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Abstract. We study the structure of the local cohomology modules of the Fourier trans-
form of A-hypergeometric systems. In particular, we are interested in local cohomology mod-
ules with respect to the orbit of a certain action on the toric variety determinetl byhe
purpose in this paper is to describe their stnoe by using a certain combinatorial object.

1. Introduction. Let K be a field of characteristic zerd, = {a1---a,} C Z¢ inte-
gral vectors, an@ € K¢. With these data, Gel'fand et al. [7] associated a system of partial
differential equations (denoted By, (B)) called anA-hypergeometric system. Under the ho-
mogeneity condition (see (27)), they determined the characteristic cycles [7] and proved the
irreducibility of the monodromy representatiéor non-resonant parameters [6] in the Cohen-
Macaulay case; Adolphson [1] proved that Arhypergeometric system is holonomic for
any B without the homogeneity condition, and the holonomic rank ofAalnypergeometric
system is equal the volume of the convex hullaaf-- - a, € Z4 in the semi-non-resonant
case; Kashiwara proved that arhypergeometric system is a regular homogeneous holo-
nomic system under the homogeneity condition (cf. Hotta [8]); Saito and Traves [12, 13]
classified the parameters according to thvssomorphism classes of their correspondifig
hypergeometric systems in combinatorial terms; and many authors studiedetineariants
of the A-hypergeometric systems.

We easily see that the Fourier transform ofAdinypergeometric systeti(M 4(B)) has
support in the affine toric variety determined Aydenoted by {74 (x))). The algebraic torus
(K*)4 acts on the affine toric variety (V4 (x)) throughA (see (3)). The orbits of the action
can be described in the faces of the convex (rational) polyhedral Qepd generated by
A, and there exists a one-to-one correspondence between the orbits and the faces (see [5]).
Furthermore, it is known that the solution sheaffofM 4 (B)) has an algebraic stratification
corresponding to the orbits (see [7, 8]). In this paper, we examine the structure of the algebraic
local cohomology modules ofF (M 4(B)) with respect to each orbit (or face) for an arbitrary
parametep in the Cohen-Macaulay case. For each faceve see that the local cohomology
module with respect te is isomorphic to a direct sum of the external tensor products of the
D-modules generated by Dirac’s delta function and the algebraic local cohomology modules
of F(M sns (B — 1)) for some shifted parametes— 1. We denote by A the lattice generated
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by A, and define the equivalence claBs in ZA (see Section 3.2). Then we see that the
structure of the algebraic local cohomology modules oM 4 (B)) is completely controlled

by E, andB. Moreover, as an application of this result, we give the structure of the solution
sheaf of (M4 (B)) under the homogeneity condition. Since Hotta and Kashiwara [9] gave
a relation between the solution of a homogeneous cohé&enbdule and that of its Fourier
transform (see Theorem 4.5), we give an approach to knowing the structure of the solution
sheaf of the original system and its monodromy representations in detail.

In Section 2, we define some notation and review some necessary notions to argue the
local cohomology. To make the computation of the cohomology easier, in Section 3.1, we
introduce a double complex associated with the Koszul complex defined in [7] aixbtie
complex defined in Section 2. In Section 3.2, we deform the modules appearing in the double
complex defined in Section 3.2. In Section 3.& give the main theorem in this paper (The-
orem 3.12). The keys to the proof of the main theorem are Proposition 3.7 and the acyclicity
of the Koszul complex under the Cohen-Macaulay condition (see [2, 14]). In Section 4.1, we
provide some examples of the Cohen-Macaulay case. In Section 4.2, we compute the solution
sheaf of the Fourier transform of alxhypergeometric system under the Cohen-Macaulay and
homogeneity condition.

2. Preliminaries.
2.1. A-hypergeometric systed 4 (B). LetK be afield of characteristic zero, and let

D=K(x, 8 =K{X1 ..., %000 ...,0)

be thenth Weyl algebra oveK. Let A = (a1---a,) = (a;;) be ad x n integer matrix of
rankd. We denote by 4 (d) the toric ideal inK[d], that is

14(3) := (8" — 9" | Au = Av,u,v ¢ N") C K[9].

Let 8 = (B, ..., Ba) € K7 be a parameter (column) vector. We denoterhy(B) the left
ideal of D generated bya(3) U {3 _j a;jx;3; — Bi | i = 1,...,d}, and call the quotient
moduleM 4(B) := D/Hx(B) the A-hypergeometric system with paramegerAdolphson [1]
proved thatM 4 (B) is a holonomicD-module for anyg without the homogeneity condition
(27).

