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Abstract. The author shows the existence of a smooth projective uniruled but not
separably uniruled variety in positive characteristic satisfying the numerical condition
of Miyaoka and Mori. It is a counterexample to a problem which Miyaoka and Mori
posed.

In this paper we make a remark on a criterion for a projective variety to be
(separably) uniruled in positive characteristic p.

Let X be an n-dimensional variety defined over an algebraically closed field k£ which
is uncountable. X is said to be uniruled if there exist an (n— 1)-dimensional k-variety
W and a dominant rational map f: P! x W——- X. Xis said to be separably uniruled if
the morphism f can be chosen to be separable.

Miyaoka and Mori [Mi-Mo] gave the following numerical criterion for uni-
ruledness:

THEOREM (Miyaoka and Mori [Mi-Mo]). Let X be a smooth projective variety
over the complex number field C. Then the following two conditions are equivalent:

(UR) X is uniruled.

(NC) There exists a non-empty open subset U< X such that for every xe U, there
is an irreducible curve C through x with (Ky-C)<O0.

In positive characteristic, the implication (NC) => (UR) holds good but the converse
(UR) = (NC) does not hold as was pointed out by [Mi-Mo]. They asked if (NC) is
equivalent to

(SUR) X is separably uniruled.

In this paper we first consider a criterion for a variety to be separably uniruled
and show in Corollary 1.2 that a separably uniruled and smooth projective variety has
the property (NC). Next we study a counterexample to the implication (NC) = (SUR)
in positive characteristic. Without assuming the smoothness of the variety X in question,
we can construct X very easily by using P(Tp.) with two projective space bundle structures
and the Frobenius morphism of the base projective space P". Since the resolution of
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singularities is not known yet in positive characteristic, however, it does not seem to
be easy to get a smooth variety. Thus to overcome the obstacle we must make several
preparations as in §2 and §4. Moreover by virtue of the theory of toroidal embedding,
we have:

THEOREM (positive characteristic). For an odd integer m (>3) there is an m-
dimensional smooth projective variety X enjoying the following properties:

(1) X is defined over an algebraically closed field k whose characteristic p (>0) is
less than (m+3)/2.

(2) X is uniruled but not separably uniruled.

(3) X has the above property (NC).

Note that a smooth projective surface X with k(X)= — oo is ruled by the clas-
sification theory of algebraic surfaces. Therefore, the implication (NC) = (SUR) holds
good for such surfaces.

Basically we use the customary terminology in algebraic geometry. For a smooth
variety X, Ty denotes the tangent bundle of X. When E is a vector bundle on a variety,
P(E) (resp. V(E)) means Proj (resp. Spec) of the symmetric algebra of E. E means the
dual vector bundle of E. For a variety Y and a closed subscheme Z in Y which is locally
a complete intersection, Ny denotes the normal bundle of Z in Y. Opn(1) means the
line bundle corresponding to hyperplanes of the projective space P". When F is a
coherent sheaf on P", F(a) denotes F ® Opa(1)®°. k™ denotes k—{0}.

From now on the characteristic p of the ground field k is assumed to be positive.

The author would like to thank to the referees for useful advice.

1. Separable uniruledness. First we give a criterion for a projective variety to be
separably uniruled.

ProPOSITION 1.1. Let X be an n-dimensional projective variety and consider the
Sollowing two conditions:

(1) X is separably uniruled.

(2) There is a smooth open subset U in X and a non-constant morphism f : P! >Uc X
such that f* Ty is generated by global sections.

Then (2) implies (1).

Moreover, assume that X is smooth. Then the two conditions are equivalent to each
other.

