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A NOTE ON EXTENSIONS OF ALGEBRAIC AND FORMAL GROUPS, IV
KUMMER-ARTIN-SCHREIER-WITT THEORY OF DEGREE p?

TSUTOMU SEKIGUCHI* AND NORIYUKI SUWA **
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Abstract. We establish a formula for homomorphisms and extensions of group
schemes and formal groups, related to deformations of the multiplicative group to the additive
group. As an application, we give an explicit description of the theory unifying the Kummer
and Artin-Schreier-Witt theories of degree p2.

Introduction. Throughout this article, by p we denote a prime number. Let W,, (resp.
W,) denote the group scheme (resp. the formal group scheme) over Z of Witt vectors of
length n. We denote by W (resp. W) the group scheme (resp. the formal group scheme)
of Witt vectors over Z, and by G, (resp. Gy the multiplicative group scheme (resp. the
multiplicative formal group scheme) over Z. Let F be the Frobenius endomorphism of W or
of W (for the definition see Section 1.2).

In the previous papers [12, 13, 16], the authors gave an explicit description of
Exta(Wy. 4, Gm, 4) and ExtA(W,,,A, Gm,A), when A is a Z(,)-algebra. More precisely, we
constructed isomorphisms

Ker[F" : W(A) - W(A)] > Hom(Wy 4, Gm.4) ,
Coker[F" : W(A) - W(A)] > HZ(Wn.a,Gm.4) .
Ker[F" : W(A) — W(A)] > Hom(Wy 4, Gm.a) ,
Coker[F" : W(A) = W(A)] > HZ(Wy.a,Gm.4).
using the Artin-Hasse exponential series. In particular, in the case of n = 1, the result reads
Ker[F : W(A) - W(A)] > Hom(Gg 4, Gm ),
Coker[F : W(A) - W(A)] > HZ(Ga.a,Gm.a) .
Ker[F : W(A) > W(A)] > Hom(Ga 4, G 4)
Coker[F : W(A) > W(A)] > H2(Gan.Gm.a).
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Now let A € A. Then we have a group scheme G* = Spec A[T, 1/(1 + AT)] giving a
deformation of G, to G, for suitable A (for the definition, see 2.1). Our aim of this article is
to generalize the isomorphisms of (%) to those for G, using the deformations of the Artin-
Hasse exponential series. Namely, our result is as follows.

THEOREM. Let A be a Z(,)-algebra and A € A. Then there exist isomorphisms:
Ker[F — [AP7!]: W(A) - W(A)] > Hom(GP, Gy 4),
Coker[F — [AP711: W(A) —» W(A)] = HZGP,Gn.a).
Moreover, if A is nilpotent, there exist isomorphisms:
Ker[F — [AP71]: W(A) > W(A)] > Hom(G™, G a)
Coker[F — [AP71]: W(A) - W(A)] > HZ(G™,Gm.a) .

It is crucial in our argument to construct deformations of the Artin-Hasse exponential
series. We owe it to the functional equation lemma due to Hazewinkel [6, Ch.1.2] to discover
the required formal series.

In Section 1, we recall and establish necessary facts on Witt vectors. Section 2 is devoted
to a study of deformations of the Artin-Hasse exponential series, which allows us to state the
main theorem. In Section 3, we prove the main result, generalizing the argument developed
in [16]. In Section 4, we present a final form of some part of the computations given in the
previous papers [9, 10, 11]. Section 5 is intended for an explicit description of the Kummer-
Artin-Schreier-Witt theory of degree p?.

It should be mentioned that Green and Matignon have given a slightly different explicit
formula of the theory of degree p? ([4]) and that there exists a theory unifying Kummer
and Artin-Schreier-Witt theories of degree p" ([14, 15]). Detailed accounts on the theory of
degree p" will appear elsewhere as a sequel to this article. We expect to find applications of
the Kummer-Artin-Schreier-Witt theory, such as an investigation of lifting automorphisms of
an algebraic curve over a field of positive characteristic ([17], [4]).

The authors are more grateful to M. Matignon for his valuable remarks, especially a
notice on Dwork’s article (Remark 2.6.3).

NOTATION. Throughout the paper, p denotes a prime integer and A a Z(,)-algebra.
G, 4: the additive group scheme over A
G, 4: the multiplicative group scheme over A
W,.4: the group scheme of Witt vectors of length n over A
Wy @ the group scheme of Witt vectors over A

A

G, 4 the additive formal group scheme over A

A~

G, 4. the multiplicative formal group scheme over A

N

W, 4: the formal group scheme of Witt vectors of length n over A
W4 :  the formal group scheme of Witt vectors over A
F : the Frobenius endomorphism of W4

V. the Verschiebung endomorphism of W4



EXTENSIONS OF ALGEBRAIC AND FORMAL GROUPS 205

[a]: the Teichmiiller lifting (a,0,0,...) € W(A)ofa € A
W(A)F-1al. = Ker[F — [a] : W(A) —> W(A)]
W(A)/(F —[a]): = Coker[F —[a] : W(A) - W(A)]
Hg (G, H) denotes the Hochschild cohomology group consisting of symmetric 2-cocycles
of G with coefficients in H for group schemes or formal group schemes G and H.
For a commutative ring B, B* denotes the multiplicative group G,, (B).

1. Witt vectors. We start with reviewing relevant facts on Witt vectors needed later.
For details, see [2, Chap. V] or [6, Chap. III].

1.1. For each r > 0, we denote by @,(T) = &,(Ty, Ty, ... , T,) the so-called Witt
polynomial

&) =T +pT/ +-+p'T,
in Z[T] = Z[To, Ty, . . . ]. We define polynomials
S, X,Y)=SXo,..., X, Y0,..., ¥})
and
P,X,Y)= P (Xo,..., X, Yo,..., Y})
inZ[X, Y] =Z[Xy, X1, ..., Yy, Y], ...] inductively by
@ (SoX, Y), $iX,Y), ..., 85X, Y)) =2,X) + &.(Y)
and
&, (P(X,Y), X, Y),..., P(X,Y)) = &, (X)P,(Y).

Then, as is well-known, the ring structure of the scheme of Witt vectors of length n (resp. of
the scheme of Witt vectors)

Wz = SpecZ[Ty, Ty, ... ,T,—1] (resp. Wz = SpecZ([Ty, T\, T», ...])
is given by the addition
To— SoX,Y), Ti— S1XY), Th— $HXY),...
and the multiplication
To— PX,Y), ' PIX)Y), b PhX,Y),.

We denote by W,, z (resp. Wz) the formal completion of W, z (resp. Wz) along the zero
section. W,, z (resp. WZ) is considered as a subfunctor of W, z (resp. Wz). Indeed, if A is a
ring (not necessarily a Z(p)-algebra), then

W, (A) = {(ao, a1, ... ,an—1) € Wa(A) ; a; is nilpotent for all i}
and

WA) = {(ao,al,az, ) e Wa(A) ; a; is nilpotent for all i and }

a; = 0 for all but a finite number of i
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1.2. The restriction homomorphism
R:Wyi1z =SpecZ[Ty, Ti,...,Ty] > W,z =SpecZ[To, Th, ... , Ty—1]
is defined by the canonical injection
To—»To, =T, ..., -1 Ty : Z[To, Th, ... , Ty—1] = Z[Tp, Th, ... , Ty],

and the Verschiebung homomorphism

Vi W,z =SpecZ[Ty, T1, ..., Th—1] > Wyy1z = SpecZ[Ty, T1, ... , T]
is defined by
To—~0, T'>Ty, ..., Tn>Tyhy: Z[To, T1, ..., Tyl = Z[To, Ty, ... , T—1].

Define now polynomials
F,(T) = F(To, ... . T, Tr41) € QlTo, ... , T;, Tr41]
inductively by
@, (Fo(T), ..., F(T) = ®rp1(To, ..., Tr, Tr41)
forr > 0. Then
FTy=F(Ty,..., T, T,41) € Z[Tp, ... , Ty, Tr 411
for each r > 0. We denote by

F:Wy41z=SpecZ[Ty, Ty,...,T,] > W,z =SpecZ[To, Ty, ..., Th-1]

(resp. F : Wz = SpecZ[Ty, T\, T, ...] > Wz = SpecZ[Ty, T, T, ... 1)
the morphism defined by

To> Fo(T), Tv > FI(T), ..., Tho1 > Fpi(T):
Z[T()’ T|9 »Tn—l] _)Z[TO’ Tl"" ’Tn]

(resp. To—> Fo(T), T\ — F|(T), Th — F(T),...:
Z[To, T\, T, ...1 > Z[To, T, T2, ... D) -
Then it is verified without difficulty that F is a homomorphism of ring schemes. It is ob-
vious that Wz is stable under F. (Cf. [1, Ch.9.1.3] or [7, Ch.0.1.3]) If A is an F,-algebra,

F : W4 — Wy is nothing but the usual Frobenius endomorphism. More precisely, define
polynomials G,(T) € Z[Ty, ... , T, T,+1] inductively by

Go(I) =T,
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and
Gr(T) = Gr(TO, s I Tr+[)
r—1
r—k__
Trpi =y 177 G (r>2),
— k=0
- r—1 —_ r—1 sor—k o
T — Y T V6@ =Y 12261 (p=2)
k=0 k=0
forr > 1.
LEMMA 1.2.1. With the above notation,
F.(T)=T? + pG,(T) mod p>.
PROOF. We prove the assertion by the induction on r. It is easily seen that Fo(T) =
Top + pT) .
Case I. p > 2. Assume that
Fi(T) =T! + pGi(T) mod p?
fork=1,2,...,r — 1. Then
— r—k r—k _
Fk(T)p k = Tkp +1 4 pr—k+1Tkp(P l)Gk(T) mod pr—k+2 ,

and therefore
k+1 r—k_
i + p’+lTkp(” l)Gk(T) mod p’+2.

r—k r—
PR = pMT!

