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A NOTE ON EXTENSIONS OF ALGEBRAIC AND FORMAL GROUPS, IV
KUMMER-ARTIN-SCHREIER-WITT THEORY OF DEGREE p2

TSUTOMU SEKIGUCHI* AND NORIYUKI SUWA**

(Received July 12, 1999, revised March 24, 2000)

Abstract. We establish a formula for homomorphisms and extensions of group
schemes and formal groups, related to deformations of the multiplicative group to the additive
group. As an application, we give an explicit description of the theory unifying the Kummer
and Artin-Schreier-Witt theories of degree p2.

Introduction. Throughout this article, by p we denote a prime number. Let Wn (resp.

Wn) denote the group scheme (resp. the formal group scheme) over Z of Witt vectors of

length n. We denote by W (resp. W) the group scheme (resp. the formal group scheme)

of Witt vectors over Z, and by Gm (resp. Gm) the multiplicative group scheme (resp. the

multiplicative formal group scheme) over Z. Let F be the Frobenius endomorphism of W or

of W (for the definition see Section 1.2).

In the previous papers [12, 13, 16], the authors gave an explicit description of

ExtA(Wn,A, Gm,A) and ExtA{WΠ,A^ Gm,A)> when A is a Z(p)-algebra. More precisely, we

constructed isomorphisms

Ker[F"

Coker[F"

Ker[F"

Coker[F"

: W(A) -*

: W(A) -+

: W(A) -*

: W(A) -*

:se exponential series.

Ker[F

Coker[F

Ker[F

CokerΓF

: W(A) -•

: W(A) -•

: W(A) -^

: W(A) -•

W(A)] -

W(A)] -

W(A)] -

W(A)] -

+ Hom(Wn,A,Gm,A),

;//0

2(wn,Λ,Gm,Λ),

+ Hom(Wn,A,Gm,A),

+ Hξ{Wa.A,Gm,A),

In particular, in the case of n =

W(A)] -

W(A)] -

W(A)] -

W(A)] -

> Hom(Go, /4,Gm i /i),

I H*(Ga,A,Gm,A),

> Hom(G α , A ,G m , Λ ) ,

H Z ( G a A , G A ) .
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Now let λ e A. Then we have a group scheme Q{λ) = Spec A[T, 1/(1 + λΓ)] giving a

deformation of Ga to Gm for suitable λ (for the definition, see 2.1). Our aim of this article is

to generalize the isomorphisms of (*) to those for Q^λ\ using the deformations of the Artin-

Hasse exponential series. Namely, our result is as follows.

THEOREM. Let Abe a Z^-algebra and λ e A. Then there exist isomorphisms:

Ker[F - [λ^"1] : W(A) -> W(A)] ^ Hom(£ ( λ ), G m , Λ ) ,

Coker[F - [ λ ^ 1 ] : W(A) -> W(A)] ^ H2(U{λ\ Gm,A).

Moreover, ifλ is nilpotenty there exist isomorphisms'.

Ker[F - [λ^"1] : W(A) -> W(A)] ^ Hom(g ( λ ), Gm,A),

Coker[F - [λ^"1] : W(A) -> W(A)] ^ # 0

2 ( £ ( λ ) , Gm,A).

It is crucial in our argument to construct deformations of the Artin-Hasse exponential

series. We owe it to the functional equation lemma due to Hazewinkel [6, Ch.1.2] to discover

the required formal series.

In Section 1, we recall and establish necessary facts on Witt vectors. Section 2 is devoted

to a study of deformations of the Artin-Hasse exponential series, which allows us to state the

main theorem. In Section 3, we prove the main result, generalizing the argument developed

in [16]. In Section 4, we present a final form of some part of the computations given in the

previous papers [9, 10, 11]. Section 5 is intended for an explicit description of the Kummer-

Artin-Schreier-Witt theory of degree p2.

It should be mentioned that Green and Matignon have given a slightly different explicit

formula of the theory of degree p2 ([4]) and that there exists a theory unifying Kummer

and Artin-Schreier-Witt theories of degree pn ([14, 15]). Detailed accounts on the theory of

degree pn will appear elsewhere as a sequel to this article. We expect to find applications of

the Kummer-Artin-Schreier-Witt theory, such as an investigation of lifting automorphisms of

an algebraic curve over a field of positive characteristic ([17], [4]).

The authors are more grateful to M. Matignon for his valuable remarks, especially a

notice on Dwork's article (Remark 2.6.3).

NOTATION. Throughout the paper, p denotes a prime integer and A a Z^p)-algebra.

Ga,A
^m.A

WA

Ga,A

^m^A

Wn,A

wA
F

V

the additive group scheme over A
the multiplicative group scheme over A
the group scheme of Witt vectors of length n over A
the group scheme of Witt vectors over A

the additive formal group scheme over A

the multiplicative formal group scheme over A

the formal group scheme of Witt vectors of length n over A

the formal group scheme of Witt vectors over A
the Frobenius endomorphism of WA

the Verschiebung endomorphism of WA
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[a]: the Teichmuller lifting (a, 0, 0 , . . . ) € W(A) of a e A
W(A)F~[a]: = Ker[F - [a] : W(A) -> W(A)]

W(A)/(F - [a]): = Coker[F - [a] : W(A) -> W(A)]

HQ (G, / / ) denotes the Hochschild cohomology group consisting of symmetric 2-cocycles
of G with coefficients in H for group schemes or formal group schemes G and H.

For a commutative ring B, Bx denotes the multiplicative group Gm(B).

1. Witt vectors. We start with reviewing relevant facts on Witt vectors needed later.
For details, see [2, Chap. V] or [6, Chap. III].

1.1. For each r > 0, we denote by Φ r(Γ) = Φr(T0, T\,... , Tr) the so-called Witt

polynomial

Φr(T) - To

pΓ + PTfr~] + . . . + p r τ r

in Z[T] = Z[7b, T\,...]. We define polynomials

and

in Z[X, Y] = Z[X0, X\,... , Yo, Y\,... ] inductively by

Φr(S0(X, F), Sι(X, F ) , . . . , 5r(X, F)) = Φr(ΛΓ) + ΦΓ(F)

and

Φr(Po(X, F), PiίΛΓ, F ) , . . . , Pr(X, F)) = Φ r ( Z ) Φ r ( F ) .

Then, as is well-known, the ring structure of the scheme of Witt vectors of length n (resp. of

the scheme of Witt vectors)

Wn,z = SpecZ[7b, TU . . . , Γn_i] (resp. Wz = SpecZ[Γ0, Tu T2,...])

is given by the addition

7b H> 50(X, F ) , 71! H-> Si (AT, F ) , Γ2 H> S2(ΛΓ, F ) , . . .

and the multiplication

7b h+ P o ( * Ό , 7Ί ι-> Pi(X, Y), 7i H^ ft (AT, F ) , . . . .

We denote by W^z (resp. Wz) the formal completion of Wn,z (resp. Wz) along the zero

section. Wn,z (resp. Wz) is considered as a subfunctor of Wn,z (resp. Wz). Indeed, if A is a

ring (not necessarily a Z(P) -algebra), then

Wn(A) = {(ao, a\,... , an-\) e Wn(A) at is nilpotent for all /}

and

ί x nr / ,4 N /̂ is nilpotent for all / and
W(A)- t w , . . „ ^ , . . . , _ „ „ v . , , Λ / = o for all but a finite number of i Γ
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1.2. The restriction homomorphism

R : Wn+hZ = SpecZ[7b, Γ b . . . , Γ»] -• WBfZ = SpecZ[Γ0, Γ,,... , ΓB_i]

is defined by the canonical injection

To H* Γo, Γi H* Γi, . . . , Tn-ι H* Tn-ι : Z[Γ0, Γi ΓΛ_i] -* Z[Γ0, 7 Ί , . . . , Γπ],

and the Verschiebung homomorphism

V : Wn,z = SpecZ[7b, Γ i , . . . , ΓB_i] -* W n + l i Z - SpecZ[Γ0, Γi , . . . , Tn]

is defined by

7b h+ 0, 7Ϊ ι-». 7b, . . . , Tn ι-> ΓB_i : Z[Γ0, Γ i , . . . , ΓB] -• Z[7b, 7 Ί , . . . , ΓB_i].

Define now polynomials

FΓ(Γ) = F Γ (Γ 0 , . . . , Tr, Tr+ι) € β [ Γ 0 , . . . , Tr, Tr+i]

inductively by

Φ Γ (Fo(Γ), . . . , FΓ(Γ)) = Φ r + i ( 7 b , . . . , 7>, 7>+1)

for r > 0. Then

FΓ(Γ) = F r ( Γ 0 , . . . ,Tr, Tr+ι) € Z[7b,. . . , 7>, 7>+1]

for each r > 0. We denote by

F : Wn+i,z = SpecZ[7b, Γ f , . . . , Tn] -• Wn,z = SpecZ[Γ0) Γ,,.. . , ΓB_i]

(resp. F : Wz = SpecZ[Γ0, Γ,, Γ 2 , . . . ] -• Wz = SpecZ[7b, Γ,, Γ 2 , . . . ])

the morphism defined by

Γ0 h+ F 0 (Γ) , Γi !-• F i ( Γ ) , . . . , ΓB_i •-• FB_,(Γ) :

Z[7b, Γ,,... , ΓB_i] -• Z[7b, Γ i , . . . , Tn]

(resp. Γ0 M- F O ( Γ ) , Γ, ^ Fi(Γ), Γ2 ^ F 2 ( Γ ) , . . . :

Z[Γo,Γ, ,Γ 2 , . . . ] -»Z[Γo,Γi ,Γ 2 , . . . ] ) .

