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CONSTRUCTION OF HIGHER GENUS MINIMAL
SURFACES WITH ONE END AND FINITE
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Abstract. We prove that there exist complete minimal surfaces in the Euclidean
3-space with one Enneper-type end and finite total curvature which have two parameters
7, k and are of genus jk, where j and k are positive integers. Our main problem is the
period problem', each surface has j periods to be killed. We prove that these periods can
be killed simultaneously.

Introduction. Recently, many minimal surfaces with higher genus and finite total
curvature have been found. Costa [Co] found a complete minimal surface of genus
one in R3. Hoffman and Meeks [HM2] proved its embeddedness, and they found higher
genus embedded surfaces which are similar to Costa's surface, but with higher-order
rotational symmetry. Wohlgemuth [W] proved rigorously the existence of several higher

genus minimal surfaces which have embedded ends, including a surface which was found
by Hoίfman, Meeks and Callahan only numerically. In 1982, Chen-Gackstatter [CG]
found surfaces which have one end and are of genera one and two. The genus one C-G

surface was generalized by Karcher [K] and the genus two C-G surface was generalized
by Thayer [T]. These generalizations are similar to C-G surfaces, but with higher
winding order at the end.

Since minimal surfaces in R3 are given by Weierstrass data and path integrals, we
always must check well-definedness of the surfaces, and this is called the period problem.
Chen-Gackstatter [CG] also gave Weierstrass data for a genus three surface, but they
did not solve its period problem. Thayer [T] conjectured that the period problem can
be solved for arbitrary genus and gave numerical evidence to support this. Espίrito-Santo
[E] solved the genus three case with a numerical argument.

Rossman suggested to me a homotopy argument (which can be thought of as an

intermediate value theorem of several variables) for solving the period problem.
Wohlgemuth [W] used the homotopy argument to solve period problems for minimal
surfaces with four embedded ends.

In this paper, we solve the period problem of the generalized C-G surfaces for
arbitrary genus (2.1) by using the intermediate value theorem of several variables.
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MAIN THEOREM. There exist one-ended complete minimal surfaces X(Mjtk) in R3

of genus jk with total curvature — 4(y + \)kπ for all j,k=l,2,... .

In Section 1, we summarize some basic fact about minimal surface theory. In
Section 2, we introduce the generalized C-G surfaces X(Mjtk) and discuss their
symmetries. In Section 3, we show that each X(Mjtk) is complete and regular in /?3,
and we see that the symmetries in Section 2 can be used to reduce the number of periods
fromyfc toy. Furthermore, we write down a concrete condition for solving the periods.
In Section 4, we rewrite some of the results of Chen-Gackstatter [CG] and Thayer
[T] in preparation for Section 5. In Section 5, we solve the period problem inductively,
by assuming several inequalities. Finally in Section 6, we prove these inequalities.

REMARK. Once we prove the existence of certain value for the parameters

a2, . . . , aj9 ceR so that the minimal immersion (2.1) is well-defined, we say that the
period problem is solved. Though we could not show uniqueness for the value of
a2, . . . , aj9 c, our numerical computations suggest that the surfaces are unique. (Recently,
in the case j= 2 and fc=l, Lopez, Martin and Rodriguez [LMR] have shown the
uniqueness for the value a2 and c.) More information about the numerical results and
several conjectures are written in [T].

Thanks are also due to the referee and Dr. Rossman for valuable suggestions.

1. Basic properties. The following Theorems 1.1-1.3 were given by Osserman
[Osl][Os2] (see also [HM1]).

THEOREM 1.1. Let M be a Riemann surface, g: M->Cu {00} a meromorphie func-
tion and dh a holomorphίc \-form on M. We define a vector-valued \-form Φ by

(1.1) * = (Φι, Φ2, Φι) = (~-gdh, i— + ̂ \dh, 2dh.

