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Abstract. We consider the action of a subtorus of the big torus on a toric variety.
The aim of the paper is to define a natural notion of a quotient for this setting and to
give an explicit algorithm for the construction of this quotient from the combinatorial
data corresponding to the pair consisting of the subtorus and the toric variety. Moreover,
we study the relations of such quotients with good quotients. We construct a good
model, i.e. a dominant toric morphism from the given toric variety to some "maximal"
toric variety having a good quotient by the induced action of the given subtorus.

Introduction. Let X be an algebraic variety with a regular action of an algebraic
group G. A categorical quotient is a morphism p: X-^ Y which is G-invariant (i.e.
constant on G-orbits) and satisfies the following universal property: every G-invariant
morphism / : X-+Z factors uniquely through/? (see [Mu; Fo; Ki]).

Though this universal property seems to be a minimal requirement for a quotient,
there is no hope for the general existence of categorical quotients. (See e.g. [AC; Ha]
for an explicit example of a C*-action on a smooth four-dimensional toric variety which
does not have a categorical quotient, even if one allows the quotient space Y to be an
algebraic or analytic space.)

In the present article we consider toric varieties X with an action of an algebraic
torus //; we refer to these varieties as toric //-varieties. The specialization of the definition
of the categorical quotient to the category of toric varieties leads to the following notion:
We call a toric morphism p : X-> Y a toric quotient, if it is //-invariant and every
//-invariant toric morphism factors uniquely through p. For this kind of quotient we
can actually prove the existence (see Theorem 1.4):

For every toric H-variety X there exists a toric quotient.

Our proof of this result is constructive. In fact, we introduce the notion of a quotient
fan of a fan by some sublattice (see Section 2) and give an algorithm for the calculation
of this quotient fan. We obtain the existence of toric quotients by applying this algorithm
to the fan Δ of X and the lattice L of one-parameter subgroups of the acting torus T
of X factoring through H.

A particularly important notion of quotient is the so-called good quotient (see
[Se]) generalizing the quotients occuring in Mumford's geometric invariant theory for
project!ve varieties. Unfortunately, good quotients exist only under very special
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circumstances. However, for any toric //-variety X we can construct a good model X.
More precisely, we show (see Theorem 3.5):

There exists a "maximal" toric H-variety X with a good quotient such that there is
a dominant H-equivariant toric morphism from X to X The good quotient of X by H
coincides with the toric quotient of X by H.

In fact, the good model defines an adjoint functor to the forgetful functor from
the category of toric //-varieties with good quotients into the category of toric //-varieties.
Again our proof of the existence of the good model is constructive and works in terms
of fans. The good model can be used to understand the obstructions for the existence
of a good quotient.

The authors would like to thank G. Barthel, A. Bialynicki-Birula, L. Kaup and J.
Swie.cicka for their interest in the subject and for many helpful discussions.

1. Toric quotients. First we briefly recall some of the basic definitions. A normal
algebraic variety X is called a toric variety if there is an algebraic action of a torus T
on X with an open orbit. We always assume the action to be effective and refer to T
as the acting torus of X. For every toric variety X we fix a point x0 in its open orbit
which we call the base point of X.

Let X, X' be toric varieties with acting tori Γ, T' and base points x0 and x'o,
respectively. A regular map / : X^> X' is called a toric morphism if f(xo) = x'o and there
is a homomorphism φ: T-* T such that f(t x) = φ(t) f(x) for every (ί, x)eTxX.

Now let H be any algebraic torus. We call a given toric variety X with acting torus
T a toric H-variety, if H acts on X by means of a morphism Hx X^X, (/z, x)\-^h*x
of algebraic varieties such that the actions of H and T on X commute.

1.1 REMARK. If X is a toric //-variety, then there is a homomorphism φ from
Hinto the acting torus Tof Xsuch that the action of H on Xis given by h*x = φ(h) x.

