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Abstract. For a certain class of ideals with analytic deviation two in a Gorenstein

local ring, a criterion for the Rees algebra to be Cohen-Macaulay is given in terms of

the Cohen-Macaulayness of the associated graded ring and the reduction number with

respect to a minimal reduction for the ideal. Some consequences are discussed.

1. Introduction. The purpose of this paper is to prove the following, which is
an analytic deviation two version of the main result in [GH] of the first author and
Huckaba:

THEOREM 1.1. Let I be an ideal in a Gorenstein local ring A and assume that

(i) All is a Cohen-Macaulay ring, (ii) ,s = ht^/> 1 and IAP is generated by an AP-regular

sequence of length s for all Pe Spec A such that P Ξ2 / and dim AP <s + 1, and (iii) the

analytic spread of I is equal to s + 2. Suppose that the residue class field of A is infinite

and choose a minimal reduction J of I. Then the Rees algebra R(I) of Us a Cohen-Macaulay

ring if and only if the associated graded ring G(I) = R(I)/IR(I) is a Cohen-Macaulay ring

As in [GH], the heart of this theorem is the calculation of the a-invariant a(G(I))
of G(ί) (see [GW, (3.1.4)] for the definition of the α-invariant) in terms of the reduction
number Γj(7) of/with respect to /and the assertion will be improved when the reduction
number rj(I) is relatively small. Before entering into the details, however, we would like
to fix the basic notation which we shall maintain throughout this paper.

Let A be a Noetherian local ring with maximal ideal m. We assume that the field
A/m is infinite. Let I{ΦA) be an ideal in A and s = htAI. Let R(I) = A[If\<^A[t~\ (here
/ is an indeterminate over A) and G(I) = R(I)/IR(I). Let / be a minimal reduction of /;
hence / c / a n d Γ +1 = JΓ for some n>0. We put r,(/) = mm{n>01 /" + 1 = JΓ) and call
it the reduction number of / with respect to /. Let λ(I) denote the analytic spread of
/, that is, λ(I) = dim(A/m)®AG(I). Then as is well known, / is minimally generated by
/l(/)-elements (cf. [NR]). Following [HH1], we put ad I=λ(I) — s and call it the analytic
deviation of /.
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The theory of ideals having small analytic deviation started from the researches
[HH1, HH2] of Huckaba and Huneke. In [HH1] they explored certain ideals / with
ad/= 1 or 2 in a Cohen-Macaulay or Gorenstein local ring A and gave, for these ideals,
a criterion for symbolic powers to equal the ordinary ones. In addition, they studied
in [HH2] the Cohen-Macaulay property of R(I) and showed especially, that R(ΐ) is a
Cohen-Macaulay ring if rj(Γ)<\. Their research [HH2] was succeeded by [GH], in
which the first author and Huckaba proved the following theorem:

THEOREM 1.2 (cf. [GH, 2.1]). Let I be an ideal in a Cohen-Macaulay local ring A
and assume that (i) s = htAI>0 and IAP is generated by an AP-regular sequence of length
sfor all Pe MinAA/land (ii) λ(I) = s + 1. Suppose that the residue class field of A is infinite
and choose a minimal reduction J of I. Then R(I) is a Cohen-Macaulay ring if and only
ifs>0, G(I) is Cohen-Macaulay ring, and Γ+1=JF.

Theorem 1.2 was based on the calculation [GH, 2.4] of a(G(I)) in terms of rj(I)
and both results [GH, 2.1 and 2.4] proved to be really useful in the research [GN1]
on the Gorensteinness of R(I) and G(I) for the ideals / with ad/= 1. Our Theorem 1.1
originally aimed at analytic deviation two versions of Theorem 1.2, which will be helpful
for the further research [GN2] on R(I) and G(I) associated to ideals of analytic deviation
two. The authors now believe that the assertions in Theorems 1.1 and 1.2 remain true,
after suitable modifications if necessary, for the ideals with higher analytic deviation.

Let us cite two more results in this paper. We assume that our base ring A is a
Gorenstein local ring and that our ideal / satisfies the conditions (i), (ii), and (iii) in
Theorem 1.1. Let / be a minimal reduction of /. Then we have dim R(I) = dim A + 1,
since s = htAI>0 (cf. [V, 1.6]) and so by the theorem [TI, 1.1] of Trung and Ikeda,
R(I) is a Cohen-Macaulay ring if and only if G{I) is a Cohen-Macaulay ring and
a(G(I))<0. Therefore thanks to it, our Theorem 1.1 immediately follows from the next
result, which is the heart of our argument:

THEOREM 1.3. Suppose that G(I) is a Cohen-Macaulay ring. Then a(G(I))= —s if
1 and a(G(I)) = r,(/)-(s + 2) if r,(/)>2.

As was cited before, R(I) is Cohen-Macaulay ring if r7(/)< 1 (cf. [HH2, 4.1]). It
seems natural to ask what happens when rj(I) = 2. We would like to study this question
also in this paper and in Section 4 we will prove the following:

THEOREM 1.4. Suppose that r7(7) < 2. Then the following conditions are equivalent:
(1) R(I) is a Cohen-Macaulay ring.
(2) G(I) is a Cohen-Macaulay ring.
(3) depth A/12 > dim A/1- 2.

Hence R(I) is a Cohen-Macaulay ring, if dim A/I=2 and rj(ί)<2.