Then it is verified without difficulty that F is a homomorphism of ring schemes. It is ob-

vious that Wz is stable under F. (Cf. [1, Ch.9.1.3] or [7, Ch.0.1.3]) If A is an F^-algebra,

F : WA -» WA is nothing but the usual Frobenius endomorphism. More precisely, define

polynomials Gr(T) e Z[T0,... ,Tr, Tr+ί] inductively by

G0(T) = Γ,
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and

= GΛT0,...,Tr,Tr+x)

k=0

7>+i—2^?£ Gk(T) — 22,Tk Gk(T) (p = 2)
k=0 k=0

forr > 1.

LEMMA 1.2.1. With the above notation,

Fr(T) = Tf + pGr(T) mod p2.

PROOF. We prove the assertion by the induction on r. It is easily seen that FQ{T)

Case I. p > 2. Assume that

pGk(T) mod/72

forJk= 1,2,... , r - 1. Then

mod pr

and therefore

P F,

It follows that
r

k=0

Noting

r-\

k=0

mod pr+2 .r+2

mod/ + 2

k=0

r+1

, . . . , F r(Γ)) = Φ Γ + i (7b, . . . , 7>, ΓΓ + 1) =

we obtain

and

ik=0

r-l

mod

ik=0

Case II. p = 2. Assume that

mod
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for * = 1 , 2 , . . . , r - l . T h e n

Fk{Tf-
k = TΓM + 2'-k+ι{T?r-k-l)Gk(T) + T?2r-k-2)Gk{Tγ} mod 2"

and therefore

2kFk(Tf'k Ξ 2kτΓM + r+liTΪ{r-k-l)Gk(T) + 7f 2r~*-2)G*(Γ)2} mod

It follows that

k k

k=0 k=0 k=0

mod2 r + 2 .

Noting

r r+1
2 Fjt(i) = Φr(Fo(Γ), . . . , Fr(T)) = Φ r +i(Γo, . . . , 7>, ΓΓ +i) — 2^Π

k=0 k=0

we obtain
r-l

2r+12^{Γ/t

A }Gk{T) + Tp ;G^(Γ)2} + 2 rF r(Γ) = 2 r Γ / + 2 r + 1 Γ r + i mod 2 r + i

and

r-l

k=0

1.3. Let Λ be a ring and a e A. We denote the Witt vector (α, 0, 0, . . .) with compo-

nents in A by [a]. Then we can verify without difficulty the following equalities in End^-grW:

(1) V[aP] = [a\V\ (2) F[a] = [α^]F; (3) FV = p.

Define a Witt vector p = (p0, pi, P2, . . . ) € W(Z) by p = (/? - V)[l]. Then we have

and

Φπ(po, Pi, , Pn) = 0 for n > 1.

It follows that

VF = p-p = V[l]

and
n

ynFn = pn _ ^ pn-kyk-\ -pk-\

1.4. Now we define a variant of the Verschiebung morphism. Define polynomials

Vr(T) = V Γ (Γo,Γ, , . . . ,Γ Γ _i)6β[Γ o ,Γ i , . . . ,ΓΓ_i]
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inductively by

Vb=O

and

Φr(V0(T),... , Vr(T)) = pprφr-ι(T0,..., Tr-i) for r > 1.

L E M M A 1.4.1. With the above notation, Vr{T) e Z[T0, T\,..., 7>_i] and

vίTΛ=l
Vr(T) - \2T*-1 mod 22 (P = 2).

PROOF. We prove the assertion by the induction on r. It is easily seen that V\(T) =

pP-ιT0.

Case I. p > 2. Assume that

Vk(T)€Z[To,Tu...,Tk-ι] and Vk(T) = 0 mod/?2

f o r * = 1 , 2 , . . . , r - l . T h e n

pkVk(T)Pr~k =0 mod/7 r + 2 ,

since pr~k + k > r + 2 if r > 1 and k < r - 1. It follows that
r

Φ r(Vo(Γ),... , Vr(T)) = J2pkVk(T)Pr~k EE prVr(T) mod p r + 2 .
k=0

On the other hand,

p?Φr-\(To,... ,7>_i) = 0 mod/7 r + 2 .

It is now verified that

V Γ (Γ)eZ[7b,Γi, . . . ,Γ r_i]

and

V r(r) = 0 mod/72.

Case II. p = 2. Assume that

V * ( Γ ) G Z [ Γ 0 , Γ I , . . . , Γ * - I ] and V^(Γ) = 2Γ0

2"~1 mod 22

for it = 1,2,... , r - l . T h e n

and therefore

Vk(l) =2 ^o mod 2 .

Hence
r

Φ,(V0(Γ),... , Vr(T)) = Y2kVk(Tf~k = 2 r + 1 Γ 0

2 " ' +2rV-r(Γ) mod 2 r + 2 ,
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since 2r~k + k>r + 2ifr>2 and k < r - 2. On the other hand,

2 2 r φ r _ i ( 7 b , . . . , Γ r _ i ) = 0 m o d 2 r + 2

if r > 2. It is now verified that

V Γ ( Γ ) € Z [ Γ o , Γ i , . . . , 7 > _ i ]

and

Vr{T) = 2Tξ~l mod22.

1.5. We denote by

V : Wn,z = SpecZ[Γ 0 , 7 Ί , . . . , Tn-X] - * W,+i,z = SpecZ[Γ 0 , Γ i , . . . , Tn]

(resp. V :WZ = SpecZ[Γ 0, Tu 7i, . . . ] - • Wz = SpecZ[Γ 0, Γi, Γ 2 , . . . ] )

the moφhism defined by

To h+ V 0 (Γ) , Γi H> V j ( Γ ) , . . . , Tn ^ Vn(T) : Z[Γ 0 , Γ i , . . . , Tn] -> Z[Γ 0 , Γ i , . . . , Tn.{]

(resp.

Γ O h ^ Vo(Γ), Γi ^ Vi(Γ), Γ 2 ^ V 2 ( D , . . . : Z[7b, Γi, Γ 2 , . . . ] -• Z[T0, Tu T2,...]).

Then V is a homomoφhism of group schemes. It is obvious that Wz is stable under V.

It is easily verified that

(1) pV = [p]V; (2) V[aP] = [a]V; (3) FV = [pP]-, (4) VF = [p] - p.

PROPOSITION 1.6. Let [A] denote the Witt vector (A, 0, 0, . . . ) with coefficients in

Z[A]. Then F - [A] : Wn+i,z[Λ] -> Wn,Z[Λ\ is faithfully flat

PROOF. By [5, Ch.IV, Th. 11.3.10], it is sufficient to prove that the morphism (F -

[A])s : Wn+ι,s -> WniS of the fibers is faithfully flat for each s e SpecZ[Λ], since Wn+\tz[A]

is flat over Z[A]. Hence the assertion is a consequence of the following sublemmas.

SUBLEMMA 1.6.1. F — [A] : Wn+\,z[\/p,Λ] -> Wntz[\/P,Λ] is smooth andsurjective.

P R O O F . Note first that

Φn ^ Φn(T) = τo

ptι

gives rise to isomorphisms

Φ π + 1 : Wn+UZ[\/p,Λ] ^ ^ n

and

Φn : Wntz[\/ptΛ] ^ AZ[\/pM = SpβcZ[l/p,

Now define an automorphism Ξ^Λ) : Ajίjl ^^ ^> ̂ zrϊ/ yii ^

ΦQ H> Φθ , Φ\ l-> Φl - AΦθ , , Φn ^-^ Φn - ΛP" Φn-\ .
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Then we have a commutative diagram

ΞWoφ

Wn+ι,Z[l/p,Λ] • AZ[l/p,Λ]

F-[Λ]l t l p r

Wn,Z[\/p,Λ] > AZU/P,Λ] '

where pr : Aχtλ Λ, -> ^zn/p A] denotes t n e projection defined by

Φo «-> Φ\, Φi ι-» Φ2 » > Φ«—l H> Φ« .

It follows that F — [Λ] : Wn+\tz[i/p,Λ] -> Wn,z[\/P,Λ] is smooth and surjective.

SUBLEMMA 1.6.2. F - [Λ] : W^+i,^^] -• Wn3pp[A] is factorized through R :

Wn+ιtFp[Λ] -> Wπ,Fp[>i], and the homomorphism Wn,Fp[Λ] -+ WΛ,FP[Λ] induced from F -

[Λ] is finite and flat.

PROOF. By Lemma 1.2.1, F : Wn+\jp[Λ\ -+ ^,F^[yi] is factorized to Wn+\%Fp[Λ\ ->

Wn,Fp[>i] -^ Wπ^ptΛ], where F : Wrt,Fp[yi] -• WniFp[Λ] is the Frobenius morphism. Put now

(F 0(Γ), A(Γ), F 2 ( Γ ) , . . . ) = (F - [Λ])Γ € W(Z[Γ0, Γi, Γ 2 , . . . , yi]).

Then we have

FΓ(Γ) Ξ 7/ - ΛprTr mod (/?, Γo, Tu , ΓΓ_i) for r > 0.