PrOOF. Let us show that (2) implies (1). Let '<P!x X be the graph of f.
Obviously, I' is contained in the smooth part X in P! x X and the normal bundle (=N)
of I' in X is isomorphic to f*T,. Now take the Hilbert scheme H' in P! x X of I'. By
the condition (2), the first cohomology group of f* T, vanishes, from which it follows
that H’ is smooth at the point y corresponding to the curve I'. Thus we can take the
irreducible component H of H' containing the point y. Let W be the universal scheme
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corresponding to the Hilbert scheme H and s, t be the second and third projections
from W< P! x X x H to X and H, respectively. Then since ¢t~ '(y)=I xy (~P*') and H
is smooth at y, we infer that the morphism ¢ is a smooth morphism around the fiber
t~1(y), that is, there is a smooth open set H,, (37) in H so that ¢t '(H,)—H, is a P'-
bundle over H,,. Since s(I' x y)c U and therefore s~ (X —U) n ¢t~ (y)=, there is an
open subset Hy (3y) in H,, such that s(W)c U with W=t"'(H}). Thus for the natural
homomorphism 5: Ty —s* Ty, the restriction of the homomorphism § to ¢~ !(y) is the
one induced by the canonical isomorphism from H°(P?', f*Ty) to the Zariski tangent
space Ty, , of H, at y. Therefore we see easily that § is generically surjective. This
implies that the morphism s: W— X is dominant and separable. The first property of s
says that X is uniruled.

Secondly by virtue of [G, Theorem 8.2], there is a variety ¥ and an étale morphism
h:V—Hg, with yeh(V) which induces a V-isomorphism i: Wxy, V (= W)~P'x V.
Therefore letting h: W— W to be the morphism induced by the morphism 4: V— Hj,
we infer that s-s: P! x V- X is separable. Thus we see easily that there exists an
(n—1)-dimensional closed subvariety ¥’ in ¥ such that the induced map P! x V' - X is
dominant and separable. Therefore X is separably uniruled.

As for the latter statement in Proposition 1.1, we have only to show the following:

CLAIM. Let Y be a variety and f: P! x Y——-Z a dominant rational map with
dim Y+ 1=dim Z. Assume that f is separable and there is a smooth open subset Y,
in Y and a smooth open set Z, in Z with f(P! x Y,)c Z,. Namely, let VP! x YxZ
be the graph of the map f with s: - P! x Y the natural projection which is a birational
morphism, and ¢: ¥—Z the third projection. Then #(s~'(P! x Y,)) is contained in Z,,.
Hence there is a projective rational curve Cc Z, so that ¢ * T, is generated by global
sections, where ¢ : P!—C is the normalization.

Indeed, shrinking Y, to an open subset Y, in Y, we see that (su) 'Y, > Y, is a
P!-bundle over Y, with the natural projection u: P! x Y- Y. Since, (su)~1Y; (=V,)
is smooth, the morphism ¢ gives a homomorphism 7: Ty,—1t*T, between the tangent
bundles of ¥, and Z,. On the other hand, we can easily check that for every point y
inY,, Ty o|su- 15 18 isomorphic to Op:(2) © (Op1)®* with a=dim Y, and hence is generated
by global sections. The assumption that f is separable means that 7 is generically
surjective, which implies that for a general point y in Y, t* Tz,|su-1¢p 1S generated by
global sections. Letting C=t(su~(y)) and ¢ the normalization P'—C, we see that
@*T,, is generated by global sections as required.

Thus we complete the proof of this proposition.

The proof of the latter part in Proposition 1.1 shows:

COROLLARY 1.2. A separably uniruled and smooth projective variety has the prop-
erty (NC).



450 E. SATO

2. Non-uniruledness of a hypersurface. Let {c;};,.y be an infinite sequence of
elements c; in k where for each pair i and j (i#)), c; is not equal to c;.

For each i let F; be a homogeneous polynomial n;‘:l (Y;—c;Y,) with a positive
integer d,.

Now for each n consider the following homogeneous polynomial equation of
degree d[n]:=Y1_1 (&[]}, s, €)+d,
@.D YirWeres en— Feresenfeseny ... x Fen F

where s, =d; —e, and for n>2, s,=d[n]—[]}_, e
From now on we assume that

2.2) d;=(p+1)“*! and e;=(p+ 1)* with a positive integer a;>2 .

Let W, Y,, Y,, - - -, Y, be homogeneous coordinates of P"*! and let us consider a

hypersurface 4, in P"*! defined by the equation (2.1) with the property (2.2).
Then we show:

PrOPOSITION 2.3. For each n, A, is not uniruled.

ProOOF. We prove this lemma by induction n. When n=1, the normal com-
pactification 4, of A, is a branched covering over P! with at least d; branch points.
Moreover, the covering is separable, because p does not divide e¢,. Thus Hurwitz’s
theorem yields an inequality 2g(4,)—2>e,(2 x 0—2)+d, >0, which says that 4, is of
genus >1.