We close this section with a brief orientation for this paper. We shall prove Theorems
1.3 and 1.4 in Section 4, reducing these two assertions to those on ideals of analytic
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deviation one. The reduction basically depends on a certain canonical exact sequence
of graded 7?(7)-modules, which we will explain in Section 3. Section 2 is devoted to the
preliminaries for that. We will summarize some auxiliary results in the case where
ad 7= 1. Two examples will be explored in Section 4 in order to illustrate our theorems.

Throughout this paper let (A, m) denote a Noetherian local ring of dim A = d. For
simplicity, we always assume that the field A/m is infinite. Let I(φA) be an ideal in A
and s = htAI. Let / be a minimal reduction of / and put r = rj{I). For a finitely generated
A -module M we denote by μA(M) the number of elements in a minimal system of
generators for M. Let Hι

m(*) (ίeZ) stand for the /th local cohomology functor of A
with respect to m.

2. Preliminaries from the case where ad 7=1. The purpose of this section is to
gather some auxiliary results, which we later need to prove Theorems 1.1 and 1.4.

LEMMA 2.1. Suppose that A is a Gorenstein ring and All is a Cohen-Macaulay
ring. Assume that (i) λ(I)>s + 2 and (ii) ΪAP is generated by an AP-regular sequence of
length s for all Pe Spec A such that P^I and dim AP < λ(Γ)- 1. Then s>\.

PROOF. Assume s = 0 and put L = 7+ ((0): 7). Then 7n ((0): 7) = (0) and dim A/L<
d=dimA. Thus both A/1 and ,4/(0): 7 are Cohen-Macaulay rings of dimension d (cf.
[PS]). Apply the depth lemma (cf. [HH1, Remark 1]) to the exact sequence

0-+A-+A/I® A/{0): 7->^/L->0

of ^-modules. Then we have depth A/L > d— 1. Thus dim A/L = d— 1. Choose P e Spec A
so that PΏ.L and d i m ^ P = l . Then since d\mAP<λ(I)— 1 by the assumption (i), we
have IAP = (0) by the assumption (ii), which contradicts the fact that 7^(0): 7. Hence
s>l. q.e.d.

Let i? = ̂ 4[[A']] be the formal power series ring in one variable X over A. We put
n = mB + XB, I* = IB + XB, and J* = JB + XB. Let £[ί] denote a polynomial ring. We
put Γ= A7mod7*i?(7*). Then as is well-known, G(7*) = G(7)[Γ] and Γis transcendental
over G{I). Hence G(7*) is a Cohen-Macaulay (resp. Gorenstein) ring if and only if
G{I) is a Cohen-Macaulay (resp. Gorenstein) ring. When this is the case, we have
a(G(I*)) = a(G(I))-l (cf. [GW, (3.1.6)]). We furthermore have the following re-
sults, which enable us to assume that ^ = 11^7 is arbitrarily high. Hence the results
given by [HH1, HH2] on ideals 7 with ad 7= 1 or 2 are still true also in the case where
ht^7=ad7—1, although Huckaba and Huneke throughout assume htA7>ad7in their
theorems.

LEMMA 2.2. (1) htβ7* = s + l .
(2) λ(I*) = λ(I)+L
(3) /* is a minimal reduction of 7* and o*(7*) = rj(I).
(4) Let geSpeci? such that Q^I*. Let P=Q(\A. Then I*BQ is generated by a
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BQ-regular sequence of length s+\ if and only if IAP is generated by an AP-regular

sequence of length s.

(5) I*in) = /*" for allneZ if and only if I{n) = Γ for all neZ, where /* ( π ) and I(n)

denote the symbolic powers.

PROOF. Let geSpec£ such that g^/* . We put P=QnA. Then Q = PB + XB

so that dimBQ = dimAP + 1. Hence htBI*=s+\. Since nG(/*) = mG(/*), we have

B/n®BG(I*) = A/m®AG(I)[T], whence the equality λ(I*) = λ{I)+l follows. Thus J* is

a minimal reduction of/*. Since I*n + 1=XI*n + Γ + 1B (/i>0), we have J>(/*) = O(/) .

Because μBQ(I*BQ) = μAp(IAP)+l and grade(/*/?Q, BQ) = grade(IAP, AP) + 1, we get the

a s s e r t i o n ( 4 ) . T h e a s s e r t i o n (5) f o l l o w s f r o m t h e e q u a l i t y I*(n) = Yj

n. = 0X
ί - I ( n i ) B

(n>\). q.e.d.

Our proof of Theorems 1.3 and 1.4 that we will give in Section 4 is based on the

reduction, modulo certain super-regular sequences, to the Cohen-Macaulayness of the

associated graded ring G(I) in the case where ad 7=1 and the base ring A is

one-dimensional and Cohen-Macaulay. In this section we shall summarize some

preliminary results for that case. Now, for the rest of this section, let A be a

Cohen-Macaulay local ring of dim A = 1. Let

(o)= n M
peAssA

be the primary decomposition of (0) in A. Let F be a non-empty subset of Ass A and

assume that F^AssA. We put I=Γ\peFI{p) Then A/I is a Cohen-Macaulay ring of

dim A/I= 1 and λ(I) = 1. Let b e I be such that In + 1= bln for some n > 0. We put J=bA

and α = (0): b. Then since a= Γ\peAssA\FI(p), we have 7n α = (0). Since = λ/α + /=m, we

see that α contains an element y such that y + b is ^4-regular. Hence j is ^//-regular

and b is Λ/α-regular. We put R = R(I), G= G(I), and TO = xnG+G+. Let / = y + fo e /?. We

note:

LEMMA 2.3 (cf. [GN, (3.3)]). m = ̂ JjG. Hence G is a Cohen-Macaulay ring if

and only if f is G-regular.