Then the real part

(1.2)
PQ

defines a minimal mapping into /?3, which is well-defined on M if and only if

(1.3)

for all closed curves α on M. Moreover, X is regular provided that the order of the poles
and zeros of g coincide with the order of the zeros of dh.

Conversely, every conformal minimal immersion X: M—>R3 can be represented in
the form (1.1), (1.2) for some meromorp hie function g and holomorphic \-form dh.
Moreover, g is the stereographic projection of the Gauss map N: M-+S2 of X.
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THEOREM 1.2. Let X: M— >/?3 be a complete isometric minimal immersion whose
total Gaussian curvature is finite. Then there exists a compact Riemann surface Mk with
genus k and a finite number of points p^ p2, ____ , pr on Mk so that there exists a conformal
dίffeomorphίsm between M and Mk \{pί9 p2, , Pr}-

THEOREM 1.3. Let X: M— >/?3 be a complete minimal immersion. Then the total
curvature of X is —4πm where m is either a non-negative integer or -co.

In the following we assume that X has finite total curvature.

2. Symmetries of the minimal surfaces. Here we set

Fj(z,a2,...,aj) = z Π (z2-«2

2J Π (z2-^2,-!)-1,
l < m < 7 / 2 l<n<0 '+l)/2

where y, /c, m, neN, α1? . . . , a^R, 1 =a1<a2 <- <a^ We define surfaces by the
following

MM = {(z, w)e(Cu {(X)})2 wk+ί = Fj(z, a2, . . . , a,)} ,

M = ί Mjtk \{(oo, oo)} for j even ,
S'k lMM\{(oo,0)} for j odd,

2dh

Φ ,
Po

where />0 = (0, 0), and each cjίk will be determined later.
Mjtk can be considered as a branched covering over the complex plane C. Let

[α, /?] + be the upper side of the interval [α, /?] of the /-th sheet, and let [α, β]L be the
lower side. By cutting the Riemann sphere Cu{oo} along the alternating segments

[ — aj9 —aj_1], [ — dj-2, -^--3], . .., [^-2,^-1], {βjτ oo ] (we denote these segments
by [α, j8]), and then by pasting [α, j8]L with [α, jS]^1 for !</<£, and pasting [α, jS]fe_+1

with [α, /?] + , we observe that Mjtk is of genus jk. In the case M2 2, a rough sketch is

given in Figure 2.1.
We introduce the following conformal mappings of (Cu {oo})2:

γ(z, w) = (z, w) , p(z, w) = (-z, ζw) ,

where ζ = exp(τπ/(fc +1)).
The next lemma can be found in [HM1] and can be proven easily.
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FIGURE 2.1.

LEMMA 2.1. Let y, p be as above. Then y is of order 2 while p is of order 2k+ 2.
The group generated by y and p is the dihedral group D(2k + 2) with 4k + 4 elements.

We will need a homology basis of MM. Let α l 5 . . . , α7 be any fixed lift to Mjίk of

the closed curves α l 5 . . . , α,- about the intervals [ — aj9 —a^^ [ —fl/-2> ""^-3]? >
[βj-25 αj-ιl as shown in Figure 2.2. Then we define

«ι α2 α.

FIGURE 2.2.

) ,/=! , . . . ,7 } .

It is easy to see that Hjk contains a homology basis of Mjίk.

REMARK, y can be omitted if we wish only to obtain a set containing a homology

basis. But to see that X(Mjtk) has the same symmetries as the Costa-Hoίfman-Meeks

embedded minimal surfaces, it is valuable to consider γ.

LEMMA 2.2. Consider the real orthogonal matrices

S-i

1 0 0

0 - 1 0

0 0 1

cos θ sin θ 0

— sin θ cos θ 0

0 0 - 1
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where Θ = π/(k-\-1). Then

where Φ is as in (2.1).