Next on the affine open subset { Y, #0} let us consider a rational map ¢ : A"+ ——~
A? from the (n+ 1)-dimensional affine space to the 2-dimensional affine space given
by sending a general point (y,, - -, ¥, 2z) in A"*! to the point (J,, 2)=(y,, 2%/
[T:2) F.(1, Y,)%) in A% where e",-=l—[;;i1+1 e;and ¢,_, =1. Then we remark that ¢(4,)
is contained in the curve defined by the equation z®"= F,(1, y,), which is not a rational
curve. By the induction assumption, the fiber of ¢ is not uniruled. Thus 4, is not

uniruled either. q.ed.
The above proposition yields :

COROLLARY 2.4. A generic hypersurface of degree d[n] (=n+1) in P"*! is not
uniruled. In particular if d[n] linear forms L,, - -, Ly, with respect to variables
Yo, - -, Y, are in general position (which means that each n+1 forms L, -+, L; ., of
{L:}1 <i<am are linearly independent over the field k), then the hypersurface defined by
the equation YW ~sn=T[" L, is not uniruled.

Proor. Since the uniruledness is an open condition, the former part is obvious.
As for the latter, consider a hypersurface in P4M®*+1) x pr+1 defined by the following
multi-homogeneous polynomial with indeterminates 4, 4’s, Y;’s, W, V:
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d[n] n
Ay e =[] < 2 4] YJ-) :
i=1\j=0
where 4, 4} (1<i< d[n],0<j<n) are homogeneous coordinates of PUM®*+1 and
W,Y,, -, Y, are those of P"*'. Now suppose that the conclusion does not hold. In
order to get a contradiction it suffices to show the following:

SUBLEMMA. Let G and H be projective varieties and f : G— H a surjective morphism.
Assume that a fiber f~'(h),eq is uniruled for a general point in H. Then every fiber f~'(h)
is uniruled.

ProoFr. By the countability of the Hilbert polynomial, we have only to prove that
f~1(h) is covered by rational curves. Now considering the Hilbert scheme of rational
curves on G, we see that there are a Hilbert polynomial P and a component J of Hilbp, X
satisfying the following: When 4: M —J is the universal scheme of J, a generic fiber of
h corresponds to a rational curve in some fiber of f, which implies that the support of
every fiber of A consists of rational curves and that the canonical projection g: M—»G
is surjective.

Therefore we infer that for every point x in G, there is a rational curve C in X
and a point a in J so that C is the image of a component of A~ () via the morphism
g and C passes through the point x. Thus by continuity, such rational curves are
contained in some fiber of 4. Thus we complete the proof of the sublemma.

3. The structure of P(Fr*(Tp.(—1))). Let

X={(xo5, .”s:xn)x(yo:a“.’:yn)EP'I‘XP;

2 X yi= 0} ’
i=0
where P~ P" with i=1, 2 and a (resp. b) is the first (resp. second) projection. Let

2 Z?}’izo}
i=0

with ¢=p', where p is the characteristic of the base field k and P}~ P".

REMARK 3.1. (1) X is isomorphic to P(Tpa(—1)).

(2) Regarding the above projection a as the canonical projection P(Tpn(— 1))—P"
induced by the natural projection Tp.(—1)— P", we can say that the projection b is the
morphism induced by the tautological line bundle of Tp.(—1).

(3) X(g) is isomorphic to P(Fr"*(Tp.(—1))) where g=p’, Fr:Pi—>P" is the
Frobenius map and Fr"”=Fro - -- o Fr (r-times). We identify Fr'® with the identity
morphism. Then we have the following diagram:

X(Q)z{(zoia .“9:Zn)x(y0:, ”.9:yn)EP1":XP;
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a’l al
Fr®
P . pr.

Let H be a hyperplane in P? and H' the reduced part of (Fr"”?)~*(H), which is a
hyperplane in P} as a set. For a vector bundle E on P}, E@ denotes the pull-back
Fr"*(E) of E via the morphism Fr"” where q=p". Then we get:

PROPOSITION 3.2. In the above notation, we have a splitting on the hyperplane H:

1 ® To(—Djg=Tpn-(=1) @ Opn-: .
Consequently, we get a splitting on H'
(¥%) (T = 1)y = Ton-o(= 1P ® Opn-+ .