PROOF. Let QeSpecR be such that Q3//?+//?. Then since y=-bt mod β, we

have y2= —ybt = O mod β so that y, bteQ. Hence Q^R+ since J=bA is a (minimal)

reduction of/. Because >> + 6 e Q, we get β ^ m . Thus Q = mR + R+, whence yJl = y/fG.

The second assertion follows from the first. q.e.d.

PROPOSITION 2.4. The following conditions are equivalent:

(1) G is a Cohen-Macaulay ring.

(2) binIn = bln~1 for all n>3.

PROOF. (1)=>(2) Let xel be such that bxeF and assume bxφbF'1. Choose

i> 1 so that XEΓ but xφli+1. Then i<n-2 since xφln~\ whence bxeli+2. Therefore
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(y + bή-xt^bxt^^^elR; so we have xtleIR because f=y + bt is G-regular by (2.3).

Thus x e / ί + 1

5 which is the required contradiction.

(2)=>(1) Let g = Σn

i=ogίt
i (flf. e/1") and assume that fgelR. Then since fg =

y^o + Σ " = o ^ ^ I + 1 ' w e n a v e y9oEI a n d bgiEli+2 (1 </<«). Hence goel, because y

is ^//-regular. Since bgιeblnli+2, we see bg^bΓ^1 so that gteli+1 for all \<i<n

(recall that / n α = (0)). Thus geIR, which proves / is G-regular. Hence G is a Cohen-

Macaulay ring by Lemma 2.3. q.e.d.

COROLLARY 2.5 (cf. [GN, (1.5)]). G w a Cohen-Macaulay ring ifrj(I)<2.

PROOF. Since Γ = bΓ~1 for all /i>3, we have bInΓ = bF~K Hence G is a

Cohen-Macaulay ring by Proposition 2.4. q.e.d.

The next result is due to [ G H ] . Notice that in the proof given by [GH, 2.4] for

the case where dim^4 = 1, we do not utilize the assumption that G is Cohen-Macaulay.

PROPOSITION 2.6 (cf. [GH, 2.4]). a(G) = 0 ifI=J, while a(G) = rj(I)-1 iflφJ.

We put A = A/a, T=IA and J=JA. Let in = m l . Then 7 is an tit-primary ideal in

A and J is a minimal reduction of 7 If P + * = //" for some n > 0, we have Γ + 1^JF + α,

so that In + 1=JIn since / n α = (0). Thus we get rj(T) = rj(I). Let φ : G^G(T) denote the

canonical epimorphism of the associated graded rings. We put L = Ker φ. Let Lw denote

the homogeneous component of L of degree n. Then since / n α = (0), we have Lπ = (0)

and L 0 = (/+α)//^α as ̂ 4-modules. Hence we get an exact sequence

(2.7) (cf. [ G N , (2.3)]) 0 • pa • G - ^ > G(T) • 0

of graded /^-modules, where pa denotes α which is regarded, via the canonical projection

p: R-+A, as a graded /?-mocule concentrated at degree 0.

PROPOSITION 2.8. The following conditions are equivalent'.

(1) G(I) is a Cohen-Macaulay ring.

(2) G is a Cohen-Macaulay ring and I2: b = / + α.

(3) bAnΓ^bl"-1 for alineZ.

PROOF. (1) => (2) Since pa is a Cohen-Macaulay i?-module of dimension one, we

get by (2.7) that G is Cohen-Macaulay (use the depth lemma). Let xel2 :b. Then since

bAnT2 = bT(cf. [VV, 2.3], recall that bt is G(J)-regular), we have bxebl+a. Hence

bxebl since 7nα = (0); thus xel+a.

(2)=>(3) We may assume n>2. Then bAnIn = b(In:b)^b{I2 :b), and we have

bAnl"^bl. Hence by Proposition 2.4, bAr\Γ = bP~1.

(3) => (1) Let n> 1 be an integer. Then since / n o = (0), we have bA n (In + a) = bAnΓ

so that bAnTt = bTt-K Hence bt is G(7)-regular (cf. [ W , 2.3]). Thus G(7) is a

Cohen-Macaulay ring. q.e.d.
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COROLLARY 2.9. Suppose that G(T) is a Cohen-Macaulay ring. Then rj(I) =

max{n>0\FφJ}.

PROOF. Let n = max{n>θ\lnφJ}. Then since In+1^J, we have by Proposition

2.8 that ln + 1=JΓ. Hence n>r3(I). The opposite inequality is obvious. q.e.d.

EXAMPLE 2.10. Let R = k[£X, Y,ZJ] be the formal power series ring in three

variables over an infinite field k. Let r >0 be an integer and put A = R/((X, Y)n(Y, Z)r +1).

Let I=(X, Y)Λ. Then G(T) is a Cohen-Macaulay ring, a(G) = 0 if r = 0, while a{G) = r-1

if r>\.