PROOF. The action of//permutes the Γ-orbits since it commutes with the Γ-action.
The open orbit T x0 is even //-stable because there is only one Γ-orbit of maximal
dimension. Since the action of T is effective, for every h e //, there is a unique element
φ(h) in T such that h*xo = φ(h) x0. Now it is straightforward to check that the map
H-+T, h\-^φ(h) has the required properties. •

An //-equivariant toric morphism / : X-+ X' of two toric //-varieties will be called
a toric H-morphism. If the action of H on X' is trivial, which means that / is constant
on //-orbits, then we will say that / is H-invariant.

1.2 DEFINITION. We call an //-invariant toric morphism/?: X-> 7 a toric quotient
for the toric //-variety X, if it has the following universal property: for every //-invariant
toric morphism f\X-+Z there is a unique toric morphism / : Y-+Z such that the
diagram
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X -L Z

\ΛP

is commutative. Note that the toric quotient Y is uniquely determined by this property.
We denote the quotient space Y also by X/iorH.

1.3 EXAMPLE. Let H\ = C* act on the toric variety X: = C2 by the homomorphism
t\-*(ta, tb), where a and b are relatively prime integers and a>0. Then one can verify
directly that the toric quotient of X is the constant map C2 -+{0} if b>0, and that
otherwise it is the morphism

P- C - • C , (z, w) i—• <

lz-Vfl if
So /? corresponds to the inclusion C [ I ] H c C [ I ] , i.e. /> equals the categorical

quotient for the action of H on the affine variety X. In fact, this holds generally for
affine toric //-varieties (see Example 3.1).

Further basic examples of toric quotients are invariant toric fibrations, e.g. line
bundles on toric varieties. For the toric quotient defined here we have not only uniqueness
but also the existence.

1.4 THEOREM. Every toric H-variety X has a toric quotient p: X-* X/{orH.

For the proof of this theorem we use the description of toric varieties by means
of fans. Let us first fix some notation. For an algebraic torus Γ, denote by TVr the lattice
Hom(C*, 7") of its one parameter subgroups. A fan A in Nτ is a finite set of strictly
convex rational polyhedral cones in TV£ :=TVΓ(χ)z/? satisfying the following two
conditions: any two cones of A intersect in a common face, and if σeA, then A also
contains all the faces of σ. We denote a fan A in Nτ also as a pair (TVΓ, A).

For every fan A in TVΓ, there is a corresponding toric variety XΔ with the acting
torus Γ(as basic references for this construction, see e.g. [Fu] and [Od]). The assignment
A\-*XA yields an equivalence between the category of fans and the category of toric
varieties (with fixed base point), where maps of fans correspond to toric morphisms.
Recall that a map of fans F: (TV, A) -> (TV', A') by definition is a Z-linear homomorphism
from TV to TV', also denoted by F, such that for every cone σeA there is a cone τezΓ
with FR(σ)aτ (where FR: NR-^N'R is the scalar extension of F).

Now, if a torus H acts on a toric variety XΔ by a homomorphism φ from H to
the acting torus T of XΔ9 let L denote the (primitive) sublattice of TVΓ corresponding
to the subtorus φ(H) of T. Then a toric morphism / : XΔ-+XΔ, is //-invariant if and
only if the corresponding map of fans F: (TV, zl)->(TV', A') satisfies Lc=ker(F). So in the
language of fans, Theorem 1.4 reads as follows:
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1.5 THEOREM. Let A be a fan in a lattice TV and let L be a primitive sublattίce of

TV. Then there is a map of fans P: (TV, Zl)->(TV, A) with Laker(P) such that the following

universal property is satisfied: for every map of fans F: (TV, Δ)-+(N\ A') with Laker F

there is a unique map of fans F: (TV, 2)->(TV', A') with F=FoP.