Let the quotient trivial line bundle of (%) and (#%) correspond to some fiber Z of b
and the reduced part Z' of a fiber of b', respectively. Then Z as well as Z' are isomorphic
to PP 1,

(2) The normal bundle Nz is (Rpn-1(1))@ with H=(a’)"'(H’).

Proor. (1) is trivial. Remark 3.1.3 and (1) yield (2).

Now for the inclusions Z’ = H< X(g) of subvarieties, we have an exact sequence
of normal bundles

(3.3) 0 Nzyg = Nzjx@ = Najxalz = 0 -

In this sequence, (Ng,x(q))l z 18 isomorphic to Opn-1(1).
Let L be a line in Z’ and let us calculate the intersection number (Kx,*L). The
inclusion Z’ < X(q) yields an exact sequence

(3.4) 0T, — (TX(q))lZ’ = Nzx@— 0.

Thus we see that —(Kyq)'L)=deg(Tx())|L=deg(Tz|.)+deg(Nz xq) |- Note that
(T2) L2 0p(2) ® (Op:(1)®" 2.
Moreover by Proposition 3.2, (2),
(Nz'/ﬁ)lL ~Qpn- 1(1)("2 ~(Q2pn- 1(1)|L)(q) ~(0p)®"" D Opi(—9) .

Hence we infer that —(Ky,*L)=n—q+1 by (3.3).
Hence we have:

PROPOSITION 3.5. In X(q) let L be a line on a fiber of b’ (~P""! as a set). Then
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~(Kxg ' L)=n—p"+1.

Let C be a rational curve in Z’ and ¢ : P - C (< Z’) the normalization of C. Then
by (3.4) we have an exact sequence
3.6) 0-¢*Ty = ¢*Txg = ¢* Ny x—0.

PROPOSITION 3.7. Let a morphism ¢:P'—C be as in (3.6). Assume that ¢* Ty,
is generated by global sections. Then q=1, that is, the characteristic of the base field is
zero.

ProOF. By assumption and the exact sequence (3.6) we have a generic isomor-
phism on P!

* (O0p)®" > @*Ny iy (=N).

By taking the n-th exterior product of (#), we get an injective homomorphism
Opi—/\"N. On the other hand, since A"~ !(2pn-1(1))?=0p.-:(—q) and therefore
NNz xg=0pn-1(1—¢) by (3.3), we see that A" N=0p((1—g)degC), which yields
q=1. q.e.d.

4. The desingularization of some divisor in P(Tp,). Let 2:=P"x P", where

(405 - .., u,) is the homogeneous coordinate of the first P", while (v, ..., v,) is the
homogeneous coordinate of the second P". Let

X(p):={(u0,...,u,,)x(v0, e U)EDP

> “j”f=0}
j=0

as stated in §3 and let {H;},.;.,. be a collection of hyperplanes in the first P" with
m>n—1.

Moreover, let us consider the following condition:

(4.0) Forall n-tuples i, iy, ..., i,—, of elementsin {0, 1, ..., m}, dim ﬂ;;; H, =0
holds in the first P".

Let D;:=d~'(H;)n X(p), where d: 2— P" is the first projection.

Then our aim in this section is to study the following:

(4.1) Under the condition (4.0), what kind of modification ¢: #—2 should one
take for the reduced structure of the closed subscheme ¢~ '[X(p)Ino~'({J -, D;) to
have only normal crossing in the proper transform ¢~ [ X(p)] of X(p) via ¢?

For the study of the above problem, it suffices to consider the case m=n—1. By
a suitable linear transformation of the base space we can express each H;, of the above
n hyperplanes as {u;=0}.

Hence without loss of generality, we assume that D;={w;=0}nX(p) for i=
0,...,n—1.

(4.2) In this section we fix the coordinates u;’s and v;’s used above. U;; denotes
the affine open subset {u;v;#0} in 2 which is isomorphic to 42". Thus £ is covered
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with affine open set U;; which are affine spaces.

REMARK 4.2.1. The canonical coordinate of the above affine space is determined
by the original homogeneous coordinates of 2.

(4.2.2) As for the canonical coordinate of U;;, we should, strictly speaking, use
u,/u; and v,/v; (@=0,1,..., [ n) or denoted simply #,; and 7,;, respectively. As the
notation for the coordinates for U;; in this section, however, we adopt the same notation
u,’s and v,’s without the suffices i and j, since no confusion would arise.

