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Abstract. We shall give a saturation class for approximations by eigenfunction expan-
sions of the Laplacian in an open domain in the Euclidean space.

1. Introduction. Let £2 be an open domain in the # dimensional Euclidean space R".
Consider the operator A = —A in L2(£2) with the domain of definition D(A) = CX(82),
where A = 32/ 8x12 + -+ 8%/8x2 is the Laplacian. Denote by Aa nonnegative selfadjoint
extension of A. Let {k; (¢)} be a family of bounded piecewise smooth functions on [0, c0).
Suppose we have two constants 1, k2 > 0 such that k,\(t)\/f"ﬂ“z'(ﬁl/z € LI(O, 00),
(k. (1) — 1)/A7"1t*2 are uniformly bounded in A and ¢t € [0, o0), and (k) (t) — 1)/A 7 "2
converge to a nonzero constant as . — oo for any ¢ € [0, 00). Let

L(r) = / kD, (rt)t dr
0

where v = n/2 — 2k, + 1 and J,, is the Bessel function of order v. We assume, furthermore,
the following conditions

R R
1.1 f sZ2lgg f P22 2L (Pydr| = O T,
0 s
o0
(1.2) / P’ L rdr| = oA,
R
and
00 00 2 1/2
(1.3) Y 1% max / Jo(sr) L (r)rdr = o(A7F1)
=0 T<s<T+1|JR

as A — oo for any small R > 0.
We shall consider the approximation operator kj(A) for f € L%*(2). We say Af €
L. (£2) if for every compact set K in £2 there is a constant Ck such that

< Ckliglp k)

/ f(x)Ag(x)dx
K

1991 Mathematics Subject Classification. Primary 41A40.



432 M. TANIGAKI

for any infinitely differentiable function g whose support is contained in K. Let {¢.} be an
infinitely differentiable approximate identity with supports contained in {x; |x| < ¢}. For a
function f on §2 and x € £2, f is said to be regulated at x if f * :(x) — f(x) ase — O%.
In 1970, Igari proved the following Theorem in [5].
THEOREM A. Suppose that there exist a complete orthonormal system {u ;} of smooth
functions in L*(§2) and a numerical sequence {A j} for which —Auj = Aju; in 2. Let

fi= fg foujxdx, feL*)

and
5 A\’ 2
sxf=;<:l(1—7> fiuj, fel*2).
i<
Let 8 > (n+3)/2 and f € L%(R2) be regulated in 2. Then the following hold.
(1) The following conditions are equivalent.
(ia)
s f = fllz=ex) = 07
as A — 0o for every compact set K in 2.
(ib) Af € L (£2).

loc
(i1) The following conditions are equivalent.

(iia)
sy f = fllzoeqry = oA~
as . — oo for every compact set K in 2.
(iib) Af vanishes in £2.

Our aim is to give a generalization of Theorem A. Let {k,(¢)} be a family of bounded
Borel functions on [0, 00). We can define the bounded operator &, (A) in L2(£2).

EXAMPLE 1. Suppose that there exist a complete orthonormal system {u ;} of smooth
functions in L2(£2) and a sequence {A;} such that —Au; = Aju; in £2. Let

fi= f f@uj@dx,  fel*).
2
Let A be the selfadjoint extension of —A defined by
o0
D(A) = [f e LX(2): Y _MIfl < oo}
Jj=1
and
~ O ~
Af =) %rjfiuj. feD@A).
j=l1

For any f € L?(£2) the spectral decomposition of f is given by

E((—o0, t)f = Y fiu,

Aj=t



APPROXIMATION BY SPECTRAL DECOMPOSITIONS 433

and kA(A) is defined by
o0

k(A f =Y kO fuj, feL*f).

j=1
EXAMPLE 2. LetS$2 =R". Let

A 1
f(é)—mn .