In this paper, we consider the Fourier transformvf (g8) (denoted byF M 4(B)); that
is,

FMaB) = D/F *Ha(B)
=D/D({Ia(x), Y _qaijdjx;j+pi |i=1...,d),

whereF is the automorphism ob defined byF (x;) = 9;, 7(3;) = —xj, andl,(x) :=
F~11,(9). Itis well-known that a modulé/ over the Weyl algebra is holonomic if and only
if /M is holonomic, and homogeneous regular holonomic if and orfipif is homogeneous
regular holonomic. Here we say that a cohem®@nnhodule is homogeneous, if foranye M,
K[Zf}zl x;d;]m is a finite-dimensionak -vector space (see [8, 9]). Moreover, it is clear that
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FMa(B) has support in the affine toric variety:
V(Ia(x)) :={x e K" | f(x)=0forall f € I4(x)}.
Namely,

1) SuppFMa(B)) CVa(x)).
2.2. Affine semigroup algebrE[NA]. In this section, let us recall affine semigroup

algebras. We also denote the &ef, . .., a,} by A and the affine semigroup generatedAy
by NA. Let K[NA] be the affine semigroup algebraf; that is,

K[NA] = P Kt* C K[t ....1]]
AeNA
as K -vector spaces, wheré := ti‘l e té’}d, and the multiplication oK [NA] is defined by
N = Y We recall that the toric idealy (x) is simply the kernel of thek -algebra
epimorphism
¢4 K[x] > K[NA],  ¢a(x)) =1t .
We regardK[NA] as aK [x]-module through the mapy; thatis, f - g := ¢a(f)g (f €
K[x], g € K[NA)).

Next we recall a localization ok [NA]. We denote byQ-oA the cone{}_; c;a; |
cj € Q>o}. Let S, be the set of faces @-oA, ZA the group generated by andK A the
K -vector space generated By For a facer € S4 we denote by (A N o) theZ-submodule
of ZA generated byA N o and K (A N o) the K-subspace oK A generated byA N o. We
agreethaZ(ANo) = K(ANo) =0whenA No = @. For eachr € S4, we consider two
multiplicatively closed sets

Sy i={t* L eN(@AND)}, T, :=¢;%5,).

We denote byK [NA], (resp.K[x],) the localization ofK [NA] (resp.K [x]) with respect to
So (resp.1,). Letga - be the natural morphism induced by. Then we have

KIxlo/Kx]lo 14 (6) 2 KINAJ, = K[NA + Z(A N o)]
2) = & k.
reNA+Z(ANo)

2.3. Orbits of an algebraic torus action on an affine toric variety. To discuss the alge-
braic local cohomology modules GtM 4 (8), we recall the orbits of the action of the algebraic
torus(K *)4, defined by

3) (KX x V(Ia(x)) 3 (£, X1, ..., x5) = (t%x1, ..., t%x,) € V(I (x)).

The orbits of the action are the very sets thateonsider. In this section, we briefly recall a
relationship between the faces@foA and the orbits (cf. [5, 8]).
Foro € S4, we denote by, the subsetj | a; € o} of {1,...,n}, and put

(@) Xoi={x € K" |x; #0(j € Io).x; = 0(j & I)} NV (Ia(x)).
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It is well known that{X, | o € Sa} is the set of orbits. Namely¥,, is invariant under the
action of(K )4 for eacho € S4 and

V(14 (x)) = ]_[ X,, disjoint union.
oceSx
Moreover, there exist order-preserving one-to-one correspondences &mdig | o € Sa}
and{X, | o € Sa}, whereX, is the Zariski closure ok, in V(14 (x)). Namely,

Sp «— {Iy |0 €Ss) «— {X, | 0 €84},

o 1, Xo .

2.4. Algebraic local cohomology artech complex. We congid the algebraic local
cohomology modules with respect to each of thats described in Section 2.3. We fix a face
o € S4. Put

L= @ Kixl. (p=0,...,d, :=dimQs0A —dimo),

o<TESY
dimr—dimo=p

and definef? : LY — Lf,’+l by specifying its component ; : K[x],, — K[x]; to be
{O if 7/ 41
e(r/,rnat if v/ <1,
whereg is a suitable incidence function @&y and nat is the natural inclusion. It is clear that
(5) L;:o—>L2io>L},il>...ﬁL§a_>o
is a complex. Then we have the following on the algebraic local cohomology funEiar, R

THEOREM 2.1. Let M be a K[x]-module with support in V(/4(x)). Then, for all
o € Sy andfor all p, we have

(6) H{y (M) = H? (L} ®kx) M) .
Furthermore, if M has a D-module structure, then the tensor product of the D-modules L7
and M hasthe natural D-module structure, and (6) holds as D-modules.