It follows that Fp[Λ][ 7b, Γi , . . . , Γπ__i] is free of finite rank as anFp[Λ][T0, T\,... , Γn_i]-

module via

F - [A] : Wn,Fp = SpecF^Γo, Tu . . . , Γn_i] -• Ww,Fp

COROLLARY 1.7. Let A be a ring and a e A. Then F - [a] : Wrt+i?Λ -> Wn,A is

faithfully flat.

COROLLARY 1.8. Let A be a ring and a e A. Then F - [a] : WA -» WA is faithfully

flat.

2. Artin-Hasse exponential series. Statement of the theorem.

2.1. Let A be a ring and λ e A . We define a group scheme £ ( λ ) over A by

£ ( λ ) = Spec A[T, 1/(1+ λΓ)]

with

(1) the multiplication: Γι->Γ(g)l + l<g)Γ + λΓ(g)7\

(2) the unit: Γ h ^ O ,

(3) the inverse: T \-+ -77(1 + λΓ).

Moreover, we define an A-homomorphism α ( λ ) : £ ( λ ) -> GmyA by

t/ ι-> 1 + λT : Λ[ί/, ί/"1] -• A[T, 1/(1 + λΓ)] .
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If λ is invertible in Λ, α ( λ ) is an A-isomorphism. On the other hand, if λ = 0, £ ( λ ) is nothing

but the additive group Ga,A.

Now we recall the definition of Hochschild cohomology. For details, see [2, Ch.II.3 and

Ch.IΠ.6].

2.2. Let A be a ring and G(X, Y) a formal series in A[[X, Y]]x (resp. a fraction in

A[X, y, 1/(1 + λX), 1/(1 + λ7)] x ) . Recall that G(X, Y) is called a symmetric 2-cocycle

of Q{λ) (resp. Q{λ)) with coefficients in G m , Λ (resp. GWf A) if G(X, Y) satisfies the following

functional equations:

(1) G(X, Y)G(X + Y + λXY, Z) = G(X, Y + Z + λFZ)G(y, Z),

(2) G(X, F) = G(F, X).

We denote by Z 2 ( £ ( λ ) , G m , Λ ) (resp. Z 2 ( £ ( λ ) , Gm,Λ)) the subgroup of A[[X, Y]]x (resp.

afraction of A[X, 7, 1/(1 +λX), 1/(1 + λ F ) ] x ) formed by the symmetric 2-cocycles of ^ ( λ )

(resp. Q(λ)) with coefficients in Gm,Λ (resp. Gm,A).

Let F(Γ) be a formal power series in A[[Γ]]X (resp. a fraction in A[7\ 1/(1 + λΓ)] x ) .

Then F(X)F(Y)F(X + y + λXy)" 1 e Z 2 ( ^ λ ) , G W f A ) (resp. Z 2(α ( λ ),Gm,>i)). We

denote by B2{g^\Gm%A) (resp. B 2 ( e ( λ ) , G W f A ) ) the subgroup of Z 2 ( α ( λ ) , Gm,A) (resp.

Z2(Giλ\ Gm%A)) of the symmetric 2-cocycles of the form F(X)F(Y)F(X + Y + λXy)""1.

Put

tfo

2(£(λ), G m , Λ ) = Z 2 ( ^ ^ , Gm,A)/B2(Giλ\ GmΛ)

and

/ / 0

2 ( ^ ( λ ) ' G m , A ) = Z2&λ\ Gm,A)/B2&λ\ G W t Λ )

#0 2 (^ ( λ ) ' G W . A ) (resp. / / 2 ( ^ ( λ ) , Gm,Λ)) is isomorphic to the subgroup of Ext Λ (^ ( λ ) , G m , Λ )

(resp. ExtA(G^\ Gm,A)) formed by the classes of commutative extensions of £ ( λ ) by Gm,A

(resp. Q^λ) by Gm,Λ)» which split as extensions of formal A-schemes (resp. A-schemes).

Hereafter we give an explicit description of HomA-gΓ(^(λ\ GmiA) and HQ{Q^\ Gm,A)

when A is a Z(P) -algebra.

2.3. We define a formal power series EP(U, A; T) in Q[U, Λ][[T]] by

oo

P " (£,(tΛ A; Γ) = (1
k=\

Recall now the definition of the Artin-Hasse exponential series
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THEOREM 2.4. With the notation above we have:

Ep(U,Λ;T) =

213

if P>2,

(*,/>)=!

Y[ Ep{UΛk-χTk)ι'k\ f ] Ep(UΛ2k-ιT2k)1^] ίfp = 2.
(*,2)=1 (£,2)=1 -I

PROOF. Let n = prm with (m, p) = 1. Then the coefficient of Tn in log EP(U, Λ; T)

is given by

pk~ι

A
Z

since

If/? > 2 ,

On the other hand, the coefficient of Tn in

is given by

Pr

k=\ nΛ n
—λ - (-λ }Λn

On the other hand, the coefficient of Tn in

\ k-χTk)-logEp(UΛ*-ιT*)- ^
{k,2)=\ (k,2)=l
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(2\n)

COROLLARY 2.5. The formal power series Ep(U, A; T) has its coefficients in

Z{p)[U, A].

PROOF. As is well-known, (l+T)i/k e Z(p)[[Γ]]ififeisprimetop. Note that Ep(T) e

Z(P)[[T]]. It then follows that Ep(UΛk-ιTk) e Z{p)[U, Λ][[T]].

2.6. Let Λ be a Z(p)-algebra and α, λ e A. We define a formal power series Ep(a, λ; T)
in A[[T]] by

(k,p)=l

Π >
-1

= 2.

EXAMPLE 2.6.1. We have an equality Ep(l, 0; Γ) = £ P ( Γ ) .

EXAMPLE 2.6.2. We have an equality EP(Λ, A\ T) — 1 + AT.

REMARK 2.6.3. The formal power series EP(U, 1; T) was introduced by Dwork [3,

Sect.l] as F(t, Y). Furthermore, he proved that Ep(U, 1; T) € Z{p)[U][[T]] by a differ-
ent method. We can deduce that EP(U, Λ T) e Z(p)[U, Λ][[T]] from EP(U, 1; T) e

Z{p)[U][[T]].

2.7. Let A be a Z(p)-algebra, λ e A and a = (ao, a\, «2,...) € W(A). We define a
formal power series Ep(a, λ; Γ) in Λ[[Γ]] by

k=0

LEMMA 2.8. LetU = (ί/0, £Λ, £/ 2,.. .) and

(Fo(£/), Fi(ίO, h{U), ) = (F - t ^ " 1 ] ) ^ e W([Uo, Uu U2,... , ̂ ] ) .

Γ/ι̂ « we /zαve

£ p (t7, A; T) = ΓT(i + ^ / ^ P ^ '

0 0

AT)Uo/Λ Γf(l
k=\

inZ{p)[Uo,UuU2,...,Λ][[T]l
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COROLLARY 2.9. LetU=(U0,Uι,U2,...), V = (V0,Vι,V2,...) andS(U,V) =

(So(U, V), Sι(U, V), S2(U9 V),...). Then we have

Ep(U, A; T)EP(V, A; T) = Ep(S(U, V), A; T)

inZ{p)[Uo, I/i, t/2 Vo, Vi, V 2 , . . . , Λ][[Γ]].

COROLLARY 2.9.1. Let A be a Z^-algebra, λ e A and a, b e W(A). Then we have

Ep(β, λ; T)Epφ, λ; T) = Ep(a + b, λ; Γ ) .

REMARK 2.10. Let A be a Z(p)-algebra and F(Γ) G A[[T]] with F(0) = 1. Then

F(T) is written uniquely in the form Π(*,p)=i ^(ΛΛ» λ ' Γ ^ ) (α^ € W(Λ)).

PROPOSITION 2.11. Let A be a Z(Pyalgebra and a = (ΛO,ΛI,Λ2. •••) €

Assume that λ is nilpotent in A. Then Ep(a, λ; Γ) G A[Γ] ί/αnJ on/j i/α € W(A).

PROOF. Put

If we assign to Uk the weight pk and to A the weight 1, respectively, then c*(Γ/, yl) is isobaric

of wieght /:. Moreover,

cpr(U, A) = Ur mod (ί/0, t / i , . . . , t/Γ-i, ^ )

Now assume that F(Γ) = Ep(a, λ; Γ) e Λ[Γ]. Let d = deg F(Γ) and α the ideal of

A generated by λ and the coefficients of F(Γ) except the constant. Then α is nilpotent, since

F(T) is invertible in A[T]. Put s = [log^έ/]; the greatest integer not greater than \ogpd.

Then we can verify that

1) ar e a if r < s; 2) as+j e aPJ for all j > 0.

Conversely, if a e W(A), then Q(Λ, λ) is nilpotent for all /: > 0, and Q(Λ, λ) = 0 for

all but a finite number of k.