In this case, there is a unique nonnegative selfadjoint extension A of —A defined by

D(A) = {f € L*R"); [£)* f(¢) € LXR™))

f(x)e ®*dx, feL*R".

and
Af) = 2f @) ide, f e D).
1) = = fR §Pf®)e*tds, f e DA
Then the spectral decomposition of f € L?(R") is given by
1 ~ .
E((—o0, = . g
(=00, t]) f (x) N f&)e "> déE

and k (A) is defined by

A 1 A :
k(A = ka(I&1? *dg L*(R").
1w = [ kP @ g e L@

Forky > 0and 1 < p < o0, we say (—A)*2 f belongs to Ll’z)c(.Q) if for every bounded
open set G in £2 with the closure G contained in £2, there is a constant Cg such that

f(_; Fx)(=A)?g(x)dx

=< CG”g“Lp’((;)

for any infinitely differentiable function g with support contained in G, where 1/p+1/p’ = 1.
Our results are stated as follows.

MAIN THEOREM. Let 2 be an open domain in R" and A be a nonnegative selfadjoint
extension of —A in 2. Let {k)(t)} be a family of bounded piecewise smooth functions on
[0, 00) and k1, ky > O such that k()" > 22 ¢ 110, 00), M1t*2[ky () — 1] are
uniformly bounded in A and t € [0, 00), and A1t 7*2[k;, (t) — 1] converge to a nonzero constant
as A — oo foranyt € [0, 00).

Suppose that {ky (t)} satisfies the conditions (1.1), (1.2) and (1.3) as A — o0. Let fbe a
regulated function in L*(§2). Furthermore, suppose that 1 < p < oo and f € Ll’;c(.Q). Then
the following hold.

(i) The following two conditions are equivalent.

(ia)
kx(A) f = fllLry = OOT™)
as A — 0o for every compact set K in 2.
(i) (=AY f e L{ ().

loc
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(ii) Let G C 52 be any open set.
(iia) Suppose that (—A)<? f vanishes in G. Then

Ikx(A) f — fllLrky = oA™Y

as A — 0o for any compact set K C G.
(iib) If
Ika(A) f = fllLek) = 0™

as A — 0o for any compact set K C G, then (—A)*? f vanishes in G.

Iféd > (n+3)/2and k) (¢) = (1 — t/)\z)‘S , then the conditions (1.1), (1.2) and (1.3) are
satisfied. Therefore we have the following:

COROLLARY 1. Let $2 be an open domain in R" and Abea nonnegative selfadjoint
extension of —A in §2. Let sf =(1- A/Az)i and 8§ > (n+3)/2. Let f be a regulated function
in L2(82). Suppose that 1 < p < oo and f € L{ (2). Then the following hold.

(i) The following are equivalent.

(ia)
sy f = Fllery = 072
as A — 00 for every compact set K in §2.
(ib) Af elLl ().

loc

(ii) Let G C $2 be any open set.
(i1a) Suppose that Af vanishes in G. Then

sy f = Fllerky = 0272
as A — oo for any compact set K C G.
(iib) If
Isg f = fliLrk) = 0(x™2)
as A — 00 for any compact set K C G, then Af vanishesin G.

Our main theorem follows from Theorem 1 in §2 and Theorem 2 in §3. Corollary 1 is
proved in §4.

The author is grateful to Professor Satoru Igari for his advice. The author also thanks the
referee and the editor for their careful reading.

2. Saturation of the approximation. Let £2 be an open domain in the n-dimensional
Euclidean space R". Let

2.1) A= Z aq(x) D%
lee|<m
be a differential operator, where ¢ = («1, @2,..., ), @] = ¢ + a2 + -+ + oy, D* =

(=)@ /9x; ) -+ (8/0x,)% and a, € C*®(£2). We consider A as an operator in L?(£2)
with the domain of definition D(A) = C2°($2). Suppose that A is formally selfadjoint and
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semibounded. If A is a selfadjoint extension of A with the same lower bound c, then A can
be represented in the form of
(o]
A= / tE(dt).
c

Let {k; (¢)} be a family of bounded Borel functions on [c, 00), k1, k2 > 0 and
k(1) —1
Ak

2.2) V(1) =

Suppose that
(1) Y (¢) are uniformly bounded in A and ¢ € [c, 00), and
(2) () converge to a nonzero constant C as A — oo for any ¢ € [c, 00).