PROOF PutY ={x e K" |x; #0(j € I,),x; =0(j & I,)}. SinceM has support
inV(Zs(x)), we have B v, x)1(M) ~ M. Hence, it follows from (4) that

RIx,1(M) =~ RU [y (RT v (1, ()] (M)
~ R[[y(M)
=~ RIf{x;=01jel, N (RT1x;=0]j¢1,11(M))
~ RU((x;=01jel, (K [X]o ®k[x] M) .
Similar to [4, Proposition 3.5.6], we immediately have
H[I{jxl.:(]‘jelg}](]([x]o ®klx] M) = HP (Ly ®k|x), K[x]lo ®k[x) M) = H (L} Qk[x] M)
for all p. The latter partis clear. a
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We call the complex.? ®xx] M theCech complex o associated witlr € Sy.
COROLLARY 2.2. Forall o € S4 and all k, we have

(7 Hfy ((FMA(B)) ~ H* (L) ®k1x) FMa(B))

as D-modules.

PrRoOF This clearly follows from (1) and (6). |

3. Main theorem. Throughout this section, assumeto be Cohen-Macaulay; that
is, K[NA] is a Cohen-Macaulay algebra. In Sectiod,2ve have shown that the algebraic
local cohomology modulesl["xol(}"MA(ﬁ)) are computed by the cohomology modules of
the Cech complext.? ®xx) FMa(B).

However, it is still difficult to compute them. In Sections 3.1 and 3.2, first we construct
another complex, easier to compute, then deform the modules appearing in the complex, and
finally give decomposition of them.

In Section 3.3, we state the main result of this paper (Theorem 3.12); that is, an explicit
computation of the algebraic local cohomology modLHq!;o](}"MA B)).

3.1. Koszul complex. It is still difficult to compute the cohomology modules of the
Cech complex. Q] FMa(B):
® 0 L0 @ FMap) 129 ... ST eN

So, we construct another complex that is easier to compute. To this end, we first recall
the Koszul complexM® := Kos*(D/DI(x); Z;!=la[j8jxj' + Bi,i = 1,...,d) (see [2,
Section 1] and [14, Section 4.3]),

) 0— M v =4(B) A—d+1 ¥ ~4L(B) )

defined by

L% @ FM4(B) — 0.

(B)

-1
~.—>M’1¢—>MO—>O,

M™:= P  D/DIx(x)en, A Ae, .
1§i1<---<im§d
and

V() " (eiy A Neiy)
m n
= Z(—l)k<2a,-kjajxj +,3ik)ei1 VANRRIVAN e?k Ao Ne, (0= 1,...,d),
k=1 j=1

for m € N. Adolphson [2] showed that, if A isormal (namelyK[NA] is a normal algebra),
then (9) is acyclic. Namely, the complex

B) .. _ar1 v THB)

a v 1 VB o
100 0> M4 —M e > M ——— MY — FMs(B) —> 0

is exact. In other words, (10) gives a certain kind of resolutiotFaf 4 (8). However, we
see that the proof in [2] works under the weaker condition thistCohen-Macaulay (namely
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K[NA] is a Cohen-Macaulay algebra). Recall that a normal semigroup algebra is Cohen-
Macaulay.

PrRoPOSITION 3.1. If A is Cohen-Macaulay, then the Koszul complex (9) is acyclic;
that is, the complex (10) is exact.

PROOF. This is similar to [2, Theorem 2]. Lt := x”, whereA = Av. Let A be the
convex hull inQ? of A and the origin. We define a filtration on the modéd D14 (x) by
defining the weightv(¢*) (or w(X)) of a monomiak* by

(12) w@) :=inf{w € R=g | A € wA},

wherewA denotes the dilation oA by the factorw. We see that there exists a positive
integere such thatw(X) € e~ IN for anyA € NA. We denote bV /e(D/DI4(x)) the K[d]-
module generated byt with w(d) < m/e. Putg = Z;!=la[jajxj' € F1(D/DI4(x)) and

let g; be its image in the associated graded ring/%rD 14 (x)). Note that G¢D/ D14 (x)) =~
K[d][NA]is a Cohen-Macaulay ring. L&(Gr(D/D14(x)), {gi}f:l) be the Koszul complex

on GrD/DI4(x)) formed bygs, ..., g4. Itis sufficient to show that this complex is acyclic
(in positive dimension) as in [2]. Indeed, it follows that the zeroth homology of this complex
is of finite rank (see the proof of [1, Lemma 5.2]). @)}fle is a system of parameters for
Gr(D/DI4(x)). Hence, it follows from the Cohen-Macaulayness of &fD14(x)) that the
complexiC(Gr(D/ D14 (x)), {gi}?_,) is acyclic. ]

Secondly, let us combine (8) with (10) to make a double complex. Namely, we define a
double complex¥** := {Wr4, d/4 4 (B)} of D-modules by

WP = LP Qg MY,
dl = freid, 4P =id®y!(P).