PROOF. We put * = ̂ modpf, Y) n(Y, Z)r+1. Then F= {/} and Γ+1= xΓ. Since

μA{IJ)=j+ 1 (0<y<r), we get PφxP'1 for 1 <j<r; hence o(/) = r where /=x.4. Thus

we have the assertion on a(G) (cf. Proposition 2.6). Let n> 1 be an integer. Then we have

XRn((X, Yγ + (X, F)n(7,Z) r + 1 )c j . ( l , Yγ-1+XRn(YnR + (X, Y)n(Y,Z)r+1)

^X-(X, Y)n-

= X (X, Y)n'

9 Y)n(Y,Z)r+1 .

Hence G(ϊ) is a Cohen-Macaulay ring by Proposition 2.8. q.e.d.

3. Auxiliary results for the reduction to the case where ad / = 1. Throughout this

section let / be an ideal in a Gorenstein local ring A and assume that A/1 is a

Cohen-Macaulay ring. Let s = htAI and put F={Pe Spec A \P^I and d i m ^ p ^ s + l } .

We assume that λ(I) = s + 2 and IAP is generated by an ^4P-regular sequence of length

s for all PeF. Hence s> 1 by Lemma 2.1. We put R = R(I\ G=G(ί), and SR = mG+G'+.

Let / be a minimal reduction of /.

PROPOSITION 3.1. The ideal J contains a system au a2,..., as, b, c of generators

satisfying the following conditions, where K={au a2,..., as) and L = K+bA:

(1) al9 a2, . . . , as is an A-regular sequence and b is A-regular.

(2) IAP = KAP for all P e Ass^ A/1.

(3) aί,a2,..., as_ 1 form a part of a minimal system of generators of IAp for all P e F.

(4) K\b = K:I and (K:I)n 1= K.

(5) (L:c)nI=L.

(6) hU/+ (*:: /))> j + 1 and htΛ(I+ (L:I))>s + 2.

For the proof see [HH2, 3.3].

Let au a2,..., αs, b, c be throughout as in Proposition 3.1 above. Then we have:

LEMMA 3.2. LnI2 = LI and KnI2 = KI.

PROOF. Consider the following four exact sequences of ^4-modules:
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(1) 0
(2) 0->A/bK^A/KI® A/bI-^A/LI-^0,
(3) 0
(4) 0

where the second one follows from the equality KInbI=bK (use Proposition 3.1 (4)).
Then since K/KI^(A/I)S, by (1) A/KI is a Cohen-Macaulay ring of dimension d—s (use
the depth lemma). Now assume LnI2ΦLI and choose Pe AssA(Ln I2)/LI. Then
PeAss^/L/and P^I+(L:I). Hence dim^P>ιy-ί-2 by Proposition 3.1 (6). Therefore
the depth lemma implies, by (3) and (4), that depth AP/bKP > 2 and depth AP/bίP > 2;
so by (2) we get PeAssAA/KI, because Pe AssA A/LI. Hence dimAp = s, since A/KI is
a Cohen-Macaulay ring of dimension d—s. This is impossible. Thus LnI2 = LI. Similar-
ly, if Pe AssA(Kn I2)/KI, we get P^I+(K:I) whence htAP>s+\by Proposition 3.1 (6),
while we have htAP=s because P e Ass Λ AIKI. This is absurd. Thus Kr\I2 = KI as
claimed. q.e.d.

Because htA(I+(K:Γ))>s+l and htA(I+(L:I))>s + 2, we may choose a system
{xu x2,..-, xd-s-2, y, z) of parameters for the ring A/I with yeK.I and zeL.I. Let
a = (aίt,..., ast, xl9..., xd-a-29y + bt, z + ct)R.

LEMMA 3.3. aR = ̂ /αG. Hence α^,..., αst, xu ..., xά-s-Ί,y + btform α G-regulαr
sequence, if G is α Cohen-Mαcαulαy ring.

PROOF. Let QeSpecR and assume that Q^IR + α. Then since y=—bt modβ,
we have y2= —ybt modβ. Hence y9 bίeQ, because ybeK. Similarly z, cteQ, whence
Q^Jt. Thus Q^R+, since / is a reduction of /. Because Q^I+{xu . . . , xά-s-2, y, z),
we have Q^m. Hence Q = mR + R+, so that we have ΪR= =y/αG. The second asser-
tion follows from the first. q.e.d.

We put A=A/(K:I), T=IA, and J=JA. Then A is a Cohen-Macaulay ring of
dimension d—s (cf. [PS]). We have the following theorem, which claims that 7 is
generically a complete intersection in A and ad 7=1, that is, the ideal 7 satisfies the
conditions (i) and (ii) stated in Theorem 1.2.

THEOREM 3.4. (1) ht^7= 1 and A/T is a Cohen-Macaulay ring of dimension
d-s-l.

(2) b is A-regular and IAP = bΆP for all P e AssAA/T.

(3) λ(T) = 2 and J is a minimal reduction of T.

(4) rj(T) = rj(I\ ifK^Γ^KΓ-χfor allneZ.