LEMMA 1. If f € L%(2) and g € D(A%?), then A\ (ky(A) f — f, g) — C(f, A®2g)
as A — o0.

PROOF. By the definition of k;\(A), we have

MUk (A f = fr9) = )»"‘/ lkr () — 11(E(dt) £, 9)

c

X k() —1 /‘°° kn(r) — 1
— . (f, Edt)g) = ——_2(f, E(dt
| e pang = [ 2SR g
oo
= / YA (O (f, E(dt)g) = (f, ¥1.(A) A g)
Coo A
= / Ua()(f, E(d)Ag) .
c
Let p = (f, E(-)/i"2 g) and |p| be the total variation of p. Then
o0
[ 101 < 1515201 A%l2i0) < o0
c
Therefore, by Lebesgue’s dominated convergence theorem, it follows that

lim 29U (Af — f.g9) = lim / ¥ (t)p(dn)

= / lim ya(0p(dn) = C f p(dt) = C(f, A2g).

Thus Lemma 1 is proved.

Let G be an open subset in £2 with compact closure G and 1 < p < oo. We say
A f e LP(G) if

NA 2 fllpGy == sup 1VQf(X)z‘i"Zg(JC)dx

9l

< 00,

where 1/p+1/p’ = 1 and gis an infinitely differentiable function whose support is contained
in G.
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THEOREM 1. Let §2 be an open domain in R" and A be a formally selfadjoint semi-
bounded differential operator with coefficients in C*°(§2) given by (2.1). Suppose that A is
a selfadjoint extension of A with the same lower bound c. Let {k;(t)} be a family of bounded
Borel functions on [c, 00) and ki, ky > 0 such that the sequence {,(t)} of Borel functions
on [c, o0) given by (2.2) satisfies (1) and (2). Let f € L2(2),1 < p < oo and G be any open
set in §2 with compact closure G. Then the following hold.

» I

!|kA(A)f - f”Lp(G) = O()L_Kl)
as A — oo, then A2 f € LP(G).

G If

lkr(A) f — f”Lp((';) =o(A™")
as A — 00, then A*? f vanishes in G.

PROOF. Let gbe an infinitely differentiable function and supp g be its support. Suppose
that supp ¢ C G. Then by Lemma 1
2.3) Nk (A)f — f.9) = C(f. A?g) as A — o0,

On the other hand, we have
2.4) WA f = £ )l < XKD f = Fllioe ol 6y -
If ||y (A) f — fliprg = O(A™*1) as & — oo, then by (2.4) for any A

WA f = £l < Cllgll L )

with some constant C’ > 0. Therefore, by (2.3), we have

=I(f, A29)l = C7'C'llgll g,

/ fx) A% g(x)dx
2

for any g¢. Thus (i) is proved.

If ||kA(A)f —~ fIILp(G) = o(A71) as A — oo, then in the same way as in (i), (ii) is
proved.

EXAMPLES. (1) Riesz summation: For x > 0 and § > O, the Riesz summation is
given by the multiplier &, () = [1 — (t/kz)"]‘i. In this case, (A2/1)* [ky(t) — 1] are uniformly
bounded in A and ¢ € [c, o0) with a constant ¢ > 0 and

ky(r) — 1 (1—s%)%—1

lim 20~ oy BTSSP -l
Amoo (20K 5o 5K 51—1206(1 ) 5
for any t € [c, 00). Thus k] = 2k, k; = k and C = —§, where C is a constant in (2).