(4.3) We introduce a terminology: Let A° be an s-dimensional affine space with
coordinates X, ..., X;, When M is a closed subscheme defined by a part of the
coordinates, i.e. X, ..., X;, M is said to be of type L “with respect to the coordinate
system X, ..., X;”. Usually, we omit the part in quotation.

(4.3.1) We remark that the variety obtained by blowing up 4° along the above
M is covered by finitely many affine spaces obtained canonically.

Let us return to 2.

(4.4) Let S be a smooth, closed subscheme in 2 and B={0, ..., n}.

Assume that for any i,je B, SnU;; is of type L with respect to the canonical
coordinate (Remark 4.2). Then take the blowing-up o: 2! —>2 of 2 along S. We see
easily that

(4.4.1) 2! is covered by the affine open sets which are affine spaces in a canonical
way and the coordinate system for each affine space induced by the coordinates of 2
is the natural one for the affine space (see Remarks 4.2 and 4.3.1).

Moreover, given a smooth subscheme S! of 2! so that on each affine open set
(which is an affine space) the restriction of S is of type L, we make the same modification
of 2! along S! to get 22. Then we infer that 22 has the same property as above (4.4.1).
We then repeat the same procedure.

(4.4.2) Thus the word “the affine open set” in this section is used in the sense of
the restricted affine spaces by which each of the ambient spaces 2, 2!, ..., 2" defined
below is covered. As in 4.2.1, we do not explicitly describe the difference between the
coordinates of affine open sets in 2 and those in 2'*! obtained by blowing up #*
along S*~! if there is no fear of confusion.

Before considering blowing-ups of 2 we first study those locally. Let us begin with
the following:

(4.5) Let A>™ be a 2m-dimensional affine space with the canonical coordinates
UgyoowyUpy Uy, ..., U, For #=a, B,y let ¥, be the closed subvariety in 42™ defined by
polynomials u;,, ..., u; (s<m—1) and Fy, where 1<i;< -+ <i, a<m and F; is as
follows:

() F,:=1+ 2 vPu;.

i>2

B) Fg:=vi+u,+ Z vfu;.

i>3
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() F,:=v8+ Z vPu,.

i>2
Here V, for #=a, B, y is said to be of type #.
Let J={i,, ..., i;}. For a scheme W, SW means the singular locus of W. Then we

have:

LeMMA 4.5.1. In the situation as above, assume that i;>2. Then we have:

(1) V,is smooth.

(2) Ifi;>2, then Vy is smooth. If iy =2, then Vy is singular and the defining ideal
of SV is generated by the u;’s with ie J and by the v/’s with je{2,3,4,...,a}—J.

(3) V, is singular and SV, is defined by the same ideal as in (2).

From now on, we restrict ourselves to the case m=n, and consider the 2n-
dimensional affine space A4(&,, #,) with the canonical coordinate u;’s and v;’s. Here i
runs through 0<i<n with i#a and j through 0<j<n with j#b.

Let r be a non-negative integer. Then we let

F(r):=1+ Z vPu; for j(r<j<n),

ixr,i#j

Fyn):=v?+u,+ Y vPu; for h,j(r<hj<n).
ixr#j,h

For #=a or B, D4(0, ..., r—1) denotes the subvariety in the 2n-dimensional affine
space A(it;, b,) defined by g, u;, ..., 4,y and Fy(r), where Fy(r) is F,(r) if j=h and Fy(r)
if j£h. Here if r=0, Dy(0, ..., r—1) is defined by F3(0). Note that D40, ...,r—1) is
smooth and (2n— r— 1)-dimensional.

(4.5.2) For k=>r, let Dy(k):=Dy(O, ..., r—1)n{u,=0}.

(1) D,(k) is of type a.

(2) If k#h, Dy(k) is of type . If k=h, Dy(k) is of type 7.

Thus in view of the suffices of the coordinates, we easily get:

PROPOSITION 4.6. Let the notation be as above. Then we have:

(1) D,(k) is smooth (in A(i;, ¥,)) for any k (=r).

(2) Dy(h) is singular in A(it;, 5,) and the ideal of SDg(h) is generated by n+1
monomials w,’s (x=0,1,...,r—1,h) and vgs (B=r,r+1,...,h—1,h+1,...,n).
Therefore SDy(h) is smooth and of dimension n—1.