LEMMA 2.12. Let U = (Uo,UuU2,...). Then we have

Ep(U,A;X)Ep(U,A;Y)

+ ilP*(X + 7 + AXY)Pk

COROLLARY 2.13. Let

(F0(£0, Fi(t/), F 2 ( ϋ ) , . . . ) = (F - [ Λ ^ 1 6 W(Z[U0, t/i, ί/2,

A = i, £ / 2 , . . . ,
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Then we have

EP(U9 A\ X)Ep(U, A; Y) = EP(U, A; X + Y + AXY)

inA[[X,Y]l

PROOF. Put B = β [ ί / 0 , Uι,U2,... ,Λ, 1/Λ]/((FO(U), F i ( t / ) , F 2 ( ί / ) , . . . ) . T h e n w e

have

± ^ ^ i = 0

in B. It follows from Lemma 2.12 that

Ep(U,Λ;X)Ep(U,Λ;Y) =

in β[[X, Y]]. By Corollary 1.8, A is flat over Z[Λ], and therefore the canonical map

A[[X, Y]] -> β[[X, F]] is injective. Hence we obtain the equality

EP(U, A; X)EP(U, A; Y) = Ep(U, A; X + Y + AXY)

inA[[X,Y]].

COROLLARY 2.14. Let A be a Z{p)-algebra, a e W(A) and λ e A. If F(a) =

[λ^"1]^, then we have

Ep(a, λ; X)Ep(a, λ; Y) = Ep(a, λ; X + Y + λXY).

2.15. Let U = (ί/o, U\, ί/2, )• We define a formal power series

FP(U, A; X, y) € β[£/0, ί/i, I/2,... , A][[Z, Y]]

by

Γ
It is readily seen that

Fp(U, A; X, Y)FP(U, A; X + 7 + ΛXy, Z) = Fp(ί/, A; X, Y + Z + ΛYZ)FP(U, A; Y, Z)

and

Fp(C/,il;X,y) = FA,(£/,^;y,X).

LEMMA 2.16. L^ί U = (U0,UuU2,.-.). Then Fp(U,A;X,Y) e Z{p)[U0,U\,

PROOF. Put

(Fo(V), Fi(V), F 2 (V),. . .) = (F - [A^- 1])y G W(Z[Vb, Vi, V2,. , A])

and

B = Z(P)[£/o, C/i, C/2 Vb, ̂ 1 . ^ 2 , . . . , ^]/(F0(V) - t/0, Fi(V) - ί/i, F2(V) - t / 2 , . . .
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Then B is flat over Z(/7)[t/o, U\, U2,... , A] by Corollary 1.8, and

FP(U, A; X, 7) = Fp((F - [AP~l])V, A; X, Y) = E^t^+f^AXY) G B[[X' Y]]

Note now that

β[£/0, ί/i,ί/2 ^ ] n i l = Z(P)[£/o, Uι,U2,...,A].

COROLLARY 2.17. Let A be a Z(py algebra and a e W(A). Then

Ifλ is nilpotent and a € W(A), then

Fp(a,λ\X,Y)eZ2(gw,Gm,A).

PROOF. The first asseertion follows directly from Lemma 2.16. For the second asser-

tion, we have only to verify the following lemma.

LEMMA 2.18. Let A be a Z(Pyalgebra and a e W(A). Assume that λ is nilpotent.

Then Fp(a, λ; X, Y) e A[X, Y] if and only if a e W(A).

PROOF. Put

Fp(U, A; X, Y) = ΣciΛU> Λ^χiγJ *

If we assign to Uk the weight pk+ι and to A the weight 1, respectively, then Q/(£/, A) is

isobaric of weight / + j . Moreover,

χpr+ι + γpr+ι - (X + Y)Pr+l

dj(U9A)XiYj = Ur m o d ( I / o , I / i , . . . , £ / Γ - i , ^ ) .
J Ό

Now assume that F(X, Y) = Ep(a, λ; X, Y) e A[X, Y]. Let d = deg F(X, Y) and α

the ideal of A generated by λ and the coefficients of F(X, Y) except the constant. Then α is

nilpotent, since F(X, Y) is invertible in A[X, Y]. Put s = [logp d]. Then we can verify that

(1) ar eaifr <s - 1 ; (2) as+j e aPJ+l for all j > 0.

Conversely, if a e W(A), then QJ (α, λ) is nilpotent for all (/, j) φ (0, 0), and c, y (α, λ) =

0 for all but a finite number of (/, j).

2.19. Let A be a Z(/?)-algebra and λ e A. Let a e W(A). By 2.14 and 2.11, we can

define homomorphisms

ξ°A : W(A)F~[λP~l] -• HomΛ_ g Γ(ζ? ( λ ),Gm,Λ); a ^ Ep(a,λ; T)

and, when λ is nilpotent,

ξ°A : W(A)F~[λP~l] -• Hom Λ . g r (α ( λ ) , G W , A ) ; a ^ Ep(a, λ; T).

Moreover,

FP((F - [λp~ι])a, λ; X, Y) e
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and, if λ is nilpotent and a e W(A),

FP((F - [λP~ι])a, λ; X, Y) e B2(Q{λ\ GmΛ).

By 2.17 and 2.18, we can define homomorphisms

ξ\ : W(A)/(F - [λP~1]) -> H$(0{λ\ G m , A ) ; a H* Fp(a, λ; X, Y)

and, when λ is nilpotent,

ξι

A : W(A)/(F - [λP~1]) -* // 0

2 (£ ( λ ) , G m , Λ ) ; a H> Fp(a, λ; X, 7 ) .

With these notations, we can state our main theorem as follows.

THEOREM 2.19.1. Let A be a Z(pyalgebra and λ e A. Then the homomorphisms

ξ°A : W(Af-*p-ll - , HomA.%τ{Q(λ),Gm,A),

ξ\ : W(A)/(F - [XP~1]) -» ffo

2(g(λ), Gm,A)

are bijective. Moreover, ifλ is nilpotent, then the homomorphisms

ξ\ : W(A)/(F - $

are bijective.

3. Proof of the theorem. Hereafter, we denote by P the set P = {pι | / > 0} c V̂.

LEMMA 3.1. Let A be a Z{pYalgebra, λ e A, and F(T) e Λ[[Γ]]X. IfF(T) satisfies

the functional equation F(X + Y + λXY) = F(X)F(Y), then there exists a e W(A)F~[λP~l]

such that F(T) = Ep(a, λ; T).

PROOF. AS is remarked in 2.10, F(T) is written uniquely in the form

k)F(T) = Y\ Ep(ak, λ; Tk), ak e W(A).

(k,p)=l

Now we put

a=a\ and G(T) = [~J Ep(ak, λ; Tk).

(*,p)=l
k>\

Then we have that

(G(X)G(Y)G(X + Y + λXy)"1)-1

= Ep(β, λ; X)Ep(μ, λ; Y)Ep(a, λ; X + Y + λXr)" 1 = Fp((F - [λp~ι])a , λ; X, Y).

Note that if Fp((F - [λP~ι])a, λ; X, Y) φ 1, then

[ λ ^ " 1 ^ , λ; X, Y) = 1 + ff* + Hk+χ + ,
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where Hj is a homogeneous polynomial of degree j and k is a power of p. On the other hand,

ifG(Γ) φ l.then

G(T) = l+cTk mod degree & + 1

with c / 0 for some k ^ P. Hence

G(X)G(Y)G(X + 7 + 1

= 1 + c{X* + 7* - (X + 7 + λX7)*} mod degree k + 1

= \+c{Xk + Yk -{X + Y)k} mod degree ifc + 1,

and we come to a contradiction. It follows that G(T) = 1 and F p ( ( F - [λ^"1])^, λ; X, Y) =

1, and therefore (F - [λP~ι ])a = 0.

COROLLARY 3.2. Lef A^αZ { p )-algebra, λ e A and F(T) e A[T]X. Suppose that

λ is nilpotent. IfF(T) satisfies the functional equation F(X 4- Y + λXY) = F(X)F(Y), then

there exists a e W(A)F~[λP~l] such that F(T) = Ep(a, λ; T).

PROOF. Combine Lemma 3.1 and Proposition 2.11.

3.3. We conclude immediately the bijectivity of fA : W(A)F~[λP~l] -» HomΛ-gr(έ/(λ),

Gm,A) and§° : W(A)F~[λP~l] -> HomΛ-g r(^ ( λ ), Gm,A) from of Lemma 3.1 and Corollary

3.2, respectively.

LEMMA 3.4. Let A be a Z(p)-algebra, and λ e A. Then for F(X, Y) e Z2(g{λ\

Gm,A) C Λ[[X, 7 ] ] x , there exist a e W(A) and G(T) = \\HP(l + ckT
k) e A[[T]]X such

that

F(X, Y) = Fp(a, λ; X, Y)G(X)G(Y)G(X + Y + λXY)~x .

PROOF. Dividing F(X, Y) by its constant term, we may assume that F(X, Y) = 1

mod degree 1. Assume now that there ex i s t s e W(A) and Gk(T) e A[T] such that

Fp(ak, λ; X, Y)Gk(X)Gk(Y)Gk(X + Y + λXy)" 1 = F(X, 7) mod degree ifc.

Let H(X, 7) be the homogeneous component of degree k of

F(X, Y){Fp(ak, λ; X, Y)Gk(X)Gk(Y)Gk(X + 7 + ΛX7)"1 p 1 .

Since

F(X, y){Fp(βA, λ; X, 7)G^(X)G^(7)G^(X + 7 + ΛX7)" 1 }" ! G Z2(C?(λ), G m , A ) ,

//(X, 7) satisfies

H(X + 7) + //(X, 7) = #(X, 7 + Z) + //(7, Z) and H(X, 7) = //(7, X).