(2) Fejér-Korovkin summation is defined by

1 t 7rt+1 tn . Tt ;<2

— — ) cos = + — cot — sin —

k(1) = 22 ) T et =4
0 t> A2,



APPROXIMATION BY SPECTRAL DECOMPOSITIONS 437

In this case, (A2/t)?[ky (t) — 1] are uniformly bounded in A and ¢ € [c, 00) and

ky(t) — 1 . cosms—1 . cos? s — 1
_ = m—-=J1um _=—
r—oo (A 721)?2 s—>+0 52 s—+0 s2(coss + 1)
sin? s w2
= — lim 2———— = -_
s—+0 s*(cosms + 1) 2

for any ¢ € [c, 00). Thus k] =4,k =2 and C = —7%/2.
(3) Rogosinski summation is given by

Tt
kx(t) = 222

In this case, (A2/ )2k () — 1] are uniformly bounded in A and ¢ € [c, 00) and

b 4 Lo T
ku(r) — 1 o coss—1 _ sin” s _ 2
Py 202 _—7—:_11"1_—?_:_(5)‘5:_?
—oo (A741) s—>+0 s s=+0 52 (cos =5+ 1)
for any 1 € [c, o0). Thus k] = 4, ky =2 and C = —7%/8.
(4) Jackson summation is given by
-2 (4 2 +2 (4 ’ t<2?
2\x2) T2\ =4
k(=1 1 t\’ ) )
0 t>222.

In this case, (A2 /)?[ks(t) — 1] are uniformly bounded in A and t € [c,o0) and
limy s 00(A2/1)?[kx(t) — 1] = —3/2. Thus k| = 4,k =2 and C = —3/2.

(5) Gauss-Weierstrass summation: We consider the multiplier k)‘jv (1) = exp(—t/A).
The function of ¢ (A/t)[k;(¢) — 1] is bounded uniformly in A, and we have

ky(2) —1 . e -1
— =1

= =— lim ¢ =—1.
r—>oo  ATlt s—+0 s s—>+40
Thus k; = k» = 1 and C = —1. Poisson summation is given by the function kf ) =

exp(—+/t/A), and we have k] = 1 and k; = 1/2.

3. Estimates of k) (A) f — f. The aim of this section is to prove the following theo-
rem.

THEOREM 2. Let §2 be an open domain in R" and A be a nonnegative selfadjoint
extension of —A in 2. Suppose that K is a compact set in 2 and K' is a closed subset of
K with dist(K’, K¢) > 0. Let {k; (t)} be a family of bounded piecewise smooth functions on
[0, 00) such that kx(t)\/;n/z_2K2+l/2 € L(0, o0) with a constant k; > 0 and k) (0) = 1 for
any A.
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Suppose that {k; (t)} satisfies the conditions (1.1), (1.2) and (1.3) with a constant k| > 0
and 0 < R < dist(K’, K€). Let f be a regulated function in L*($2). Suppose that 1 < p < 00
and f € LP(K). Then the following hold.

(i) If(=A)2f e LP(K), then

Ik (AYf = fllLrkn = O™ ) as A — oo.
(i1)) If (—A)*2 f vanishes in K, then
lkn(A)f = FllLrkn = 0A™1) as A — oo.

3.1 Generalized eigenfunction system. In order to prove Theorem 2, we shall use
the generalized eigenfunction system corresponding to an ordered representation of L2(£2)
associated with the Laplace operator.

We shall begin with several definitions. We consider A = — A as an operator in Lz(Q)
with the domain of definition D(A) = C2°(£2). Let Abea nonnegative selfadjoint extension
of A. Let B be the Borel field on R and E be the unique spectral measure corresponding to
A.Forh e L2(£2), we define the following closed subspace of L2(£2):

H(h) : = (F(A)h; F is a Borel function on R and & € D(F(A))}
= {F(A)h; F € LR, B, (E(-)h, h))}.
If f € H(h), then we can write uniquely f = F(A)h, where F € L2(R, B, (E(-)h, h)) and

1/2
llflle(g)=( /R |F(r>|2(E(dt)h,h)) :

Therefore we can define an isomorphism U, from H(h) onto L%(R, B, (E(-)h, h)) by
Uy f := F, which preserves inner products.