We note that, for each € S, T; (see Section 2.2) satisfies the left and the right Ore
conditions inD. Thus, the left localizatiorr, D and the right localizatiorD7, are equal.
Hence, it is clear that

Kx]: ®kx) D/D1a(x) 2 Dr, /Dt 14 (%) E) Qkx] Klx]e/K[x]cIa(x)

id®a«
>~ DQ®kpx KINA+Z(ANT)],

where
D1(g® PmodDIs(x)) = gP modDIs(x),

and

@, (P’ ® ¢ modK|[x].Ia(x)) = P'¢’mod Dy, I4(x),
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for P, P’ € D, g, ¢’ € K[x].. Hence, puttingp = (id ® ¢4.;) o 71 o &, we have

—-q

D

WP ~ QB QB D ®kpx] KINA+Z(ANT)lei, A Aei

Leir<e<igzd dimrzgi(rfna=p
12
(12) = EB D ®kix] (LY ®k(x] KINADeiy A - Aei,

l§i1<~~<l@q§d
= WP,
Next, we construct other differentials compatible wittt-*. We defined; andd, (8) by
dM=id® fP @id: W — wprtla,

and
a1 (BY(P @ trei Ao Neil,)
(13) —-q n
= Z(—l)rp(z aj, jojxj + Bi, — )\,‘k) ® t’“e,-l A ANe A A ei_,
k=1 j=1
where

PeD, L€ U (NA+Z(ANT)), i=1....d.
>0
dimr—dimo=p
Then, we have the following.

PROPOSITION 3.2. Wk have the following.
(1) W= (wrda,dl di? ()} isadouble complex.

¢ 5r®,®
(2) w** >~ W asdouble complexes.
PROOF. This clearly follows from the definitions of the complexes. O

We examine the double compleﬁz’"' in detail. First, we have the following about
P
HI (W™,
ProPOSITION 3.3. Assumethat A is Cohen-Macaulay. Then for all ¢ we have
(1) H (W) =0(p # dy(= codimo));
)

. K[ZA]

d .q

H (W ~ D® e, N Aej
W D K S o tacetKINA + Z(AN )] :

-
l<iy<e<igsd
ProOOF. We recall that any localization of a Cohen-Macaulay ring is again a Cohen-
Macaulay ring. Hence, it follows from Theorethl and [4, Section 6.3, Corollary 6.2.6],
that
HP (L ®kx) KINAD) =0 (p #ds),

and
K[ZA]

H% (L® ®@kix1 K[NA]) ~ .
o T > o facet KINA +Z(AN D))
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SinceD is flat overK [x], we immediately obtain the statements. m]
Secondly, we have the following aboHf/ (W'*).

PropPoOsSITION 3.4. Assumethat A is Cohen-Macaulay. Then for all p we have:
(1) H{(W"") =0(q # 0);
(2 HYW"*) ~ LY @kpx) FMA(B).

PrRoOOF Thisimmediately follows from (10), Proposition 3.2, and the flatned§[af|,
as aK[x]-module. O

Note that, from the theory of spectral sequences, the following proposition holds.
PrROPOSITION 3.5. Let W** be a double complex. We assume that
H (W*%) =0
for all p, ¢ with p # po, and that
Hl(WP*) =0
for all p, ¢ with ¢ # go. Then we have
HI (H{* (W™ ") [—qol) = Hjj (H*(W*")[—pol)
for all .

For a proof see, for instance, [11].
Finally, from these propositions, we obtain the following theorem.

THEOREM 3.6. Assumethat A is Cohen-Macaulay. Then we have an isomorphism
(14) HY(LY @kix) FMA(B)) = Hij (H' (W"*)[~d,])
for all .
Note that the complex
(15) H (W**[—d, 1)
is the Koszul complex associated with the module

K|[ZA]
Zr>a:facetK[NA +Z(AN1)]

D Qkx)

and the morphisms induced ﬁﬁ”’q(ﬂ).