The fan A occuring in the above theorem will be called the quotient fan of A by

L. Note that our concept of a quotient fan differs from the notion introduced in [Ka;

St; Ze], since we require the existence of a map of fans from A to A. We will prove

Theorem 1.5 in the next section by describing an explicit algorithm to construct the

quotient fan. The algorithm starts with projecting cones of A to N/L. But then two

types of difficulties occur:

Firstly, the projected cones in general are no longer strictly convex. Secondly, it

can happen that the projected cones do not intersect in a common face. Therefore

the construction requires an iteration of steps refining the first naϊve approach. The

first of the above-mentioned difficulties already occurs in Example 1.3. Here is its

fan-theoretic version:

1.6 EXAMPLE. The fan A of the toric variety C2 consists of the faces of the cone

σeR2 spanned by the canonical basis vectors e1 and e2. The action of H=C* on XΔ

considered in Example 1.3 corresponds to the line L through the point (α, b).

Let P: Z2 -+Z2/L denote the projection. If 6 < 0 , the quotient fan A of A by L is

the fan of faces of PR(σ) in N: = Z2/L. If b>0, then PR(σ) fails to be strictly convex

and the quotient fan is just the zero fan in TV={0}.

2. Computation of the quotient Fan. Let TV be a lattice, i.e. a free Z-module of

finite rank. In this section we construct the quotient fan of a fan A in TV by a primitive

sublattice L of TV and thereby prove Theorem 1.5. In fact our construction is done in

a more general framework. We will not only consider fans but also sets of convex

rational polyhedral cones which are not required to be strictly convex nor to intersect

pairwise in a common face.

More precisely, we will speak of a system S of Ή-cones if S is a finite set of convex

cones in the space NR: = N®ZR such that every σeS is generated by finitely many

vectors of TV. A map F: (TV, S)-+{Nf, S") of a system S of TV-cones to a system S' of

TV'-cones is a lattice homomorphism from TV to TV', also denoted by F, such that for

every σeS there is a cone τeS' with FR(σ)czτ. This notion generalizes the concept of

a map of fans.

We also need the following "intermediate" notion: A system Σ of TV-cones is

called a quasifan in TV, if for each σ e Σ the faces of σ also belong to Σ and for any two

cones σ and σ' of Σ the intersection σ n σ ' is a face of σ. So a quasifan is a fan if all

its cones are strictly convex. A map of two quasifans is just a map of the underlying

systems of cones.
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2.1 DEFINITION. Let TV be a lattice and let S be a system of N-cones. If L a L a N
are primitive sublattices, then we call a (quasi-) fan Δ in N:=N/L a quotient (quasi-)
fan of Δ by L if it has the following properties:

( i ) The projection P: N-+N defines a map of the systems S and Δ of cones.
(ii) For every map F: (N, S)—>(N\ A) from S to a (quasi-) fan A in a lattice N'

with F(L) = 0, there is a map F: (TV, J)->(TV', A) of (quasi-) fans such that the
following diagram is commutative:

(N,S) -^» (N',Δ )

(TV, I )

By definition, quotient fans and quotient quasifans are uniquely determined. These
two notions are related to each other by the following:

2.2 REMARK. Let Σ be a quasifan with maximal cones σ1? . . . , σr in a lattice TV.
For the maximal sublattice L of TV contained in Πi=i σ ί ^et ^'- N-^N:=N/L denote
the projection. Then the cones PR(σx\ . . . , PR(σr) are the maximal cones of the
quotient fan Δ of Σ by L.

PROOF. Set σo: = P);= 1σ ί. Then σ0 is a cone with V:=LR as the smallest face.
Since σ0 is a face of each σ,, it follows that F=ker(/>Λ) is also the smallest face of every
σt. This implies {PR)~1(PR{σi)) = σi for every /.

As a consequence we obtain that every cone PRfat) is strictly convex. Now we
check that for any two / and j the cones PΛ(σt ) and PR{GJ) intersect in a common face.
Note that

PR(σi)nPR(σj) = PR(σinσj).

Choose a supporting hyperplane Wof σt defining the face σ^σy Since ^contains
F, its projection PR(W)=W/V is a supporting hyperplane of P ' V J ) that cuts out
P V i nσ,.). Therefore ? V / ) n P V j ) is a face of PΛ(σi)

So the cones P'Vi),. . ., ^Λ(σr) together with their faces define a fan Δ in TV. By
construction, Δ satisfies the properties of a quotient fan of Σ by L. •

The main result of this section is the following:

2.3 THEOREM. For a given system S of N-cones and a primitive sublattice L of N,
there is an algorithm to construct the quotient fan Δ of S by L.