(3)  Dy(k) is smooth in A(i;, by) for k+#h and k>r. Hence SDy(k) n SDy(k) is empty
in A(it;, ) for k, k>r (#h). 4

(4.7) Let us fix the affine space A(i;, v,) for r<h, j<n and h+#j and we let
g:4 — A(i1;, b,) be the blowing-up along singular locus SD,(h) in Proposition 4.6.

A is covered by n+1 affine open sets 4,=Spec R, where a runs through the set
{0, 1, ..., n}. Here each R, is a polynomial ring over k with 2n variables:
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K[ Way tho/Wa « s Uy 1[ Wy Upy + vy Ui gy Uy gy ey U gy Up[ Wy Uy gy e vy Uy,
Vgs -+ o5 Up—15 Ur/was ---9vh—1/wa9 Uh+1/wa, LR Un/wa]
where
u, ae{0,1,...,r—1,h},
w,=
v, ae{r,r+1,...,h—1,h+1,...,n}.

(4.8) We study the total transform ¢~ '(Dy(h)) of Dy(h) via 6 whose ideal J in R,
is (g, Uy, ..., Up— 1, Uy, Fy(r))R,.
When 0<a<r—1ora=h,Jis

((MO/ua)ua’ ey Ugy oty (uh/ua)um Fﬂ(r))Ra= (um Fﬂ(r))Rn in A(ﬁj’ bh) .
When a>r and a+#h,

Fy(r)—u,= vf,’((vj v+ Z (v,-/v,,)"u,-)

i>r#h,j
and therefore

(4.8.0) J=(ug, Uy, ..., Up_1, Uy, Fg(r))R,

=(u0, Ugy oooy Up_ g, Uy, <v§-’+ Z v{’u,-))R,,
i>r#jh

= ((uo/va)vaa tet (ur— 1/va)vaa (uh/va)vaa Gvg)Ra
= UaRa n ((uO/Ua)s AR} (uh/va)a G)Ra n ((uO/Ua)a st (uh/va)’ Uap)Ra
in" R, (written as A(#;, ,) according to Remarks 4.4.1 and 4.4.2) where G=
/)P +Y 15 2p,; (V/V)Pu; With i<j<n.
Thus we see that 6~ '[Dg(h)]n 4, is empty if 0<a<r—1 or a=h, and it is defined
by the ideal (ug, 4y, ..., U,_ 4, Uy, G) if r<a<n a#h, where
1+ Y oy, with i<j<n if a=j
_ i>r#h,a
G=
f+u,+ Y oPy with i<j<n if a#j.
i>r#h,ja
(Note that 4,=A(&1;, 1;)).
Summarizing the above results, we have:

PROPOSITION 4.8.1. Let 0: A—A(i1;, b,) be the blowing-up along the singular locus
SDy(h). Then A is covered by n+1 affine open sets A, The proper transform
D, ...,r—1,h) (h=r) of Dy(h) is a (2n—r—2)-dimensional smooth subvariety in A.
More precisely, it is defined, on each A,, by a unit, or polynomials ug, uy, ..., U, 1, Uy
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and Fy(r) for $=a or f. Finally the reduced structure of the total transform of Dy(h) via
o is set-theoretically a union of D0, ...,r—1,h) and a smooth exceptional divisor E
defined by v,, and E intersects DO, ...,r—1, h) transversally.

Pasting together the local description obtained so far, we now globally describe
the blowing-up.

(4.9) We can inductively define the blowing-up o;: #'*!1—»2! of #' along the
subscheme S* of 2 as follows:

When i=0, welet #° =2 and S°:=|J7_} SD,. Now let us assume that the blowing-
up o,: Pt 54 is defined for a=0,...,i—1 (i>1). Denote s(a—1):=0,_,06,_,...
001 P>P°. For 0<ko< -+ <k;<n—1, D(ko,...,ki):=n;=oa(i-1)jl [D,]is a
closed subscheme of #' of dimension (2n—2—1i), where D(k)=D, and S* denotes the
disjoint union of SD(ky,...,k;) (see (2) and (3) in Proposition 4.6) for 0<
ko< -+ <k;<n. Then g;: #'*' > P of #' is defined as the blowing-up of #' along the
subscheme S’ of #'. Moreover, we set X':=0(i—1)"![X(p)] for i>1 and X°:=X(p).