PROPOSITION 2.3. For any αe Hjk

(2.2) Me

holds if and only if

(2.3) 9te| Φ = 0 for 1=1,...,j.? Φ = 0
«/ α/

PROOF. (2.2)=>(2.3) is trivial. We assume that (2.3) holds. For any &eHjtk, there
exists an sεD(2k + Ί) and αz (1 </<y) such that α = ,yoα z . By Lemma 2.2, there exists a
real orthogonal matrix S such that

Φ .
j

Hence (2.2) holds. Π

3. Completeness, regularity and period conditions of the surfaces. The information
about the poles and zeros of g and dh is as follows: When j is even,

z 0 ±a1 ±a2 +% ••• +cij oo

g Ofc oofc Ofc oo^ .- 0* oofc

d/z Ofc Ofc Ofc Ofe ... Ofc ook+2

and when j is odd,

z 0 ±aί ±a2 ±a3 ••• +#,- oo

gf Ofc ook Ofc ook ... oofe Ofc

dh Ofc Ofc Ofc Ok - Ofe oo f c + 2.

By the tables above, in the case of z = 0, ±aly..., ±aj9 the regularity of Z holds,
and in the case of z=ao, completeness holds. All that remains to solve is the period
problem, that is, the problem whether (1.3) holds. Again by the tables above, φl9 φ2,
φ3 are holomorphic 1-forms on Mjjk and have poles only at z=oo, so they have no
residues. Hence, all we have to do is to check whether

9le\ Φ = 0
Jα

holds for every closed curve &eHjk. By Proposition 2.3, this reduces to the following:
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(3.1) 9te Φ = 0, /=!, . . . , j,
J«{

where α l 5 . . . , α,- are as given in Section 2. This means that the actual number of periods
to be killed is at most/ Moreover, since φ3 = dz is exact,

is always true. Hence (3.1) is equivalent to

(3.2) 9

Now we introduce the notation (recall g = cjίkw
k, dh = dz)

A f 1 D f ^
^4/ = —- αz, Bt = wdz.

Then rewriting (3.2) we obtain

/ I \ / 1 \

which is equivalent to

(3.4) c?k = AlB]~
1 / = ! , . . . , y ' .

We will calculate Al and Bt, as an example, in the case where l=j and is an even
number. Set a = aj_2

 and b = aj_ί. We can assume that the branches are taken as follows:

' h(x)ll(k+1)eR for x e f o b ft,

where

2π
,

/c +1

and we can assume that α,- is the lift of the closed curve α,- (as in Figure 2.2) to the first
sheet. Then α7 can be deformed as in Figure 3.1.

FIGURE 3.1.
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wk+1 can be written as:

235

z-α,-! z-b

where p(z) denotes a meromorphic function of z which is holomorphic in a neighborhood
of b, p(b)^Q. Hence for small ε>0, there exists M such that \p(z)\<M for all ze
{z | | z—b\<ε} . We have the following inequality

wkdz
\z-b\=ε

\ w k \ \ d z \
z-b\=ε

Γ ln^Ή / c/< k + 1)

-J IT
J | z-b |=ε \z~0\

Therefore

Similarly,

as ε -» 0 .

—- Jz -> 0 as ε -> 0 .

On the other hand, since p(b) Φ 0, obviously the following holds:

and similarly,

J |z

as ε->0,

0 as ε — > 0 .

Hence the integral path of Aj and Bj can be deformed as [a, b~]\\J [a, έ>]L, that is,

dx

= wkdz=
«j
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Since both A j : - J* h(x) ~ k/(k + 1]dx and B] : - J * h(x)kl(k + 1}dx are real positive numbers, if
cj>k exists then it satisfies:

c

J'k

When /= 1, . . . ,7— 1 and 7 is any positive integer, we get the following similarly to
the above case:

c^ = 4τ- ( / = ! , - . . , 7-1).
7>ί

Thus we can rewrite (3.4) as follows:

LEMMA 3.1. Let X be the minimal immersion as in (2.1). Then X is well-defined if
and only if

(3 5Λ C2 ._^__^i _____ Ά_
^ } CJ* ~ p, - p, - ~ »' '

//! β2

 ΰj

Furthermore, we introduce

/
/ x » βi _ ι

A W (a 2 , . . . ,α J ) = -j^

for 1=1, ... J where the constant Sj >z takes the value + 1 or — 1 to keep ^/^} posi-

tive on [βj _!,«/]. Note that the set { f j t k j ι ( a 2 , . . . , «j)|^= U >7'} coincides the set
{A'mE'~^ m=l,...J}.

