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Abstract. For a certain class of ideals with analytic deviation two in a Gorenstein
local ring, a criterion for the Rees algebra to be Cohen-Macaulay is given in terms of
the Cohen-Macaulayness of the associated graded ring and the reduction number with
respect to a minimal reduction for the ideal. Some consequences are discussed.

1. Introduction. The purpose of this paper is to prove the following, which is
an analytic deviation two version of the main result in [GH] of the first author and
Huckaba:

THEOREM 1.1. Let I be an ideal in a Gorenstein local ring A and assume that
(i) A/1 is a Cohen-Macaulay ring, (ii) s=ht,I>1 and IAp is generated by an Ap-regular
sequence of length s for all PeSpec A such that P21 and dim Ap<s+ 1, and (iii) the
analytic spread of I is equal to s+2. Suppose that the residue class field of A is infinite
and choose a minimal reduction J of I. Then the Rees algebra R(I) of I is a Cohen-Macaulay
ring if and only if the associated graded ring G(I)= R(I)/IR(I) is a Cohen-Macaulay ring
and F*2=Jrtt,

As in [GH], the heart of this theorem is the calculation of the a-invariant a(G (1))
of G(I) (see [GW, (3.1.4)] for the definition of the a-invariant) in terms of the reduction
number r,(I) of I with respect to J and the assertion will be improved when the reduction
number r (/) is relatively small. Before entering into the details, however, we would like
to fix the basic notation which we shall maintain throughout this paper.

Let 4 be a Noetherian local ring with maximal ideal m. We assume that the field
A/m is infinite. Let I (# A4) be an ideal in 4 and s=ht,I. Let R(I)=A[It]< A[ ] (here
t is an indeterminate over 4) and G (/)= R(I)/IR(I). Let J be a minimal reduction of I,
hence J=7and I"** =JI" for some n>0. We put r,(I)=min{n>0|I"** =JI"} and call
it the reduction number of I with respect to J. Let A(/) denote the analytic spread of
I, that is, A(/)=dim(4/m)® ,G(I). Then as is well known, J is minimally generated by
MI)-elements (cf. [NR]). Following [HH1], we put ad 7= A(I)—s and call it the analytic
deviation of I.
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The theory of ideals having small analytic deviation started from the researches
[HH1, HH2] of Huckaba and Huneke. In [HH1] they explored certain ideals 7 with
ad I=1 or 2 in a Cohen-Macaulay or Gorenstein local ring 4 and gave, for these ideals,
a criterion for symbolic powers to equal the ordinary ones. In addition, they studied
in [HH2] the Cohen-Macaulay property of R(I) and showed especially, that R(]) is a
Cohen-Macaulay ring if r,(I)<1. Their research [HH2] was succeeded by [GH], in
which the first author and Huckaba proved the following theorem:

THEOREM 1.2 (cf. [GH, 2.1]). Let I be an ideal in a Cohen-Macaulay local ring A
and assume that (1) s=ht ,1>0 and 14, is generated by an Ap-regular sequence of length
s for all Pe Min A/l and (ii) M(I)= s+ 1. Suppose that the residue class field of A is infinite
and choose a minimal reduction J of I. Then R(I) is a Cohen-Macaulay ring if and only
if >0, G(I) is Cohen-Macaulay ring, and I** ' = JI°.

Theorem 1.2 was based on the calculation [GH, 2.4] of a(G(])) in terms of r,(I)
and both results [GH, 2.1 and 2.4] proved to be really useful in the research [GN1]
on the Gorensteinness of R(I) and G(I) for the ideals I with ad /=1. Our Theorem 1.1
originally aimed at analytic deviation two versions of Theorem 1.2, which will be helpful
for the further research [GN2] on R(/) and G(I) associated to ideals of analytic deviation
two. The authors now believe that the assertions in Theorems 1.1 and 1.2 remain true,
after suitable modifications if necessary, for the ideals with higher analytic deviation.

Let us cite two more results in this paper. We assume that our base ring 4 is a
Gorenstein local ring and that our ideal 7 satisfies the conditions (i), (i), and (iii) in
Theorem 1.1. Let J be a minimal reduction of I. Then we have dim R(/)=dim A +1,
since s=ht >0 (cf. [V, 1.6]) and so by the theorem [TI, 1.1] of Trung and Ikeda,
R(I) is a Cohen-Macaulay ring if and only if G(I) is a Cohen-Macaulay ring and
a(G(I))<0. Therefore thanks to it, our Theorem 1.1 immediately follows from the next
result, which is the heart of our argument:

THEOREM 1.3. Suppose that G(I) is a Cohen-Macaulay ring. Then a(G(I))= —s if
ri(N)<1 and a(GD)=r;(I)—(s+2) if ry(I)=>2.

