyperplanes K,, K,, H; are orthogonal to each other, so that o/~ gH2~ ofHen
(Ee, A3). For H,, the angle 0 between H, and K, satisfies

{az, 1) 1

cosf=—""""_=
lag|[By] 2
Also (a3, B,>=0. This implies o/#3~(E,, A, x A,). Thus /¥ is free with exp &5 =
{1, 4, 5} for 1<i<4 from [8, Appendix D]. Therefore the conditions of Proposition
3.6 are satisfied. The corresponding structure formula is

Efi D =3Ef  Ef* 42,

4. Mixed pairs of arrangements. Suppose </ is one of the arrangements (E;, 42),
(Eg, A3%), (Eg, Ay x A,), (Eq, AY), (Eg, A,), (Eg, A%). Choose 4 as indicated in Table 1.
We want to prove that </ is free. Since the pair (&7, %) is mixed, we must find an
admissible order of the hyperplanes in &/ — 4. In order to apply the Addition Theorem,
we must know the restrictions of the successive arrangements to the hyperplanes to be
added.

We encode the information necessary to find an admissible order in the pxp
compatibility matrix C associated to &/ and #. The rows and columns are labeled by
the hyperplanes H;e o/ —4%. There is no entry C, ; if i=j or if H;, H; are compatible
with respect to 4. If H,, H; are not compatible with respect to 4, then C; ;=type o "#i,
Note that C is a symmetric matrix which depends on the order of the hyperplanes in
o —AB.

PROPOSITION 4.1. The structure formulas for the six mixed pairs are independent
of the admissible order of the hyperplanes in o/ — 2.

PrOOF. Choose the admissible orders given in the addition tables. If H; and H;
(j=i+1,..., m) are compatible with respect to 4, then /i =.o/": Otherwise, &/ is
a subarrangement of .o/¥:. We want to apply the Deletion Theorem to /¥ the necessary
number of times to show that o/ is free before we can proceed to «¢;. Direct computa-
tion shows that the pair (o, o) is always pure so we have
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type ¥ —type /Hi= Y typess¥.

XedHi— o Hi

Thus we can apply the Deletion Theorem to show that o/ is free. Next we can apply
the Addition Theorem to show that .« itself is free. We have

p
type o —type B= Y, type L+ .
i=1

We substitute and collect terms to obtain

Hes —

1
type o —type B= Y, type&f”—?z:ci,r
2 i,j

The sum of the entries of C is independent of the admissible order. O

ExaMPLE 4.2. Consider the arrangement .o/ = (Eg, A2). We see from the tables in
[6] and [8, Appendix C] that n(o/, t)=(1+¢)(1+7¢)(1+ 112)(1+11¢). We show that
& is free with exp.o/ ={1, 7, 11, 11}.

Recall Q(Eg) and let B,=x3—x4, B,=X4—Xs5, B3=X¢—Xx;, Pa=Xx;—xg. Let
K;=kerf; for i=1,2,3,4. If X=[{_,K, then o =o(Eg)*. Then Q(«)=
Q(E,;)|x3=)‘4=,‘5,,,6=x7=x8 where subscripts indicate restrictions. Thus

’

9
Q('d)':"Q(E7)\x3=x4=x5,x6=x7<_1=_[1 yl)

X3=X4=X5,X6=X7=Xg

Y1=Xe+ X7+ Xg,
Y2=Sg+ Xy,
Y3=Sg+X;,
Va=5Sg+ X3,
Vs =5g+X¢ »
Ye=8g—X1—X3,
Y7=8g —X1 —Xs5,
Yg=8g—X2— X5,
Yo=8g —X4— X5 .

Let #=(F,, A; X A;). Then #< .o/ and it follows from our earlier work that 4 is free
withexp Z={1, 5, 7, 8}. Let G;=ker y,. The compatibility matrix C is presented in Table
2. Here we use the symbols T, =(Eg, A; X A, X A3) and T, =(Eg, A% x A2). Table 2 also
includes a column for the type of the restriction «/%. Here we use the symbols
S,=(Eg, A, x A3) and S,=(Eg, A, x A3). We see from [6] and [8, Appendix C] that
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TABLE 2. Compatibility matrix for (E43, E41*42),

G, G, Gy G, Gs Gs G; Gy G| A
G, T, 7, T, Sy
G, | T, T, T, S,
Gy, | T, T, T, S,
G, | T, S,
Gs S,
Gs T, T, T, | S
G, T, S,
Gy T, S,
G, T, S,

expT,=expT,={1,7}, expS;={1,7, 11} and exp S, ={1, 7, 9}.

