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Abstract. We study the structure of the local cohomology modules of the Fourier trans-
form ofA-hypergeometric systems. In particular, we are interested in local cohomology mod-
ules with respect to the orbit of a certain action on the toric variety determined byA. The
purpose in this paper is to describe their structure by using a certain combinatorial object.

1. Introduction. LetK be a field of characteristic zero,A = {a1 · · · an} ⊂ Zd inte-
gral vectors, andβ ∈ Kd . With these data, Gel’fand et al. [7] associated a system of partial
differential equations (denoted byMA(β)) called anA-hypergeometric system. Under the ho-
mogeneity condition (see (27)), they determined the characteristic cycles [7] and proved the
irreducibility of the monodromy representation for non-resonant parameters [6] in the Cohen-
Macaulay case; Adolphson [1] proved that anA-hypergeometric system is holonomic for
anyβ without the homogeneity condition, and the holonomic rank of anA-hypergeometric
system is equal the volume of the convex hull ofa1 · · · an ∈ Zd in the semi-non-resonant
case; Kashiwara proved that anA-hypergeometric system is a regular homogeneous holo-
nomic system under the homogeneity condition (cf. Hotta [8]); Saito and Traves [12, 13]
classified the parameters according to theD-isomorphism classes of their correspondingA-
hypergeometric systems in combinatorial terms; and many authors studied otherD-invariants
of theA-hypergeometric systems.

We easily see that the Fourier transform of anA-hypergeometric systemF(MA(β)) has
support in the affine toric variety determined byA (denoted by V(IA(x))). The algebraic torus
(K×)d acts on the affine toric variety V(IA(x)) throughA (see (3)). The orbits of the action
can be described in the faces of the convex (rational) polyhedral coneQ≥0A generated by
A, and there exists a one-to-one correspondence between the orbits and the faces (see [5]).
Furthermore, it is known that the solution sheaf ofF(MA(β)) has an algebraic stratification
corresponding to the orbits (see [7, 8]). In this paper, we examine the structure of the algebraic
local cohomology modules ofF(MA(β)) with respect to each orbit (or face) for an arbitrary
parameterβ in the Cohen-Macaulay case. For each faceσ , we see that the local cohomology
module with respect toσ is isomorphic to a direct sum of the external tensor products of the
D-modules generated by Dirac’s delta function and the algebraic local cohomology modules
of F(MA∩σ (β−λ)) for some shifted parametersβ−λ. We denote byZA the lattice generated
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by A, and define the equivalence classẼσ in ZA (see Section 3.2). Then we see that the
structure of the algebraic local cohomology modules ofF(MA(β)) is completely controlled
by Ẽσ andβ. Moreover, as an application of this result, we give the structure of the solution
sheaf ofF(MA(β)) under the homogeneity condition. Since Hotta and Kashiwara [9] gave
a relation between the solution of a homogeneous coherentD-module and that of its Fourier
transform (see Theorem 4.5), we give an approach to knowing the structure of the solution
sheaf of the original system and its monodromy representations in detail.

In Section 2, we define some notation and review some necessary notions to argue the
local cohomology. To make the computation of the cohomology easier, in Section 3.1, we
introduce a double complex associated with the Koszul complex defined in [7] and theC̆ech
complex defined in Section 2. In Section 3.2, we deform the modules appearing in the double
complex defined in Section 3.2. In Section 3.3, we give the main theorem in this paper (The-
orem 3.12). The keys to the proof of the main theorem are Proposition 3.7 and the acyclicity
of the Koszul complex under the Cohen-Macaulay condition (see [2, 14]). In Section 4.1, we
provide some examples of the Cohen-Macaulay case. In Section 4.2, we compute the solution
sheaf of the Fourier transform of anA-hypergeometric system under the Cohen-Macaulay and
homogeneity condition.