As was cited before, R(/) is Cohen-Macaulay ring if r;(/)<1 (cf. [HH2, 4.1]). It
seems natural to ask what happens when r;(I)=2. We would like to study this question
also in this paper and in Section 4 we will prove the following:

THEOREM 1.4. Suppose that r;(I)< 2. Then the following conditions are equivalent:
(1) R(I) is a Cohen-Macaulay ring.
(2) G(I) is a Cohen-Macaulay ring.
(3) depth 4/I*>dim A/I-2.
Hence R(I) is a Cohen-Macaulay ring, if dim A/I=2 and r;(I)<2.

We close this section with a brief orientation for this paper. We shall prove Theorems
1.3 and 1.4 in Section 4, reducing these two assertions to those on ideals of analytic
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deviation one. The reduction basically depends on a certain canonical exact sequence
of graded R(I)-modules, which we will explain in Section 3. Section 2 is devoted to the
preliminaries for that. We will summarize some auxiliary results in the case where
ad I=1. Two examples will be explored in Section 4 in order to illustrate our theorems.

Throughout this paper let (4, m) denote a Noetherian local ring of dim A =d. For
simplicity, we always assume that the field 4/m is infinite. Let I (# 4) be an ideal in 4
and s=ht ,I. Let J be a minimal reduction of I and put r=r,(I). For a finitely generated
A-module M we denote by u,(M) the number of elements in a minimal system of
generators for M. Let H' (*) (i€ Z) stand for the i'® local cohomology functor of 4
with respect to m.

2. Preliminaries from the case where ad /=1. The purpose of this section is to
gather some auxiliary results, which we later need to prove Theorems 1.1 and 1.4.

LEMMA 2.1. Suppose that A is a Gorenstein ring and A/l is a Cohen-Macaulay
ring. Assume that (i) AI)>s+2 and (ii) IAp is generated by an Ap-regular sequence of
length s for all PeSpec A such that P21 and dim Ap<A(I)—1. Then s> 1.

ProOF. Assume s=0 and put L=7+((0): 7). Then In((0): )=(0) and dim 4/L <
d=dim A. Thus both A/I and A4/(0): I are Cohen-Macaulay rings of dimension d (cf.
[PS]). Apply the depth lemma (cf. [HH1, Remark 1]) to the exact sequence

0—A— A/I@® A)(0): I->A/L—0

of A-modules. Then we have depth 4/L>d—1. Thus dim A/L=d— 1. Choose P € Spec A
so that P2 L and dim Ap,=1. Then since dim 4, <A(/)—1 by the assumption (i), we
have I4,=(0) by the assumption (ii), which contradicts the fact that P>(0): I. Hence
s>1. q.e.d.

Let B=A[[X]] be the formal power series ring in one variable X over 4. We put
n=mB+ XB, [*=IB+ XB, and J*=JB+ XB. Let B[t] denote a polynomial ring. We
put 7= Xt mod I* R(I*). Then as is well-known, G(I/*)=G(/)[T] and T is transcendental
over G(I). Hence G(I*) is a Cohen-Macaulay (resp. Gorenstein) ring if and only if
G(I) is a Cohen-Macaulay (resp. Gorenstein) ring. When this is the case, we have
aG(I*)=a(G(I))—1 (cf. [GW, (3.1.6)]). We furthermore have the following re-
sults, which enable us to assume that s=ht,/ is arbitrarily high. Hence the results
given by [HH1, HH2] on ideals 7 with ad I=1 or 2 are still true also in the case where
ht,J=ad I—1, although Huckaba and Huneke throughout assume ht,/>ad I in their
theorems.

LemMma 2.2. (1) htgl*=s+1.

2) AMI*=AMI)+1.

(3) J* is a minimal reduction of I* and r;(I*)=r;(I).

(4) Let QeSpec B such that Q2I*. Let P=Qn A. Then I*By, is generated by a
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By-regular sequence of length s+ 1 if and only if 1Ap is generated by an Ap-regular
sequence of length s.

(5) I*™=1I*" for all ne Z if and only if I =1I" for all ne Z, where I*™ and I™
denote the symbolic powers.

PrROOF. Let Qe Spec B such that Q=7*. We put P=QnA. Then Q=PB+ XB
so that dim By=dim 4p+1. Hence htg/*=s+1. Since nG(I*)=mG([*), we have
Bm®pG(I*)=A/m® ,G(I)[T], whence the equality A(I*)=A(I)+1 follows. Thus J* is
a minimal reduction of 7*. Since I*"*!=XI*"4+I"*1B (n>0), we have r.(I*)=r,(I).
Because ug,(I*Bg)=pi4.(IAp)+1 and grade(I*B,, By)=grade(I4p, Ap)+1, we get the
assertion (4). The assertion (5) follows from the equality /*™=Y7  X'-I1“""9B
(n=1). q.e.d.