By Lazard's comparison lemma [8, Lemme 3], there exists an element a e A such that

a{Xk + Yk - (X + Y)k] if A: is not a power of /?,

H(X, 7) - Yk - (X + Y)k

if £ is a power of p .
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(1) When Jfc is not a power of p, put E(T) = 1 + aTk and Gk+\(T) = Gk(T)E(T). Then

we have

Fp(ak, λ; X, Y)Gk+\(X)Gk+\{Y)Gk+\(X + F + λXF)" 1 = F(X, Y) mod degree £ 4- 1,

noting that

E(X)E(Y)E(X + Y + λXF)"1

= 1 + fl{X* + Yk - (X + F + λXY)k] mod degree ik + 1

= 1 + a{Xk + Yk - (X + F)*} mod degree jfc + 1.

(2) When k = pr, put α^+i = ak + b. Here ft = (fr/)/>o with &r-i = # and b[ — 0 for

/ Φ r — 1. Then we have

Fp(βik+i, λ; X, F)Gik(X)Gik(y)Gik(X + 7 + λXY)~ι = F(X, F) mod degree Jfc + 1.

Continuing this process, we findα e W(A) and G(T) e A[[T]] such that

F(Z, F) = Fp(α, λ; X, F)G(X)G(F)G(X + F + λXY)~ι .

LEMMA 3.5. Let A be a Z(p)-algebra and λ e A. Assume that λ is nilpotent. Let

F(X, F) G Z 2 ( £ ( λ ) , G m , Λ ) C A[X, F ] x . Then there exist a e W(A)andG(T) =

ckT
k) eA[T]x such that

F(Z, F) = Fp(n, λ; X, Y)G(X)G(Y)G(X + F + λXF)" 1 .

PROOF. AS above, dividing F(X, F) by its constant term, we may assume that F(X, F)

= 1 mod degree 1. By Lemma 3.4, there exist a — (a/)i>o £ W(Λ) and G(Γ) = Πfc£p(l

+ c j * ) e A[[Γ]]X such that F(X, F) = Fp(β; X, F)G(X)G(F)G(X + F + λXF)" 1 .

We prove thatα e W(A) and G(T) e A[T]X.

Let ύ? be the degree of F(X, F) and let α denote the ideal of A generated by λ and the

coefficients of F(X, F) except the constant. Since the polynomial F(X, F) is invertible, α is

nilpotent.

Now observe the following:

1) For 7 ^ P , put

(1 + cjXJ)(l + cjYJ){l + cj(X + F + λXFV}" 1 = 1 + Σ ^ ( X ' Y)'

where Hk(X, F) is homogeneous of degree jk. Then the ideal generated by the coefficients

of H\(X, F) coincides with (c/), and the ideal generated by the coefficients of Hk(X, F) is

contained in (cj, λ)k fork> 1;

2) Put

FP(P, . .. , 0, at, 0, . . . , λ; X, F) = 1 + ] Γ //*(X, F),



EXTENSIONS OF ALGEBRAIC AND FORMAL GROUPS 221

where /4(X, F) is homogeneous of degree pι+ιk. Then the ideal generated by the coeffi-

cients of H\ (X, F) coincides with (#/), and the ideal generated by the coefficients of /4(X, F)

is contained in (<?;, λ)k foτk> 1.

These imply the following:

1) If j is not a power of p and (s — X)d < j < sd, then CJ e α5;

2) If (s - \)d < pi+ι < sd, then at e as.

Hence, at and Cj are nilpotent for all / and j , and are zero for all but a finite number of i and

j -
3.6. Now we prove the bijectivity of ξ\ : W(A)/(F - [λ^"1]) -> H$(C}(λ\ Gm,A) and

l i : W(A)/(F - [λP~1]) -> //0

2(ζ?(λ), GmΛ).

Lemma 3.4 and Lemma 3.5 imply the surjectivity of ξ\ : W(A)/(F - [λp~1]) ->

//Q (^ ( λ ) ' Gm.A) and ^ : W(A)/(F - [λP~1]) -+ // 0

2 (^ ( λ ) , G m , Λ ) , respectively.

Now assume that Fp(a, λ; X, F) e B2(Ga,A, GOT,Λ) for α e W(A). Then there exsits

F(T) e A[[T]]X such that

F(X)F(Y)F(X + F + λXF)"1 = Fp(a, λ; X, F).

Put F(Γ) = Π*>i Ep(ck, λ; Γ*). Then

FJa, λ; X, 7)Fn((F - [ λ ^ 1 ] ) ^ λ; X, F)" 1

= Π Ep(ck, λ; Xk)Ep(ck, λ; r*)£\,(c*, λ; (X + Y + λXF)^)"1 ,

where b = (cpr )r>o As in the proof of Lemma 3.1, we see that ck = 0 if k is not a power of

p, and hence Fp(α, λ; X, F) = F p ( ( F - [λ^"1])^, λ; X, F). It follows that ^ : W(A)/(F -

[λP~1]) -> //0

2(^ ( λ ),Gm,Λ)isinjective. Similarly, it is seen that ξ\ : W
2 )

EXAMPLE 3.7. If λ = 1, 5 ( λ ) is isomorphic to the multiplicative formal group Gm,A>

Then EndΛ-gΓGm,Λ is isomorphic to Ker[F - 1 : W(A) -> W(A)].

If A is of characteristic /? and Spec A is connected, Ker[F — 1 : W(A) -+ W(A)] is

isomoφhic to Zp = W(Fp). Hence all the endomophisms of Gm,^ = Spf A[[Γ]] are given

by T h^ Ep(a, 1; T) — 1 (α e W(Fp)) when the formal group law of Gm,Λ is given by

F(X,Y) = X - f F + XF.

We conclude this section by giving a formula concerning a functorial isomorphism ξ°.

REMARK 3.8. Put

A 7 \Λ M pnΛ pn~lΛP pn~2Λp2 pΛpn~] ΛPΊ
A = Z(D)\ A, M, , , , . . . . , .

{p)[ M M M M M ]
We define a A-homomorphism of formal groups Ψpn : Q^ —> Q^M^ by

M
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Let B be an A -algebra. Under the identifications

HomB-gr&
Λ\ Gm,B) = F

and

Ψ*n : H o m β . g r ( ά ( M ) , Gm.B) -* Hom e. g r(C?^\ Gm,B) is given by

Indeed, let« € W(B)f-[MP~l]. By Corollary 1.8, Ker[F - [MP~X] : WA -> WA] is flat
over A. Therefore there exist a flat Λ-algebra B, a surjevtive homomorphism of Λ-algebras

φ : B -* B and α e W ( J B ) F ~ [ M / 7 ] such that φ(ά) = α. Hence we may assume that Z? is flat

over A.

Put now A! = Z{p)[Λ, M, Λ/M, M/Λ] and B' = B ®A A'. Then B is a subring of B''.

Define an A'-homomorphism of formal groups [M/Λ] : £/(M) -• ^ ( y l ) by

Then [M/A] is an Ar-isomorphism and [M/Λ] o ̂ p« = /?". We have obtained a commutative

diagram

ψ>

Note that

(1) (pn)* = p" : W(β ' ) F - [ M "~ ' ] -• W(B')F-W~\ since

l \ = Ep(a, M ;£ p ( α , M; ^ + M ^ l \ = Ep(a, M ; T)P" = £ p ( p « α > M; 7")

(2) [M/Λ]* = [M/Λ] : W(B')F^ΛI"^ -• W(β ') / Γ " [ W "" ' ] , since

[Λf/ΛΓίpία, y\; Γ) = £ p f α , Λ; ^Tj = EP([M/Λ]a, M; T).

We have Fka = [Mp ~{]a since Fa — [Mp~x]a. Hence we obtain
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n
Xl[a - Vk-ιV[p{n-k)pMpk-ι]a} + Vn[Mpn~ι]a

~ Vk~ι[pn-k]VFka} + VnFna

k=\

n
k~ι[pn-k]VFka} + VnFn

* = 1

n

Yj{Vk-χ[p"-k+λ]Fk-χa - Vk-ι[p"-k]([p] - p)Fk~xa) + VnFna

k=\

pn-kVk-\pFk-]a + VnFna = pna.

k=l

4. Application: A case of extensions of group schemes over a discrete valuation

ring. In this section, we complete a study on extensions of group schemes over a discrete

valuation ring, treated in the previous articles [9], [10] and [11]. In particular, we describe

some functorial maps in terms of Witt vectors.

Throughout the section, A denotes a discrete valuation ring and m (resp. k) the maximal

ideal (resp. the residue field) of A. We denote by π a uniformizing parameter of A and by v

the valuation of A normalized by v(π) = 1, if there are no restrictions. We refer to relevant

results of [9, 10, 11].

4.1. Let λ, μ e m - {0}. Put n = v(μ) and Λo = A/mn. Let F(T) e A[T], satisfying

1) /7(0) = l mod μ\ 2) F(X)F(Y) = F(X + Y + λXY) mod μ.