There exist a sequence of functions {A;} C L%(2) and a sequence of sets {e;} C ‘B,
called the set of multiplicity, with the following properties (see [3, XII.3.16] or [4, Chap.
14]):

D
LX) = @ H(hj).
Jj

That is, H (h ;) are mutually orthogonal and span L3(2).
I) R=ey2e2---.
(II)  (E(e)hj, h;) = (E(eNej)hy, hy) forany e € *B.
By (I), for f € L?(§2) we can write uniquely

f=Y_ Fj(dn;,
J

where F; € L*(R, B, (E(")h;, h;)) and
12

172
(Z /R |Fj<t>|2<E(dt>hj,hj)> = (Z uF,-(A)h,»niz(m) = fllL2@) < o0.
J J
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Therefore we can define an isometry U from L%(£2) onto EBj L%(R, B, (E(")hj, hj)), which
is equivalent to say

LY(2) & {{Fj}; Fj € L*R,B, (E(-)hj, hj))and Z/R |Fj()|*(E@t)hj, hj) < ooy,
j

and the correspondence is given by Uf := {F;}. We denote F; =: (Uf);.
By (III) we have

P LR, (EOR), k) = P L¥(ej, (EOhi, h).
J J

Let p := (E(-)h1, h1). Then U is an isomorphism from L2(£2) onto EBj Lz(ej, ) which
preserves inner products, that is, for any £, g € L*(£2) it holds that

3.1 f Dy = f W1);(Tg);Mp(dr).
7 e

U is called an ordered representation of L%(£2) with respect to A.
With these understood, there exists a sequence of functions {u;(x, t)} defined on the

product space of £2 x R such that the following conditions are satisfied (see [3, XII.3 and
XIV.6] or [4, Chap. 15]):

(i) The functions u(x,t) are dx x dp(t)-measurable and vanish outside 2 x e},
where dx is the Lebesgue measure.

(ii) For any fixed ¢t € R, each u j(x, t) belongs C*°(£2) and satisfies
(3.2) —Auj(x,t) =tuj(x,t), x€e€.

(iii) For each compact subset K of £2 and each bounded Borel set ¢ in R

€ess supf Iuj(x,t)|2p(dt) < 0.
xeK e

(iv) Foreach f € L%(2)
(3.3) N = fQ fuj(x, t)dx,

where the integral exists in the sense of L?(e s P).
(v) Foreach f € L?>(2) andeache € B

(34) E(e)f(x) = Zf(Uf)j(t)uj(x, 1)p(dt),
j e

where the integral exists and the series converges in the sense of L2(£2).
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{u} is called the generalized eigenfunction system of A corresponding to U. By (v), for
f € L*(£2) we have

3.5 fe =) fR UF)j@ujx, npdr)
J

and

(3.6) k(A fx) =) /R k(U f)j(uj(x, Np(@r) .
J

3.2 Decomposition of kx.(A) f — f. Throughout what follows, §2 denotes an open
domain in R" and A is a nonnegative selfadjoint extension of —A. Let U denote an ordered
representation of L2(£2) with respect to A, {u ;) the generalized eigenfunction system and p
the measure associated with U. We denote the gamma function by I, the unit sphere in R" by
S"~1 the Lebesgue measure on the unit sphere S"~! by o and the surface area 27" /T (n)2)
of §"~! by wy. Let x, be a constant in (1.1), (1.2) and (1.3), and v = n/2 — 2k, + 1.

LEMMA 2. Let f € L?*(2),x € 2 and R > 0. Then

ky(A) f(x) = f(x)

k " + (\/;S)
R , . v+1 v+1
= Ej [) t(Uf)J(t)uj(X,t)P(dt)/O L(r)r dr/O ——(ﬁs)” N sds

+ ij fo 0L f;);’j 0 ) an /R L) (iryrdr

L(r)r'tldr,

1 o0
— @) x 2vr(v+1)/R

where
o0
IA(r)=/ k(s> Jy(rs)s'lds .
0

PROOF. First observe that the function k,(¢) is piecewise smooth on [0, co) and
k, (t)\/?l’_l is integrable on (0, co). By Hankel’s integral formula ([2, p. 73, (60)]), we have

k(1) = / Jo(Wtr)rdr / ka(s®)Jy(rs)s'tds
0 0

1
ﬁv
= 71? /Ooo L(r)J,(Vtr)rdr .
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Then, by (3.5), (3.6) and the fact that k; (0) = 1, we have
ki (A) f(x) — f(x)
o0
= Z./o {ka(®) =k (OYUf)j(@®)uj(x, ) p(dt)
J