Define

for / = ! , . . . , y-1.
Then the period condition of X(Mjίk),j>2 can be written as follows:

LEMMA 3.Γ. ^ w well-defined if and only if there exist ajίk^ - - •> aj,kj su°h tnat

(3-6) φ

REMARK. (3.5) always holds when 7=!. Hence the minimal surface X(Mίtk) do
exist. These surfaces were described by Karcher [Ka]. When 7 = 2, Lemma 3.1 was first
solved by Thayer [T].

In Section 5, we will see that this condition actually holds, which establishes the
main theorem.
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4. The genus 2k case. In this section, rewriting parts of the results of Chen-
Gackstatter [CG] and Thayer [T], we prove (3.6) when j=2. By definition,

11 /x(aϊ-x2)\~kl(k + vΓί
Jo V

1 / γ(π2 2\\(x(a2-x)\ kl(k+l)

o\ I-*2 /

2 . k/(k + 1)dx
x2 — l

ΠJ i \ x2-l

We will extend the domain (1, oo) of/2 fe x and f2ίk>2 to its boundary a2 = 1. Since
the mean value theorem can be applied to generalized integrals, there exist α, β such
that 1 < α, β < a2 and

dx

! V l+x ) \*-l

dx

\*/(k+D r«2
έ«Xy J i \χ-ι

Since

/ » ^ / \ t /ίt 4- 1 \ / » Λ .

q-x
dx,

we obtain

as α2^l.

Hence we can define /2,fc,2(l) as l Furthermore, since the integrand of the
denominator of /2,fc,i(#2) uniformly converges to xk/(k + 1} as α2^l on an arbitrary closed
interval/^ [0, 1),
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=2k+l>l

xk/(k+1)dx

Therefore Φi./t.iO)^- Moreover, by an order argument with α2,
 we see tnat

92,kti(
a2)>® for sufficiently large a2. Consequently, by the intermediate value theorem,

there exists α 2 >l such that φ2tktι(l) = 0.

REMARK. We do not argue here the uniqueness of α2, so we could just take the
smallest value a2^2 amongst the numbers a2 which have the property φ2ίk,ι(a2) = Q.
But our numerical computation implies uniqueness, as is mentioned in the Introduction.
For instance, α 2 1 2 ^ 1.713 by the numerical computation.

5. Higher genus type. We begin with computations of boundary values of fjtktl.
The following equalities are obtained (we can prove them in the same way as in Section

4).

(5.1) ^ lim fjtktl(a29..., 0,._2, a^^ aj)=fj_2,kj(a2,..., a^2)

forj>39k>l9 /=!,...,7-2.

(5.2) lim / (

(5.3) lim fj:kJ(a2,...,aj) = Fj_2(a^1,a2,...,aj_2
<*j-+"j-ι

forj>3, k>\.
Because of the form of FJ9 we must argue the two cases where j is odd or even

separately. Here we introduce a notation for convenience:

Sj={(a29 . . . , aj)

The following lemma will be proved in Section 6.

LEMMA 5.1. We assume that each (a2, . . . , # / ) denotes an element of Sj. The
following inequalities (i) to (v) hold for each odd number j> 3.