We define a smooth affine group scheme £( λ '^ ; / Γ) over A as follows:

= Spec AΓΓ Γ l *I, — — ,
1 + λ7b F(7b) +

with

1)

2)

multiplication:

7b h+ λΓ 0 ξ

TX » μT{ C

β

unit:

)̂ 7b + 7b Θ 1 + 1 Θ 7b,

S) T\ + Tx ® F(7b) + ̂ (7b) ® Γi

^(7b) (8) F(7b) - F(λ7b ® Γo + Γo C

7 b h ^ 0 , Γi h+ - [ l - F ( O ) ] ;

7b)]
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3) inverse:

, 71 i > I F I

λΓ0 + Γ μlμTi+FiTo) \ λΓ0+
A homomorphism of group A-schemes

α ( W ) : ειw) = spec A[Γ0, Γlf ^ *

ϊ)]

l + λ 7 b ' F(T0) +

-• ( G m , Λ ) 2 = SpecΛ[ί/0, I/Q"1, t/i, ί/f1]

is defined by

(c/o, U\) h->(l + λ7o, F(To)

ΛI

The generic fiber of^'μ' ) is an isomoφhism.

Moreover, we define a homomorphism of group schemes

by

I d - F,0)]: Λ[ΓO, 7,.

and a homomoφhism

1
£(A,M;/.; = SpecΛ|Γ 0, Γi,

by

L ί/0 ί/ij L l + λ Γ 0 F(Γ0) + /xΓiJ

l 1 -• £ ( λ ) = SpecA[Γ, — ! — 1

+ μΓiJ ^ L 1+λΓj

L ' 1 + λ Γ j L l 1+λTo* FW + μTx]

Then the sequence of group schemes

o -+ gw -+ ε{λ*μ;F) -+ g{λ) -> o

is exact.

F *-+ [fίλ'M^)] gives rise to a surjective homomorphism

a : Hom Λ o _ g r (£ ( λ ) , G m , Λ o ) ^ Ext^(^ ( λ

and Ker 3 is generated by the class of 1 + XT. (Cf. [9, Sect.3], [11, Π.1.2])

4.2. We purchase the homomoφhism

3 : F(λ)W(A0) ^ Hom Λ o . g r (ρ ( λ ) , GmM) -> E

Letα € W(A0)
F-[λP~]]. Then Ep(a, λ; Γ) € A0[T] and we have

Ep(a, λ; 0) = 1 and Ep(a, λ; X)£p(α, λ; Y) = Ep(a, λ; X + Y +
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Then, if we take a lifting F(T) e A[T] of Ep(a, λ; Γ), we have

F(0) = 1 mod μ

and

F(X)F(Y) = F(X + Y+ λXY) modμ.

The class [£( λ ' /^)] e Ext^(£ ( λ ), G(μ)) depends only on a. Moreover, let a e W(A) be a

lifting of a e W(A0). Then

F(T) = Ep(ά,λ; T) modμ.

4.3. Let m be an integer with 1 < m < min(υ(λ), v(μ)), and let A\ denote the residue

ring A/mm. Let F(T) e A[T], satisfying F(0) = 1 mod μ and F(X)F(Y) = F(X + Y +

λXY) mod μ. We denote also by F(T) the reduction of F(T) modulo mm. Then F(T) e

(Λi[Γ]) x, and T \-> F(T) defines a character of Ga%Ax> Moreover, the fiber S{^μ;F) is a

commutative extension of Ga,Aι by Gfl>Ar The multiplication of 5^ λ 'μ ' = SpecΛi[Γo, Γi]

is given by

7b ι-» 7b ® 1 + 1 ® 7b , 7Ί h^ Γi ® F(Γ0) + F(Γ0) 0 Γi + G(Γ0 ® 1, 1 ® Γo),

where G(X, 7) denotes the reduction of [F(Z)F(F) - F(λXy + X + F)]/μ modulo mm .

Put

Then C(Z, y) is a symmetric 2-cocycle in Z2(Ga,Aι, Ga,Aι)- Define a group scheme £ =

Spec Λi [Γo, T\] with the multiplication

7b H> 7b ® 1 + 1 ® 7b , Γi ι-> Γi ® 1 + 1 ® Γi + C(T0 ® 1, 1 ® Γ o).

It is easily verified that (7b, 7Ί) H> (7b, F(T0)-ιT\) : Λi[7b, Γi] -> Ai[Γ0, 7Ί] defines an

isomoφhism ^ λ ' μ ' ^ _> £ of extensions of Ga,Ax by GαtΛi •

Assume now that the residue field of A is of characteristic p > 0. As is well-known,

E x t ^ G ^ p G ^ Λ , ) = /^(Gfl,Λi.Gfl,Λi) is generated by 2-cocycles

as an A i-module. (Cf. [2, Ch.II,Th.4.6])
l ) € A[T] be a lifting of EpLet a e W(A0)

F~[λP~l]. Let F(Γ) € A[T] be a lifting of Ep(a, λ; Γ) G AO[T], and

α G W(Λ) a lifting of a. Put

(F0(β), Fi(fl), F 2 (α) , . . . ) = (F - U

Then, by the assumption,

F * ( α ) = 0 modm"

for each /: > 0. With these notations, we have:
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PROPOSITION 4.3.1. [£^ λ ' μ ' F ) ] G HQ(GG,AI» Ga,A\) coincides with the class of

The assertion follows immediately from the following lemma.

LEMMA 4.4. Let B =Z{p)[Π], A e B andU = (Uo,U\9U2,...) e W(B). Put

^ 1

 O ϊ Ui,U2,..., A]).

Lei m, n be integers with 1 < m < n. Assume that

(1) A = 0 mod /7m (2) Fk(U) = 0 mod 77"/or α// ik > 0.

M M X + r U X n ^ F k - m

X ' + r ' - < X + r ) ' mod 77-

PROOF. By the assumption (2), we have

Φk-\(F0(U),Fι(U),... ,Fk-\(U))

= F0(U)pk~l + pFx(U)pk~2 + + pk-lFk-\(U)

Hence, by the assumption (1), we obtain

Fk-λ(U))Tpk

TP
k

= 1 + F*_i(t/) mod
P

Therefore we have

EP(U,Λ; T)

= (1 + AT)Uo/Λ

k=\

Y\\l + Fk-\{U)

k\
) m o d / 7 π + ι π ,

TPk\
) )

P /
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and hence, again by the assumtions (1) and (2),

EP(U,Λ;X + Y + ΛXY)

~ Ep(U, A; X)EP(U, A; Y)

. ^(X + Y + ΛXY)Pk

» 1 *=L

χpk

 + YP
k -(χ + γ + ΛXY)Pk

k=\
00

(,Y) mod

4.5. Let λ, λ', μ <Ξ m - {0}. Assume that pn~kλrpk (0 < k < n) are divisible by λ.
Then

defines an A-homomorphism

Let F(T) € Λ[Γ] and

If F(Γ) satisfies
(1) F(0) = l modμ; (2) F(X)F(K) Ξ F(X + 7 + λXY) mod μ,

then F'(Γ) satisfies
(1) F'(0) Ξ 1 mod μ; (2) F'(X)F'(K) = F'(X + Y + λ'XY) mod μ.
Define an A-homomoφhism

1: ε^' μ' F>) = SpecAΪTo, Tu , 1
l+λ'7b'F'(7b)

- • ε{λ'μ'F) = Spec AIVO, ΓI, —!—,P L 1 Ί + λ 7 b '1+λTb F(Γ0)

by

(λ iQ + 1) "~ 1
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Then we have a commutative diagram with exact rows

0 • gW • £(λ\μ;Ff) y g{λ')

0 • gb*) y £(λ,μ;F) ^ g(λ) ^ Q

We have Ψ*Λ£(k'μ'F)] = [S{X'^F>)] in E x t ^ ς ^ λ QW>). Since F' = FoΨpn

g(λ' -> Gm,A0, we have a commutative diagram

^ " ' ] — U Hom Λ o (^) ,G m , Λ o )

Here by 3.8,

k=\

4.6. Let λ, μ, μ' e m - {0}. Assume that pn~kμpk (0 < k < n) are divisible by μ'.
Then

defines an Λ-homomorphism

Let F(T) € Λ[Γ] and F'(Γ) = F ( Γ ) ^ . If F(T) satisfies

(1) F(0) = 1 mod μ; (2) F(X)F(7) = F(X + F + λZF) mod μ,

then Fr(Γ) satisfies

(1) F'(0) = 1 mod μr; (2) F ^ F ' t Γ ) = Fr(X + Y + λ'XF) mod μr.

Define an A-homomorphism

by

F(T0))P" - F{T0)P"

LU 'Ί+λΓo'F'(Γo)+/t'Γ,J L l+λ7b'F(7b) + μ7ΊJ
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Then we have a commutative diagram with exact rows

0

\ψpn

g(λ)

We have tfy*[£(λ'μ;F)] = [ f ^ ' ^ ' ) ] in Ext^(£ ( λ ), 0<"'>).

Put Λo = A/(μ) and Λi = A/(μ/) Let a e W(A0) and α € W(A) a lifting of a. Then
the image of pna in W(Ai) depends only on a. Hence α h^ pnά mod μ7 gives rise to a

homomorphism /?n : W(A0) -> W(Λi). Since ^( f i , λ; T)P" = Ep(pnά, λ; T), we have a

commutative diagram

1"" 1""
W(AOF-[λ"~l]

5. Kummer-Artin-Schreier-Witt theory of degree p2. We conclude this article by

giving an explicit description of the Kummer-Artin-Schreier-Witt theory of degree p2.