PROOF. Since In(K: I) = K by Proposition 3.1 (4), we have an exact sequence

0-+A/K-+A/I® A/K: I-+A/(I+(K: /))->0

of A -modules. Hence depth A/(I+(K:I))>d— s— 1, so that A/T is a Cohen-Macaulay
ring of dimension d—s—I (recall that htA(I+(K:I))>s+l by Proposition 3.1 (6)).
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Therefore ht;j/=l. Since bA n(K:I)^K and K:b = K:I, b is certainly ^-regular. Let
PeAssAA/(I+(K:I)). Then since P 2 / + ( K : / ) and dimAP = s+\, we have by Pro-
position 3.1 (6) that IAp = LAP. Hence IAP = bAP. Because 7 is a reduction of 7, we
have λ(T)<2. Ifλ(T)<2, then λ(T) = htAT= 1, so that by [CN, Theorem] we find T=xA
for some x e I. Then since /= xA + (K: /) n /, we have by Proposition 3.1 (4) the equality
I=xA + K. Hence μA(I)<s+l, which is impossible because λ(I) = s + 2. Thus λ(T) = 2,
whence a d / = l . Suppose that KnIn = KIn-1 for all neZ. lϊTn+1=TΓ for some «>0,
then In + 1=JIn + (K:I)nIn + 1. Since (K:I)nΓ+1^K by Proposition 3.1 (4), we have
that In+1= JΓ + Λ7" = //". Thus rj(T)>rj(I). Because the opposite inequality is obvious,
this completes the proof of Theorem 3.4. q.e.d.

LEMMA 3.5. depth ^/72>min{depth^//2, d-s-1}.

PROOF. Since (K:I)nI2^K by Proposition 3.1 (4), we have (K:I)r\I2 = KI by
Lemma 3.2. So we get an exact sequence

0^A/KI-+A/I2 0 A/K: I->A/72->0

of ^-modules. Because both ^4/A7and A/K.l are Cohen-Macaulay rings of dimension
d—s (cf. the proof of Lemma 3.2), the depth lemma will guarantee the required
inequality. q.e.d.

Let φ: G(I/K)-^G(T) be the canonical epimorphism of the associated graded rings.
Then since (K: /) n / = K, we get Ker φ = [Ker φ]0 and [Ker φ]0 = (/+ (K: /))// ̂ (K: I)/K
as A -modules. Hence we have an exact sequence

( 3 . 6 ) o > pl(K: /)/X] > G(I/K) -?-* G(7) > 0

of graded /^-modules, where p[(K: J)/2C] denotes (K:I)/K which is regarded, via the
canonical projection p: R-+A, as a graded /^-module concentrated at degree 0.

Let a denote, for each aeA, the reduction of a modA .̂ We put B = A/K. Let
be the polynomial ring. We put S=R(I/K): = Bl(I/K)t] (<=

LEMMA 3.7.

PROOF. Let / e Ker φ n ( j + bt)G(I/K) and choose # e £(//#) so that / = ( y + £>)#.
We write f=x modlS with xeK.I and gf = ̂ " = 0 c ί ί

ί m o d / 5 with ^e/* (0</<«).
Then since yeK.I, we have ^ = > ^ + Σ " = 0 ^ ί + 1 mod/S'. Hence jc=.yc0mod/ and
bc0sK+I2. Because x, yeK.I and (K:I)nI=K (cf. Proposition 3.1 (4)), we have
x=yc0modK. On the other hand, writing bco = k + v with keK and i e/2, we get
υeLn/2 = L/ (cf. Lemma 3.2). Let v = k1-\-bi with kxeK and /e/. Then since £co =
(A: + A:1) + W, we have c0 — ίeK.I by Proposition 3.1 (4), whence φ(c^mod/£) = (). Be-
cause x = (y + bt)c0 — bc0 / = (j; + 5>)coinod/S, we have fe(y + bt)' Kerφ as claimed.

q.e.d.
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PROPOSITION 3.8. Suppose that G is a Cohen-Macaulay ring. Then bt is G(I)-

regular.

PROOF. By Lemma 3.3, axt, a2t,..., ast,y + bt form a G-regular sequence. Hence

by [VV, 2.1] we have a canonical isomorphism G\{axt, a2t,..., ast)G^G(I/K), so that

y + bt is G(I/K)-regu\ar. Therefore by Lemma 3.7 we see that y-\-bt is G(7)-regular.

Thus bt is G(7)-regular too, because yeK.I. q.e.d.

We close this section with the following two lemmas:

LEMMA 3.9. Suppose that G is a Cohen-Macaulay ring and dimA>λ(I) = s + 2.

Then m contains an element x satisfying the following conditions, where C=A/xA:

(1) x is G-regular.

(2) C is a Gorenstein local ring of dimension d— 1 and C/IC is a Cohen-Macaulay

ring of dimension d—s—l.

(3) ht c /C = s and λ(IC) = s + 2.

(4) JC is a minimal reduction of IC and rJC(IC) = rj(ί).

(5) ICP is generated by a CP-regular sequence of length s for all P e Spec C such

that P^IC and dimCp<s+l.

(6) G(IC) is a Cohen-Macaulay ring and a(G(IC)) = a(G).

\s+1PROOF. Let Fί = \Jn>1 AssAA/Γ and F2 = {PeSuppA/\s+1 l\dimAP =

Then Fί is a finite set (cf. [Br]). Since F2^MinA/\s+11, we see that F2 is finite too.

Notice that depth A/F>0 for all n> 1 by Lemma 3.3, because G is a Cohen-Macaulay

ring and d>s + 2. Hence mφFί\jF2. Choose cem so that xφP for any PeF1uF2.