( i ) // <pj-itktl(a2, . . . , α, -!)<(), ίAeπ φjtktι(a29 . . . , αj )<0 /or arbitrary aj>aj.ί

and 1= 1, . . .,7 — 2.
(ii) If φjkl(a29...9aj)>Q9 then φjtkj(a29 ...9aj + δ)>Q for arbitrary £>0

/=! , . . .,y-2. "
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Ψj,k,ι(a2> - 5 aj) >0 for arbitrary a$>aj_1

α7 )<0, then φj>ktl(a2, ...,aj + δ)<0 for arbitrary δ>0 and

(iii) φjίkj_ i(a2, ..., a^ < 0 /or sufficiently large aj.

(iv) lim^^ φjM-ι(a2, . . . , α, )>0.

(v) Hmaj^aj_^J9kJ_2(a29.. .,aj)>0for sufficiently large a 3_γ.

The following inequalities (i)' to (v)' hold for each even number y>4.

( i )' Ifψj-^k^a

and /= 1, . . . ,7 — 2.

(ii)' If (pj,k,i(a2, .
/-I,...,7-2.

(iii)' <p/, fej_ ι(«2, . ., #/) > 0 /6>r sufficiently large a Γ

(iv)7 limβ.^α._x φjM_ι(a2, ...,aj)<0.

(v)' lim,,^^^ φjtktj-2(a29 . . . , aj)<0for sufficiently large a^^.

We will prove the case of genus ί/zre£ (with j =3, fc= 1) before the arbitrary genus

case (by Rossman's advice). By (v) and (ii), φ3,fc,ι(^2? as)>^ f°r sufficiently large a2

and any a^>a2. By (i) and the argument of φ2,/c,ι in Section 2, φ^,k,ι(a2^ a3)<® f°r

^2 near to 1 and any a3>a2. These situations are illustrated in Figure 5.1. Moreover,

by (iii) and (iv), the signs of φ^^2

 are as in Figure 5.2. Then the line segments as in

Figure 5.3 are mapped by φ^tk(a2, a^) = (φ^^Λ(a2, α3), φ $,k,2(a2, a3J) to a closed curve
whose image surrounds the origin as in Figure 5.4. Since φ3 fe is continuous in the

region D (as in Figure 5.3), there exist #3^,2? #3,^,3 such that φ^ίk = (0, 0). Thus Lemma

3.Γ and the main theorem is proved for j =3.

FIGURE 5.1. Signs of φ3tl.
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FIGURE 5.2. Signs of φ3)2.

FIGURE 5.3.
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FIGURE 5.4. Image of the line segments in Figure 5.3 by φ = (φ3,ι, Ψ3,2)

When j is more than three, similarly as above, we get a j—2 dimensional
2(7 - l)-hedron whose image by φjtk = (φjtktl , . . . , <pj,kj- 1) has the origin in its interior.

Now let us prove that the condition in Lemma 3.Γ can be satisfied.
We prove that there exists connected region Dfkl (1= 1, . . . ,7 — 1) such that

<Pj,k,ι(a2> . . , Λ/) > 0 for any (a2, . . . , α,) e Z£M ,

<Pj,k,ι(a2, - - , t*j) < 0 for any (02, . . . , α, ) e /) rw

and we take a (7 — 2)-dimensional plane in each Dfίktl (1= 1, . . . ,7— 1), with which we
make a polyhedron. The origin is within the interior of the image of the polyhedron
under the map φjik = (φjfk><L, . . . , φ^j,^. Since φ^k is continuous in «2, . . . , a^ in the

interior of the polyhedron, there exist djtkt29 , &j,kj such that (<p/,fc,i, . . . , φ^kj-ι) =
(0, . . . , 0). Now we consider how to construct Dfkl\

(a) 7 = 2: By (iii)' and (iv)r, there exist p2, q2,
 r2> S2 sucn Λat φ2,k,ι(x)<® ^or anv

xe(p2, q2) and φ2,/c,ι( x)>^ f°r any XE(r2> ^2)- We set

D2,kΛ=(P2> 42) > D2,k,l =(r2, S2)

(b) 7 = 3: By (v) and (ii), for sufficiently large /3, w3, we can set

And by (i),
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Furthermore, by (iii) and (iv), there exist /?3, #3, r3, s39 M3 such that

<Pi,k,2(a2, a2 + x)>0 for any x e (/?3, #3) ,

Φ3,fc,2<>2> «2 + *) < 0 for any * 6 (r3, J3) ,

where 1 <a2<M3 for sufficiently large M3. Put

£>ί,fc,2 = {0*2> a2 + x)\l<a2<M3,xe(p3, #3)} ,

£ Γ,fc,2 = {(02,
 β2 + *) 1 1 <a2 <M3, xe (r3, s3)}

for sufficiently large M3.