5.1. Let ζ2 be a primitive p2-th root of unity, and put ζ = ζ%, λ = f — 1, λ2 = ζ"2 — 1

and A = Z(p)[ζ2]. Then A is a disctrete valuation ring and λ2 is a uniformizing parameter of

A. Let v denote the valuation of A normalized by υfa) = 1. Then we have υ(λ) = p and

= p(p - 1). We put Ao = A/(λ) and Λi = A/(λ^). Put

k λPι

λ 2 a n d rl = (pη-λ).
Pk=\

Then we have v(η) = v(λ*2) and v(ή) = v(λ).

Put

, YQ) = λX0Y0 + X0 + Y0, Λ$(X0, Yo) =

, Xu Yo, Y\) = λXiYi + XιF(Y0) + F(X0)Y0

+ -IF(XO)F(YO) - F(λX0Y0 +
A

Λf(X0, Xu Yo, YO = λpX\Y\ + XιG(Y0) + G(Xo)Y0

+ —[G(Xo)G(Yo) -
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(λT0 + 1 ) ^ - 1

( Γ P

W2 = Spec A | 7 O , TU ^ *

L
V2 = Spec A 7b, T\, ,

Jr w ι \ n T i 1 \ nT1 i Γ^CT \

L λPio + i λPi\ + CJ(1O)J
THEOREM 5.2. With the above notation:

(1) The polynomials Λf(X0, Xu Yo, Yγ), Λf(X0, X\, Yo, Y\) have their coefficients

in A. Moreover,

(To, T\) H> (Aξ(T0 ® 1, 1 ® 7b), Λf (To 0 1, T\ ® 1, 1 ® Γo, 1 ® Γi))

defines a structure of group on W2, β«ί/

(7b, Γi) H> (^(7b 0 1,10 7b), Λf (7b 0 1, Γi 0 1, 1 0 Γo, 1 0 T\))

defines a structure of group on V2.

(2) Γ/ze fraction Ψι(T0, Tx) belongs to A [Γo, T{, l/(λT0 + 1), \/(λTx + F(Γ0))].

Moreover,

defines an A-homomorphism Ψ : W2 —> V2, and Ker[Ψ : W2 —> V2] w isomorphic to the

constant group scheme Z/p2Z.

(3) (ί/0, ί/i) H^ (λΓ0 + l,λΓi + F(Γo)) d^/ϊnβj α homomorphism a(F) : W2 ->

(^m,Λ)2 of group schemes over A, and (ί/o, ί/i) -̂> (λpTo + 1, λ^Γj + G(7b)) defines a

homomorphism a^ : V2 -> (Gm,Λ)2 of group schemes over A. Moreover, aκ : W2,A: ^^

(Gm,κ)2 andaκ : V2,A: -^ (Gm,κ)2 o,re isomorphisms.

(4) 77ιe diagram of group schemes over A

W2 —-^ V2

| α ( G )

i5 commutative. Here Θ w defined by

(5) ΓΛe closed fiber of the exact sequence of group schemes over A

0 —-• Z//?2Z — • W2 -^-> V2 — • 0

iί isomorphic to the Artin-Schreier-Witt sequence

0 —»• Z/p 2 Z — • W2 ^ W2 — • 0.
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EXAMPLE 5.3. We can verify the assertions directly in the case of p = 2. Indeed, we

have

ζ = - 1 , ζi = i , λ = - 2 , η = λ2 = i - 1 , ή = -2i

and

Λζ(X0, YQ) = -2*0*0 + Xo + Yo, Λo (Xo, *W = 4X 0F 0 + Xo + YQ ,

i l f (Xo, Yo, Xu Y\) = -2XiFi + Xi{l + (/ - 1)YQ] + {1 + (i - 1)XO}^ + Xo^o ,

Λf(X0, Yo, Xi, Fi) = 4XiKi + Xi(l - 2iT0) + (1 - 2/X0)^i + (-1 + 2ι)X0ϊb ,

Taking the reductions modulo λ2, we obtain

o, Fo) = ^o + Yo, Λf (Xo, n>, Xi, 1̂ 1) = Xi + Fi +

, >o) = Xo + Yo, Λf (Xo, >o, Xi, Ki) = Xi + Ki +

= Γo

2 - To, ^i(Γ 0 , Γi) = 7? + Γi + Γ0

2 + Γo

3 .

Then it is seen without difficulty that Φ : W2 ̂ ^ V2 is well defined and the closed fiber of

0 -> Z/p2Z ->W2->V2^0

is isomoφhic to the Artin-Schreier-Witt sequence

0 -• Z/p2Z -• W2fFp ^ W2,Fp -• 0.

5.4. Hereafter we will prove the thoerem in the case of p > 2. Now we assume that

p > 2. The assertion (1) is a consequence of the congruence relations

F(X)F(Y) = F(X + Y + λXY) modλ

and

G(X)G(Y) = G(X + Y + λ^Xy) mod λ^7,

which follow from the divisibilities λ | ηp and λp \ηp. W2 or V2 is nothing but £(λ^F) or

£(λP,λP ,G) reSpectively in the notation of Section 4. The assertrions (3) and (4) are easily

verified.

First we establish some congruence relations among λ, λ2, η and ή to prove the asser-

tions (2) and (5).

LEMMA 5.5. Let Abe a Z\pyalgebra and a e A. Then

^ ( ϊ ) pa2.
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PROOF. By the following sublemma,

ak mod pa2

k

for 2 < k < p — 1. Hence we obtain

^ 1 ΛΛ ^ (_i)*-l

/=«+v- /ΞU + V

Σ (-l) k Λ 2α mod z?α .

SUBLEMMA 5.5.1. For 2 < A: < p - 1,

— I ^ J = mod p.
p \kJ k

PROOF. In fact,

p k\

LEMMA 5.6. With the above notation,

(1) η = ?- mod p,

(2) λ = λ^ + pη mod λ^7,

(3) λ* = λ ^ mod λ^/or k>2.

PROOF. By Lemma 5.5,

λS = mod
P

We obtain the assertions, noting that (λ2 + 1)^ - 1 = λ and that λ^7"1 | p, λ

LEMMA 5.7. We have a congruence

m o d λ P .

PROOF. By the definition,

t = i
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Then we obtain

p~ι r n * - i

noting that λp \pλp

2 and that {{-\)k~ι/k}p = (-l)k~{/k mod p. Moreover, it follows

from Lemma 5.5 that

έ ί * 2

Hence we obtain the result.

LEMMA 5.8. We have an equality

PROOF. Develop and divide by pλ the right hand side of λp = λp + 1 - (λ + \)p.

PROPOSITION 5.9. We have a congruence

ηp = ή mod λp .

PROOF. By Lemma 5.8,

rί=-—{pη-λ) = -\γj-\l)λ^\{pη-λ)

k=\ x ' k=\

Now we have

since λp \ pλ. Hence we obtain

p-\

mod λp.
=χP

On the other hand, by Lemma 5.7, we have

k=\ κ k=\

Hence the assertion follows from Lemma 5.6.

t ^J i /p\
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LEMMA 5.10. Let Abe a Z(pyalgebra and a e A. Then we have

p[a] = (pa, ^ , 0 , 0 , . . . ) mod/? 2 .

PROOF. It is sufficient to prove the assertion in the case where A = Z(p)[U] and a =

U. Put V = (Vo. Vι, V2,...) = p[U] e W(A). By the definition,

ΦΛV) = Vo

pΓ + pVfX + . . + pr~ιVp_χ +P

rVr = pUp\

In particular, we have

V0 = pU, Vι = ( \ - pp~x)Up,

and therefore

Vi = Up mod p2 .

Hence we obtain

VpΓ = 0 mod pr+1,

since pr > r + 2 if r > 2, and

^V^"1 = PU
pr mod p r + 2 ,

since 2pr~ι + 1 > r + 2.

Assume now that V ^ Ξ O mod /?2 for 2 < /: < r — 1. Then we obtain pk Vp = 0

mod / / + 2 , since 2/?r~/: + A : > r + 2 f o r 2 < / : < r - l . I t follows that

pUpr = VpΓ + pV(~X + + p'"" 1 V/_, + prVr = p£/p" + / V r mod / + 2

and that

Vr=0 mod p2foτr >2.

REMARK 5.10.1. If p = 2, then we have

p[fl] = (2α, - α 2 ,

LEMMA 5.11. We have a congruence

a] ΞEΞ (2a, -a2, 0, 0, . . .) mod 22 .

p[η] - [λ] = (pη - λ, ηp, 0, 0, . . . ) mod p2 .

PROOF. By Lemma 5.10,

p[η] = (pη, ηP, 0, 0, . . . ) mod p2 .

Put a = (ao,a\,a2,...) = (pη,ηp,O,...) - (λ, 0, 0,. . .) € W(A). By the definition,

φr(a) = aζ + paf + + pr~Xap_χ + prar = (pη)?' + '

In particular, we have

a0 = pη - λ , ai=ηP-Σ~(ϊ)
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and therefore

a\ = ηp mod p2 ,

since p2 | (pη)k(—λ)p~k for 1 < k < p — 1. Moreover, we have

λpr = 0 mod pr+2

for r > 2, since v(p) = (p - l)v(λ) and pr > (p - l)(r + 2) if r > 2. Hence we obtain

(pη)pΓ + P(ηp)pr~l ~ λpK = P(ηp)pr~l mod pr+1

for r > 2, since λ | /??;.