It follows that

r r—1 r—1
r—k r—k+1 r—k __
Y PRMPT =Y T+ p Y T VG + pTFAT) mod prt
k=0 k=0

k=0
Noting
r r+1
S PFER@Y T = @, (FoT). ... (D) = G (Tov .. T Tr) = YT
k=0 k=0
we obtain
r—1
P! Z Tkp(p""—l)Gk(T) Y P FT=p T’ + ' T,y mod p'*?
k=0
and
r—1
F(D) =T7 + pTrsi — p S T "VGi(T)  mod p?.
k=0

p = 2. Assume that

Case II.
Fi(T) = T? + 2G((T) mod 22
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fork=1,2,...,r —1. Then

F? ™ = 177 4 6,1 + TP T 6 mod 277K
and therefore

H R = 2 4 22T NG @) + T T PG mod 2742
It follows that

r r—1 r—1
r—k r—k+1 r—k _ r—k_
Y 2R = 2T 2 ST V6 + TP 6T
k=0 k=0 k=0

+2"F(T) mod 2"+2.

Noting
r r+1
Y H*R@P = @ (Fo(D), ..., F(D) = Bri1(To, ... T, Trpn) = 3 2TF 7
k=0 k=0
we obtain

r—1
r—k r—k
NN TV6@) + YT PG + 2 F(1) = 2T+ 27 Ty mod 2712
k=0

and
-l r—k r—k 2
F(T) = T} +2T,41 = 2) (L% V6@ + 17 2 Gi(T)?} mod 2°.
k=0

1.3. Let A be aring and a € A. We denote the Witt vector (a, 0, 0, ...) with compo-
nents in A by [a]. Then we can verify without difficulty the following equalities in End.g W

(1) VlaP]1=[alV; (2) Fla]l = [a?]F;(3) FV = p.

Define a Witt vector p = (po, p1, p2,...) € W(Z) by p = (p — V)[1]. Then we have

Po(po) = p
and
Pn(po, P1y---,pn) =0 forn>1.
It follows that
VF=p—p=V[l]

and
n
VrFT — pn _ an_kvk_lﬁFk_l .
k=1

1.4. Now we define a variant of the Verschiebung morphism. Define polynomials

Vo(T) =V, (To, Ty, ..., Tr—1) € QITo, Ti, ..., Ty—1]
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inductively by
Vo=0
and

®,(Vo(T), ..., V(1) = p” &,_1(To, ..., Tr—1) for r>1.

LEMMA 1.4.1. With the above notation, V,(T) € Z[To, T}, ... , T,_1] and

0 mod p? (p>2),

Vo (T) = .
@ 2777 mod2* (p=2).

PROOF. We prove the assertion by the induction on r. It is easily seen that Vi(T) =
pPIT,.
Case I. p > 2. Assume that

Vi(T) € Z[Ty, Ti, ..., Tee] and Vi(T) =0 mod p?
fork=1,2,...,r — 1. Then
PP ™ =0 mod pr?,
since p" K +k>r+2ifr > 1and k <r — 1. It follows that
r
~ ~ ~ r—k ~
&, (Vo(T).... . Ve(M) = ) p*V()?" = p'Vp(T) mod p'+*.

k=0
On the other hand,

pP ®,_\(Ty, ..., T,—1)) =0 mod p’*2.

It is now verified that
VA(T) € Z[Ty, Ty, ... , Tr_1]
and
V,(T)=0 mod p*.
Case II. p=2. Assume that
Vi(T) € ZITo, Th, ..., Tre] and  Vi(T) = 272" mod 22
fork=1,2,...,r — 1. Then
V¥ =212 mod 2rk42

and therefore

V() ™ =222 mod 272
Hence

,
&, (Vo(T), ... . V() = Y 2V =277 +27V,(I) mod 2742,
k=0
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since 2’ % +k>r+2ifr > 2 and k < r — 2. On the other hand,
2@, (T, ..., T—1) =0 mod 2"+?
if r > 2. It is now verified that

Vr(T) € Z[T07 Tlv MRS} Tr—l]

and
V(1) =272 mod 22.
1.5. We denote by
V:W,z=SpecZTo, Th, ..., Ty_1] = Wny1z = SpecZ[Ty, T, ... , Tp]
(resp. V: Wz = SpecZ[Ty, T, T»,...] > Wz = SpecZ[Ty, T\, T>, ...])
the morphism defined by
To> Vo(T), Ty Vi(T), ..., Ty> Vo(T) : Z[Ty, Ti, ..., Tyl = Z[Ty, T1, ... , Tn_1]
(resp. |
To+> Vo(T), Ty Vi(T), Th > V(T),...: Z[To, Ty, Ts,...1 > Z[Ty, T\, T2, ... ]).

Then V is a homomorphism of group schemes. It is obvious that Wz is stable under V.
It is easily verified that
() pV=I[plV; @ VIe"1=[alV; () FV =[pFL;(4) VF =[p]l—p.
PROPOSITION 1.6. Let [A] denote the Witt vector (A, 0,0, ...) with coefficients in
Z[A). Then F — [A] : Wyi1,214] = Wa.z(4] is faithfully flat.

PROOF. By [5, Ch.IV, Th.11.3.10], it is sufficient to prove that the morphism (F —
[ADs : Wyy1,s = W, s of the fibers is faithfully flat for each s € Spec Z[A], since W11 z(4]
is flat over Z[ A]. Hence the assertion is a consequence of the following sublemmas.

SUBLEMMA 1.6.1. F —[A] : Wpi1.z(1/p, A1 = Wa,z[1/p, 4] is smooth and surjective.
PROOF. Note first that
o> &(T) =Ty, &1 > &(T) =T + pTy, ...,
n n—1
Gy > Pu(T) =T + pT" +---+ p"T,
gives rise to isomorphisms
Byt : Wati 21/p, a1 = ALY, 4 = SpecZll/p, All®, ..., Pyi, Pyl
and
Dy i Waz11/p,A] > AZ11/p.a) = SpecZ[1/p, Al[Po, ..., Pn-1].

Now define an automorphism = (1) :A;EI/P‘A] S A;?'ll/p'/” by

n—1

Pog—> Py, P> D —ADy,..., P> D, — AP D,_;.
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Then we have a commutative diagram

z2(A)op

~ +1
Waii,zii/p,a] — A%[l/p,A]

F—[A]Jv lpr
2
Wazii/p.Al — AZ[1p. 47 -
where pr : A;{’l'/ P e A;“ /p Al denotes the projection defined by
D> Dy, P> Dy,..., D> D,
It follows that F — [A] : Wyy1,2{1/p,41 = Wa,z[1/p, ] is smooth and surjective.

SUBLEMMA 1.6.2. F — [A] : Wui1F,1a] = WarF,(4) is factorized through R :
Wn+|,pp[A] — Wn,pp[/\], and the homomorphism W,,,pp[A] — W,,,pp[A] induced from F —
[A] is finite and flat.

PROOF. By Lemma 1.2.1, F : Wny1£,a] = W, (4] is factorized to Wy11 F, 4] —
Wh,F,14] —F> W,,,pp[A],where F: Wn,pP[A] — Wn‘pp[/\] is the Frobenius morphism. Put now
(Fo(T), F\(T), Fx(T),...) = (F —[A)T € W(Z[Ty, Ty, T, ... , Al)..

Then we have

E(T)=TP — AP’ T, mod (p, To, Ti,...,T,—;) for r>0.
It follows that FylAllTo, Ty, ... , Tyh—1] is free of finite rank as an FplAllTo, T, ..., Th—)-
module via
F —[A): Wy, =SpecFplTo, Th, ..., Tp—i]l > Wn,r, =SpecF,[To, Ty, ..., Tp—1].

COROLLARY 1.7. Let Abearinganda € A. Then F —[a] : Wpy1.4 = Wy is
faithfully flat.
COROLLARY 1.8. Let Abearinganda € A. Then F — [a] : W4 — Wy is faithfully

flat.
2. Artin-Hasse exponential series. Statement of the theorem.
2.1. Let Abearingand A € A. We define a group scheme G over A by
G™ = Spec A[T, 1/(1 + AT)]
with

(1) the multiplication: T —» T ®14+1QT +AT ®T,

(2) theunit: T — O,

(3) theinverse: T +— —T /(1 +AT).

Moreover, we define an A-homomorphism a® : G® — G, 4 by

U 1+AT : A[U, U1 - A[T, 1/(1 +AT)].
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If A is invertible in A, & is an A-isomorphism. On the other hand, if A = 0, G is nothing
but the additive group G, 4.

Now we recall the definition of Hochschild cohomology. For details, see [2, Ch.IL.3 and
Ch.IIL.6].

2.2. Let A be aring and G(X, Y) a formal series in A[[X, Y]]* (resp. a fraction in
AlX, Y, 1/(1 + AX), 1/(1 + AY)]*). Recall that G(X, Y) is called a symmetric 2-cocycle
of G® (resp. GM) with coefficients in G4 (resp. Gm.4) if G(X, Y) satisfies the following
functional equations:

1) GX, )DGX+Y+AXY,Z)=GX, Y+ Z+AYZ)G(Y, 2),

2) GX,Y)=G,X).