Then x is C7-regular, since x is ^//"-regular for all n> 1. Therefore since G/xG^G(IC)

by [VV, 2.1], we see that G(IC) is a Cohen-Macaulay ring, λ(IC) = λ(I\ and

a(G(IC)) = a(G) (cf. [GW, (3.1.6)]). Because x is regular on both A and A/1, we have

the assertion (2); hence htc IC = s. If (IC)n + 1 =JC-(IC)n for some Λ > 0 , then

/»+i= t//» + ( J c ^ n /»+i) . Since xAnF+1=xF ([VV, 2.3]), we have F + 1=JF by

Nakayama's lemma, which proves rJC(IC) = rj(I). The assertion (4) follows from the

fact that xφP for any P e F 2 . q.e.d.

LEMMA 3.10. Suppose G is a Cohen-Macaulay ring and let C=A/aίA. Then we have:

(1) C is a Gorenstein local ring of dimension d—\ and C/IC is a Cohen-Macaulay

ring of dimension d—s.

(2) htcIC=s-\ andλ{IC) = s+\.

(3) JC is a minimal reduction of IC and rJC(IC) = rj(I).

(4) If s> 2, then ICP is generated by a CP-regular sequence of length s—\ for all

P e Spec C such that P^IC and dim CP < s.

(5) G(IC) is a Cohen-Macaulay ring and a(G{IC)) = a(G) + 1.

PROOF. Since axt is G-regular by Lemma 3.3, we have G(/C)^G/(« 10G (cf. [ W ,

2.1]). Hence G(IC) is a Cohen-Macaulay ring and a(G(IC)) = a(G)+ 1 (cf. [GW, (3.1.6)]).
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Since ax is v4-regular too (cf. [ W , 2.3]), we have the assertion (1). Clearly, ht c /C=

s-\ and λ(IC) = λ(I)-l. If (IC)n+1=JC-(IC)n for some «>0, we have In + 1 =

//π + ( β 1 / 4 n / π + 1 ) . Hence In+1=JIn, because a1AnIn+1=a1F (cf. [VV, 2.3]). Thus

rJC(IC) = rj(I). The assertion (4) follows from Proposition 3.13 (3). q.e.d.

4. Proofs of Theorems 1.1 and 1.4. We shall maintain the same notation as in

Section 3. The purpose of this section is to prove Theorems 1.1 and 1.4.

PROOF OF THEOREM 1.3. By Lemma 3.9 and Lemma 3.10 we may assume that

d i m ^ = 3 and h t ^ / = l . Let a = au b, c be the system of generators for J given by

Proposition 3.1. Let K=aA and L = (a, b). Consider the exact sequence

(4.1) 0 • pl(K: J)/X] > G(I/K) - ? U G(7) • 0

given in (3.6), where A = A/(K:I) and 7= I A. Then at is G-regular by Lemma 3.3 and

G(I/K) is a Cohen-Macaulay ring with a(G(I/K)) = a(G)+ 1 by Lemma 3.10. Let ^

{ieZ) denote the ith local cohomology functor of G relative to S0Ϊ. Then applying

to (4.1), we have an exact sequence

(4.2) 0 - HUG(Ϊ)) -> HUPί(K: / ) / * ] ) - H2

m(G(l/K)) -> HUG(T)) ^ 0

of graded C-modules. Recall that the v4-module (K:I)/K is (Cohen-Macaulay and) of

dimension 2. Then by [ G H , 2.2] we get

U ) = PIH2

m((K:

Hence by (4.2) we have H^n{G(T)) = [Hm(G(T))]0, that is, Hm(G(T)) is concentrated at

degree 0. We put r = rj(I). If r < l , then since rj(T)<r, we see that G(T) is a

Cohen-Macaulay ring by Theorem 3.4 and [ H H 1 , 2.9], so that a(G(T))= -1 by [ G H ,

2.4]. Because #^((7(7)) = (0), we get by the exact sequence (4.2) that a(G(l/K)) = 0. Hence

a(G)=-\.

Assume that r>2. Then since bt is G(/)-regular by Proposition 3.8, we have an

exact sequence 0->G(7)(-1)—^G(7)-> G{T/bA) ->0. Apply the functors H1^*) to it.

Then since HyJι(G(T)) = lHlίn(G(T)y\0, we get an exact sequence

(4.3) 0 > H&tG(T)) > HUG(T/bA)) ^L i/2^(G(7))( - 1 ) — # t*(G(7)) > 0

of graded G-modules. Notice that thanks to Theorem 3.4, the ideal T/bA has analytic

deviation one and is generically a complete intersection in A/bA. Then we have

a(G(T/bl)) = r~\>l by Proposition 2.6, because rJ(7) = rJ(/) by Theorem 3.4 and

ff (see the proof of Lemma 3.10). Hence by (4.3) we get (0)/

_1)^[7/iR(G(7))] r_2, since ^ G ( 7 ) H [ # y G ( 7 ) ) ] 0 . Thus_α(G(7))>

r-2 = a(G(ϊ/bA))-l. Since a(G{l))<a(G(l/bA))-1 in general, we have a(G(l)) = r-2.

Hence a(G) = r — 3 as claimed. This completes the proof of Theorem 1.1 as well as the
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proof of Theorem 1.3. q.e.d.