(c) 7>4, when j is an even number: By (5.1) and (ii)r, we set

D^l = (D7_w

for / = ! , . . . , 7-3. By (i)',

^tw = (β/-ι.M

for /= 1, ... ,7 — 2. By (v)x and (ii)', with sufficiently large tj9 uj9 we set

Furthermore, by (iii); and (iv)7, there exist pj9 q^ rj9 sj9 Mj such that

(<i2> > aj-ι> aj_ί+x)<Q for any xe(j>j, q^ ,

(02> - - - , «j- 1, «j- 1 + x) > 0 for any Λ: e (r^, ̂  ) ,

where \<a2< - <aj-ί <Mj for sufficiently large Mj. We set

^M.j-1 = {(a2, - > βj-ι? flj-i +^) 1 1 <«2< ' ' <aj-ί<Mj9 xe(pj9

^Mj-ι = {0*2, - - , βj-i, «j-i +^) 1 1 <Λ 2< ' ' ' <aj-.1<Mj, xe(rj9

for sufficiently large My.

(d) 7>5, when j is an odd number: By (5.1) and (ii), we set

for / = ! , . . . , 7-3. By (i),

^rM = (^r_1>M

for /= 1, ... ,7 — 2. By (v) and (ii), for sufficiently large tj9 uj9 we set

Furthermore, by (iii) and (iv), there exist pj9 qj9 rj9 sj9 Mj such that

Ψj,kj-ι(a2, - - - , ΛJ-I, βj-i +x)>0 for any

<P],kj-ι(<*2> ?

 βj-ι? ^--i +^)<0 for any
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where 1 <a2 < - <f l / _ 1 <Mj for sufficiently large M7 . We set

Dΐ,kj-ι = {(β2> > 0/-ι, tf -i +*) I 1 <«2< ' ' <aj_

for sufficiently large Mj. Q

6. Proof of the lemma. In this section we prove (i)-(v) of Lemma 5.1. (i)'-(v)'
can be proved similarly.

6.1. Proof of (i). When j is an odd number, Fj can be expressed in the form

Fj(x, a2,...9 αj) = FJ_1(x, α2, . . . , α^) (x2-af)~ί .

Hence

ί '*1(-Sjj+1FJ_1(x,a2,...,aJ-1) (af-x2y
J a\

ι.*>2. ,^) (

, α2, . . . , α^,) (α/-

=fj,k,l(a2> •- . ,« ./)•

D

6.2. Proof of (ii).
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where F j _ 1 ( - ) denotes Fy_ 1(x, a2, . . . , #/_ i). D

6.3. Proof of (iii). By an other argument of /}j-ι, fjj in terms of ajy (iii) can
be proved easily.

6.4. Proof of (iv). Noting that j is an odd number, we see that Fj_2(x, a2, . . . ,

«7-_2) is monotone decreasing in x on (a7_2, oo).

(by (5.2))

fly _ 2

= J|m fj,kj(<*2, , β/) (by (5.3)).

D

6.5. Proof of (v). By (5.1), limα _>α _ ί f j , k j - 2 does not depend on 0 / _ i . On the
other hand, since the order of the numerator of limaj^aj_lfjfkj_1 in terms of #,-_! is
more than that of the denominator, \ima.^a. ίfjίkj-_ί>\imaj^a.lfjtkj__2 for sufficiently

large α .̂ Π
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M 3,3
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