We denote by Z2(G®, Gy 4) (resp. Z2(G™, Gy 4)) the subgroup of A[[X, Y]]* (resp.
afraction of A[X, ¥, 1/(1+1X), 1/(1+1Y)]*) formed by the symmetric 2-cocycles of G»
(resp. GW)y with coefficients in Gm A (tesp. Gy, 4).

Let F(T) be a formal power series in A[[T]]* (resp. a fraction in A[T, 1/(1 + AT)]*).
Then F(X)F(Y)F(X + Y + AXY)™! € Z2(GW, G p) (tesp. Z2GW), G a)). We
denote by BZ(QA(”, é,,,'A) (resp. BZ(Q("),G,,,,A)) the subgroup of ZZ(QA("), Gm’A) (resp.
Z2(GW, G, 4)) of the symmetric 2-cocycles of the form F(X)F(Y)F(X + Y + AXY)~ L.
Put

HZGD, G p) = Z2GD, G p)/BHGD, G, a)
and
HE(GP, Gpa) = ZHGP, G, a)/BHGD, G ) -

HZ(GM, Gy p) (tesp. HZ(G™, Gy, a)) is isomorphic to the subgroup of Ext4(G*), G, 4)
(resp. Ext4(G™, Gy, 4)) formed by the classes of commutative extensions of G* by Gy, 4
(resp. G by G, 4), which split as extensions of formal A-schemes (resp. A-schemes).
Hereafter we give an explicit description of HomA-g,(QA(’\), Gy 4) and Hg(gA('\), Gm.a)
when A is a Z(p)-algebra.
2.3.  We define a formal power series E, (U, A; T) in Q[U, A][[T]] by

e k k=1,
Ep(U, 4;T) = L+ ATVA T (1 4 ar' ) @r =wir i,
k=1
Recall now the definition of the Artin-Hasse exponential series

r

TP
Ep(T) = exp ( > 5

r>0

) € Z(p)[[T]] .
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THEOREM 2.4. With the notation above we have:

[] Epwat-'ThD' /e if p>2,
(k,p)=1
Ep(U,A;T) = -
l—l EP(UAk—lTk)l/k[ 1—[ EP(UAZk—1T2k)l/k] ifp=2.
(k,2)=1 k,2)=1

PROOF. Letn = p"m with (m, p) = 1. Then the coefficient of 7" inlog E,(U, A; T)
is given by

k_l(Apk)n/pk

UenTian | s L{(E)pk _ (H)pk_' ] (—1yr
A n = pkl\a A n/ pk

_U(—l)n_l/ln_i_i:(—l)"/pk_l{ g pk_ 2 » N
@) -G e

k=1

since
k k—1
U 1 U\’ U\? Kk
log E, (U, A; T)=——log(1+AT)+Z—;{(—) —(—) }log 1+ AP TP ).
A Pl 4 A A ( )
Ifp>2,

k —_ r
G Vi S SYCVilaug TUA Y (E R PV N A
A n pat n A A n A )

On the other hand, the coefficient of 7" in

-1 k—1
> ( I: log E, (U A¥=1Tk)

(k,p)=1
is given by
(_l)m—l (UAm—l)p’
m pr |
Ifp=2,

U (_l)n—lAn r (_l)n/pk—l U p* U p*!
don G () e
A n pa n A A

1U

; '/—‘An (2 ‘f n) .

1 U\ 2 U\

(=) A"——|— A" (2 .

n (A) " (A) @im
On the other hand, the coefficient of T” in

1 1
> -]Elong(UAk‘lTk)— > ElogE,,(UAzk‘sz")
*k,2)=1 *,2)=1
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is given by
1
" UA-! 1tn),

1 (UAm—l)2' 1 (UAZm—l)Z’_l
m 2r m 2r-1

2|n).

COROLLARY 2.5. The formal power series E,(U, A;T) has its coefficients in
Z»lU, Al

PROOF. Asis well-known, (1+7)!/* € Z(,,)[[T]]if k is prime to p. Note that E,(T) €
Z»)[[T1). It then follows that E,(U AK~'Tk) € Z,[U, AJI[T]].

2.6. LetAbeaZ-algebraanda, A € A. We define a formal power series E ,(a, A; T)
in A[[T]] by

[T Eptart-trhycni if p>2,
(k,p)=1
Ep(a, \;T) = -1
I1 E,,(a;\"-‘T")'/"[ I Ep(aAZk_1T2k)'/k:| ifp=2.

(k,2)=1 (k,2)=1

EXAMPLE 2.6.1. We have an equality E,(1,0; T) = E,(T).
EXAMPLE 2.6.2. We have an equality E,(A, A; T) =1+ AT.

REMARK 2.6.3. The formal power series E,(U, 1; T) was introduced by Dwork [3,
Sect.1] as F(t,Y). Furthermore, he proved that E,(U, 1;T) € Z,)[U][[T]] by a differ-
ent method. We can deduce that E,(U, A;T) € Z,)[U, A][[T]] from E,(U,1;T) €

Zp[UIITII
2.7. Let A be a Z(p)-algebra, A € A and @ = (ag, a1, a2, ...) € W(A). We define a
formal power series Ep(a, A; T) in A[[T]] by

Ey@ A T) = ]O_o[ Epax, AP TP) .
k=0
LEMMA 2.8. LetU = (Uy, Uy, Us, ...) and
(Fo(U), Fy(U), F(U),...) = (F = [AP~'DU € W([Up, U\, Ua, ... , A)).
Then we have
E,(U, A; T) = (1 + AT)®@/A ﬁ(l + AP TP @@ =27 0Dy pk a7t
k=1

oo
= (1 + ATV T (1 + AP 772k o) Fr O Fica 0 47"
k=1
in Z(p)[UO’ Ul9 U2, ey A][[T]]-
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COROLLARY 2.9. LetU = (Up,Uy,Us,...), V=WV, V1, Vo,...)and S(U, V) =
So(U, V), S1(U, V), $2(U,V),...). Then we have

E,(U, AsT)Ep(V, A;T) = Ep(S(U, V), A; T)
in Z(p)[UO, Uly U27 LR | VO’ V]s V2’ L ] A][[T]]'
COROLLARY 2.9.1. Let A be a Z(p)-algebra, A € A anda,b € W(A). Then we have
Ep@, A T)Ep(b,A;T) =Ep@+b,AT).

REMARK 2.10. Let A be a Z(,)-algebra and F(T) € A[[T]] with F(0) = 1. Then
F(T) is written uniquely in the form ]_[(k'p)=] Ep(ag, A; Tk) (ar € W(A)).

PROPOSITION 2.11. Let A be a Z,y-algebra and a = (ap,ay,az,...) € W(A).
Assume that ) is nilpotent in A. Then E,(a, A; T) € A[T] if and only ifa € W(A).

PROOE. Put

[e.e]
Ep(U, A;T) =y cx(U, HT*.
k=0
If we assign to Uy the weight p* and to A the weight 1, respectively, then c; (U, A) is isobaric
of wieght k. Moreover,

cpr(U, A)=U, mod (Up, Uy, ...,Ur—1, A).

Now assume that F(T) = Ep(a,A; T) € A[T]. Letd = deg F(T) and a the ideal of
A generated by A and the coefficients of F(T') except the constant. Then a is nilpotent, since
F(T) is invertible in A[T]. Put s = [logp d]; the greatest integer not greater than logp d.
Then we can verify that '

1) areaifr <s; 2) as4j€ a?’ for all j > 0.

Conversely, ifa € W(A), then c(a, A) is nilpotent for all k > 0, and cx(a, \) = O for
all but a finite number of k.

LEMMA 2.12. LetU = (Uy, Uy, Uy, ...). Then we have
E,(U, A; X)Ep(U, A;Y)
E,(U,A; X +Y + AXY)

B 1"—"[ (1+ A7 XP") (1 + AP YP")
- 1+ AP*(X +Y + AXY)P

(@e@)-27 " PV Wy pk APt
k=1 :l
COROLLARY 2.13. Let
(Fo(U), Fy(U), F(U), ...) = (F — [AP~')U € W(Z[Up, Uy, Us, ... , Al)

and

A =20, U1, Uy, ..., A/ (Fo(U), FL(U), BU),...).
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Then we have
E,(U, A; X)E,(U, A; Y) = E,(U, A; X + Y 4+ AXY)
in A[[X, Y]].
PROOF. Put B = Q[Up, Uy, Uy, ..., A, 1/Al/((Fo(U), E1(U), F(U), ...). Then we

have

1 - 1 - . ~
A ) - AP Do () = o D1 Fo@. @) ..., e @) = 0

in B. It follows from Lemma 2.12 that

E (U, A; X)E,(U, Ay Y)

E,(U, A; X +Y + AXY)
in B[[X, Y]]. By Corollary 1.8, A is flat over Z[A], and therefore the canonical map
A[[X, Y]] — BI[X, Y]] is injective. Hence we obtain the equality

E,(U, A; X)E,(U, A;Y)=E,(U, A; X +Y + AXY)

in A[[X, Y1].