2. Preliminaries.
2.1. A-hypergeometric systemMA(β). LetK be a field of characteristic zero, and let

D = K〈x, ∂〉 = K〈x1, . . . , xn, ∂1, . . . , ∂n〉
be thenth Weyl algebra overK. Let A = (a1 · · · an) = (aij ) be ad × n integer matrix of
rankd. We denote byIA(∂) the toric ideal inK[∂], that is

IA(∂) := 〈∂u − ∂v | Au = Av,u, v ∈ Nn〉 ⊂ K[∂] .
Let β = t(β1, . . . , βd) ∈ Kd be a parameter (column) vector. We denote byHA(β) the left
ideal ofD generated byIA(∂) ∪ {∑n

j=1 aij xj∂j − βi | i = 1, . . . , d}, and call the quotient
moduleMA(β) := D/HA(β) theA-hypergeometric system with parameterβ. Adolphson [1]
proved thatMA(β) is a holonomicD-module for anyβ without the homogeneity condition
(27).

In this paper, we consider the Fourier transform ofMA(β) (denoted byFMA(β)); that
is,

FMA(β) = D/F−1HA(β)

= D/D〈IA(x),∑n
j=1 aij ∂j xj + βi | i = 1, . . . , d〉 ,

whereF is the automorphism ofD defined byF(xj ) = ∂j ,F(∂j ) = −xj , andIA(x) :=
F−1IA(∂). It is well-known that a moduleM over the Weyl algebra is holonomic if and only
if FM is holonomic, and homogeneous regular holonomic if and only ifFM is homogeneous
regular holonomic. Here we say that a coherentD-module is homogeneous, if for anym ∈ M,
K[∑n

j=1 xj ∂j ]m is a finite-dimensionalK-vector space (see [8, 9]). Moreover, it is clear that
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FMA(β) has support in the affine toric variety:

V(IA(x)) := {x ∈ Kn | f (x) = 0 for all f ∈ IA(x)} .
Namely,

Supp(FMA(β)) ⊂ V(IA(x)) .(1)

2.2. Affine semigroup algebraK[NA]. In this section, let us recall affine semigroup
algebras. We also denote the set{a1, . . . , an} byA and the affine semigroup generated byA
by NA. LetK[NA] be the affine semigroup algebra ofNA; that is,

K[NA] =
⊕
λ∈NA

Ktλ ⊂ K[t±1 , . . . , t±d ]

asK-vector spaces, wheretλ := t
λ1
1 · · · tλdd , and the multiplication ofK[NA] is defined by

tλ · tλ′ := tλ+λ′
. We recall that the toric idealIA(x) is simply the kernel of theK-algebra

epimorphism
φA : K[x] → K[NA], φA(xj ) := taj .

We regardK[NA] as aK[x]-module through the mapφA; that is,f · g := φA(f )g (f ∈
K[x], g ∈ K[NA]).

Next we recall a localization ofK[NA]. We denote byQ≥0A the cone{∑n
j=1 cjaj |

cj ∈ Q≥0}. Let SA be the set of faces ofQ≥0A, ZA the group generated byA andKA the
K-vector space generated byA. For a faceσ ∈ SA we denote byZ(A ∩ σ) theZ-submodule
of ZA generated byA ∩ σ andK(A ∩ σ) theK-subspace ofKA generated byA ∩ σ . We
agree thatZ(A ∩ σ) = K(A ∩ σ) = 0 whenA ∩ σ = ∅. For eachσ ∈ SA, we consider two
multiplicatively closed sets

Sσ := {tλ | λ ∈ N(A ∩ σ)} , Tσ := φ−1
A (Sσ ) .

We denote byK[NA]σ (resp.K[x]σ ) the localization ofK[NA] (resp.K[x]) with respect to
Sσ (resp.Tσ ). LetφA,σ be the natural morphism induced byφA. Then we have

K[x]σ /K[x]σ IA(x) φA	 K[NA]σ = K[NA+ Z(A ∩ σ)]
=

⊕
λ∈NA+Z(A∩σ)

Ktλ .(2)

2.3. Orbits of an algebraic torus action on an affine toric variety. To discuss the alge-
braic local cohomology modules ofFMA(β), we recall the orbits of the action of the algebraic
torus(K×)d , defined by

(K×)d × V(IA(x)) 
 (t, x1, . . . , xn) �→ (ta1x1, . . . , t
anxn) ∈ V(IA(x)) .(3)

The orbits of the action are the very sets that we consider. In this section, we briefly recall a
relationship between the faces ofQ≥0A and the orbits (cf. [5, 8]).