[T © (AW
-; fo W) (O)u;jx, Dpdr) /0 [ TG H)]Mr)rdr

B o0 17,/ r’
—;/0 (Uf)j(t)u,(x,t)p(dt)/0 [ N 2“I’(v+l)}1)”(r)rdr

o [ I/ r
+;/0 (Uf)j(t)uj(x,t)p(dt)/R [ Y —zvr(vﬂ)]h(r)rdr.

Now apply the formula ([7, p. 45])

L) —— / Jm(ﬁs)”
NG 2T (v+1) 0o (Vesyvtlo

Note that for the second term, we have

00 [ Jy(/Tr) rY
Ejj /0 Uf)j(t)uj(x, p(dr) fR { 7 o H)]u(r)rdr

=3 f T U000 ) gy f ¥ L)L Wirdr
j 0 \/; R

Lryr'tlar.

1 o0
_f(x)XZ"F(v-l-l)/R

Thus we get Lemma 2.

3.3 Proof of Theorem 2. Let f be a regulated function in L2(£2). Let K be a com-
pact set in £2 and K’ be a closed set in K with dist(K’, K¢) > 0. We choose 0 < R <
dist(K’, K°). Let k; and k; be constants in (1.1), (1.2) and (1.3). Let v = n/2 — 2« + 1 and
1 < p < o0. Suppose that f € LP(K) and (—A)*2f € LP(K). By Lemma 2, we have

Ika(A)f = FllLekn < I flrkry X

o0
/ L(r)r'tldr

R

K ’ * Jo+1(+/15)
v+1 . . +1
/0 L(ryr'* dr/(; sds zj .[) t(Uf)j(t)uj('»t)———(ﬁs)v+l p(dt)

> / ODIOUED b ar) / L) (ir)rdr
5 Jo Jt R

1
2'C'(v+1)

3.7 +

LP(K")
+

L>®(K")
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LEMMA 3. We have

fo IA(r)r"Hdr/ sdsZ/ tUF)j(Ouj(-,1) (l:;_l(;{;l)p(dt)

LP(K")
S CATY(=AY? fllLrk)y -

PROOF. Letx € K'and0 < s < R. Put
1 (e
gs(y) = W/O Jog1(s7) Jpj2—1(lylr)dr ,

gs(y) =gs(x —y).

If |y| > s, then gs(y) = 0 ([7, p. 404, (6)]). Therefore supp g; C K C £2. Then, by (3.3), we
have

(Ugf)j(t)=/;zg§(y)uj(y, t)dy=[ggs(y)uj(X~y,t)dy

1 - 1 o0
= ;;;T/uj(x—y,f)dyW/O Jos1(s7)Jnj2-1(lyIr)dr

1 o0 — o0
= ./0 q"%dq ./S"~1 uj(x —qw,t)o(dw)/(; Jog1(s7) Jnja—1(gr)dr.

On the other hand, by (3.2), u;(y,t) € C*(£2), and we have —Au;(y,t) = tu;(y,t)
for y € §2. Therefore, by the mean-value formula, we have

nJn2-1(+19) 1(V1q)
var («/_ /2=l

/Sn_l uj(x —qw, t)o(dw) = uj(x,t).

Thus, by Hankel’s formula, we have

V2 "

Ugs)j@) = WT—uj(x,t)/ Jn/z—l(x/?q)qdqfo Jo1(sr)Jnsa—1(gridr

v+1
\/_ Jv+1(«/_s)
\/—'n/2

We can assume that f € C2°(§2) by approximation. Then, by (3.1), we have

00 J,
> (U 05y 2
J

ujx,1).