3.2. Deformation. In Section 3.1, we have constructed the Koszul complex (15). How-
ever, the computation of the cohomology of (15) is difficult. In this section, we give a nice
decomposition as &-module of the following module:

K[ZA]
Y e otace KINA + Z(AN D]

N =D Qg
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In fact, each component of the decomposition is invariant under both the actibnaoi
the differential of the complex (15). Thus, this decomposition enables us to compute the
cohomology of (15) more easily.

We easily think of a natura A-grading decomposition fay':

(16) N = Kp1aer),
AePs

where

(17) P, = ZA\ U Na+z@ano).
>0 :facet

However, each component of the decomposition (16) is invariant under neither the action
of D nor the differential of the complex (15). Hence, we should decompose the mduole
another way. Now, fok € P, put
Z 9Vx” K[ZA]

18 b= 1t eD® :
e o K e KINA + Z(A N D))

veN,
whereN, = {v e N* | v; = 01if j € I,}. Atfirst glance, the right-hand side of (18) simply
looks like a formal sum. However, since for edck P, andj ¢ I, there exists; € N such
thatd +ma; ¢ P, forallm = n;, and since. + Av ¢ P, implies thatd”x” /v!(1® ¢*) = 0,
the right-hand side of (18) is, in fact, a finite sum. Next we show some propertigsadfich
help the following argument.

PROPOSITION 3.7. Wk have the following.
(1) Ifj &I, thenx;p* = 0.1f j € I, thenx;p* = p**+%.
(2) Letp® (i =1,...,d) betheendomorphism of N defining the complex (15). Then

(19) oVt = <Z a;ijojx; + Bi — M)ﬂ)”~
J€ls
(3) Theset{y* | A € P,}isabasisof N over K[d]; thatis,
(20) N = P ki’
AEP,

PrROOF. (1) The statementis clear fgre I,. Now assume that ¢ I,. Then,

'x’
)Cjﬂ)‘ :)”(Z ol (1®tl))

veN,
9% x?
=<Z M)a@m
!
veN,
au v+e; 4avfe,- v
=y S Taei=o,
veN, v:

wheree; :=(0,...,1,...,0).
J
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(2) Recall the definition 0p") (see (13)):

n

; ’x’
p(l)(nx): Z ol <Zaijaj)€j+,3i—)»i>(l®t)‘).

veNy ToNj=1

If j ¢ I, then it follows thaty~, . (3"x”/v1)9;x;(1® t*) = 0 as shown in 1. Hence, we
have

n

. 'xV
p () = Z o <Zaijajxj +Bi — Ki>(1®tl)

veNs ’ j=1
3"x? s
=2 p! <Z“Uaix.i+ﬁi—ki>(l®t )
veNy jels
'xV
= (Z aijjojxj+ B — )»,')(Z - 1® t)‘)>
J€lo vENy :
- (Z aijojxj + fi — M)ﬂ* )
J€ls

(3) Putg* =3, \ (—3"/v)y* + 4. Theng is also a finite sum. In fact,

—aot a"x?
poy 2y Pagim
nweNy m: veNy :
(_1)\M|3M+va+u

=y — Q=1 .
Pt iiv!
Note that{1® t* | A € P, } is a basis ofV overK[d] (see (16)). Hencdp* | A € P, } is also
a basis ofv. ]

We have obtained a new decompositi¥in—= @lepa K[d]n*. However, each compo-
nent does not have B-module structure. Considering an equivalence relatiorPonwe
resolve this problem. Note that, for amy> o, NA + Z(A N t) containsZ(A N o). Hence,
we may define a relatioty on P, by

A~A&er—2VeZ(Ano).

It is clear that this relation- is an equivalence relation. We denote the quotienEpyand
for A € E, we set
Ny = @K[a]n)“.
AeA
Then, from Proposition 3.7, we can easily show tNat has aD-module structure by mul-

tiplying an element ofp from the left. Hence, we can giv¥ a new decomposition as a
D-module:

(21) N= P Na.

AeE~(I
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We note that, by Proposition 3.7 agaiv, is invariant under the morphism However, we
are not able to give such a decompositiomt® g x] K[NA + Z(A N o)].

To simplify the description, we denof€(x;,d; | j € I,) andK(x;,9; | j & I,) by
D(sy and D(,<), respectively. Similarly, we denot€([x; | j € I,] andK[x; | j & I,] by
K[x,]andK[x.], respectively. Recall that we can identy(resp.K [x]) with the external
productD ) Kg D) (resp.K[x.c] Xx K[x.]). Under these identifications, we obtain the
following proposition.