Our proof of Theorems 1.3 and 1.4 that we will give in Section 4 is based on the
reduction, modulo certain super-regular sequences, to the Cohen-Macaulayness of the
associated graded ring G(I) in the case where ad/=1 and the base ring A4 is
one-dimensional and Cohen-Macaulay. In this section we shall summarize some
preliminary results for that case. Now, for the rest of this section, let 4 be a
Cohen-Macaulay local ring of dim 4 =1. Let

O= N 1»)

peAss A
be the primary decomposition of (0) in A. Let F be a non-empty subset of Ass 4 and
assume that F#Ass A. We put /=) per I(P). Then 4/I'is a Cohen-Macaulay ring of
dim A/I=1 and A(I)=1. Let be be such that /"*! =pI" for some n>0. We put J=bA
and a=(0): 5. Then since a= npeAssA\F I(p), we have I'na=(0). Since =./a+I=m, we
see that a contains an element y such that y+b is A-regular. Hence y is A/I-regular
and b is A/a-regular. We put R=R(I), G=G(I),and M=mG+G,. Let f=y+bte R. We
note:

LemMma 2.3 (cf. [GN, (3.3)]). W=JTG Hence G is a Cohen-Macaulay ring if
and only if f is G-regular.

PrOOF. Let Qe Spec R be such that Q2 IR+ fR. Then since y= — bt mod Q, we
have y2= —ybt=0mod Q so that y, bte Q. Hence Q2R since J=bA is a (minimal)
reduction of I. Because y+be Q, we get Q2m. Thus Q=mR+ R, whence M=/fG.
The second assertion follows from the first. q.e.d.

PROPOSITION 2.4. The following conditions are equivalent:
(1) G is a Cohen-Macaulay ring.
) bInI"=bI""! for all n>3.

PrOOF. (1)=(2) Let xel be such that bxeI" and assume bx¢bI"~ . Choose
i>1sothat xeI' but x¢ I'*'. Then i<n—2 since x¢ I"~*, whence bx e I'*2. Therefore
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(y+bt)- xt'=bxt'* ' € IR; so we have xt'e IR because f=y+bt is G-regular by (2.3).
Thus xe I'*!, which is the required contradiction.

(2)=(1) Let g=)7_,9i¢ (g;€I’) and assume that fgeIR. Then since fg=
Yo+ Y. i_obgit'*!, we have ygoel and bg;eI'*? (1<i<n). Hence g,el, because y
is A/I-regular. Since bg;e bInI'*2, we see bg,ebI'*! so that g;eI'*! for all 1<i<n
(recall that Ina=(0)). Thus ge IR, which proves f is G-regular. Hence G is a Cohen-
Macaulay ring by Lemma 2.3. q.e.d.

COROLLARY 2.5 (cf. [GN, (1.5)]). G is a Cohen-Macaulay ring if r;(I)<2.

PrOOF. Since I"=bhI"""' for all n>3, we have bInI"=bI""'. Hence G is a
Cohen-Macaulay ring by Proposition 2.4. q.ed.

The next result is due to [GH]. Notice that in the proof given by [GH, 2.4] for
the case where dim 4 =1, we do not utilize the assumption that G is Cohen-Macaulay.

PROPOSITION 2.6 (cf. [GH, 2.4]). a(G)=0 if I=J, while a(G)=r,(I)—1 if I#J.

We put A=A/a, I=14 and J=JA. Let m=mA. Then I is an m-primary ideal in
A and J is a minimal reduction of T, If I**1 =JI" for some n>0, we have I"* 1 = JI" +q,
so that I"*1=JI" since Ina=(0). Thus we get r7(I)=r,(I). Let ¢ : G—G(I) denote the
canonical epimorphism of the associated graded rings. We put L=Ker ¢. Let L, denote
the homogeneous component of L of degree n. Then since Ina=(0), we have L,=(0)
(n#0) and L,=(/+a)/I=~a as A-modules. Hence we get an exact sequence

Q27 (cf. [GN,(23)]) 0— ,a— G- GT)—0

of graded R-modules, where ,a denotes a which is regarded, via the canonical projection
p: R— A, as a graded R-mocule concentrated at degree 0.

PROPOSITION 2.8. The following conditions are equivalent:
(1) G(I) is a Cohen-Macaulay ring.

(2) G is a Cohen-Macaulay ring and I? :b=1I+a.

() bAnI"=bI""! for all ne Z.

Proor. (1)=(2) Since ,ais a Cohen-Macaulay R-module of dimension one, we
get by (2.7) that G is Cohen-Macaulay (use the depth lemma). Let x € I?: b. Then since
bAnT?=0bI (cf. [VV, 2.3], recall that bt is G(I)-regular), we have bxebl+a. Hence
bxebl since Ina=(0); thus xel+a.