(Vts)v+!
¢_ 2> / (2Uf),; (T D, Do)

s(dy = (x — y)dy.
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Therefore we have
R
v ’ e Jv+l(\/;s)
/0 ])\(r)r +ldr/(; SdS;‘/(; t(Uf)J(t)uj(x,t)Wp(dt)
1 R r
1 1 V“d/d/ =AY f(x = »gs(v)d
= /0 wortar s [ (812 56— a2y
1 R R
d I “+‘df (=A< f(x — Y)]gs(Y)dy .
«/ﬂ"/o s sfs a(r)r r Mq[ )2 f(x = Mgs(y)dy

Applying successively Minkowski’s inequality for integral, we have

R ) ’ o0 Jo+1(V/1s)
/0 L(r)r +‘drf0 sds\;/o (U0 D" =S o)

LP(K")

1 R R
< 7 d I v+1d/ —A)f(— s(y)d
== fo sds f worlar [ (81216 Doy

! /de /R L(r)r’tlar
= )
\/277.’n 0 K *

1 R R
< d I v+ld / —A)2f(-— "1 Ys d
_~/2_z?"fo s sfs Vo lar| [ I8 £ = Drola 0l

1 R R
TNy / sds f L(r)r**dr f g5 Idy .
V2 f L 0 s * lyl<s :

On the other hand, we have

1 1 *©
dy = — —d / Jo+1(sr) 02— r)dr
_/l‘y|<s |9s()’)| y Sv+l ‘/|i\;]<s |y|n/2_1 )" 0 v+1( ) n/2 1(]}’] )

wn N ) o0
:SV+1/ q"*dgq fo Jvi1(s7)Jna—1(qridr
0

onF'(2v +n+2)/4)
T'(n/2)T((2v — n + 6)/4)sv+n/2+1

LP(K")

/‘ 8= lg 0y
yl<s

LP(K')

=

s
x [ Fi@0 420/ ~@v =0+ 2/ /2 5" dg
0
_Ca
= gv—n/2+1°
where 2 F («, B; v; z) is Gauss’ hypergeometric function. Therefore the last term is bounded
by
R R
Ci, I=8)2 fllLr (k) / s¥2lds f L(rr'tar| .
0 s

By the condition (1.1), we get the bound CA™1||(=A)*2 f||Lr(k) for the last term. Thus
Lemma 3 is proved.

We shall use the following lemma ([1, p. 655]).
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LEMMA 4. Under the assumptions above, if K is a compact set contained in §2, then

1/2
(Z fT er l|u,~<x,t>12p(dt)> < Cx(T+ 1) V2,
J JT<isT+

where Ck is a constant independent of T > 0 and x € K.

LEMMA 5. We have

> [TELRED san [T horninear| =007
;i Jo Vit R

L®(K)

as A — 0Q.

PROOF. We have, by Schwarz’s inequality,

> [TERORED san [T hovninar
F 0 \/t- R

1/2
s(Z f I(Uf)j(t)lzp(dt)>
j e
oo . 2
x(g [ 108 g
J

Now, by (3.1), we have

1/2
(Z / |(Uf>j(t)|2p(dt)) = 1fll2) -
j Ve

By Lemma 4, there exists a constant Cx such that
2) 1/2

0 . 2
(2
~ Jo t
J

o0
< T4I(2—3
= Cx (Z Tsrsnsa%(ﬂ
=o(A™")

2)1/2

/ L.(r)Jy(Vtr)rdr
R

f L(r)J,(Ntr)rdr
R

/ L(r)Jy(sr)rdr

T=0 R

uniformly in x € K. Therefore, by (1.3), we have
CWUf)j@ujx,t °°
> f —%pun [ L(r)Jy(/tr)rdr
j 70 \/; R
uniformly in x € K as A — oo. Thus Lemma 5 is proved.

We remark that | f2° I, (r)r’*!dr| = o(A7) by the assumption (1.2).
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By (3.7) together with Lemmas 3 and 5, (Ikk(ﬁ)f = fllrky = O™ ) as A — oo If
(—A)*2 f vanishes in K, then by Lemma 3.