COROLLARY 2.14. Let A be a Zp)-algebra, a € W(A) and . € A. If F(a) =
[AP~"a, then we have

Ey(a, A X)Ep(a,X;Y) = Ep(a, A; X +Y +AXY).
2.15. LetU = (Uy, Uy, Uy, ...). We define a formal power series
Fp(U’ A’ X7 Y) e Q[U07 Ul, U2’ sy A][[X» Y]]
by

Fo(U, A; X, Y) =
p =11 1+ AP*(X +Y + AXY)P

o [(1 + AP XPY(1 + AP YPY
k=1

:lm_l(U)/p*A”"
It is readily seen that
FpU A X, VF,(U, A X+ Y+ AXY, Z) = Fp(U, A X, Y+ Z+ AYZ)F,(U, A Y, Z)
and
Fp(U, A; X, Y)=F,(U, A Y, X).

LEMMA 2.16. Let U = (Uo, U1, Uy, ...). Then Fp(U, A; X,Y) € Z(,)[Uo, Uy,
Uz, ..., AJX, Y]I.

PROOF. Put
(Fo(V), F{(V), F(V),...) = (F = [AP"'))V e W(Z[Vo, V1, Va, ..., AD)
and

B =Z,)Uo, U, Uy, ..., Vo, Vi, Vo, ..., A/ (Fo(V) — Up, E1(V) = Uy, Fx(V) = Uy, ...).
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Then B is flat over Z()[Up, Uy, Uz, ... , A] by Corollary 1.8, and
Ep(V, A; X)ER(V, Ay Y)
Ep(V,A; X +Y 4+ AXY)

F,(U, A; X, Y) = Fp((F — [AP~' )V, A; X, ¥) = e B[[X, Y]].

Note now that

O[Uo, Uy, U, ..., A1N B =Zp)[Up, Uy, U, ..., A].

COROLLARY 2.17. Let A be a Z(p)-algebra anda € W(A). Then
Fp(a, 2 X, Y) € Z2G™, G a).
If X is nilpotent and a € W(A), then
Fp@, 1 X,Y) € Z2(GW,Gp a) .

PROOF. The first asseertion follows directly from Lemma 2.16. For the second asser-
tion, we have only to verify the following lemma.

LEMMA 2.18. Let A be a Z)-algebra and a € W(A). Assume that A is nilpotent.
Then Fy(a,X; X,Y) € A[X, Y] ifand only ifa € W(A).

PROOF. Put

Fp(U, A; X, Y) =) cij(U )XY/
iJj
If we assign to Uy the weight p**! and to A the weight 1, respectively, then c; (U, A) is
isobaric of weight i + j. Moreover,
Xpr+l + Ypr+l _ (X + Y)pr+l

Y iU, HXY =0, > mod (Up, Uy, ..., Ur_1, A).

i+j=p"
Now assume that F(X,Y) = Ep(a,A; X,Y) € A[X,Y]. Letd = deg F(X,Y) and a
the ideal of A generated by A and the coefficients of F (X, Y) except the constant. Then a is
nilpotent, since F (X, Y) is invertible in A[X, Y]. Puts = [log » d]. Then we can verify that
(1) a eaifr<s—1; (2) asy; €a?’™ forallj>0.
Conversely, ifa € W(A), then c;j(a, A) is nilpotent for all (i, j) # (0, 0), and ¢;j(a, 1) =
0 for all but a finite number of (i, j).
2.19. Let A be a Z,-algebraand A € A. Leta € W(A). By 2.14 and 2.11, we can
define homomorphisms
£3: WA 5 Hompg (G, G a): a > Ep(@, i T)
and, when A is nilpotent,
£3: WA & Homygr(GP, Gm.a): a > Ep(a, 1iT).
Moreover,

Fp((F —[A""Da, A; X, ¥) € BH(GW, G a)
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and, if A is nilpotent and a € W(A),
Fp((F = [**"'Da, ; X, Y) € B2(G™, Gm.) .
By 2.17 and 2.18, we can define homomorphisms
Er s WA/(F=WP7') > HFGP, G a); @ Fp@, 1 X, Y)
and, when A is nilpotent,
Er: WA/(F =W~ = HF(GY, Gpa); a > Fp@ 1 X, Y).

With these notations, we can state our main theorem as follows.

THEOREM 2.19.1. Let A be a Z(p)-algebra and ) € A. Then the homomorphisms

Eg . W(A)F——[Ap_l] g HomA-gr(gA()‘)’ ém,A) il
4 WA/(F -7 > HZGP , G, a)
are bijective. Moreover, if A is nilpotent, then the homomorphisms

Sg : W(A)F_WH] — HomA-gr(gm, Gn.a),
£l WA/(F = W"") > HZGM, Gp.p)
are bijective.

3. Proof of the theorem. Hereafter, we denote by P the set P = {p’ [[ > 0} C N.

LEMMA 3.1. Let A be aZy-algebra, A € A, and F(T) € A[[T)*. If F(T) satisfies
the functional equation F(X +Y +AXY) = F(X)F(Y), then there existsa € W(A)F'WH]
such that F(T) = Ep(a, A; T).

PROOF. As is remarked in 2.10, F(T') is written uniquely in the form
F(T) = [] Ep@,sT", axeW(A).
(k,p)=1

Now we put

a=a and G(T)= [] Ep@.rTh.

(k,p)=1
k>1

Then we have that
(G(X)G(Y)G(X +Y 4+ rxY)~H)~!
=Ep@a, A X)Ep@ A Y)Ep@ A X +Y +AXY) ' = F,(F — A" 'Da, A; X, Y).
Note that if F,((F — [A?~])a, A; X, Y) # 1, then

Fp((F —MP""Ma, A X, Y) =1+ He+ Hyyy + -+
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where H; is a homogeneous polynomial of degree j and k is a power of p. On the other hand,
if G(T) # 1, then

G(T) =1+ cT* mod degree k + 1
with ¢ # 0 for some k ¢ P. Hence
G(X)G(Y)G(X + Y +AXY)™!
=1 +c{Xk +Yf (X + Y+)»XY)"} mod degree k + 1
=14cX+ Y= (X +Y)*}) mod degree k + 1,

and we come to a contradiction. It follows that G(T) = 1 and F,((F — [)J’"])a, AMX, YY) =
1, and therefore (F — [AP~'])a = 0.

COROLLARY 3.2. Let A be a Z(,y-algebra, » € A and F(T) € A[T]*. Suppose that
A is nilpotent. If F(T) satisfies the functional equation F(X +Y +AXY) = F(X)F(Y), then
there exists a € W(A)F_WH] such that F(T) = Ep(a, ; T).

PROOF. Combine Lemma 3.1 and Proposition 2.11.
3.3.  We conclude immediately the bijectivity of £ : W (A)F - Hom ¢ (G,

G 4) and £9 W(a)F-r=11 Hom 4.gr(G*), G, 4) from of Lemma 3.1 and Corollary
3.2, respectively.

LEMMA 3.4. Let A be a Z(p)-algebra, and ). € A. Then for F(X,Y) € Z2(é<*>,
ém.A) C A[[X, Y11, there exista € W(A) and G(T) = nkﬂ,(l + ek T*) € A[[T1]* such
that

F(X,Y) = Fp(a, » X,Y)GX)GY)G(X +Y +1XY)™".
PROOF. Dividing F(X, Y) by its constant term, we may assume that F(X,Y) = 1
mod degree 1. Assume now that there exista;y € W(A) and G¢(T) € A[T] such that
Fplap, 1 X, V)Gr(X)Gr(Y)Gr(X + Y + )»XY)_l = F(X,Y) mod degreek.
Let H(X, Y) be the homogeneous component of degree k of
F(X, V){Fp(ar, 1; X, V)Gr(X)Gi (V)G (X + Y +AXY) ")
Since
F(X, Y){Fp(ar, »; X, V)Gr(X)Gr(Y)Gr(X + Y +AXY) 1} € Z2(GWV, Gy ),
H(X,Y) satisfies
HX+Y)+HX,Y)=HX,Y+Z)+ H(Y,Z) and H(X,Y)=H(, X).
By Lazard’s comparison lemma [8, Lemme 3], there exists an element a € A such that
a{Xk+ Yk — (X + )k} if kis not a power of p,
H(X,Y) = an + Yk — (X4 Y)k
p

if k is a power of p.
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(1) When k is not a power of p, put E(T) = 1+ aT* and Gi+1(T) = Gi(T)E(T). Then
we have

Fplak, 1 X, V)G 1 (X)Gip1(Y)Gri1 (X + Y +AXY)™! = F(X,Y) mod degree k + 1,
noting that
EX)EX)EX +Y +AXY)™!
=14a{X*+Y*—(X+Y +2XY)"} mod degree k + 1
=1+a(X*+Y* = (X +7Y)*} mod degree k + 1.

(2) When k = p", putaxy| = ar +b. Here b = (b;);>0 with b,_; = a and b; = 0 for
i #r — 1. Then we have

Fplaps1, 1 X, V)G (X)Gk (V)G (X +Y + AXY)"'= F(X,Y) mod degreek + 1.
Continuing this process, we find a € W(A) and G(T) € A[[T]] such that
F(X,Y)=Fpla, X, Y)G(X)GY)G(X +7Y +AXY)".

LEMMA 3.5. Let A be a Z(p)-algebra and A € A. Assume that A is nilpotent. Let
F(X,Y) € Z2(GD, G 4) C A[X, Y)*. Then there exista € W(A) and G(T) = [Tegp(1+
cxT*) € A[T1* such that

F(X,Y)=Fp@a, 1 X,Y)G(X)G(Y)G(X + Y + AXY)7!.

PROOF. Asabove, dividing F (X, Y) by its constant term, we may assume that F (X, Y)
= 1 mod degree 1. By Lemma 3.4, there exista = (a;)i>0 € W(A) and G(T) = ]_[k¢,,(1
+ cxT*) € A[[T])* such that F(X,Y) = Fp@a; X, Y)G(X)G(Y)G(X + Y + AXY)~h
We prove thata € W(A) and G(T) € A[T]*.