Forσ ∈ SA, we denote byIσ the subset{j | aj ∈ σ } of {1, . . . , n}, and put

Xσ := {x ∈ Kn | xj �= 0 (j ∈ Iσ ), xj = 0 (j �∈ Iσ )} ∩ V(IA(x)) .(4)
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It is well known that{Xσ | σ ∈ SA} is the set of orbits. Namely,Xσ is invariant under the
action of(K×)d for eachσ ∈ SA and

V(IA(x)) =
∐
σ∈SA

Xσ , disjoint union.

Moreover, there exist order-preserving one-to-one correspondences amongSA, {Iσ | σ ∈ SA}
and{Xσ | σ ∈ SA}, whereXσ is the Zariski closure ofXσ in V(IA(x)). Namely,

SA ←→ {Iσ | σ ∈ SA} ←→ {Xσ | σ ∈ SA} ,
σ ←−−−−→ Iσ ←−−−−−−−−−→ Xσ .

2.4. Algebraic local cohomology and̆Cech complex. We consider the algebraic local
cohomology modules with respect to each of the orbits described in Section 2.3. We fix a face
σ ∈ SA. Put

Lpσ :=
⊕

σ≺τ∈SA
dimτ−dimσ=p

K[x]τ (p = 0, . . . , dσ := dimQ≥0A− dimσ) ,

and definef p : Lpσ → L
p+1
σ by specifying its componentfτ ′,τ : K[x]τ ′ → K[x]τ to be{

0 if τ ′ ⊀ τ

ε(τ ′, τ )nat if τ ′ ≺ τ,
whereε is a suitable incidence function onSA and nat is the natural inclusion. It is clear that

L•σ : 0→ L0
σ

f 0

−→ L1
σ

f 1

−→ · · · f
dσ−1

−−−→ Ldσσ → 0(5)

is a complex. Then we have the following on the algebraic local cohomology functor R�[Xσ ].

THEOREM 2.1. Let M be a K[x]-module with support in V(IA(x)). Then, for all
σ ∈ SA and for all p, we have

H
p
[Xσ ](M) 	 Hp(L•σ ⊗K[x] M) .(6)

Furthermore, if M has a D-module structure, then the tensor product of the D-modules Lpσ
andM has the natural D-module structure, and (6) holds as D-modules.

PROOF. PutY = {x ∈ Kn | xj �= 0 (j ∈ Iσ ), xj = 0 (j �∈ Iσ )}. SinceM has support
in V(IA(x)), we have R�[V(IA(x))](M) 	M. Hence, it follows from (4) that

R�[Xσ ](M) 	 R�[Y ](R�[V(IA(x))](M))

	 R�[Y ](M)
	 R�[{xj=0|j∈Iσ }](R�[{xj=0|j �∈Iσ }](M))
	 R�[{xj=0|j∈Iσ }](K[x]σ ⊗K[x] M) .

Similar to [4, Proposition 3.5.6], we immediately have

H
p

[{xj=0|j∈Iσ }](K[x]σ ⊗K[x] M) 	 Hp(L•σ ⊗K[x]σ K[x]σ ⊗K[x] M) 	 Hp(L•σ ⊗K[x] M)

for all p. The latter part is clear. �



LOCAL COHOMOLOGY MODULES OFA-HYPERGEOMETRIC SYSTEM 263

We call the complexL•σ ⊗K[x] M theC̆ech complex ofM associated withσ ∈ SA.

COROLLARY 2.2. For all σ ∈ SA and all k, we have

Hk
[Xσ ](FMA(β)) 	 Hk(L•σ ⊗K[x] FMA(β))(7)

asD-modules.

PROOF. This clearly follows from (1) and (6). �

3. Main theorem. Throughout this section, assumeA to be Cohen-Macaulay; that
is, K[NA] is a Cohen-Macaulay algebra. In Section 2.4, we have shown that the algebraic
local cohomology modulesHk[Xσ ](FMA(β)) are computed by the cohomology modules of

theC̆ech complexL•σ ⊗K[x] FMA(β).
However, it is still difficult to compute them. In Sections 3.1 and 3.2, first we construct

another complex, easier to compute, then deform the modules appearing in the complex, and
finally give decomposition of them.