”f IA(r)r'”'ldr/ sdsZ/ tUF);jOuj(, 1) Do (V15) p(dt)

(W) =0

LP(K")

Therefore, by (3.7) and Lemma 5, we have IIkA(A)f — fllLeky = o(A7F1) as A — oo.
Consequently, Theorem 2 is proved.

4. Applications of main theorem.
4.1 Proof of Corollary 1. Let k;(t) = (1 —t/A?)%.. Then we have the formula (see
[2,p.92,(34)])

2Bre+1) /°° Jnjars(Ar)Jno 1(«/7)

ki (8) =
A (1) o2 Ji" )

and can take «; = 1. We have
o
L(r) = f k(1) Jn 21 )" 2dt = 21 (8 + DA a5 Oryr ="
0
To check the conditions (1.1), (1.2) and (1.3),let R > 0 and § > (n — 3)/2. Then we have

o o0
/ I)»(r)rn/zdr :28F(6+ 1))\7!/2—5 / Mdr
R R

(n=3)/2-5
S5—n/2H1 =< Cs,rA .

On the other hand, we have

R R R R 7 A
sds | [ Loy Rar| =251+ s [sas| [ 2000,
0 s 0 s réTn/2l
Cs\(n=3/2-8 if m—-3)/2<8<m+1)/2,
< CsA I8 10g . if S=(n+1)/2,
Csr~2 if §>m+1)/2.

We now apply the estimates (see [6, p. 202, Lemma 18.10a])

/°° J"/2+5(M)8]"/2_'(sr)dr
R r

Cs,gA"1/2571/2 if s,A>0,
2—3/251/2
< CB,RTL +Cs gA7327V2 if 0<s <A,
= -5
A/25-3/2

Ca,R—A— +Cs.rA7V2T32 i 0<a <.
s pa—
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Then we have

00 0o 2\ 1/2
(TonTsrsnsa%H,/R Il(r)Jn/z_l(sr)rdr>
N 172
— 2P+ (ST ma / " s 0D 68
£= T<s<T+1|Jg ré

< C5 gh (D125

If § > (n + 3)/2, then the last term is o(A72). Thus Corollary 1 follows from Main theorem.
4.2 The Gauss-Weierstrass summation. Letk, (t) = e~"/*(A — 00). We then have

*© w,.2 1 oo 2 )\.v+1rv A.rz
4.1 kY (2, (rt)e"Tdr = eI rnedr = exp| ——
0 0 v+l 4

(cf. [2, 7.7.3]). Let §2 be an open domain in R" and Abea nonnegative selfadjoint extension
of —Ain 2.
COROLLARY 2. Let f be a regulated function in L*(2). Suppose that 1 < p < oo

and f € Ll’Z)c(‘Q)‘ Then the following hold.
(i) The following are equivalent.
(ia)
Ik (A f = Flleey = 007
as A — 0o for every compact set K in 2.
(ib) Af €Ll ().
(ii) Let G C $2 be any open set.
(ila) Suppose that Af vanishes in G. Then
Ik (A f = fllexy = 0™
as A — oo for any compact set K C G.
(iib) If
Ik (A f = flle) = o(™")
as A — oo for any compact set K C G, then Af vanishes in G.

PROOF. For the Gauss-Weierstrass summation method we take x; = 1. Let R be a

small positive number. By (4.1), we have
00 00 A n/2 poo ar2
/ r"/zdr/ kY(IZ)JU(rt)t"Hdt = (—) / r"lexp| —=—— | dr = o271,
R 0 2 R 4
R o0
f r"/zdr/ kY 1, (rtye"Hdr
s 0

R
/ sds
0
A\"/2 R R ar2
= (—) / sds/ r"lexp (——r—) dr=007h
2 0 s 4
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and
0o 00 s 2 1/2
T max / Jnjp—1(sr)rdr / kY (¢ dy(rye T de
=0 T<s<T+1|JR 0
172
A n/2 o0 AZ
=(-2-) /l; r""lexp ——;— dr =o(A7.

Thus Corollary 2 follows from Main theorem.
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