(2)=(3) We may assume n>2. Then bAnI"=b(I":b)=b(I*:b), and we have
bAnI"cbl. Hence by Proposition 2.4, bAnI"=bI""1,

(3)=(1) Letn>1beaninteger. Thensince Ina=(0), we have bAn(I"+a)=bANnI"
so that bAnI"=bI""'. Hence bt is G(I)-regular (cf. [VV, 2.3]). Thus G(T) is a
Cohen-Macaulay ring. q.e.d.
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COROLLARY 2.9. Suppose that G(I) is a Cohen-Macaulay ring. Then r;(I)=
max{n>0|I"¢J}.

PrOOF. Let n=max{n>0|I"¢J}. Then since I"*' <J, we have by Proposition
2.8 that I"*1=JI". Hence n>r,(I). The opposite inequality is obvious. g.ed.

ExampLE 2.10. Let R=k[[X, Y, Z]] be the formal power series ring in three
variables over an infinite field k. Let r >0 be an integer and put A= R/(X, Y)n(Y, Z)'*1).
Let I=(X, Y)A. Then G(I) is a Cohen-Macaulay ring, a(G)=0 if r =0, while a(G)=r—1
if r>1.

ProOF. We put x=Xmod(X, Y)n(Y, Zy*'. Then F={I} and I"*'=xI". Since
u)=j+1(0<j<r), we get F#xI'~! for 1 <j<r; hence r,(I)=r where J=xA. Thus
we have the assertion on a(G) (cf. Proposition 2.6). Let n>1 be an integer. Then we have

XRo((X, Y)"+(X, )n(Y, Zy*HeX (X, V)" '+ XRn(Y"R+(X, Y)n(Y, Z)*})
SX-(X,Y) '+ XRn(Y"R+Y-(Y,ZY+XZ""'R)
=X-(X,Y) '+ XZ"" 'R+ XY"R+ XY (Y, Z)
SX-(X, Yy 1+(X, Y)n(Y, Z)*t.

Hence G(T) is a Cohen-Macaulay ring by Proposition 2.8. q.e.d.

3. Auxiliary results for the reduction to the case where ad /=1. Throughout this
section let 7 be an ideal in a Gorenstein local ring 4 and assume that A4/I is a
Cohen-Macaulay ring. Let s=ht,/ and put F={PeSpec4|P21 and dim 4p<s+1}.
We assume that A(/)=s+2 and /A4, is generated by an A4p-regular sequence of length
s for all Pe F. Hence s>1 by Lemma 2.1. We put R=R(I), G=G(I), and M=mG+G .
Let J be a minimal reduction of 1.

PrOPOSITION 3.1. The ideal J contains a system ay, a,, ..., a, b, ¢ of generators
satisfying the following conditions, where K=(a,, a,, ..., a;) and L=K+bA:

(1) ay,a,,...,ais an A-regular sequence and b is A-regular.

(2) IAp=KAp for all PeAss A/l

(3) ay,a,,...,a,_formapart of aminimal system of generators of IAp for all P€ F.

4) K:b=K:Iand (K:I)nI=K.

5) (L:¢gnlI=L.

6) ht,(I+(K:D))=s+1 and ht (I+(L:1))=>s5+2.

For the proof see [HH2, 3.3].
Let a,, a,, ..., a, b, ¢ be throughout as in Proposition 3.1 above. Then we have:
LEMMA 3.2. LnI?=LIand KnI*>=KI.

Proor. Consider the following four exact sequences of A-modules:
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(1) 0-K/KI->A/KI-A/K—0,

2) 0-A/bK—A/KI® A/bI—A/LI-0,

3) 0-K->A->A/bK—0,

@) 0-I-A—-A/bI-0,
where the second one follows from the equality KInbI=bK (use Proposition 3.1 (4)).
Then since K/KI=(A/Iy, by (1) A/KI is a Cohen-Macaulay ring of dimension d—s (use
the depth lemma). Now assume LnI?#LI and choose PeAss,(LnI?)/LI. Then
PeAss,A/LI and P21+ (L:1I). Hence dim Ap>s+ 2 by Proposition 3.1 (6). Therefore
the depth lemma implies, by (3) and (4), that depth 4p/bKp>2 and depth Ap/blp>2;
so by (2) we get Pe Ass, A/KI, because Pe Ass, A/LI. Hence dim 4,=s, since A/KI is
a Cohen-Macaulay ring of dimension d—s. This is impossible. Thus L n /2= L. Similar-
ly, if Pe Ass (KnI?)/KI, we get P21+ (K: I) whence ht , P> s+ 1 by Proposition 3.1 (6),
while we have ht, P=s because PeAss, A/KI. This is absurd. Thus KnI?>=KI as
claimed. q.ed.

Because ht (/+(K:I))>s+1 and ht,(I+(L:1))>s+2, we may choose a system
{x1, X3, ... Xq_5_2, ¥, 2} Of parameters for the ring A/I with ye K:I and zeL:I. Let
a=(at, ..., a4, X1, ..., Xq_s_2,.Y+bt, z+ct)R.