Then we have:

() D(ky,...,k;) is a singular subvariety in X'. SD(k,, ..., k;) is an (n—1)-
dimensional smooth subvariety and the defining ideal for its restriction on each of
the affine open sets in ' is generated by u,, ..., 4, 0, ., v if it is non-empty.

(2) X'is a smooth irreducible divisor in 2.

(3 o(i—1)"'[D,] is a smooth divisor in X’ and the divisors o(i—1)7![D,,]
(j=0,1,...,i—1) intersect transversally.

If i=n—1, then D, ...,n—1) is of dimension n—1 and is defined by the ideal
(ugs ..., Uy_4, V7)) in A(h,, D,_,). Thus it is non-reduced and therefore the support of
D(O, ..., n—1) coincides with that of SD(0,...,n—1).

Finally we take the blowing-up o,_,:#">2"~! of 2"~ ! along the reduced part
of SD(, ..., n—1).

Thus letting 6: X" X(p) the restriction of a(n—1): 2">2 to X", we have:

i+12 " °

PrROPOSITION 4.10. Let the situation be as in (4.0). Assume that m=n. Then for
each i, we have the following:

(1) X" is a smooth irreducible divisor in P".

(2) (&) "[D;] is a smooth irreducible divisor in X"

(3) (6)~'[D;1n(6)"'[Dy] is empty for any pair i and j.
Finally (6)™*(\J}-, D) is set-theoretically a normal crossing in X"

If we begin the above argument in (4.9) with divisors D,, ..., D, of (4.0) instead
of the above divisors D;s, we can naturally get a blowing-up o;: 2! -2
(i=0, ...,n—1) in the same way as in 4.9. Therefore we immediately obtain an answer
to Problem 4.1.

COROLLARY 4.11. Let the situation be as in (4.0), 0,: "1 >P" the blowing-up
@i=0,...,n—1) in the same manner as in (4.9) and c(n—1):=0,_10,_, " " Go: P">P.
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Then the proper transform X":=o(n—1)"[X(p)] of X(p) via o(n—1) is a smooth
irreducible divisor in P". Moreover, let 6 : X"— X(p) be the restriction of c(n—1): P">P
to X". Then (6)" (U7, D;) is set-theoretically a normal crossing in X™.

Furthermore, if X(p) in the above condition is replaced by X(q) with q=p’, the same
conclusion as above holds.

5. The proof of the Theorem. We construct a smooth projective variety as follows:

(1) Take d[#] which is divisible by d[n] —s, (=(p+ 1)?), choose d[#] linear forms
Ly, ..., Ly, with respect to the variables Y, ..., Y, which are in general position as
stated in Corollary 2.4 and consider a hypersurface S of degree d[n] in P" defined by
the equation [ L,=0.

(2) Take a modification G: X"— X(q) to make (b)”!(S) of X(¢q) having normal
crossing as in Corollary 4.11.

(3) Let M:=(Gb)*Opx(S) be a line bundle on X", which yields a canonical effective
divisor B=|Ja;D;, where each D; is a component of the set-theoretic pull-back of
effective divisors (6b")~*(S) via 60" and g; is a positive integer. Note that |J D, has
normal crossing.

(4) Take the branched cyclic covering 6: X'— X" of degree d[n]—s, along the
locus B. Then X’ is canonically contained in (M) as a divisor and let 7: X— X’ be the
normalization of X"

Then we have:

CrLamm. X is a toroidal embedding without self-intersection.

Let U*= X(q)— (&) *(S) and U=(n6) " *(U*). As shown in §4 X" is a hypersurface
in the smooth projective variety P which is obtained by blowing up P"x P" along
smooth subschemes succesively and is covered by affine open sets A, each of which is
isomorphic to the 2n-dimensional affine space. Moreover note that X" is covered by
Zariski open subsets V; which are closed smooth hypersurfaces in A4, respectively. Now
in view of (4.9) and (4.10), the defining equation of 8~ (V) is locally as follows: letting
W, X1, X3, ..., X2, be a local coordinate of 42",

f:=w"’“’"—x'1"‘x’5'2- Ce x;’ls=0

where 1 <s<2n and m; is a non-negative integer. Furthermore we see that for each 4,
there exists i so that m; is / or p by (4.8.0), which implies that f is irreducible for each
A. Since m: 0~ Y(U*)— X" is étale, 6~ 1(U*) is a smooth open set in X', hence equals U.
Let ¥: =(n6) " 1(¥). To show that U < X'is a toroidal embedding without self-intersection,
it suffices to show that

(1) (UnP)cVis a torus embedding.