Let d be the degree of F(X, Y) and let a denote the ideal of A generated by A and the
coefficients of F (X, Y) except the constant. Since the polynomial F(X, Y) is invertible, a is
nilpotent.

Now observe the following:

1) Forj ¢ P, put

o0
A+ XA+ YD1+ (X +Y +aXY) ) = 14> He(X, Y),
k=1
where Hi(X,Y) is homogeneous of degree jk. Then the ideal generated by the coefficients
of H|(X, Y) coincides with (c;), and the ideal generated by the coefficients of Hy(X,Y) is
contained in (c;, MK fork > 1;
2) Put

(e 9]
Fp(0,...,0,a;,0,... . A X, ¥) =1+ Y Hi(X,Y),

i k=1
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where H(X, Y) is homogeneous of degree p +1k. Then the ideal generated by the coeffi-
cients of H) (X, Y) coincides with (a;), and the ideal generated by the coefficients of Hy (X, Y)
is contained in (a;, M fork > 1.
These imply the following:

1) If j isnotapower of p and (s — 1)d < j < sd, thenc; € a°;

2) If(s—1)d < p't! <sd, thena; € a.
Hence, a; and c; are nilpotent for all i and j, and are zero for all but a finite number of i and
j-

3.6. Now we prove the bijectivity of £} : W(A)/(F —[AP~1]) — H&(QAO‘), Gum. 4) and
£V W(A)/(F =227 > HZGD, G, a).

Lemma 3.4 and Lemma 3.5 imply the surjectivity of S[l‘ : W(A)/(F — AP71]) —
HE(GD, G p) and £} : W(A)/(F — [AP7']) > HZ(G™, G, 4), respectively.

Now assume that F,(a, A; X, Y) € Bz(éa,A, (A?m’A) fora € W(A). Then there exsits
F(T) € A[[T]]* such that

F(X)F(Y)F(X+Y +AXY)"' = F,(a, A X, ).
Put F(T) = [T, Eplck. A: TX). Then
Fp(a. 1; X, Y)Fp((F — AP~ Db, 4 X, V) ™!

=[] Eplex, 2s X)Ep(er, s YOEp(cr, 2 (X + Y +AXY)5) 7,
k¢P
where b = (cpr)r>0. As in the proof of Lemma 3.1, we see that cx = 0 if k is not a power of
p.and hence Fp(a, A; X, Y) = F,((F — [AP7']Db, A; X, Y). It follows that £} : W(A)/(F —
AP~1) — HZ(GW, Gy, 4) is injective. Similarly, itis seen that £} : W(A)/(F —[AP~']) —
HZ(GP, G, 4) is injective.

EXAMPLE 3.7. If A =1, G™ is isomorphic to the multiplicative formal group Gy, 4.
Then EndA.g,ém,A is isomorphic to Ker[F — 1 : W(A) - W(A)].

If A is of characteristic p and Spec A is connected, Ker[FF — 1 : W(A) — W(A)] is
isomorphic to Z, = W(F ). Hence all the endomophisms of Gm, 4 = Spf A[[T]] are given
by T +— Ep(@a,1;T) -1 (a € W(Fp)) when the formal group law of G,,,YA is given by
FX,Y)=X+4+Y+XY.

We conclude this section by giving a formula concerning a functorial isomorphism £°.

REMARK 3.8. Put

A=Z ny p”A pn_lAp pn_zAPZ pApn—l Apn
(p) ) £ M ’ M ’ M LR M ) M

We define a A-homomorphism of formal groups ¥,n : G — GM) by

(1+ AT)P" — 1
'_)—
M

T CA[T] - A[T]].
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Let B be an A-algebra. Under the identifications
Homp.gr(G™, G p) = W(B)F 1471
and
Homyp.gr (G, Gy 5) = W(B)F ™",
IIJ,’,",, : Homg_gr(é(M), Gm'B) — HomB_g,(Q(A), émvg) is given by

pn—k+lAp"“l

n _[ ptr—kp pP* AP"
vk = g —vkly p 4 a Vi — |a.
R R s It

Indeed, leta € W(B)F—M"""], By Corollary 1.8, Ker[F — [MP~'] : Wy — W,] is flat
over A. Therefore there exist a flat A-algebra B, a surjevtive homomorphism of A-algebras
@ B — Banda e W(I})F_[MP—I] such that ¢(a) = a. Hence we may assume that B is flat
over A.

Putnow A" = Z,)[A, M, A/M,M/A] and B = B ®4 A’. Then B is a subring of B’.
Define an A’-homomorphism of formal groups [M/A]: GM) — G by

M , /
T~ ZT AT — A'[IT]).
Then [M/A] is an A’-isomorphism and [M/A]o W,» = p". We have obtained a commutative
diagram

[M/AT
_—

v
W(B/)F—[Mp_]] P W(B/)F—[Apfl] W(BI)F—[MP_I]

| f

WB)F-MP' . w(ByF-1a77"

'4
ph

Note that
(1) (p™y* = p": W(B)F-M""1 . w(B"F-IM"""] since

1+MT) —1
Ep(a, M; (_+__)—
M

) = Ep(a, M;T)" = E,(p"a, M; T);
() [M/AT* = [M/A]: W(B"YF-14"""1 s w(B"YF-M"""] gince
[M/A]*Ep(a, A;T) = E,, (a, A; %T) = E,(IM/Ala, M; T).

We have Fka = [MP"'~']a since Fa = [MP~']a. Hence we obtain
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n k+lAp !

([ [ e P 4

= Z{V""[p"—kHM”k_l_']a - Vk_lV[p("_k)pMpk_l]a} + V' MP" " a
k=1

n
— Z{Vk—l[pn_k+1]Fk_la _ Vk—-l[pn—k]"}Fka} + VnFna
k=1

— Z{Vk_l[pn—k+l]Fk_]a _ Vk—l[pn—k]([p] _ ﬁ)Fk_la} + VnFna
k=1

n
— an_kvk_lﬁFk_la-l- V'F'g = pna.
k=1

4. Application: A case of extensions of group schemes over a discrete valuation
ring. In this section, we complete a study on extensions of group schemes over a discrete
valuation ring, treated in the previous articles [9], [10] and [11]. In particular, we describe
some functorial maps in terms of Witt vectors.

Throughout the section, A denotes a discrete valuation ring and m (resp. k) the maximal
ideal (resp. the residue field) of A. We denote by 7 a uniformizing parameter of A and by v
the valuation of A normalized by v(;r) = 1, if there are no restrictions. We refer to relevant
results of [9, 10, 11].

4.1. LetA,u € m—{0}. Putn = v(u) and Ag = A/m". Let F(T) € A[T], satisfying

1) FO =1 modu; 2) FX)FY)=F(X+Y +AXY) mod u.

We define a smooth affine group scheme £*#F) over A as follows:

1 1
EQmF) — g ecA[T,T, , ]
P O 0 T ATy F(To) + uT)

with
1) multiplication:

To—> AT ®@Ty+To®1+1® Ty,
Ti—>pulh T+ T ® F(To) + F(Tp) ® T

1
+ ;[F(To)®F(To) ~FQATh®To+To®1+1®Tpl;
2) unit:

1
To—>0, Ti+ ;[I—F(O)]:
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3) inverse:

To 1 1 To
Io»>»——, TT'»>—|————F |- .
ATp+1 w LpTh + F(To) ATo+1

A homomorphism of group A-schemes

1 1
Wby g®iiF) = Spec Al Tp, Ty, : ]
* P O T ATy F(To) + o1,
— (Gm,a)* = Spec A[Up, Uy ', Uy, UT!
is defined by
(Uo, Uy) = (1 + ATy, F(Tp) + uTh) :
A[U L v IJ A[T T ! ! ]
s T , T | =™ N N 5 .
"o " Ty F(To) + oy
The generic fiber a}?’“ ) is an isomorphism.

Moreover, we define a homomorphism of group schemes

_ 1 1
GW = SPCCAI:T, ] — EQmF) — SpecA[To, Ty, ]

14 uT 14+ ATy F(Ty) + uT;

by

1 1 1 1
To—0, T'—» T+ —[1—-F@O)]:A|Ty T, s — A|T,
° e T U= PO [" YT+ AT F(T0)+/LT1] [ 1+uT]

and a homomorphism

| 1 1
EXMIF) — Spec Al To, Ty, , ® =3 ecA[T, ——]
pec A\ To. T s Ty v | 9 P 1+ AT

by

1 1 1
T Ty :A|T, A|To. Ty, : :
o [ 1+kT]_) [0 b T AT F(To)+uT1]

Then the sequence of group schemes
00— GgW 5 ghumsF) _, c) 5 o

is exact.
F > [EXH# )] gives rise to a surjective homomorphism

3 : Homa, ¢r(G?Y, G ay) — Extl (GV, W),

and Ker 9 is generated by the class of 1 + AT. (Cf. [9, Sect.3], [11, I1.1.2])
4.2. We purchase the homomorphism

9 : FaW (A0) = Homaygr(G™, Gm.4,) — Exth(GV, GW).
Leta € W(Ao)F "1, Then Ep(a, »; T) € Ao[T] and we have
Ey@ A;0)=1 and Ep(a,A; X)Ey(a, ;YY) =Ep(a,r; X +Y +2XY).
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Then, if we take a lifting F(T') € A[T] of Ep(a, A; T), we have
FO =1 mod u
and
FX)FY)=F(X+Y+AXY) mod u.