Lemma 3.3. M=./aG. Hence a,t,...,ai, X, ..., X4_s_,, ¥+ bt form a G-regular
sequence, if G is a Cohen-Macaulay ring.

PrOOF. Let QeSpec R and assume that Q 2 IR+ a. Then since y= —bt mod Q,
we have y2= —ybt mod Q. Hence y, bte Q, because ybe K. Similarly z, cte Q, whence

Q2 Jt. Thus Q2 R, since J is a reduction of I. Because Q21+ (xq, ..., X4—5—2, V> 2),
we have Q2om. Hence Q=mR+ R, so that we have MM = =,/aG. The second asser-
tion follows from the first. q.e.d.

We put A=A/(K:1I), I=IA, and J=JA. Then 4 is a Cohen-Macaulay ring of
dimension d—s (cf. [PS]). We have the following theorem, which claims that 7 is
generically a complete intersection in 4 and adT=1, that is, the ideal T satisfies the
conditions (i) and (ii) stated in Theorem 1.2.

THEOREM 3.4. (1) htz/=1 and A/T is a Cohen-Macaulay ring of dimension
d—s—1.
(2) b is A-regular and 1A, =bA, for all Pe Ass AT
(3) A)=2 and J is a minimal reduction of I.
@ riD=r, ), if KnI"=KI""* for all ne Z.
Proor. Since In(K:I)=K by Proposition 3.1 (4), we have an exact sequence
0> A/K—>A/I® AJK: I>A[I+(K: ))—0

of A-modules. Hence depth A/(I+(K:1))>d—s—1, so that 4/I is a Cohen-Macaulay
ring of dimension d—s—1 (recall that ht,(/+(K:I))>s+1 by Proposition 3.1 (6)).
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Therefore ht z7=1. Since bAn(K:I)=K and K:b=K:1, b is certainly A-regular. Let
PeAss, A/(I+(K:I)). Then since P2I+(K:I) and dimAp=s5s+1, we have by Pro-
position 3.1 (6) that I4p=LAp. Hence I4p,=bAp. Because J is a reduction of I, we
have A(T)<2. If AT)<?2, then AT)=htzI=1, so that by [CN, Theorem] we find 7=x4
for some x e l. Then since I=xA4+ (K :I)n I, we have by Proposition 3.1 (4) the equality
I=xA+ K. Hence pu,(I)<s+ 1, which is impossible because A(I)=s+2. Thus A(T)=2,
whence ad T=1. Suppose that KnI"=KI"~! for all ne Z. If I** 1 =JI" for some n>0,
then I"*'=JI"+(K:I)nI"*!. Since (K:I)nI"*! = K by Proposition 3.1 (4), we have
that /"* ! = JI"+ KI"=JI". Thus r3(T)> r,(I). Because the opposite inequality is obvious,
this completes the proof of Theorem 3.4. q.ed.

LeMMmA 3.5. depth A/T?>min{depth 4/1%, d—s—1}.

Proor. Since (K:I)nI?><K by Proposition 3.1 (4), we have (K:I)nI*=KI by
Lemma 3.2. So we get an exact sequence

0—A/KI->A/I*@® A/K:I-A/T*-0

of A-modules. Because both 4/KI and A/K:1 are Cohen-Macaulay rings of dimension
d—s (cf. the proof of Lemma 3.2), the depth lemma will guarantee the required
inequality. q.e.d.

Let ¢ : G(I/K)—G(T) be the canonical epimorphism of the associated graded rings.
Then since (K :I)nI=K, we get Ker ¢ =[Ker ¢], and [Ker ¢]o=(+(K:1))/I=(K:I)/K
as A-modules. Hence we have an exact sequence

(3.6) 0— ,[(K:1)/K]—> G(I/K) - G(T) — 0

of graded R-modules, where ,[(K:I)/K] denotes (K:I)/K which is regarded, via the
canonical projection p: R— A, as a graded R-module concentrated at degree 0.

Let a denote, for each a€ 4, the reduction of a mod K. We put B=A4/K. Let B[t]
be the polynomial ring. We put S=R(I/K):=B[(I/K)t] (< B[t]).

LemMma 3.7. Keron(y+bt)G(I/K)=(7+bt) - Ker ¢.

Proor. Let feKeron(y+bt)G(I/K) and choose g€ G(I/K) so that f=(7+ bt)g.
We write f=Xx modIS with xeK:I and g=)]_,¢;t'mod IS with c;el’ (0<i<n).
Then since yeK:1, we have X=yc,+Y ;_,bc;t'*! mod IS. Hence x=yc,mod I and
bcoe K+ 1%, Because x,yeK:I and (K:I)nI=K (cf. Proposition 3.1 (4)), we have
x=yc, mod K. On the other hand, writing bc,=k+v with ke K and vel?, we get
veLnI?=LI (cf. Lemma 3.2). Let v=k, +bi with k; €K and iel. Then since bc,=
(k+k,)+bi, we have c,—ie K: I by Proposition 3.1 (4), whence ¢(c, mod IS)=0. Be-
cause X=(j+bt)co—bc,y t=(7+bt)comod IS, we have fe(j+bt)- Ker ¢ as claimed.
q.e.d.
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PROPOSITION 3.8. Suppose that G is a Cohen-Macaulay ring. Then bt is G(I)-
regular.