In Section 3.3, we state the main result of this paper (Theorem 3.12); that is, an explicit
computation of the algebraic local cohomology modulesHk

[Xσ ](FMA(β)).
3.1. Koszul complex. It is still difficult to compute the cohomology modules of the

C̆ech complexL•σ ⊗K[x] FMA(β):

0→ L0
σ ⊗ FMA(β)

f 0⊗id−−−→ · · · f
dσ−1⊗id−−−−−→ Ldσσ ⊗ FMA(β)→ 0 .(8)

So, we construct another complex that is easier to compute. To this end, we first recall
the Koszul complexM• := Kos•(D/DIA(x);∑n

j=1 aij ∂j xj + βi, i = 1, . . . , d) (see [2,
Section 1] and [14, Section 4.3]),

0→ M−d ψ−d (β)−−−−→ M−d+1 ψ−d+1(β)−−−−−→ · · · → M−1 ψ−1(β)−−−−→ M0→ 0 ,(9)

defined by

M−m :=
⊕

1�i1<···<im�d
D/DIA(x)ei1 ∧ · · · ∧ eim ,

and

ψ(β)−m(ei1 ∧ · · · ∧ eim)

:=
m∑
k=1

(−1)k
( n∑
j=1

aikj ∂j xj + βik
)
ei1 ∧ · · · ∧ êik ∧ · · · ∧ eim (i = 1, . . . , d) ,

for m ∈ N. Adolphson [2] showed that, if A isnormal (namelyK[NA] is a normal algebra),
then (9) is acyclic. Namely, the complex

0→ M−d ψ−d (β)−−−−→ M−d+1 ψ−d+1(β)−−−−−→ · · · → M−1 ψ−1(β)−−−−→ M0→ FMA(β)→ 0(10)

is exact. In other words, (10) gives a certain kind of resolution ofFMA(β). However, we
see that the proof in [2] works under the weaker condition thatA is Cohen-Macaulay (namely
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K[NA] is a Cohen-Macaulay algebra). Recall that a normal semigroup algebra is Cohen-
Macaulay.

PROPOSITION 3.1. If A is Cohen-Macaulay, then the Koszul complex (9) is acyclic;
that is, the complex (10) is exact.

PROOF. This is similar to [2, Theorem 2]. Lettλ := xν , whereλ = Aν. Let� be the
convex hull inQd of A and the origin. We define a filtration on the moduleD/DIA(x) by
defining the weightw(tλ) (orw(λ)) of a monomialtλ by

w(λ) := inf{w ∈ R≥0 | λ ∈ w�} ,(11)

wherew� denotes the dilation of� by the factorw. We see that there exists a positive
integere such thatw(λ) ∈ e−1N for anyλ ∈ NA. We denote byFm/e(D/DIA(x)) theK[∂]-
module generated bytλ with w(λ) � m/e. Putgi = ∑n

j=1 aij ∂j xj ∈ F1(D/DIA(x)) and
let ḡi be its image in the associated graded ring Gr(D/DIA(x)). Note that Gr(D/DIA(x)) 	
K[∂][NA] is a Cohen-Macaulay ring. LetK(Gr(D/DIA(x)), {ḡi}di=1) be the Koszul complex
on Gr(D/DIA(x)) formed byḡ1, . . . , ḡd . It is sufficient to show that this complex is acyclic
(in positive dimension) as in [2]. Indeed, it follows that the zeroth homology of this complex
is of finite rank (see the proof of [1, Lemma 5.2]). So{ḡi}di=1 is a system of parameters for
Gr(D/DIA(x)). Hence, it follows from the Cohen-Macaulayness of Gr(D/DIA(x)) that the
complexK(Gr(D/DIA(x)), {gi}di=1) is acyclic. �

Secondly, let us combine (8) with (10) to make a double complex. Namely, we define a
double complexW •,• := {Wp,q, d

p,q
I , d

p,q
II (β)} of D-modules by

Wp,q := Lpσ ⊗K[x] M
q,

d
p,q
I = f p ⊗ id , d

p,q
II (β) := id⊗ ψq(β) .