PROPOSITION 3.8. Let A € E, andfixAg € A. Then there exists a D-isomorphism
A ~ D(Uc)
(22) Dy i N = ——— Nk Do) ®kx,] K[Z(AN0)].
Dgey(xoc)
PrOOF. Note thatVs = @By cz(an0) K[8]p* t*0. First we define & [3]-morphism
. Do)
Dy : N4 > ———— Nk D) ®k[x,] K[Z(ANO0)]
Dsey(xoc)
by @3,(n* t*0) = 1K 1 ® . Secondly, we consider the morphism
Doy px K[Z(ANo)] — Ny
Dgey(xoc) @ ’

(P, Q.t*) > POnY 0 (P € Dy, Q € D). A € Z(A N o). It clearly follows from
Proposition 3.7(1) that this is well defined and balanced. Hence, from the universal mapping
property, we have a morphism
Dy
¥, (0)

ey Bk D K[Z(AN N
Dioey(xge) K i) BKixol [Z(AN©o)] — Na

with the equalityds,, (P K 0 ® t*) = POy* 20, We easily see thaks,, is a D-morphism,
P, 0 Py, = id anddy, o ¥y, = id. O

Now we consider thé®,)-endomorphism
Ayt Doy ®kix,) KIZ(AN0)] = Do) ®kx,1 KIZ(ANO)],

:550)(1 Q) = (Zje,a aijdjxj + Bi — A, — Xo,i) ® ¥ Thenitis clear thatby, o o) =

(id X ﬁi"o)) o ®y,, S0 we define the Koszul complé’ := Kos*(D(y) ® K[Z(A N 0)]; ,6@)
associated wittD;) @ K[Z(A N 0)] and{ﬁi” |i=1,...,d}asin Section 3.1. By Corol-
lary 2.2, Theorem 3.6, Proposition 3.7(3) andusition 3.8, we deduce the following theo-
rem.

THEOREM 3.9. Assumethat A is Cohen-Macaulay and fix a system of representatives
{A} of E,. Then we have

Dse _ o ~(i
(23) Hfy (FMaB)) = P ﬁ X H*% (Kos* (Do) ® KIZ(A N o)]; 5) .
)\‘ a—-(' O—('
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3.3. Main theorem. Using (23), we explicitly comptﬂ#‘xd](]-‘MA(ﬁ)). It is suf-
ficient to compute the Koszul comple&' for eachA. Note thatr, := rankg(A No) <
rankg ([ANo; B —A]), where[ANo; B — L] means the enlarged coefficient matrixoh o
with 8 — L. In fact, the vanishing of the cohomology completely depends on whether
is equal to rank([A N o; B — A]) or not. We consider two cases. LBtbe the subspace
(3 1i=1,...,d)x of Endg (Do) ® K[Z(A N 0)]).

First we consider the casg # rankg (A N o; B). In this case, we easily see that the
identity morphism 1 belongs t&. Then we obtain the following proposition.

PROPOSITION 3.10. Let M bea K-vector space, {fi}?:l a sequencein Endg (M) and
Kos*(M; f;, i = 1,...,d) the Koszul complex associated to M and {fi};":l. If the identity
1, iscontained in the linear span of { f; }ff’:l, then we have

H*(Kos*(M; f;, i=1,...,d) =0

for all k.
PROOF. The proof is similar to that of [4, Theorem 1.6.17]. Note that= 1,,(M) and
that the proof works even in this case. m]

From this proposition, in the casg # rankg (A No; B), we have
(24) H*(Kos'(D(o) ® K[Z(ANo)]; py)) =0

for all k.
Secondly, we consider the case = rankg (A No; B — A). In this case, note that,

generators amongiii) | i =1,...,d} spanV. Without loss of generality, we may assume

thatﬁ)sl), e ﬁi’“) spanV. Thenﬁi’“*l), - ,5§d) € V. Note that we have the following.

PrRoOPOSITION 3.11. LetM beaK-vector spaceand {ﬁ}f:ld/ asequencein Endg (M).
If fug1, ..., favrar € {fi i =1,...,d)k, then we have

H(Kos"(M: fi, i =1,....d +d")) ~ H"(Kos"(M: f., i =1, ...,d)2"
for all k.

The proof is similar to that of [4, Proposition 1.6.21].
From this proposition and the acyclicity of the Koszul complex in the case-6fQ-0A
(see Proposition 3.4), we immediately have

H"% (Ko (Do) ® KIZ(ANo)]; 5 i = 1,...,d)
~ (T (FMario (B — 1))
— [XQEO(AWT)] ANo .