PrROOF. By Lemma 3.3, a,t, a,t, ..., ai, y+ bt form a G-regular sequence. Hence
by [VV, 2.1] we have a canonical isomorphism G/(a,t, a,t, ..., a;t)G=G(I/K), so that
y+bt is G(I/K)-regular. Therefore by Lemma 3.7 we see that y+bt is G(I)-regular.
Thus bt is G(T)-regular too, because ye K: I. q.e.d.

We close this section with the following two lemmas:

LEmMMA 3.9. Suppose that G is a Cohen-Macaulay ring and dim A> A(I)=s+2.
Then m contains an element x satisfying the following conditions, where C= A[xA:

(1) x is G-regular.

(2) Cis a Gorenstein local ring of dimension d—1 and C/IC is a Cohen-Macaulay
ring of dimension d—s—1.

(3) htdC=s and M(IC)=s+2.

4) JC is a minimal reduction of IC and r;(IC)=r,I).

(5) ICp is generated by a Cp-regular sequence of length s for all PeSpec C such
that P2 IC and dim Cp<s+1.

(6) G(C) is a Cohen-Macaulay ring and a(G(IC))= a(G).

ProOF. Let F,=|J,, ,Ass A4/[" and F,={PeSupp, N I|dim Ap=5+2}.
Then F, is a finite set (cf. [Br]). Since F, =Min, /\s+1 I, we see that F, is finite too.
Notice that depth 4/1">0 for all n>1 by Lemma 3.3, because G is a Cohen-Macaulay
ring and d>s+2. Hence m¢ F, uF,. Choose xem so that x¢ P for any PeF,UF,.
Then x is G-regular, since x is A/I"-regular for all n> 1. Therefore since G/xG = G(IC)
by [VV,2.1], we see that G(IC) is a Cohen-Macaulay ring, A(/C)=A(I), and
a(G(IC))=a(G) (cf. [GW, (3.1.6)]). Because x is regular on both 4 and A/I, we have
the assertion (2); hence ht.IC=s. If (IC)"*'=JC-(IC)" for some n>0, then
I"=Jr"+(xAnI**"). Since xAnI"*'=xI" ([VV, 2.3]), we have I"*'=JI" by
Nakayama’s lemma, which proves r;(IC)=r;(I). The assertion (4) follows from the
fact that x¢ P for any Pe F,. q.ed.

LemMA 3.10.  Suppose G is a Cohen-Macaulay ring and let C= A/a, A. Then we have:

(1) C is a Gorenstein local ring of dimension d—1 and C/IC is a Cohen-Macaulay
ring of dimension d—s.

(2) htcIC=5—1 and A(IC)=s+1.

(3) JC is a minimal reduction of IC and r;(IC)=r,(I).

(4) If s>2, then ICp is generated by a Cp-regular sequence of length s—1 for all
PeSpec C such that P2IC and dim Cp<s.

(5) GC) is a Cohen-Macaulay ring and a(G(IC))=a(G)+ 1.

PROOF. Since a,! is G-regular by Lemma 3.3, we have G(/C)=~G/(a,t)G (cf. [VV,
2.1]). Hence G(IC) is a Cohen-Macaulay ring and a(G(IC))=a(G)+ 1 (cf. [GW, (3.1.6)]).
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Since a, is A-regular too (cf. [VV, 2.3]), we have the assertion (1). Clearly, ht.IC=
s—1 and AIC)=AI)—1. If (IC)"**=JC-(IC)" for some n>0, we have ["*!'=
JI"+(a,;AnI™*?). Hence I"*!=JI", because a,AnI"*'=aqaI" (cf. [VV, 2.3]). Thus
r;c(IC)=r;(I). The assertion (4) follows from Proposition 3.13 (3). g.e.d.

4. Proofs of Theorems 1.1 and 1.4. We shall maintain the same notation as in
Section 3. The purpose of this section is to prove Theorems 1.1 and 1.4.