We note that, for eachτ ∈ SA, Tτ (see Section 2.2) satisfies the left and the right Ore
conditions inD. Thus, the left localizationTτ D and the right localizationDTτ are equal.
Hence, it is clear that

K[x]τ ⊗K[x] D/DIA(x) Φl	 DTτ /DTτ IA(x)
Φr	 D ⊗K[x] K[x]τ /K[x]τ IA(x)

id⊗φA,τ	 D ⊗K[x] K[NA+ Z(A ∩ τ )] ,

where

Φl(g ⊗ P modDIA(x)) = gP modDIA(x) ,

and

Φr(P
′ ⊗ g ′ modK[x]τ IA(x)) = P ′g ′ modDTτ IA(x) ,
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for P,P ′ ∈ D, g, g ′ ∈ K[x]τ . Hence, puttingΦ = (id⊗ φA,τ ) ◦Φ−1
r ◦Φl , we have

Wp,q Φ	
⊕

1�i1<···<i−q�d

⊕
τ�σ

dimτ−dimσ=p
D ⊗K[x] K[NA+ Z(A ∩ τ )]ei1 ∧ · · · ∧ ei−q

=
⊕

1�i1<···<i−q�d

D ⊗K[x] (L
p
σ ⊗K[x] K[NA])ei1 ∧ · · · ∧ ei−q

=: W̃p,q .

(12)

Next, we construct other differentials compatible withW •,•. We defined̃I andd̃II (β) by

d̃
p,q
I = id⊗ f p ⊗ id : W̃p,q → W̃p+1,q ,

and

d̃
p,q
II (β)(P ⊗ tλei1 ∧ · · · ∧ ei−q )

=
−q∑
k=1

(−1)rP

( n∑
j=1

aikj ∂j xj + βik − λik
)
⊗ tλei1 ∧ · · · ∧ êik ∧ · · · ∧ ei−q ,

(13)

where

P ∈ D, λ ∈
⋃
τ�σ

dimτ−dimσ=p
(NA+ Z(A ∩ τ )), i = 1, . . . , d .

Then, we have the following.

PROPOSITION 3.2. We have the following.
(1) W̃

•,• := {W̃p,q, d̃
p,q
I , d̃

p,q
II (β)} is a double complex.

(2) W •,•
Φ	 W̃

•,•
as double complexes.

PROOF. This clearly follows from the definitions of the complexes. �

We examine the double complex̃W
•,•

in detail. First, we have the following about
H
p
I (W̃

•,q
).

PROPOSITION 3.3. Assume that A is Cohen-Macaulay. Then for all q we have
(1) H

p
I (W̃

•,q
) = 0 (p �= dσ (= codimσ));

(2)

H
dσ
I (W̃

•,q
) 	

⊕
1�i1<···<i−q�d

D ⊗K[x] K[ZA]∑
τ�σ,facetK[NA+ Z(A ∩ τ )]ei1 ∧ · · · ∧ ei−q .

PROOF. We recall that any localization of a Cohen-Macaulay ring is again a Cohen-
Macaulay ring. Hence, it follows from Theorem2.1 and [4, Section 6.3, Corollary 6.2.6],
that

Hp(L•σ ⊗K[x] K[NA]) = 0 (p �= dσ ) ,
and

Hdσ (L•σ ⊗K[x] K[NA]) 	
K[ZA]∑

τ�σ,facetK[NA+ Z(A ∩ τ )] .
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SinceD is flat overK[x], we immediately obtain the statements. �

Secondly, we have the following aboutHq
II (W̃

p,•
).

PROPOSITION 3.4. Assume that A is Cohen-Macaulay. Then for all p we have:
(1) H

q
II (W̃

p,•
) = 0 (q �= 0);

(2) H 0
II (W̃

p,•
) 	 Lpσ ⊗K[x] FMA(β).

PROOF. This immediately follows from (10), Proposition 3.2, and the flatness ofK[x]σ
as aK[x]-module. �

Note that, from the theory of spectral sequences, the following proposition holds.