Let {au a2,..., as, b, c] be the system of generators for J given by Proposition

3.1. We put K=(aί9a2,.. , as) and L = K+bA. To prove Theorem 1.4 we need the

following two results:

LEMMA 4.4. Suppose that rj{I)<2. Then LnIn = LΓ~1 for all neZ.

PROOF. By Lemma 3.2 we may assume «>3. Hence /Λ = J/n~1, so that we have

L n /" = LΓ~1 + L n cΓ~1. Since L n cΓ~1 = c((L: c) n /""*), we get by Proposition 3.1 (5)

that L n c f ^ c f L n / " " 1 ) . Thus by induction on n we get LncF~1 = cLΓ~2. Hence

LInl. q.e.d.

PROPOSITION 4.5. Suppose that r7(/)<2. 7Y*e« KnIn = KΓ~1 for all neZ.

PROOF. We may assume n>2. Since KnF^LΓ'1 by Lemma 4.4, we have

In = KIn~ί + Knbr'1. Because KnbIn-1=b{(K:b)r\In-1\ we get by Proposition

3.1 (4) that KnbIn-1=b(KnF-1). Thus by induction on n we have Knl^KF'1.

q.e.d.

PROOF OF THEOREM 1.4. (1)=>(2) is proved in [H, Proposition 1.1].

(2) => (3) Choose a system {xu x2,..., xd-s-2, y, z} of parameters for All so that

yeK'.I and zeL.I. Then by Lemma 3.3, {xu x2,..., xd-s-2) forms a (7-regular

sequence. Hence it forms a regular sequence for both A/1 and I/I2, so that

{x1? JC2, . . . , xd_s_2} is an v4//2-regular sequence too. Thus depth^4//2>dim^4//—2.

(3) => (1) By Theorem 1.1 it suffices to show that G is a Cohen-Macaulay ring. Re-

call that d e p t h Z / 7 2 > J - 5 - 2 = dimZ/7-l by Lemma 3.5. Then since r J(7)<r J(/)<2,

we see that (7(7) is a Cohen-Macaulay ring by [GN1, 1.3]. Hence the exact sequence

(3.6) guarantees that G(I/K) is a Cohen-Macaulay ring, because (K:I)/K is a

Cohen-Macaulay ^4-module of dim d—s. Thus G is a Cohen-Macaulay ring, since

{aγt, a2t,..., asή is a G-regular sequence and Gil/fy^G/ia^, a2t,..., ast)G by Propo-

sition 4.5 (cf. [VV, 2.1 and 2.3]). This completes the proof of Theorem 1.4. q.e.d.

If o(/)< 1, then since rj(T)< 1, we get by Theorem 3.4 and [HH1, 2.9] that G(T)

is a Cohen-Macaulay ring. Hence by (3.6) and Proposition 4.5 G is Cohen-Macaulay.

Thus by Theorem 1.1 we have:

COROLLARY 4.6 (cf. [HH2, 4.1]). R is a Cohen-Macaulay ring ifrj(I)<\.

The next example is fairly well-known. We would like to explore it in our context.

EXAMPLE 4.7. Let R = k[Xίp X2j\j= 1, 2, 3, 4] be the polynomial ring in eight

variables over an infinite field k. Let P denote the ideal of R generated by the maximal

minors of the matrix
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^ 1 1 ^ 1 2 ^ 1 3

_X2\ ^ 2 2 ^ 2 3

We put M={Xίj9 X2j \j=l, 2, 3, 4)7?. Let A = RM and p = PA. Then Λ(p) = 5 and ht^ p = 3.
R(p) is a Cohen-Macaulay ring and a(G(p)) = —3.

PROOF. A/p is a Cohen-Macaulay normal ring and ht^p = 3 (cf. [HE]). Let

χ
2

for l</</<4.

Let /=([1 2], [2 3], [3 4], [1 4], [1 3]-[2 4])A. Then since [1 2][3 4 ] - [ l 3][2 4] +
[1 4][2 3] = 0, we get p 2 = /p. Because λ(p) = 5 by [CN, p. 221, Proposition], / is a
minimal reduction of p and r7(p)= 1. Since A/p is a normal ring and ht^p = 3, pAQ is

generated by an ^Q-regular sequence of length 3 for all geSpec^4 such that Q^p and
dim AQ < 4. Thus R(p) is a Cohen-Macaulay ring by Corollary 4.6. We have a(G(p)) = — 3
by Theorem 1.3. q.e.d.

As for the next example we do not know whether G(p) is a Cohen-Macaulay ring
or not.

EXAMPLE 4.8. Let R = k\_X, Y, Z, W, V, LΓ\ be the polynomial ring in six variables
over an infinite field k. Let P be the ideal of R generated by the maximal minors of the
matrix

Ω •[
Y

z
z
w

w
V

We put M = (X, Y, Z, W, V, U)R. LetA = RM and p = PA. Then λ(p) =
rj(p) = 3 for any minimal reduction / of p.