The class [E*# )] e Extl (G*, G#) depends only on a. Moreover, let @ € W(A) be a
lifting of @ € W(Ap). Then

F(T)=Epy@ A T) mod p.

4.3. Letm be an integer with 1 < m < min(v(A), v(u)), and let A| denote the residue
ring A/m™. Let F(T) € A[T], satisfying F(0O) =1 mod pand F(X)FY)=F(X+Y +
AXY) mod u. We denote also by F(T) the reduction of F(T) modulo m™. Then F(T) €
(A|[T))*, and T > F(T) defines a character of G, 4,. Moreover, the fiber 81(:‘1’”;” is a

commutative extension of G, 4, by G, 4,. The multiplication of Sg‘l’“ LR Spec A [Ty, T1]
is given by

To—>ToR1+1Q0Ty, T'»TIQF(Ty)+F(Ty)@T1 +G(Thy®1,1 1)),

where G (X, Y) denotes the reduction of [F(X)F(Y) — F(AXY + X + Y)]/u modulo m™.
Put
G(X,Y)
CX,Y)= ———— € A|[X,Y].
(X,Y) FOOFT) 1[X, Y]
Then C(X, Y) is a symmetric 2-cocycle in Z%(G, 4 1+ Gga,4,). Define a group scheme €& =
Spec A [Ty, T;] with the multiplication

To-»The1+10Ty, T'/—~TiR1+1TT1+C(Th®1,1QTp).
It is easily verified that (Tp, 77) +— (7o, F(To)"Tl) : A[To, T1] — A\[Top, T;] defines an
isomorphism Effl’“ F) 5 € of extensions of G, 4, by Ga .

Assume now that the residue field of A is of characteristic p > 0. As is well-known,
Ext!(Gya,,Gu ) = H}(Gg,a,.Ga, 4,) is generated by 2-cocycles
xP 4y (x4

G(X,Y) = » (k=1)

as an A;-module. (Cf. [2, Ch.II,Th.4.6])
Leta € W(Ag)F~"7'I. Let F(T) e A[T] be a lifting of Ey(a, A T) € Ao[T], and
a € W(A) alifting of a. Put

(Foa), Fi(a), F2(a), ...) = (F — [AP"))a € W(Ay).
Then, by the assumption,
Fr(@=0 modm"

for each k > 0. With these notations, we have:
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PROPOSITION 4.3.1. [52’“‘”] € HZ(Ga.a,, Ga,a,) coincides with the class of
oo — ~
Fi_
S @ ey
— M
The assertion follows immediately from the following lemma.
LEMMA 4.4. Let B=Z,[l1], A € BandU = (Up, Uy, Uy, ...) € W(B). Put
(Fo(U), Fi(U), F(U), ...) = (F — [AP~')U € W(Z[Up, U, U, ..., AD).

Let m, n be integers with 1 < m < n. Assume that
(1) A=0 mod [T"; (2) Fu(U)=0 mod [1" forall k > 0.
Then

i E,(U, A; X +Y + AXY)

o0 k k k

- XP 4+ YP — (X +Y)P

‘ : ZFk_,(U) + XA od 1+
Ep(U, A DE,(U A;Y) — =

p

PROOF. By the assumption (2), we have

&1 (FoU), Fi(U), ..., Fe_y(U))
= R + pE P + -+ P R (U)
= pk_lﬁk_l(U) mod 7" .

Hence, by the assumption (1), we obtain

(14 AP TPy Pt Fo@). Fr(U).... Feea (U))/p 47"

1 ~ - -
EL+F¢hm%amfwmp”,m4GMT“
k

- TP
=1+ F_j(U— mod 1"t
P

Therefore we have

oo
= (14 AT)Vo/4 l_[(l + AP Tpk)¢k—x(1‘:o(U).l:"|(U),-.-J:'k—n(U))/PkA”k

k=1
k

EU+AD%MTIO+ﬁLNw%;)

k=1
k

o0
- TP
=+ AT)UO/A<1 + Z Fk_l(U)———) mod 7",
4
k=1
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and hence, again by the assumtions (1) and (2),
E,(U, A; X +Y + AXY)
E,(U, A; X)ER(U, A} Y)

o0 k
. (X 4+Y + AXY)P
1+ A
k=1 P
1 —

it

o] k o0 k
- XP - YP
(1 + Z k_1(U)—)<1 + Z Fk—l(U)_)
k=1 p k=1 I3
x4y — (XY + AXY)P
p

k—1(U)

Il
M

-
i}

k k k
- XP+YP —(X+Y)P
Fr_1(U)
1 14

I
M8

oo
= z Fo1(U)Cr(X,Y) mod 1" .
k=1

x~
Il

45. LetA,),u € m — {0}. Assume that p”"‘k"’k (0 < k < n) are divisible by A.

Then
AMNT +1DP" —1 1 1
T &THV7 =1 0, > A|T.
A 14+ AT 1+ MT

defines an A-homomorphism

Wy 1 G*) = Spec A [T, } — G® = Spec A [T,

1
1+ NT 1+AT]'

Let F(T) € A[T] and
’ n
F/(T) = F(W) .
A
If F(T) satisfies
(1) FO =1 modpu; (2 F(X)FY)=F(X+Y+AXY) mod pu,
then F'(T) satisfies
(1) FO=1modu;, 2 FFX)FY)=F(X+Y+XXY) mod pu.
Define an A-homomorphism

_ 1 1
Wpn 2 EXHFD) = Spec A| Ty, Ty, :
p p O TN Fi(To) + ol

. ! :
ErmF) _ Spec AI:TO, I, ’ + ]
— 1+ ATy F(To) + nTh

by
WT+ 1P —1

Tot—)——x—“, T1—T:

1
A[To, T,

1 1 1
’ ] - A[TO7 T17 ’ ] .
14+ ATy F(Tp) + uTh 1+ MTy F'(To) + uTh
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Then we have a commutative diagram with exact rows

0 G EWVwF) g 4 ¢
s b
0 g EX i F) > GgW > 0.

We have 7, [E*#F)] = [£¥wF)] in Extl (G0, gW). Since F' = F o Wpn : G&) —
GM > Gy Aq» We have a commutative diagram

W(A)F™ s Homay(G™), G ay) ——> Extl (W, g®)
lw;;,, lnp;,, lw;;,,
W(A))F "1 =5 Homu,(GP, Gp.ay) ——> Extl(GX), gy .
Here by 3.8,

n n—k—+14 7P (n—k)p 1ok p"
_ k1| P A k=15 | P A A
lI’;n(a)- E {V I:——X—:Ia—v VI:——)—L—]a}-i-VnI: . a.

k=1

4.6. LetA,u, ' € m— {0}). Assume that p”—";u”" (0 < k < n) are divisible by u'.

Then
P _ 1
T,_,M)___I:AT,# - AlT, ——
A 14+ u/'T 14 uT

defines an A-homomorphism

1 ' 1
Wpn GgW — SpecA[T, T ,uT] — gW) — SpecA[T, m] .

Let F(T) € A[T]and F'(T) = F(T)P". If F(T) satisfies
(1) FO =1 modu;, 2) FX)FY)=FX+Y+AXY) mod u,
then F'(T) satisfies
(1) FFO =1 mod u'; 2) F(X)F(Y)=F'(X+Y+AXY) mod '
Define an A-homomorphism

— . 1 1
Wy s EXHE) =SpecA[T0, Ty, , ]
1+ ATy F(Tp) + uT,
/. ’ ]. 1
EXHSF) — Spec Al Ty, Ty, ,
~ P T Ty FlT) + 1T
by
T\ + F(Tp))?" — F(Tp)""
To > To. TH_)(M|+ (To)) (Tp) :

/

u
1 1

1
, — ATy, T, , .
1+ ATo F/(T0)+M’T1] [0 14T, F(T0)+,uT1}

A[To, 1,
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Then we have a commutative diagram with exact rows

0 g EGF) g® 0
ol
0 Ggw"H EM " F) G» 0.

We have Wy, [EC-#F)] = [£3#3F)] in Extl, (GW), gW)).

Put Ag = A/(u)and A} = A/(u'). Leta € W(Ap) and @ € W(A) a lifting of a. Then
the image of p"a in W(A;) depends only on a. Hence a +> p"a@ mod ' gives rise to a
homomorphism p" : W(Ag) — W(A}). Since E,(a, A; T)P" = E,(p"a, A; T), we have a
commutative diagram

W(Ap) %1 — = Homay(G®, G, ag) ——> Exth(GV, GW)

| E ¥

wAnF-r =, Homy, (G™, G a)) LN Extllq(g('\),g(“,)).

5. Kummer-Artin-Schreier-Witt theory of degree p2. We conclude this article by
giving an explicit description of the Kummer-Artin-Schreier-Witt theory of degree p.

5.1. Let £ be a primitive p?-th root of unity, and put { = 42”, A=¢—-1 M=08—-1
and A = Z(p)[¢2]. Then A is a disctrete valuation ring and A; is a uniformizing parameter of
A. Let v denote the valuation of A normalized by v(A;) = 1. Then we have v(A) = p and
v(p) = p(p—1). Weput Ag = A/(X) and A} = A/(AP). Put

p-1 k—1 —1
(=D . AP

n= p A and = "—(pn—1).
k=1 p

Then we have v(n) = v(A2) and v(77) = v(A).
Put

p—! k p=l ~ g
@D _x @T)
FT)=3) =5 GM=3) =
k=0 k=0
Al (X0, Yo) = AXoYo + Xo+ Yo, A§ (Xo, Yo) = AP XoYo + Xo + Yo,
Af (X0, X1, Yo, Y1) = AX Y1 + X F(Yo) + F(X0)Yo
1
+ ~[F(X0)F(Yo) = F(xXo¥o + Xo + Yo)I.