(2) V—(¥nU) is a union of normal irreducible divisors in V.

Let Y and Y’ be hypersurfaces in (k*)?" and 42" defined by the above polynomial
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f, respectively. Then Y is an open set in Y’. Moreover, Y is an algebraic group and Y’
is invariant under the coordinatewise multiplication of the elements of Y. Since f is
irreducible, Y’ contains the open set Y which is canonically a (2n— 1)-dimensional
algebraic torus 72"~ 1. Thus 72"~ ! acts canonically on the normalization ¥ of Y’. Hence
we see that Y< ¥ is a torus embedding and ¥— Y is a union of normal divisors in ¥
by virtue of the theory of torus embedding. Therefore we can show that Uc X is a
toroidal embedding without self-intersection. Finally by virtue of Theorem 11* in
[KKMS] we get a projective birational morphism y: X—X from a smooth complete
variety X to the projective variety X, where the induced morphism y:y~X(U)- U is an
isomorphism. Thus we have constructed a smooth projective variety.

In the sequel we will show that this X is a variety which we want.

Consider a non-uniruled hypersurface Y of degree d[n] in P"*! defined by the
equation YW =s=[]® L, as shown in Corollary 2.4 and a dominant rational

map g: Y ——- P" obtained by the projection (W:Y,:,...,: Y )—>(Yy:,...,:Y,). The
rational map g is separable, generically finite and defined except at the point
(1:0:,...,:0). Let Y°:=Y—(1:0:,...,:0), go=9)y0 and let G:X(q) x pnY°— X(g) be

the canonical morphism induced by g,. Then there is a canonical birational map
f:X——-X(q) x P,2.Y°.
Thus we have the following diagram:

S

X(g) % ,Y° 2 X(g)

1 |

0 —
X X

Letting S to be the total transform ¢~ 1((b") ~1(S)) of (b")~1(S) via &, we note that
X —(yn#)~1(S) is canonically contained in both X and X(g) x p-Y° under the birational
map f. Hence we infer that a general rational curve on X is contained in some fiber of
b by the non-uniruledness of Y.

Now since X is uniruled, there exist a variety T with dim7+1=dim X and a
dominant rational map ¢: P! x T——-X.

In order to complete the proof of the theorem, it suffices to show the following
two steps.

Step 1. g=1, if X is separably uniruled.

PrOOF. By taking a small smooth open set Y in gy '(P3—S), we see that the
restriction of the morphism g,: Y— P} to Y is an étale morphism and X,:=X(q) X pn Y
is a smooth open subscheme in X(g) x p.Y° which is canonically contained in X.
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Thus there is a smooth open subset T, in T where ¢ is defined as a morphism on
P! x T, and ¢(P! x T,) is contained in X,,. Since ¢ is separable, the claim in Proposi-
tion 1.1 asserts that there exist a point y in ¥ and a rational curve Cc X, in the fiber
of (5)™'(y) such that ¢*Ty, is generated by global sections with the normalization
@:P'—C. On the other hand, noting that § is étale on X, we have a natural iso-
morphism Ty, ~g*(Txq)|x,- Consequently ¢* Ty, ~@* Ty,), where ¢: P'>3(C) is the
normalization of g(C) induced by ¢. Thus we infer that ¢*Ty,, is generated by
global sections, and therefore g=1 by Proposition 3.7.

STEP 2. Let L be a line in the fiber b~'(y) for ye Y. Then we have —(Kg*L)=
n—p+1.

PROOF.  Since §x,: Xo—X(q) is étale and L=b™!(Y), we get (Ky* L) =deg Ky, =
(G*Kxq' L) = (Kx(y"g(L)) deg gL Then note that g|, is an isomorphism and g(L) is a
line in (b") " *(go(»)). Thus we infer that —(Ky*L)=n—p"+1 by Proposition 3.5.

q.e.d.
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