= 4, and

PROOF. Since A/p is a normal ring of dimension two, we have htAp = 4. Let
G=G(p) and G=G/MG. We denote by [z 7] the determinant of the matrix consisting
of the ith and 7 th columns of Ω. Let S = k[Xij\ 1 </</<5] be the polynomial ring in ten
variables over k and let Ψ: S^G denote the homomorphism of fc-algebras defined by
ψ(X.j) = [i j~\t modMG (1 <i<j<5), where t is an indeterminate over A. Let α be the
ideal of S generated by the Pfaffians of order four in the alternating matrix

0

^ 1 3

XlA

0

- ^ 2 3

~~ ^ 2 4

Xi*

x 2 3
0

- ^ 3 4

X 14

Y
24

^ 3 4

0

X 2 5

^ 3 5

Y
45

Then a direct checking shows that Ker Ψ^a+fS, where f=X\A — .
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^14^34— ̂ 23^25 ~^23^34 Since S/a is a Gorenstein UFD (cf. [BE]) and / modα is

a prime element in S/a, we see that a+fS is a prime ideal in S of height 4. Hence

λ(p) = dim G< 6, so that ad p < 2. Notice that pAQ is generated by an ^Q-regular sequence

of length 4 for all QeSpecA\{MA} such that β ^ p (since 4̂/p is normal and

dim A/p = 2). Therefore, if a d p < 2 , by [CN, Theorem] we have adp = l because p is

not a complete intersection in A. Hence p ( 2 ) = p 2 by [HH1, 2.5]. This is impossible, since

X Y Z

Y Z W

Z W V

.(2)

but Aφp2 (cf. [G, (7.5)]). Thus adp = 2, whence λ(p) = dimG=6. Therefore we have

Ker Ψ = a +fS. Consequently G is a Gorenstein ring with a(G)=— 3, since a(G) =

a(S/a) + 2 by [GW, (3.1.6)] and since a(S/a)= - 5 . Let J=(au a2,..., a6)A be a mini-

mal reduction of p. Then since {a^, a2t,. , a6t} forms a homogeneous system of pa-

rameters for G, we get a(G/(axt, a2t,..., α6/)G)-fl(G) + 6 = 3 (cf. [GW, (3.1.6)]). Hence

G4^(aίt,a2t,.. .,a6t)G+MG, which implies, by Nakayama's lemma, that p* = Jp3.

Since G3φ(a1t, a2t,..., a6t)G+MG, we have p 3 ^ / p 2 . Thus r7(p) = 3. Therefore, if G

is a Cohen-Macaulay ring, then so is the ring R = R(p) by Theorem 1.1. q.e.d.

REFERENCES

[BE] D. BUCHSBAUM AND D. EISENBUD, Algebra structures for finite free resolutions, and some structure
theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447^85.

[Br] M. BRODMANN, Asymptotic stability of Ass(M//"M), Proc. Amer. Math. Soc. 74 (1979), 16-18.
[CN] R. C. COWSIK AND M. V. Now, On the fibres of blowing up, J. Indian Math. Soc. 40 (1976), 217-

222.
[G] S. GOTO, The Cohen-Macaulay symbolic Rees algebras for curve singularities, Mem. Amer. Math.

Soc. 526 (1994), 1-68.
[GH] S. GOTO AND S. HUCKABA, On graded rings associated to analytic deviation one ideals, Amer. J.

Math. 116(1994), 905-919.
[GN1] S. GOTO AND Y. NAKAMURA, On the Gorensteinness of graded rings associated to ideals of analytic

deviation one, Contemporary Mathematics 159 (1994), 51—72.
[GN2] S. GOTO AND Y. NAKAMURA, On the Gorensteinness of graded rings associated to ideals of analytic

deviation two, to appear in J. Algebra.
[GW] S. GOTO AND K. WATANABE, On graded rings I, J. Math. Soc. Japan, 30 (1978), 179-213.
[H] C. HUNEKE, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), 121-137.
[HE] M. HOCHSTER AND J. A. EAGON, Cohen-Macaulay rings, invariant theory, and the generic perfection

of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.
[HH1] S. HUCKABA AND C. HUNEKE, Powers of ideals having small analytic deviation, Amer. J. Math. 114

(1992), 367^03.
[HH2] S. HUCKABA AND C. HUNEKE, Rees algebras of ideals having small analytic deviation, Trans. Amer.

Math. Soc. 339 (1993), 373^02.
[NR] D. G. NORTHCOTT AND D. REES, Reductions of ideals in local rings, Math. Proc. Cambridge Philos.

Soc. 50 (1954), 145-158.



586 S. GOTO AND Y. NAKAMURA

[PS] C. PESKINE AND L. SZPIRO, Liasions des varietes algebriques. I, Invent. Math. 26 (1974), 271-302.
[TI] N. V. TRUNG AND S. IKEDA, When is the Rees algebra Cohen-Macaulay, Comm. Algebra 17 (1989),

2893-2922.
[V] G. VALLA, Certain graded algebras are always Cohen-Macaulay, J. Algebra 42 (1976), 537-548.
[ W ] P. VALABREGA AND G. VALLA, Form rings and regular sequences, Nagoya Math. J. 72 (1978),

93-101.

DEPARTMENT OF MATHEMATICS

MEIJI UNIVERSITY

SCHOOL OF SCIENCE AND TECHNOLOGY

HlGASHI-MITA 1-1-1 , T A M A - K U

KAWASAKI-SHI 214

JAPAN

DEPARTMENT OF MATHEMATICS

TOKYO METROPOLITAN UNIVERSITY

MINAMI-OHSAWA 1-1

HACHIOJI-SHI 192-03

JAPAN