The only hyperplane compatible with all others is G5 with restriction of type S,
and exponents {1, 7,9}. Since exp#={1, 5,7, 8}, we cannot add G5 to # using the
Addition Theorem. In this example we can start with any other hyperplane, but in each
case the restriction is a proper subarrangement of S; or S,.

We add G, first. Let o/, =% U{G,}. Since G, is compatible with all hyperplanes
except G, the difference between «/%°~S, and «/$° is the hyperplane Gyn Gge o/ %.
The restriction to this hyperplane has type 7). Since exp T, ={1, 7} and exp S, ={1, 7, 9},
the Deletion Theorem 2.3 shows that &/ $* is free with exp o&/$°={1, 7, 8}. We write this
symbolically as type «&/§°=S,—T,. Now we use the Addition Theorem to show that
o/, is free with exp o/, ={1, 6, 7, 8}, and we write type o/, —type #=S,—T).

The hyperplanes may be added in several different orders. We choose the admissible
order Gy, Gg, G,, G,, Gs, Gg, G5, G,, G,. This order is labeled H,, ..., Hy in the
corresponding addition table, Table 5. At each step the restriction must be checked as
above. The symbolic formula becomes type of —type Z=(S,—T,)+(S,—T1)+(S,—
T)+(S;—T)+8S,+(S;—2T,)+(S; —T,)+(S; — T,)+S;. We collect terms symboli-
cally to get the structure formula

EA%_EAIXA2=4EA1><A§+5EA2><A3_4EA1><A2><A3_4EA‘I’><A%.
8 7 8 8 8 8

It follows from Proposition 4.1 that this formula is independent of the admissible order.

5. Addition tables. We present addition tables for the six mixed pairs. Table 3
lists our choice of coordinates.
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TaBLE 3. Coordinates.

379

type & type 8
E4l X4—Xs5, Xg—X7 E4 X4—Xs
Eg% X3~ X4y Xg4— X5, X6 ™ X7, X7~ Xg Efi s X3 = X4, Xg— X5, Xg—Xq
Efrx4 X4—Xs, Xg— X7, X7—Xg E# X4—Xs, Xg— X7
Egi X3— X4, X5— X, X7—Xg E';} X3— X4, Xs—Xg
E§: Xg—Xq, X7—Xg E# Xg—Xq
E‘g} Xs—Xg> X7 —Xg Ef Xs—Xe
TaBLE 4. Addition from EZ to E4%.
expof;_, o A exp o/
1,574,8 XotXg+ X1 Efi=42 1,578
1,5,7,5,8 §,—Xs E41x4: 1,5,7,8
1,57,68 57— X3 Egd _ g4l 1,578
1,577,8 S7—X, EgD _ Al 1,578
1,5,7,8,8 S3—X, EAb_ pat 1,578
1,5,7,8,9 X1 + X6+ X5 Eb” 1,579
1,579,9 X4 Xg+ X7 ES” 1,579
1,5,7,9,10]  xs+x+%; Eud” 1,579
1,579, 11
TABLE 5. Addition from E4:*42 to E&3,
expsli_, o 4 exp 1
1,7,5,8 Sg—X4—Xs Ef2* 4 _Efr=A2x4s 1,7,8
1,7,6,8 Sg—X;—Xs Ef2*4s _ Ef1x4:%4s 1,7,8
1,7,7,8 Sg—X; —Xs Efz*As_EfrxAxx4s 1,7,8
1,7,8,8 Sg+ X3 Efax4s _ gx A< as 1,7,8
1,7,8,9 S5+ X6 Ef27 4 1,7,9
1,7,9,9 S5— X, —X3 Edv< 43 _ppaixai 1,7,9
1,7,9, 10 Sg+X; Efr4i_paixai 1,710
1,7, 10, 10 55+, Efr<4i_paixa3 1,7, 10
1, 7,10, 11 X+ X+ Xg Ef=43 1,7, 11
1,7,11, 11
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TABLE 6. Addition from E4i to Ef1*42,