PROOF. Set Nί: = N/L and let Pt: N-^N1 denote the projection. We first construct
a quotient quasifan Σ in Nx of Δ by L by means of the following procedure:

Initialization. Define Sγ to be the system of N1 -cones consisting of those of the
PR(σ), σeΔ, that are maximal with respect to set-theoretic inclusion.

Loop. While there exist cones τγ and τ2 in Sx such that τ1 n τ2 is not a face of τ1

do the following: Let ρ2 be the minimal face of τ2 that contains τ1 nτ2. If ρ2 ψτu replace
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τr by the convex hull convCrj up2) of τ1 up 2 . Otherwise let pγ be the minimal face of

τί that contains τί nτ 2 and replace τ 2 by conv(τ2up1). Omit all cones of Sλ that are

properly contained in the new one.

Output. Let Σ be the system of N1 -cones consisting of all the faces of the cones

of St.

The above loop is finite: passing through the loop does not increase the number

\SX\ of cones of S1. So, after finitely many, say K, steps \Sί | stays fixed. For each

iteration, there is a cone τ of S1 that is replaced by a strictly larger cone of the form

conv(τ u p) with a face p of some other cone of S1. According to Lemma 2.4 below we

obtain

I τ n Pf (S{ι>) I < | conv(τ u p) n P?(S{ι>) | ,

where S(1) denotes a minimal set of generators of the cones of S. Thus in every step

after the first K steps the number X τ e S | τ n Pf (S(1)) \ strictly increases. But this can only

happen a finite number of times. So the loop is indeed finite.

Now by construction I" is a quasifan. We have to verify that it fulfills Property

(ii) of Definition 2.1. So let F: (N, S)->(N\ Σ') be a map of quasifans with LczkerfT7).

Then there is a lattice homomorphism Fι: N1-^Nf with F=Fί °Pl. Clearly Fx defines

a map from the system Sι of cones defined in the initialization to the system Σ' of cones.

Assume that after n iterations of the loop, Fγ still defines a map of the systems

of cones S1 and Σ', and that in the next step we replaced the cone τ1 by convfτj up2),

where p 2 is the minimal face of τ 2 such that τί nτ 2 c:p. We have to check that there

is a cone in Σ' containing Ff(conv(τ! up2)). Let τ[ and τ 2 be cones of Σ' such that

F f ί τ j c τ i and PfC^ciτ^ Then

Since τ l n τ 2 is a face of τ 2 and / 7f(p 2) c^2 9 we obtain F^(p2)dτ'x(\τ'2. This implies

/Γf(p2)czτί. In particular, it follows that

Ff(conv(τ1up2))ciτi .

Thus after τi is replaced by c o n v ^ u p2) the map Fx still defines a map of the systems

Sγ and Σ' of cones.

Repeating this argument we obtain that Fi defines also a map of the quasifans Σ

and Σ'. Thus Σ fulfills the desired universal mapping property and hence it is the

quotient quasifan of S by L.

Now let V denote the maximal linear subspace contained in the intersection of

all maximal cones of the quasifan Σ. Set Lx :=Nίn V. Then, according to Remark

2.2, the quotient fan Δ in N1/Lί of Σ by Li is obtained by projecting the maximal

cones of Σ to Nf/Lf. It follows that the fan Δ in Nί/Lί=N/L with L\ = Pϊ\Lγ) is

also the quotient fan of S by L. •
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We have used the following elementary fact about cones:

2.4 LEMMA. Let σ = conQ{vx, ...9vr) be the {not necessarily strictly) convex cone

spanned by vι, . . . , vr in a real vector space V. Then every face x of σ is generated as a

cone by the vectors in τn{vί9 ... 9 vr}.