(Recall thatd = r, + d,;.) Note that, ifA ~ 1/, then

(25)

rankg (ANo; B —A) =rankg (ANo; B —1)),
F[Xon(Aﬂu)](]:MAﬂa‘ (ﬂ - )»)) ~ F[Xon(Aﬂa)](]:MAﬁU(ﬁ _ x/)) )
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Thus, in both cases, these results are independent of the choice of representativep for
isomorphism. Hence, we Wriilé[xom(mg)](]-‘MAm (B — A)) and ranko; B — A) instead of

T'(Xq. yane) ] (FMans (B —1)) and rankg (A No; B — 1), respectively. Putting, (8) := {A |
rankio; B — A) = r, }, we finally obtain the main theorem by applying Theorem 3.9 to them.

THEOREM 3.12 (Main theorem). Assume that A is Cohen-Macaulay. For all £ and
all o € S4, we have

Da—(' o
@) il FMAB) = D 5 B (Mg FMan (B = A0,
AcE, By T B

Inparticular, E,(8) = @ if and only if RT[x, | (FMa(B)) = 0.

4. Examplesand an application of the main theorem. Throughout this section, we
assumek to be the complex number field.

4.1. Some examples of Cohen-Macaulay type. We provide some examples of
Cohen-Macaulay type for computation of talgebraic local cohomology modules.

ExampPLE 4.1. Letd =1andA; = (1). Then we easily see the following:
Qz0A={peQlp=0}, Sa={Q>0.{0}}, Iu(x)=0, V{akx)) =C.
Note that the orbitX, corresponding te € S5 are given by
X =10}, Xq,=C*={xeClx#0}.
We examineE, (8) corresponding te- € S4. First, foro = {0}, we have
Poy=Z\N, E=Z\N.
Note thatrg, is equal to 0. Hence, we have

{B} BeZ\N,

E =
/(A) { @  otherwise
Secondly, folr = Q=o, we have

PQzO =7, ENon = {0}.

Note thatrq_, is equal tad. Hence, we havéq_,(8) = {0} for an arbitrary parametet.
Table 1 summarizes the results of the calculation. The first row of the table means the
elements ofS,4. The second row ‘OrbitX )’ means the orbifX, corresponding to € Sx.
The third rowE ., # @ means the condition ¢ for non-emptiness of,, (8) corresponding
too € Sy.

EXAMPLE 4.2. Az = (}13). See Table 2. Note that
|EQ;o‘(1,0)(ﬂ)| =lepo=-1-2 ...,
Equtaa B =14 281~ fo=-1.-2.....
E(B) =1 281 — B2, fpa=—1,-2,....
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TABLE 1. Aj.

Sa {0} Q=0
Orbits X (0} {x #£0)
Eo#2 BeZ\N Arbitrary

TABLE 2. Ao.

Sa o Q:0(g)
OrbitsX(4) {0} {x1 #0,xp =x3 =0}
EGy#9  2B1—p2.B2€Z\N B2 €Z\N

Sa Q-0(3) QxpA
OrbitsX(4) {x1:x2:O’x3 # 0} {xg—x1x3=0, X1X2X3 # 0}
Ey#o 21— p2€Z\N Arbitrary

TABLE 3. Asz.

Sa 10} Q=0(3)
OrbitsX(4) {0} {x1 #0,xp =x3 =0}
E#9 B1.B2 € Z\N BpeZ\N-g

Sa QEO((l)) Q04
OrbitsX() {x1=x2=0,x3#0} {x% - xlxsz, =0, x1xpx3 # 0}
Ey#@ BLeZ\N Arbitrary

EXAMPLE 4.3. Az = (319): nothomogeneous. See Table 3. Note that

lEngt(Z,O)(ﬁN =1& =0,
|Engt(2,0)(ﬁ)| =2& po=-1-2,...,
|Eq.otop®B) =16 pr=-1-2,...,
E(B)| =2 p1,Bo=-1,-2,....
EXAMPLE 4.4. Ay= (0 10 1 ) Puta; = %1, 0,0), a> = 10, 1, 0), a3 = (0, 0, 1),