A (Xo, X1, Yo, Y1) = AP X1 Y1 + X1 G(Xo) + G(X0)Yo

1
+ )\—p[G(Xo)G(Yo) = G(WPXoYo + Xo + Yo)l,
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(WTo+1)P — 1
wo(Ty) = 2
1 [(AT) + F(To))? (WTo+ 1)P — 1
Vi (To, ) = — BT+ F(To)l -Gl ——) .
w | Ao+l P
W, = Spec A| To, Ty, — !
= CC N . ) )
2=°P O T+ 1" AT) + F(To)
1 1
V =S A T,Ta ’ M
2= opee [0 LT+ 1 )J’T|+G(T0)]

THEOREM 5.2. With the above notation:
(1) The polynomials Af (Xo, X1, Yo, Y1), AY(Xo, X1, Yo, Y1) have their coefficients
in A. Moreover,
(To. T) — (Af(To® 1,10 To), AT (Th® 1, T1 ® 1, 1@ To, 1 @ T)))
defines a structure of group on W5, and
(To, Ty) = (Ag(To ®1,1® To), A?(To LTI®1,10T,1T))

defines a structure of group on V.
(2) The fraction W (Ty, T1) belongs to A [To, T1,1/(ATo+ 1), 1 /(AT + F(To))].
Moreover,

(To, T1) — (Wo(Top), W1 (To, Th))

defines an A-homomorphism ¥ : Wy — Vs, and Ker[¥ : W, — V] is isomorphic to the
constant group scheme Z ] p*Z.

(3) (Uo,Uy) + ATy + 1,AT| 4+ F(Tp)) defines a homomorphism o'’ : Wy —
(G,,,,A)2 of group schemes over A, and (Uy, U)) — (A\PTy + 1, A\PT) + G(Tp)) defines a
homomorphism ') : Vs — (G, 4)?* of group schemes over A. Moreover, a}(F) Wh k —
(Gm,[()2 and a;(G) Vo xk — (Gm,]()2 are isomorphisms.

(4) The diagram of group schemes over A

W, L) )2

aml la(G)

®
(Gm.0)? —— (Gp.p)?

is commutative. Here © is defined by
(Uo, Uy — (U§, Uy 'UP).
(5) The closed fiber of the exact sequence of group schemes over A
0—2Z/p*Z — W, LV, —0
is isomorphic to the Artin-Schreier-Witt sequence

0— Z/p*Z — W, T wy — 0.
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EXAMPLE 5.3. We can verify the assertions directly in the case of p = 2. Indeed, we
have

t=—1, =i, A=-2, n=k=i—-1, f=-2
and
Ag(XO, Yo) = —2XoYo + Xo + Y0, Ag(Xo, Yo) =4XoYo + Xo + Yo,
Af(Xo, Yo, X1, Y1) = 22X, Y1 + X1 {1+ (G — DYo} + {1l + (¢ — DXo}Y1 + XoYo,
A?(XO, Yo, X1, Y1) =4X Y1 + X1(1 —2iYp) + (1 —2iX0)Y1 + (=1 +2i)XoYo,
W(To) = Tg — To,
T2 =T +iT¢ —iTd — (i — DToT,
—2Tp+1 ’
Taking the reductions modulo A, we obtain

U (To, Th) =

A (X0, Y0) = Xo+ Yo, A{(Xo, Yo, X1, Y1) = X1 + Y1 + XoYo,
AS (X0, Yo) = Xo+ Yo, A¥(Xo. Yo, X1, Y1) = X1 + Y + XoYo,
W(To)=Ts —To, Wi(To,T)=T +T1+T53 +T5.
Then it is seen without difficulty that @ : W, — V), is well defined and the closed fiber of
0—Z/p*Z > Wy, >V, >0
is isomorphic to the Artin-Schreier-Witt sequence
0— Z/p*Z — Wor, > Wor, > 0.
5.4. Hereafter we will prove the thoerem in the case of p > 2. Now we assume that
p > 2. The assertion (1) is a consequence of the congruence relations
F(X)F(Y)=F(X+Y +AXY) mod A
and
GX)G(Y)=G(X+Y+27°XY) mod AP,

which follow from the divisibilities A | 7n” and AP |7P. W), or V, is nothing but £**F) or
EGPAPG) respectively in the notation of Section 4. The assertrions (3) and (4) are easily
verified.

First we establish some congruence relations among A, A2, 1 and 7 to prove the asser-
tions (2) and (5).

LEMMA 5.5. Let A beaZ)-algebraand a € A. Then

p-l k-1 p-l
-1 1
Z ( k) at = — (Z) a* mod paz.
p




232 T. SEKIGUCHI AND N. SUWA

PROOF. By the fOllOWing Sublemma,
1 (p\ ¢ _( l)k : k 2
— = d
( k) @' =-——a mod pa

for 2 < k < p — 1. Hence we obtain

SUBLEMMA 5.5.1. For2<k<p-—1,

1 ) (_l)k—l
— =— dp.
p (k) ko

PROOE. In fact,

1 1 -1 k+1 k —
fp =_P(P ) - (p— +)_( l)k'( D! mod p.
p \k p k! k!
LEMMA 5.6. With the above notation,
A=Ay
1 n= mod p,
p
2) A= Ag + pn mod AP,
(3) Ak =22% mod AP fork > 2.
PROOF. By Lemma 5.5,
— (=D)k! M+ DP—AF -1
Z ) k’2‘=(2 ) 2 mod pA3.

p

We obtain the assertions, noting that (A2 + 1)? — 1 = A and that A?~! | p, A | Af.

LEMMA 5.7. We have a congruence

p-l kl -1
77P=Z( D Z ()Agk mod AP .

k=1

PROOF. By the definition,
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Then we obtain

p—1 k—
5D 'Agk

d A%,
. mo

k=1

noting that A? | pA} and that {(—1)}~!/k}? = (=1)}=!/k mod p. Moreover, it follows
from Lemma 5.5 that

p—1 k—1 p-l
(=D k 1 k 2
p ¥4 EE —~ i A% mod pa5?
k=1 =1 P

Hence we obtain the result.

LEMMA 5.8. We have an equality
-1

- P
L'=_ l(P)kk—l.
p = P k

PROOF. Develop and divide by pA the right hand side of A? = A7 +1 — (A + 1)7.
PROPOSITION 5.9. We have a congruence

n’ =17 mod AP.

PROOF. By Lemma 5.8,

_ ] 1 -
f=—(pn—»1)=- —(‘Z)A"l (pn—A)
P P
p—1 Py
=—Z( )Ak n+ —(i))»".
=1 P
Now we have

p—ll p—ll
—Z()Ak' Z;(i)))‘kE_m’"_Z;(i))‘k mod A?
k=1

since A? | pXA. Hence we obtain

n=— TI+Z () mod AP .

On the other hand, by Lemma 5.7, we have

LD e S
nPEZ-—T——Af EZ;(?)A?’( mod A” .

k=1 k=1
Hence the assertion follows from Lemma 5.6.
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LEMMA 5.10. Let A be a Z(p)-algebra and a € A. Then we have

plal = (pa,a”,0,0,...) mod p?.

PROOF. It is sufficient to prove the assertion in the case where A = Z(,)[U] and a =

U.PutV =V, Vi, Va,...) = p[U] € W(A). By the definition,
@, (V) = VO"' + pV{’"' +odp WP 4PV, = pUP
In particular, we have
Vo=pU, Vi=(-p'hu?,

and therefore

Vi=U” mod p?.
Hence we obtain

Vo”r =0 mod p'*?,
since p" > r +2if r > 2, and

lepr_l = pU” mod p'*?,

since 2p" ! +1>r +2.

Assume now that V; = 0 mod p2 for 2 < k < r — 1. Then we obtain p" Vkp
mod p"+2, since 2p" K +k > r +2for2 <k < r — 1. It follows that

r r r—1 r
pUP =V +pVvP 4. 4 p VP 4+ p'V, = pUP +p'V, mod p'?
0 1 r—1

and that
V, =0 mod p*forr >2.
REMARK 5.10.1. If p = 2, then we have
plal = 2a, —a%,0,0,...) mod 22.
LEMMA 5.11. We have a congruence
plnl = [\ = (pn = 4.77,0,0,...) mod p’.
PROOF. By Lemma 5.10,

plnl = (pn,n?,0,0,...) mod p*.

Puta = (ag, aj,az,...) = (pn,n?,0,...) —(1,0,0,...) € W(A). By the definition,

@) =al +pal +---+p7'a’  +pa, =P +pnPF
In particular, we have

p—1

1
— _ — P _ (P ko _y\p—k
ay=pn—»~i, a =19 E p(k)(pn)(k) ,

k=1

AP

=0
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and therefore
a; =n? mod p2,

since p2 | (pn)"(—k)"_k for 1 <k < p — 1. Moreover, we have
AP =0 mod p't?

for r > 2, since v(p) = (p — v(A) and p” > (p — 1)(r 4+ 2) if r > 2. Hence we obtain
mod pl‘+2

r r—1 r r—
(pm? +pmP)P =P = p(nP)?

forr > 2, since A | pn.
Assume now that gy = 0 mod p? for 2 < k < r — 1. Then we obtain p"a,f =0

mod p’+2 for 2 < k < r — 1. On the other hand, agr =0 mod p’+2, since A | ag. It follows

r—1
+pa, =pmP)P +pla, mod p't?

that
r r—1
aj +paf +---+plal
and that
p”) "+ p'a, = p@P)”" mod p't2.