As a consequence of the construction of the quotient fan we note:

2.5 REMARK. Let τί9 . . . , τk be the maximal cones of the quotient fan of S by L,

and let F(S) denote the set of all faces of the cones of S. Then

τ^conv
\σeF(S);P"(σ)c:τi J

PROOF OF THEOREMS 1.4 AND 1.5. It suffices to verify Theorem 1.5. So, let Δ be

the quotient fan of Δ by L. Then, if P denotes the projection from N onto the lattice

of Δ9 we have only to check that the factorization of every L-invariant map of fans

F: (TV, Δ) -> (TV', Δ') through P is unique. But this follows from the fact that P is surjective

by construction. •

In the case of small codimension of L in N9 there is an easy explicit description

of the quotient fan:

2.6 EXAMPLE. Let Δ be a fan in a lattice N9 and let LaN be a primitive

sublattice of codimension 2. Denote by P the canonical projection N-+N/L and define

an equivalence relation on the set of maximal cones of Δ as follows:

Set σ~τ if there is a sequence σ = σ0, σl9 ..., σr = τ of cones σ,ezl such that

PR(σ?) n PR(σ?+ λ) φ 0. For each maximal cone σ e Δ denote by σ the convex hull of the

union of all maximal cones τ^σ.

Let V denote the sum of all linear subspaces of the cones PR(σ)9 σeΔ and set

L: = NnP~ι(V). Moreover, let Q: N-+N/L be the projection. Then the faces of the

cones QR{σ), where σ varies over the maximal cones ofΔ9 form the quotient fan of Δ by L.

In [Ew] a special case of our notion of the quotient fan is introduced for the

abstract description of orbit closures of the acting torus of a toric variety. In fact these

orbit closures are toric quotients of certain neighbourhoods:

2.7 EXAMPLE. Let Δ be a fan in a lattice N. For a cone τeΔ, let xτ be the

corresponding distinguished point in the toric variety XΔ (see [Fu, p. 27]). Let Bτ be

the orbit of the acting torus T of XΔ through xτ. Denoting by star(τ) the set of all cones

σeΔ that contain τ as a face, we obtain the closure of the orbit Bτ as

V(τ):=¥τ= U Bσ.
σestar(τ)

The union U(τ) of the affine charts Xσ9 σGstar(τ), is an open Γ-invariant

neighbourhood of the orbit closure F(τ). For the set of maximal cones of the fan Δ(τ)
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corresponding to U(τ) we have

J(τ)max = zΓaxnstar(τ).

Let L be the intersection of the linear hull Lin(τ) of τ in NR with the lattice N9 and
let P: N^N/L denote the projection. Then the cones PR(σ), σ e A(τ)max are the maximal
cones of the quotient fan Δ(τ) of Δ(τ) by L. Moreover J(τ) is the fan of F(τ), viewed as
a toric variety with acting torus T/TXτ (see e.g. [Fu, p. 52]). In other words, the toric
morphism p: U(τ) -• V(τ) associated to P is the toric quotient of U{τ) by TXτ.

3. Good models. Let X be an algebraic variety with a regular action of a reductive
group G. If X is affine, then the categorical quotient for this action always exists, and
is given by the morphism corresponding to the inclusion of the algebra C[X]G of
G-invariant regular functions on Xinto C[ΛΓ]. For general X, the idea of glueing affine
quotients of G-stable affine charts leads to the following definition (see [Se]):

A (/-invariant morphism p: X-> Y of algebraic varieties is called a good quotient,
if there exists a covering (Ui)ieI of Γby affine open sets such that every Wi:=p~ι(Ui)
is affine and the restriction/?)^.: Wi —• Ui is the categorical quotient for the action of G
restricted to Wv If in addition the morphism p separates orbits, it is called a geometric
quotient.

Now, coming back to the setting of toric //-varieties, we will first give the description
of the affine case in terms of fans:

3.1 EXAMPLE. Let Γbe an algebraic torus and let σ be a rational strictly convex
cone in NR. Denote by Xσ the associated affine toric variety. For a given subtorus H^T
let L be the sublattice of NT corresponding to //. Define τ to be the maximal face of
σ with Lnτ° φ0 and set

L: = (LR + Lin(τ))nNτ.