as =0, 1, —1). See Table 4.
Note that for anyr € Sy, E(») # @ implies|E,(B)| = 1.
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TABLE 4. Ag.
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Sa {0} Qx0a1
Orbits X (., {0} {x1 #0,x20 =x3 =x4 =0}
E(#9  P1.B2 P+ P2 P2+ PB3eZ\N B2 P2+ P3 € Z\N
Sa Qx042 Q=043
Orbits X (., {x2 #0,x1 =x3 =x4 =0} {x3#0,x1 =x2 =x4 =0}
E#2 Br B+ B3 €Z\N Pr P2 €Z\N
Sa Q=004 Qx0(a1, a3)
Orbits X (., {xq4 #0,x1 =x0 =x3 =0} {x1x3 # 0,x0 = x4 = 0}
E#2 L+ B3 B2+ B3 Z\N P2 €Z\N
Sa Qxo(az, a3) Qx0(az, as)
Orbits X (., {xox3 #0,x1 = x4 =0} {xoxq4 #0,x1 = x3 =0}
E‘();ﬁ@ Br€Z\N B1+pB3€Z\N
Sa Q=>o(a1, as) Qx4
Orbits X (., {x1x4 #0,x2 = x3 =0} {x1x0x3x4 # 0, x1x2 — x3x4 = 0}
Ey#2 Bo+B3eZ\N Arbitrary

4.2. The solution sheaf aFM4(B).

In this Section, we examine the solution sheaf
of FM4(B). Note that Hotta and Kashiwara gave in [9] the following relation between the

solution sheaf of a system and that of its Fourier transform.

THEOREM 4.5 (Hotta-Kashiwara [9, Theorem 3.2])Let M be a coherent homogene-
ous D-module (see Section 2.1), and Z the closed subset of C} x C7 given by

{(x.y) € C x C! | Re{x, y):0}.

Let r and 7 be the projections from C x CY onto C and C'{, respectively. Then we have

in the analytic category.

So(FM) ~ Rr,RI 7 (1 Sol(M))

Recall that, if there exists an integral vectoe Z¢ such that

(27)

cA

=%1,1,...,0,

homogeneity condition
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thenM 4 (B) and F M 4(B) are homogeneous regular holononiiemodules (see [8, 9]). We
assume the condition (27). Then, by applying Theorem 45 (8), we easily deduce that

(28) SO FM(B)) ~ Rr.RI z(z "1 Sol(M4(B))) .
Furthermore, Gel'fand et al. [fjroved the following theorem.
THEOREM 4.6 (Gelfand et al. [7]). We have

ChFMaB) c [ 7%, €M,
oceS(A)

where Chmeans the characteristic variety and 7y (C") means the conormal bundle of X, C
cr. !

Note that this statement is equivalent to the statement thaf36) (B)) is constructible
with respect to the algebraic stratificatioki, | o € Su}.

Letis : Xo — C" be the inclusion map of smooth algebraic varieties, &hits ana-
lytification. Then, note that for a regular holononilemoduleM, we have

(29) 11 Sol(M) ~ Sol.! M)

(see, for instance, [10] and [3]). Heué,means the inverse image functor with respecffp
(the sign ‘an’ is omitted for brevity). Now recall that we can identky with the algebraic
torus7, := (C)4M (see (4)). Ifo = Q=0A4, then from Kashiwara’s equivalence we easily
see thati]—‘MA (B) is isomorphic to a connection of rank of&o; B) := Dy, /D7, (1;0; —
Bili=1,...,r;) (see[6, Sections 3.1and 4.2]), whee= —3 ., a; — B. For the other
faces, applying Kashiwara’s equivalence to Theorem 3.12, we have the following.

COROLLARY 4.7. Assume that A is Cohen-Macaulay with the condition (27). Then
we have
do
(30) H'SFMAB) = @ Ro: g — 4)®)
A€Eq(B)

forall kandall o € S4.

Note that, for a connectioh, Sol(L) has no higher cohomology. So we defili@ ; o) =
HOSol(R(c; e)). Then we have the following theorem.

THEOREM 4.8. Assume that A is Cohen-Macaulay with the condition (27). Then we
have
(31) N HFSOFMAB)) ~ P (Lo B - )27
A€y (B)

forall k andall o € S4.

PROOF. Fixo € Sy4, and take the solutions of both sides in (30). Then we immediately
deduce the theorem by (29). a
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We see that, whed is Cohen-Macaulay, the structure of the local cohomology modules
H["Xa](]-‘MA (B)) (resp. the constructible sheaf &§6IM 4 (B))) has symmetry with respect to
the cardinality of the direct summand. Moreover, the structure is completely controlled by
E4(B). In this sense, we can identify, (8) with the restriction of the solution sheaf to the
orbit X,. However, whend is not Cohen-Macaulay, the Koszul complex in Section 3.1 is
not always acyclic. Hence, the symmetry of the number may break down in the non-Cohen-
Macaulay case. So we have the problem as tatwtructure the local cohomology (resp. the
solution sheaf) ofF M 4 (B) has in the non-Cohen-Macaulay case. This remains unsettled.
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