PROOF OF THEOREM 1.3. By Lemma 3.9 and Lemma 3.10 we may assume that
dimA4=3 and ht,/=1. Let a=a,, b, ¢ be the system of generators for J given by
Proposition 3.1. Let K=aA and L=(a, b). Consider the exact sequence

@.1) 0— ,[(K:I)/K]—> G(I/K)—2 G(T) — 0

given in (3.6), where A=A4/(K:I) and T=1I1A. Then at is G-regular by Lemma 3.3 and
G(I/K) is a Cohen-Macaulay ring with a(G(I/K))=a(G)+ 1 by Lemma 3.10. Let H'y(*)
(i€ Z) denote the i'® local cohomology functor of G relative to M. Then applying H iy(*)
to (4.1), we have an exact sequence

4.2) 0~ Hy(G(D) » Hy([(K:1)/K]) > HR(GI/K)) > HH(G(T)) > 0

of graded G-modules. Recall that the 4-module (K :I)/K is (Cohen-Macaulay and) of
dimension 2. Then by [GH, 2.2] we get

Hy(,[(K:1)/K])= ,[H (K :1)/K)]#(0).

Hence by (4.2) we have HY(G(T))=[H (G (T))],, that is, Hi(G(T)) is concentrated at
degree 0. We put r=r,(I). If r<1, then since ryI)<r, we see that G(I) is a
Cohen-Macaulay ring by Theorem 3.4 and [HH]1, 2.9], so that a(G(T))= —1 by [GH,
2.4]. Because H&(G(T))=(0), we get by the exact sequence (4.2) that a(G(I/K))=0. Hence
a(G)=—1.

Assume that r>2. Then since bz is G(T)-regular by Proposition 3.8, we have an

- bt - — ,
exact sequence 0—>G(I)(— 1)—1 G(I) > G(I/bA) - 0. Apply the functors Hyy(*) to it.
Then since Hy(G(T))=[Hi(G(T))],, we get an exact sequence

43) 0—— HYGT) — HYGIbA) Y HRHGDN—1) s HRHGD) — 0

of graded G-modules. Notice that thanks to Theorem 3.4, the ideal 7/bA4 has analytic
deviation one and is generically a complete intersection in 4/bA4. Then we have
a(G(I/bA))=r—1>1 by Proposition 2.6, because rjT)=r;(I) by Theorem 3.4 and
ripad/bA)=ry(T) (see the proof of Lemma 3.10). Hence by (4.3) we get (0)#
Y(CH R(GTIbA)], - ) S [HRGT))], -2, since Hy(G(T)=[Hy(G(I))]o. Thus a(G(T))>
r—2=a(G(I/bA))—1. Since a(G(I))<a(G(I/bA))—1 in general, we have a(G(I))=r—2.
Hence a(G)=r—3 as claimed. This completes the proof of Theorem 1.1 as well as the
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proof of Theorem 1.3. q.e.d.

Let {a, a,, ..., a, b, c} be the system of generators for J given by Proposition
3.1. We put K=(a;,a,,...,a) and L=K+bA. To prove Theorem 1.4 we need the
following two results:

LeMMA 4.4, Suppose that r,(I)<2. Then LnI"=LI""! for all ne Z.

Proor. By Lemma 3.2 we may assume n>3. Hence I"=JI""!, so that we have
Lnl"=LI"" '+ Lncl" . Since LncIl" '=c((L:c)nI"" 1), we get by Proposition 3.1 (5)
that Lnel" *=c¢(LnI""'). Thus by induction on n we get Lncl" '=cLI""%. Hence
LnI"=LI""1. g.e.d.

PROPOSITION 4.5. Suppose that ry(I)<2. Then KnI"=KI""! for all ne Z.

PrROOF. We may assume n>2. Since KnI"<LI" ! by Lemma 4.4, we have
KnI"=KI""'+KnbI""'. Because KnbI" '=b(K:b)nI"" 1), we get by Proposition
3.1 (4) that KnbI" '=b(KnI""1). Thus by induction on n we have KnI"=KI"" 1.

q.ed.

PrROOF OF THEOREM 1.4. (1)=>(2) is proved in [H, Proposition 1.1].

(2)=>(3) Choose a system {x,, X,, ..., X4_,_», ), z} of parameters for 4/I so that
yeK:I and zeL:I. Then by Lemma 3.3, {x;, x,,...,x,_5_,} forms a G-regular
sequence. Hence it forms a regular sequence for both A/I and I/I?, so that
{x1, X3, ..., X4_s_»} is an A/I*-regular sequence too. Thus depth 4/I*>dim 4/I—2.

(3)=(1) By Theorem 1.1 it suffices to show that G is a Cohen-Macaulay ring. Re-
call that depth A/T?>>d—s—2=dim A/T—1 by Lemma 3.5. Then since r;(T)<r,(I[)<2,
we see that G(T) is a Cohen-Macaulay ring by [GNI1, 1.3]. Hence the exact sequence
(3.6) guarantees that G(I/K) is a Cohen-Macaulay ring, because (K:I)/K is a
Cohen-Macaulay 4-module of dimd—s. Thus G is a Cohen-Macaulay ring, since
{ait, ayt, ..., ag} is a G-regular sequence and G(I/K)=G/(a 1, a,t, ..., a;t)G by Propo-
sition 4.5 (cf. [VV, 2.1 and 2.3]). This completes the proof of Theorem 1.4. q.e.d.