Hence we obtain the result.

PROPOSITION 5.12.
F(T)?
(1) =Ep(pn— A A T)Ep(r,P,A”;T") mod A” .

AT +1

We have a congruence

First note that

PROOF.
F(T)=Ep(n,A;T) = Ep([n], A;T) mod A
and that
F(T)? = Ep([n), A; T)P = Ep(pln], A; T) mod AP .
Hence we obtain
Fay = E,(pln] —[A,A; T) mod A7,

AT +1

since AT +1 = E,([A], A; T). By the Lemma 5.11,
E,(pn] =M, A T) = Ep(pn — A, A TYE,(nP, AP; TP) mod p2.

Hence the result follows.
We have a congruence

LEMMA 5.13.
14 S T o P - - 2
[—M,_l][n] Vinl+ Vinl = (—Ap_ln, 1, 0,0, ) mod p*.

PROOF. By Lemma 1.4.1,
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Hence

L»” ,][n] V[ﬁ]+V[ﬁ]E[M l][77]+V[n]

(Mf’ln,ooo )+(0,ﬁ,0,0,...)=()\iﬁr”;OO,...) mod p2.

PROPOSITION 5.14. We have a congruence

AT +1)P — 1
G(g__+/\7)__> E,,( ’;"l,x )E (7, AP; TP) mod AP.

PROOF. By Remark 3.8,

AT +1)P —1 3 )
G((——kp) )EquM, l][n] Vil + VIil, A; T) mod A7,

and by Lemma 5.13,
EP(I:)J’ ,][71] Vil + VI#l, A; T) = Ep<)»p77 A; T) E,(ii, AP; T?) mod p*.

Hence the result follows.
5.15. Proof of (2). Combining 5.12, 5.14 and 5.9, we obtain a congruence

p DP —1
F(T) EG((LT_““)__) mod A%
AT +1 AP

This implies that the fraction

{AT\ + F(Tp)}? _G ATo+ 1P —1
ATy + 1 AP
belongs to A[To, T1, 1/(ATp + 1), 1/(AT; + F(Tp))].
Now we prove that Ker[¥ : W, — V] is isomorphic to Z/ p*Z. First note that a diagram
with exact rows

v (To, Th) = AP[

0 —— g» W, g» —— 0
L O
0 —— g" V2 gt —— 0

is commutative. Here

1
v gW = SpecA[T, ] — g = SpecA[T, —-—]

1+AT 1+ APT

is defined by

14+AT)Y —1 1 1
T'——)WQ(T)=L‘—:A T, —— | = A|T, »
AP 1+ APT 14+ AT
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and the horizontal arrows are defined as in 4.1. Then Ker[¥ : W, — V] is an extension of
Z/pZ by Z/ pZ, since Ker[¥ : G» — G*"] is isomorphic to Z/pZ and ¥ : GV — G
is faithfully flat (cf. [17, Ch.II]).
Put now
fz_—ﬂ)
Iy .

Then ¥y(ag) = 0, ¥i(ag, a;) = 0, that is, (ag, a;) is a K -rational point of
1
W(To), ¥ (Ty, T
o1 AT+ F(To)]/( 0(To), ¥ (To, T1)) -
We can verify that (ag, a1) is an A-valued point of Ker ¥, noting that Ker ¥ is finite and étale

over A. Furthermore, (ag, a1) is of order p?, since a'F)(ag, a1) = (¢, &2) € (K*)?2. It then
follows that Ker[¥ : W, — V] is isomorphic to Z/ P*Z.

REMARK 5.15.1. TItis deduced from 5.12 and 5.14 that

(ap, ay) = (1,

Ker[¥ : Wh, —» W] = SpecA[To, Ti,

p=1 ok
() F(DP=pnT+ Y "—kTTPk mod A?;
k=0 :

AT +1)P —1 —, 7k
@ 6T+ 1)6((——4“—)—> T+Z TIP mod A7,
AP k= 0
LEMMA 5.16. With the above notation,
(1) Flnl =[Pl = @P —A1P~19,0,0,...) mod AP,
() F[{) = [WPP=DY#] = GP — A»P=D7,0,0,...) mod A2P.
PROOF. Puta = (ag,aj,ay, ...) = F[n] — [A?~'1[n]. By the definition,

r r—1 , .
¢r(a)=a(';) +Paf +--+p” ! p P ar__np —\P (P—l)np

In particular, we obtain
p—l 1
ap = n? —kp_]n and a; = — Z — (5) npk(—)\p_lﬂ)p_k.
k=1 p

Hence we obtain a; = 0 mod AP, noting that A? | (n)P*(—=AP~n)P~* for 1 <k < p— 1L
Assume now thatay =0 mod AP for1 < k <r—1. Then we have pka,fr_k =0 mod p"AP
for1 <k <r—1,sincev(p) = (p — DvA) and k(p — 1) + p" X! > r(p = 1) + pif
1 <k <r — 1. On the other hand, ag = 0 mod A, and therefore, a(’)’, =0 mod p"AP. It
follows that

r r—1
al +pal 4+ +pla’

anda, =0 mod A”.
Put now b = (bo, by, by, ...) = F[ij] — [A??~D][#]. By the definition,

y +p'a,=0 mod p"AP

B, B) = b0+ pb? ot p P 4 b = P e
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In particular, we obtain

p—1
1 ol —_ ~ —_
bo = 7P —APPDi and by = — Z > <Z> 7Pk (—AP(P=Diypk
k=1

Hence we obtain b; = 0 mod A2?, noting that A2 | (7)PK{—AP(P=Dg}P=k for 1 < k <
r—k

p — 1. Assume now that by = 0 mod A%” for 1 < k < r — 1. Then we have p"b,’: =0
mod p’A% for 1 < k < r — 1, since v(p) = (p — Dv(A) and k(p — 1) + 2p"~*+1 >
r(p—1)+2pifl <k <r — 1. On the other hand, bp = 0 mod A”, and therefore, bg =0
mod p" AP, since v(p) = (p — Dw(A) and p"*! > r(p — 1) + 2p. It follows that

r r—1

by +pby 4.+ p P+ p'b, =0 mod p'AP
and b, =0 mod A%”.
5.17. Proof of (5). Put
(Fo([nD), Fu(tnD), Fa([n)), ...) = (F = WP~ Dn].

Then, by Proposition 4.3.1, the class of W» 4, in Exta (G4, 4q> Ga,4,) = Hg(Ga,AO, Gy, Ap)
is given by the class of

o]

Z Fk—l(['l])ck '
A
k=1

By Lemma 5.16,
Fo(ln) =n” —AP~'n mod A?
and
Fi(In)) =0 mod AP

for k > 1. Moreover, by Proposition 5.9,

p—1

n"”=f=——(pn—»A) modAr’.

p

Hence we obtain
P = AP 'y =1 mod A2,

noting that A | pn, A | AP~!n and that A?~!/p = —1 mod A. Therefore, we see that W) 4,
is isomorphic to W 4,, since the class of W 4, in Hg(Ga‘ Ag» Ga, a,) is represented by the
2-cocycle
XP+YP—(X4+Y)P

- .
Similarly, we can verify that V 4, is isomorphic to W, 4,. These imply the assertion (5) of
the theorem.

Ci(X,Y) =

REMARK 5.18. Green and Matignon [4] have given independently an explicit form
of the Kummer-Artin-Schreier-Witt theory of degree p. They empoly (1, n”) instead of
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(1, 7) to define an isogeny of degree p?. It follows from Proposition 5.9 that their isogeny is
isomorphic to ours.
Indeed, put

p—1 k
(0PT)
/ —
G'(T)y =3 —5—.
k=0
AS' (X0, Yo) = AP XoYo + Xo + Yo,
A (Xo, X1, Yo, Y1) = AP X1 Y1 + X1G'(Yo) + G'(Xo)Yo

1 /
+ A—p[G’(Xo)G (Yo) — G'(A XoYo + Xo + Yo)],

¥y (To) = (AT%?”——I,
¥{(To, T) = xip [{”1;01;({0)}" B G,(()\.TO +“1’)" - 1>] ’
V; = Spec A[TO, T, 1 ’ 1 ] .
APTo+ 17 APTi + G(To)

The multiplication of V) is given by
(To, T1) = (A (To® 1,1® Tp), A (Th® 1, T1 ® 1,1 ® To, 1 ® T})) .
As was shown by Green and Matignon,
(To, Th) = (¥o(To), ¥{(To, T))

defines an A-homomorphism ¥’ : W, — V), which is an isogeny with kernel isomorphic to
Z/p*Z.

Now we can verify (Tp, T1) +> (To, T1+(G (To)—G’(Tp)) /AP) defines an A-isomorphism
1%) S Vé and that the diagram with exact rows

0 —— Z/p’Z —— W), Ld V, 0
H \l l
0 —— Z/p’Z —— W " V) 0

is commutative.

It is crucial to prove the congruence relation mentioned in the proposition for an explicit
description of the Kummer-Artin-Schreier-Witt thoery of degree p?. The congruence relation
was proved independently by Green and Matignon [4, Sect.5, Sublemma].
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