expst;_, o oA exp
1,7,11,5,9 Sg—X4—Xs Efixa:_3pgixar_paixad 1,7,11,9
1,7,11,6,9 S5+ X, EfixA:_3paixa:_ paxai 1,7,11,9
1,7,11,7,9 Sg+X, Efix42_3patxd:_ paix43 1,7,11,9
1,7,11,8,9 Sg+X3 Efixa:_3pdixtr_ paiai 1,7,11,9
1,7,11,9,9 S+ Xg Efix4 1,7,11,9
1,7,11,9, 10 Sg— X3 —Xs Efi g4 1,7, 11, 10
1,7, 11, 10, 10 Sg—X;—Xs Ef_ppx 43 1,7,11, 10
1,7, 11, 10, 11 Sg— Xy —Xs Efi_pp 4 1,711, 10
1,7, 11, 10, 12 Sg+ X4 Efi_pp 43 1,7, 11, 10
1,7, 11, 10, 13 Xg+ X7+ Xg Efix4: 1,7, 11,13
1,7, 11, 11, 13 Sg—X;— X, Efix4 1,7, 11,13
1,7, 11,12, 13 Sg— Xy — X, Efix 42 1,7, 11, 13
1,7, 11,13, 13 Sg— Xy —X; Efix4 1,7,11,13
1,7, 11, 13, 14

TaBLE 7. Addition from E4! to E4.

expsf;_, o; oA i exp A/
1,7,11,5,9 Sg—X4—Xe Efix4s 1,7,11,9
1,7,11,6,9 Sg+x3 Eftxr_3paixa:_ ppixai 1,7,11,9
1,7,11,7,9 S+ Xs Efixar_3pgixa:_ ppixai 1,7,11,9
1,7,11,8,9 S5+, Ef_4pfixa 1,7,11,9
1,7,11,9,9 Sg+X, E& _4pgi 4 1,7,11,9
1,7, 11,9, 10 S5— X, —Xg Efixa:_ppaixar_ paixai 1,7, 11,10
1,7, 11, 10, 10 S5— X — X4 Efixar_opaixa:_ ppix a3 1,7, 11, 10
1,7, 11, 10, 11 Sg—X,— X4 Efixar_ppaixa: 1,7, 11, 11
1,7, 11, 11, 11 Sg—X3— X4 E&l _2pfixa 1,711, 11
1,7, 11, 11, 12 S§—Xy—Xg Efixd2_paixa: 1,7,11, 12
1,7, 11,12, 12 Sg—X5—Xg Efi_Efix4 1,7,11, 12
1,7, 11, 12, 13 Sg+%; Efixa 1, 7,11, 13
1,7, 11, 13, 13 X3+ X7+ Xg Efixta 1,7,11, 13
1,7, 11, 13, 14 Xs+X,+Xg Efix 4 1,7, 11, 13
1,7, 11, 13, 15 Xy +X7+Xg Ef 1,7, 11, 13
1,7, 11, 13, 16 Xp4 X7+ Xg Ef 1,7, 11,13
1,7, 11,13, 17
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TABLE 8. Addition from E4! to Eg2.