Assume now that ak = 0 mod p for 2 < k < r — 1. Then we obtain p α£ = 0

mod pr+2 for 2 < k < r — 1. On the other hand, aζ = 0 mod p r + 2 , since λ | «o. It follows

that

aζ + pαf" 1 + + pr~Xap_x + p r α r ^ p{ηp)pr~X + pΓflΓ mod ^ + 2

and that

P(ηp)pr~l + P r^r = P C ^ ) ^ " 1 mod ^ + 2 .

Hence we obtain the result.

PROPOSITION 5.12. We have a congruence

F(T)PT)
^ - EE Ep(pη - λ, λ; T)Ep(ηP, λp; Tp) mod λp .

~t~ I

PROOF. First note that

F(T) = Ep(η, λ; T) = Ep([ηl λ; Γ) mod λ

and that

F(T)P = Ep([ηl λ; T)p = Ep(p[η], λ; T) mod λ^ .

Hence we obtain

F(T)P

- ^ - = Ep(p[η]-[λ],λ;T) mod λp ,

since λΓ + 1 = Ep([λ},λ\ T). By the Lemma 5.11,

Ep(p[η] - [λ], λ; T) = Ep(pη - λ, λ; T)Ep(ηp, λp; Tp) mod p2 .

Hence the result follows.

LEMMA 5.13. We have a congruence

+ V[ή]= ( ^ ϊ ^ ^ 0 , 0 , . . Λ mod p2.

PROOF. By Lemma 1.4.1,

V[ή] ΞΞ 0 mod p2.
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Hence

] V[ή] Ξ y^]ffl + V[fj]

o, o, o,...^ + (o, η, o, o,...) = (jjhi*' ϊ- ° ° ) m o dhi*' ϊ- ° ° )

PROPOSITION 5.14. We have a congruence

PROOF. By Remark 3.8,

( [ ^ ] Ϋ ι λ ; τ)mod λ"'
and by Lemma 5.13,

] - V[η] + V[η], λ; Λ = EPUjZχK τ\Ep(ή, λP; Γ") mod p2.

Hence the result follows.

5.15. Proof of (2). Combining 5.12, 5.14 and 5.9, we obtain a congruence

F(T)P

XT +

This implies that the fraction

P /
= G

1 V
mod λμ.

belongs to A[T0, Tu l/(λΓ0 + 1), l/(λΓi + F(Γ0))].

Now we prove that Ker[^ : W2 -> V2] is isomoφhic to Z/p2Z. First note that a diagram

with exact rows

• g(λ) • 0

is commutative.

Ψ :

is defined by

0 -

0 —

Here

> |

• C

- Speci

I*
(λ')

Γ

—> W2

—• v 2

1 1

-λT\ ~* XPT]

1 _ Ί
λPT]

_ 1 _ Ί ^ Γ> L _ ,
1+λPT] I 1+λΓj
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and the horizontal arrows are defined as in 4.1. Then KQT[Ψ : W2 —• V2] is an extension of

Z/pZ by Z/pZ, since Ker[^ : £ ( λ ) -> G(λP)] is isomorphic to Z/pZ and Ψ : £ ( λ ) -> g{χP)

is faithfully flat (cf. [17, Ch.II]).

Put now

Then Ψo(ao) = 0, Ψ\ (ao, a\) = 0, that is, (αo, tf 1) is a £-rational point of

: W2 -> V2] = Spec AΓΓ0, ΓI, —!—-, _ L* J /w>(7b), Ψ(T0, Ά)).
L λ7b + l λΓi + F(Γ)J/

We can verify that (ao, a\) is an A-valued point of Ker Ψ, noting that Ker ̂  is finite and etale

over A. Furthermore, (ao, a\) is of order p2, since α ( / 7 )(αo, «i) = (?, ?2) ^ ( ^ x ) 2 . It then

follows that Ker[^ : W2 -> V2] is isomorphic to Z/p2Z.

REMARK 5.15.1. It is deduced from 5.12 and 5.14 that

P~] pk

(1) F(T)P = pηT + Σ-L--Tpk modλ^7;

(2) ( ( λ Γ

LEMMA 5.16. W/Y/z //ẑ  above notation,

(1) F[ij]-[λH][η] = (^-λHί),0,

(2) F[ίj] - [λP(P-l)][ή] = (ηP - λP{P~l)ή, 0, 0, . . .) mod λ2P.

PROOF. Putα = (α0, ΛI, Λ2,...) = F[^] - [λ^""1]^]. By the definition,

φr(a) = aζ + pa(~' + + Z " 1 ^ , + prar = ηPr+l - λ ^ ^ " 1 ^ ^ .

In particular, we obtain

p~l 1 / \
ao = ηP-λP-ιη and fll = - V - K ) ηpk{-λ*>-χηγ-k.

Hence we obtain αi = 0 mod λ^7, noting that λp \ (η)pk(-λp~xη)p~k for 1 < k < p - 1.

Assume now that a^ = 0 mod λ̂ 7 for 1 < /: < r — 1. Then we have pkaζ = 0 mod prλp

for 1 < k < r - 1, since v(p) = (p - l)υ(λ) and ik(/? - 1) + /7r~/:+1 > r(p - 1) + p if

1 < & < r — 1. On the other hand, ao = 0 mod λ, and therefore, a^ = 0 mod /7rλ/?. It

follows that

aζ + ptff"1 + + pr~xap

r_χ+ prar = 0 mod prλp

2inάar = 0 mod λp.

Put now b = (bo, bu b2,...) = F[ίJ] - [λ^ (^"1 )][^]. By the definition,

Φr(b) = bζ + pbfX + • • • + //-V_! + P r6r = ̂ r + 1 " Xpr+l{P-l)ηPr .
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In particular, we obtain

bo = ηp-λP<P-l)ή and bχ=-Σ-
k=\ P

Hence we obtain b\ = 0 mod λ2^, noting that λ2P \ {η)Pk{-λP{P-χ)η}P~k for 1 < k <

p — 1. Assume now that bk = 0 mod λ2p for 1 < A: < r — 1. Then we have pkbζ = 0

mod prλ2P for 1 < Jfc < r - 1, since υ(p) = (p - l)v(λ) and Jk(p - 1) + 2pr~k+x >

r(p - 1) + 2p if 1 < A: < r - 1. On the other hand, £o = 0 mod λp, and therefore, Z?^ = 0

mod prλ2p, since v(p) = (p - l)v(λ) and pr+ι > r(p - 1) + 2/7. It follows that

bζ + p*fΓ"! + + pr~Xbp

r_χ + /7rZ7r = 0 mod prλ2p

mάbr =0 modλ2P.
5.17. Proof of (5). Put

),Fι([η]),F2([η]),...) = (F-[λP-

Then, by Proposition 4.3.1, the class of W2,A0 in ExtA0(Ga,A0, Ga,A0) = #Q (G<3,AO>(

is given by the class of

Σ — χ ^ C k -
By Lemma 5.16,

Fo([η]) = ηp — λp~xη mod λp

and

for k > 1. Moreover, by Proposition 5.9,

ηP = ή = (pη - λ) mod λp.

Hence we obtain

ηP-λp-χη = λ modλ2,

noting that λ | /7 ,̂ λ | λp~xη and that λp~x/p = —1 mod λ. Therefore, we see that W2,Λ0

is isomorphic to W2,A0, since the class of W2,AQ in //Q (Gα,A0» G Λ ,Λ 0 ) i s represented by the

2-cocycle

x^ + ŷ  - (x + *T
C I ( A , F) = .

Similarly, we can verify that V2,A\ is isomorphic to W2,A{ These imply the assertion (5) of

the theorem.

REMARK 5.18. Green and Matignon [4] have given independently an explicit form

of the Kummer-Artin-Schreier-Witt theory of degree p2. They empoly (η, ηp) instead of
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(η, η) to define an isogeny of degree p2. It follows from Proposition 5.9 that their isogeny is

isomorphic to ours.

Indeed, put

k=o

Λ$'(Xo, Yo) = λpX0Y0 + X0 + Y0,

Λf'(Xo, Xι,Y0, Yύ = λPXiYi + XιG'(Yo) + G'(Xo)Yo

,

/(λ7b+l)P-

° {
l \ 1

)\

(7b, Γi) ̂  (Λ$'(T0 ® 1, 1 ® 7b), Λ?(T0 ® 1, Γ, ® 1,1 ® To, 1 ® Γ,)).

The multiplication of V2 is given by

(7b, Γi) ̂  (Λ$'(T0 ® 1,

As was shown by Green and Matignon,

defines an Λ-homomorphism Ψ' : W2 -> Vj, which is an isogeny with kernel isomorphic to

Zip1!.

Now we can verify (7b, T\) ι-> (7b, T\+(G(To)—G'(To))/λp) defines an A-isomorphism

V2 -> V2 and that the diagram with exact rows

0 > Z/p2Z > W2

 Ψ > V2 • 0

0 • Z/p2Z • W 2 • V' • 0

Ψ'

is commutative.

It is crucial to prove the congruence relation mentioned in the proposition for an explicit

description of the Kummer-Artin-Schreier-Witt thoery of degree p2. The congruence relation

was proved independently by Green and Matignon [4, Sect.5, Sublemma].
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