Denote by P: NT^NT/L the canonical projection. Then PR(σ) is a rational strictly
convex cone in NR/LR, and the toric morphism p: Xσ —> XPR(σ) associated to P is the
toric quotient for the action of H on X.

The coordinate algebra of XPn{σ) can be identified with the algebra C\_X~\H of H-
invariant regular functions on X, since every //-invariant character of T extending to
a regular function on X factors through p. This shows that p is also the categorical
quotient.

If a toric //-variety X has a good quotient p: X-* 7, then it follows that 7 is a
toric variety and p is a toric morphism. Moreover, we can conclude that if a good
quotient exists, it coincides with the toric quotient. Conversely, as a consequence of
Example 3.1, our procedure for the calculation of the quotient fan yields a good quotient
if and only if it produces an affine map. So we can characterize fan-theoretically when
a given toric quotient is good (see also [Sw] and [Hm]):
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3.2 PROPOSITION. Suppose p: XΔ —• X% is the toric quotient of a toric H-variety XΔ.

Let P: (Nτ, A) -> (Λ/f, Δ) be the associated map of fans. Then p is good if and only if the

following two conditions are satisfied:

( i ) For every maximal cone τ{eΔ there is a maximal cone ateA such that

(ii) Every ray peA{1) with JP
Λ(p)c:τI is contained in σt.

Moreover, p is geometric, if in addition dim τ, = dim σf for all i.

Good quotients have excellent properties, but unfortunately they only rarely exist.
Bialynicki-Birula and Swiφcicka [BB; Sw] give a complete description of all open subsets
of X having a good quotient. Instead of looking at subsets one can also try to modify
X to obtain a toric //-variety having a good quotient. This approach leads to the
following notion:

3.3 DEFINITION. Let p: X-*X/i0XH denote the toric quotient of the action of H
on X. Suppose that g: X-^X is a dominant toric //-morphism to a toric //-variety X
having a good quotient. Then we call g a good model for the toric //-variety X, if it
has the following universal property: If/: X-*Z is a toric //-morphism and the toric
//-variety Z has a good quotient, then there is a unique toric //-morphism f:X-+Z
such that the following diagram is commutative:

A //

Being defined by a universal property, a good model is unique up to isomorphism.
If g is a good model, then there is a unique toric morphism p\ X-+X/torH such that
the diagram

x -!U x

Λ /'
Xj H

tor

is commutative. It follows that p is in fact the toric and hence the good quotient for
the action of H on X. Before proceeding to the general construction of the good model
we give some elementary examples.

3.4 EXAMPLES, (a) Let X be C 2\{0} and let H be the subtorus {(ί, Γ'); t e C*}
of the acting torus (C*)2 of X. Then the toric quotient is the map p: X-+ C defined by
p(z, w) = zw and the good model is just the inclusion of Zin C2 (compare Example 1.3).
So in this case the "missing" fixed point 0 has to be added to X.

(b) Let X be the blow-up of C2 at the point 0. Then the action of the torus H
in (a) as well as the toric quotient map extend naturally to X. The good model of X is
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the blow-down map g: X^>C2 contracting the exceptional curve to a point.

(c) If X is complete, then the toric quotient space is also complete and the good

model equals the toric quotient.

The main result of this section is the following:

3.5 THEOREM. Every toric H-variety X has a good model If X=XΔ, then the

good model is obtained as follows: Let P: (N, A) —• (TV, A) be the map of fans cor-

responding to the toric quotient p: XΔ -> X% of the action of H on XΔ. For every maximal

cone τh i= 1, . . . , r, of A, set

Moreover, let Vbe the maximal linear subspace contained in f\r

i=ί oh set L: = V n N and

let G: N—> N: = N/L denote the projection. Then G{σx),..., G(σr) are the maximal

cones of a fan A in N, the projection G defines a map of fans from A to A and the associated

toric morphism g: XΔ^XΔ is the good model for XΔ.