If r;(I)< 1, then since ry(T)<1, we get by Theorem 3.4 and [HH1, 2.9] that G(I)
is a Cohen-Macaulay ring. Hence by (3.6) and Proposition 4.5 G is Cohen-Macaulay.
Thus by Theorem 1.1 we have:

CorOLLARY 4.6 (cf. [HH2, 4.1]). R is a Cohen-Macaulay ring if r,(I)< 1.
The next example is fairly well-known. We would like to explore it in our context.

ExampLE 4.7. Let R=k[X,}, X,; | j=1,2,3,4] be the polynomial ring in eight
variables over an infinite field k. Let P denote the ideal of R generated by the maximal
minors of the matrix
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I:Xll X12 X13 X14]
X21 X22 X23 X24

We put M=(X,;, X2j|j=1,2, 3,4R. Let A=R,,and p=PA. Then A(p)=5and ht ,p=3.
R(p) is a Cohen-Macaulay ring and a(G(p))= —3.

PrOOF. A/p is a Cohen-Macaulay normal ring and ht,p=23 (cf. [HE]). Let
X.. X,.
[ij]=det|: 1 1’] for 1<i<j<4.

Let J=([12],[2 3], [3 4], [14], [13]—[24])A4. Then since [1 2][3 4]—[1 3][2 4]+
[1 4][2 3]=0, we get p2=Jp. Because A(p)=5 by [CN, p. 221, Proposition], J is a
minimal reduction of p and r,(p)=1. Since 4/p is a normal ring and ht,p=3, p4, is
generated by an A4y-regular sequence of length 3 for all Q e Spec 4 such that Q 2p and
dim 4, <4. Thus R(p) is a Cohen-Macaulay ring by Corollary 4.6. We have a(G(p))= —3
by Theorem 1.3. q.e.d.

As for the next example we do not know whether G(p) is a Cohen-Macaulay ring
or not.

ExampPLE 4.8. Let R=k[X, Y, Z, W, V, U] be the polynomial ring in six variables
over an infinite field k. Let P be the ideal of R generated by the maximal minors of the
matrix

_I:XYZWV]
vy zw v ul

Weput M=(X, Y,Z, W, V, U)R. Let A=R,, and p=PA. Then A(p)=6, ht,p=4, and
r;(p)=3 for any minimal reduction J of p.

ProoF. Since A/p is a normal ring of dimension two, we have ht,p=4. Let
G=G(p) and G=G/MG. We denote by [i j] the determinant of the matrix consisting
of the i"™ and j™ columns of Q. Let S=k[X;|1<i<j<5] be the polynomial ring in ten
variables over k and let ¥: S—G denote the homomorphism of k-algebras defined by
Y(X;;)=[i jlt mod MG (1 <i<j<5), where t is an indeterminate over 4. Let a be the
ideal of S generated by the Pfaffians of order four in the alternating matrix

0 X12 X13 X14 X15
—X12 0 X23 X24 X25
'—X13 _X23 0 X34 X35
—X14 —X24 _X34 0 X45
_XIS _XZS _X35 _X45 0

Then a direct checking shows that Ker ¥ 2a+/S, where f=X7,— X, X455+ X;3X35—
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X14X34—X53X,55— X,3X5,4. Since S/a is a Gorenstein UFD (cf. [BE]) and f moda is
a prime element in S/a, we see that a+ f.S is a prime ideal in S of height 4. Hence
Mp)=dim G <6, so that ad p <2. Notice that pA, is generated by an A ,-regular sequence
of length 4 for all QeSpec A\ {MA} such that Q=p (since A/p is normal and
dim A/p=2). Therefore, if adp<2, by [CN, Theorem] we have adp=1 because p is
not a complete intersection in 4. Hence p® =p? by [HH1, 2.5]. This is impossible, since

XY Z
A=det] Y Z W |ep®?
zZ WV

but 4¢p? (cf. [G, (7.5)]). Thus ad p=2, whence A(p)=dim G=6. Therefore we have
Ker ¥ =a+fS. Consequently G is a Gorenstein ring with a(G)= —3, since a(G)=
a(S/a)+2 by [GW, (3.1.6)] and since a(S/a)= —5. Let J=(a,, a,, ..., ag)A be a mini-
mal reduction of p. Then since {a,1, a,t, ..., agt} forms a homogeneous system of pa-
rameters for G, we get a(G/(a,t, a,t, ..., agt)G)=a(G)+6=3 (cf. [GW, (3.1.6)]). Hence
G,<(at, a,t, ..., ast)G+ MG, which implies, by Nakayama’s lemma, that p*=Jp3.
Since G5 ¢ (a,t, a,t, ..., agt)G+ MG, we have p3#Jp2. Thus r,(p)=3. Therefore, if G
is a Cohen-Macaulay ring, then so is the ring R= R(p) by Theorem 1.1. qg.e.d.
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