exp;_, o i exp o1
1,7,11,13,5,9 Sg+Xe E# 1,7, 11, 13,9
1,7,11,13,6,9 Sg+Xs Efr*4:_5paixa: 1,7, 11, 13,9
1,7,11,13,7,9 S5+ X4 Ef1*4:_SEAixa: 1,7, 11,13, 9
1,7,11,13,8,9 Sg+X3 Efr*4:_spaix4: 1,7,11,13,9
1,7,11,13,9,9 Sg+X; Ef =42 _SEsi* 42 1,7, 11, 13,9
1,7, 11, 13,9, 10 S5+ %, Ef1*42_5E#ix4 1,7,11, 13,9
1,7,11,13,9, 11 Sg—X; —Xp Efi*42_3Edixa 1,711, 13, 11
1,7, 11, 13, 10, 11 S5— X1 —X3 Efi<4_3pfixa 1,7, 11, 13, 11
1,7, 11, 13, 11, 11 Sg— X, — X4 Efr*4:_3Fdixa: 1,7, 11, 13, 11
L,7,11, 13, 11, 12| sg—x;—xs Efr*4:_3paixa: 1,7, 11, 13, 11
L7,11,13, 11, 13 | sg—xp—x3 Efr 4 Atz 1,7,11, 13, 13
1,7, 11, 13, 12, 13 Sg— X, —X,4 Efr*42_pAix4 1,7, 11, 13, 13
1,7,11,13,13, 13 | sg—x,—xs Ef 42 paixa: 1,7, 11, 13, 13
1,7,11,13,13, 14 | sg—x3—x, Efr42 1,7, 11, 13, 14
1,7,11,13, 14, 14 | sg—x3—xs Efr<4 1,7, 11, 13, 14
1,7,11,13, 14,15 | sg—xq—xs Efi<4 1,7, 11, 13, 14
1,7,11,13, 14,16 | xg+x7+Xg Ef= 4 1,7, 11, 13, 14
1,7 11, 13, 14, 17
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TaBLE 9. Addition from E#: to E4%.

P. ORLIK AND H. TERAO

exp o,

A

exp L

1,7,11,13,5,9

1,7,11,13,6,9

1,7,11,13,7,9

1,7,11,13,8,9

1,7,11,13,9,9

1,7,11,13,9, 10
1,7, 11, 13, 10, 10
1,7, 11, 13, 10, 11
1,7, 11, 13, 10, 12
1,7,11, 13, 10, 13
1,7, 11, 13, 10, 14
1,7, 11, 13, 11, 14
1,7,11, 13, 12, 14
1,7, 11, 13, 13, 14
1,7, 11, 13, 14, 14
1,7, 11, 13, 14, 15
1,7, 11, 13, 14, 16
1,7, 11, 13, 15, 16
1,7, 11, 13, 16, 16
1,7, 11, 13, 16, 17
1, 7,11, 13, 17, 17
1,7,11, 13,17, 18
1,7, 11, 13,17, 19

a;

X1 +Xx;+xg
Xy+ X7+ Xg
X3+Xx;+xg
X4+ X7+ Xg
Xs+X;+Xxg
Sg— X1 —Xs
Sg—X;—Xs
Sg—X3—Xs
Sg—X4—Xs
Sg—Xs—X¢
Sg+ X,

Sg+ X,
Sg+X3
Sg+Xg
Sg+Xs

Sg+ X
Sg—X1— X,
Sg— X1 —X3
Sg— X1 — X4
Sg—X3— X3
Sg—X3— X4
Sg—X3— X4

Eg?_6ng_2Eg%xAz
Efi—6E4i—2E4-4
Egi—6E§:—2ng" A2
Efi—6E4i—2E4i 4

E#s xAz_5Eg%XAz
ng XA:_4E€}XA1
Egl xAz_4ng x Az
Ef XAz_4Eg§ X Az
EQ' XAz_4EsA§ XAz
E'gd — 6ng _ Eg% X Ay
Efi 38t
Efi_3gf
Ef-3E4
Efi3Ef

E‘B“ XAz

E:sh XAz

Ef—E#
Efi_g#
Efi_g#

E

Ef

Ef

1,7,11, 13,9

1,7,11,13,9

1,7,11,13,9

1,711, 13,9

1,7,11,13,9

1,7, 11, 13, 10
1,7, 11, 13, 10
1,7, 11, 13, 10
1,7, 11, 13, 10
1,7, 11, 13, 10
1,7, 11, 13, 14
1,7, 11, 13, 14
1,711, 13, 14
1,7, 11,13, 14
1,7, 11, 13, 14
1,7, 11, 13, 14
1,7, 11, 13, 16
1,7, 11, 13, 16
1,7, 11, 13, 16
1,7, 11, 13, 17
1,7, 11, 13, 17
1,7, 11, 13,17
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