The assignment X\—>X is even functorial. More precisely, if X and X' are toric

//-varieties with good models g: X-+X and g': X'-*X\ then for every toric H-

morphism / : X^X\ there is a unique toric //-morphism / : X-*X' such that

fog = gΌf A fancy formulation of the properties of the good model in the language

of categories is the following:

3.6 COROLLARY. The assignment X\—> Xis adjoint to the forgetful functor from the

category of toric H-varieties with good quotients into the category of toric H-varieties.

PROOF OF THEOREM 3.5. First we prove that σ l 9 . . . , σr are the maximal cones

of a quasifan S. Let σt and σj be two cones of S and let σ denote the minimal face of

σt containing the intersection σ^Oj. Then there is a vector t e ^ n σ y ^ n σ 0 . Moreover,

for this v we have

In particular, the intersection of PR(σ)° with τ^τj is not empty. Since τ t nτ 7 is a face

of τf and the cone PR(σ) is contained in τz we obtain

By Lemma 2.4, σ is the convex hull of some rays p l 5 . . . , pr of A. For each of these

rays we have PR{pt)czτj. By the definition of σ, all the rays pι are contained in σj. This

implies σ c σ7- and hence σ = σf n σ7 . So σ{ and σ} intersect in a face of σ,. That means S

is indeed a quasifan. Now we can apply Remark 2.2 to conclude that GR(σx), . . . , GR(σr)

in N are the maximal cones of the quotient fan A of S by L. Moreover, G defines a

map from the fan A to the fan A.

In the next step of the proof we show that XΔ has a good quotient by H. Since L

is contained in some ai and PR maps ox to the strictly convex cone τh we have P(L) = 0.
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It follows that P defines an L-invariant map of systems of cones from S to Δ.
Consequently, there is a unique map of fans F: (N, Δ)—>(N, Δ) with P = PoG. Note
that the associated toric morphism p: Λj -• X/torH is the toric quotient for X^ by H.

To check that p is a good quotient, we use Proposition 3.2. The first condition of
3.2 is fulfilled since by Remark 2.5, PR(σi) = τi for every / and hence the maximal
cone τ, of Δ is the image under PR of the maximal cone GR(σι) of Δ. For the verification
of the second condition, let p be a ray in Δ with PR(ρ)c:τi. Then by Lemma 2.4 there
is a ray peΔ with GR(p) = p. Since PR(p)aτh by definition p is contained in σf and
hence p = GR(p)cGR(σi).

To complete the proof we have to verify the universal property of good models
for g. So let X' be a toric //-variety with a good quotient p': X' ->X'/torH and let
/ : X-+X' be a toric //-morphism. Denote the fans associated to X' and X'/t0ΓH by ZΓ
and Δ' respectively, and let F: (N, Δ)->(N\ A) be the map of fans associated to /.

Now suppose for the moment that the linear map F\ N-+N' also defines an
L-invariant map from the system of cones S to Δ'. Then, since Δ is the quotient fan of
S by L, there is a unique map of fans F: (N, Δ)-+(N\ A) with F=FoG. Clearly, the
toric morphism / : X^ -> XΔ associated to /"provides us with the required factorization
of / through g.

So it remains to show that for a given cone ateS there is a cone σ[eΔ' with
F^σjaσl. (Since L is contained in σi and σ is strictly convex, this also implies that
F(L) = 0.) Consider the following commutative diagrams of toric morphisms and of the
associated maps of fans:

X — > X' (N9Δ) - ^ {N\A)

P'

Let p be any ray of Δ which is contained in σt. Since />JI(σί ) = τI, there is a maximal

cone τl in A containing FtR(PR(σi)) = P'R(FR(σi)). So in particular, PfR(FR(p))czτfi.

Suppose that σ is the minimal cone of A containing FR(p). Then PfR(σ)° intersects τ[
and therefore P'R(σ) is contained in τ .

Now p' is a good quotient and therefore by Proposition 3.2 there is a maximal
cone σ ezΓ with P'R(σ'i) = τ'i. Moreover, any cone of A which is mapped into τ[ by P'R

is a face of σ[. So in particular, σcσί and hence FR(p)aσ'i. Since <7j is generated by
the rays of Δ that it contains, we finally obtain F^σ^aσ . •
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