PROPOSITION 3.5. Let W •,• be a double complex. We assume that

H
p
I (W

•,q) = 0

for all p, q with p �= p0, and that

H
q
II (W

p,•) = 0

for all p, q with q �= q0. Then we have

Hk
I (H

q0
II (W̃

•,•
)[−q0]) 	 Hk

II (H
p0
I (W̃

•,•
)[−p0])

for all k.

For a proof see, for instance, [11].
Finally, from these propositions, we obtain the following theorem.

THEOREM 3.6. Assume that A is Cohen-Macaulay. Then we have an isomorphism

Hk(L•σ ⊗K[x] FMA(β)) 	 Hk
II (H

dσ
I (W̃

•,•
)[−dσ ])(14)

for all k.

Note that the complex

H
dσ
I (W̃

•,•[−dσ ])(15)

is the Koszul complex associated with the module

D ⊗K[x] K[ZA]∑
τ�σ :facetK[NA+ Z(A ∩ τ )]

and the morphisms induced byd̃dσ ,qII (β).
3.2. Deformation. In Section 3.1, we have constructed the Koszul complex (15). How-

ever, the computation of the cohomology of (15) is difficult. In this section, we give a nice
decomposition as aD-module of the following module:

N := D ⊗K[x]
K[ZA]∑

τ�σ :facetK[NA+ Z(A ∩ τ )] .
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In fact, each component of the decomposition is invariant under both the action ofD and
the differential of the complex (15). Thus, this decomposition enables us to compute the
cohomology of (15) more easily.

We easily think of a naturalZA-grading decomposition forN :

N =
⊕
λ∈Pσ

K[∂](1⊗ tλ) ,(16)

where

Pσ = ZA
∖ ⋃

τ�σ :facet

(NA+ Z(A ∩ τ )) .(17)

However, each component of the decomposition (16) is invariant under neither the action
of D nor the differential of the complex (15). Hence, we should decompose the moduleN in
another way. Now, forλ ∈ Pσ , put

ηλ :=
∑
ν∈Nσ

∂νxν

ν! (1⊗ tλ) ∈ D ⊗K[x] K[ZA]∑
τ�σ :facetK[NA+ Z(A ∩ τ )] ,(18)

whereNσ = {ν ∈ Nn | νj = 0 if j ∈ Iσ }. At first glance, the right-hand side of (18) simply
looks like a formal sum. However, since for eachλ ∈ Pσ andj �∈ Iσ there existsnj ∈ N such
thatλ+maj �∈ Pσ for allm � nj , and sinceλ+Aν �∈ Pσ implies that∂νxν/ν!(1⊗ tλ) = 0,
the right-hand side of (18) is, in fact, a finite sum. Next we show some properties ofηλ which
help the following argument.

PROPOSITION 3.7. We have the following.
(1) If j �∈ Iσ , then xjηλ = 0. If j ∈ Iσ , then xjηλ = ηλ+aj .
(2) Let ρ(i) (i = 1, . . . , d) be the endomorphism of N defining the complex (15). Then

ρ(i)(ηλ) =
(∑
j∈Iσ

aij ∂j xj + βi − λi
)

ηλ .(19)

(3) The set {ηλ | λ ∈ Pσ } is a basis of N over K[∂]; that is,

N =
⊕
λ∈Pσ

K[∂]ηλ.(20)

PROOF. (1) The statement is clear forj ∈ Iσ . Now assume thatj �∈ Iσ . Then,

xjη
λ = xj

( ∑
ν∈Nσ

∂νxν

ν! (1⊗ tλ)

)

=
( ∑

ν∈Nσ

xj∂
νxν

ν!
)
(1⊗ tλ)

=
∑
ν∈Nσ

∂νxν+ej − νj∂ν−ej xν

ν! (1⊗ tλ) = 0 ,

whereej := (0, . . . ,1
j
, . . . ,0).
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(2) Recall the definition ofρ(i) (see (13)):

ρ(i)(ηλ) =
∑
ν∈Nσ

∂νxν

ν!
( n∑
j=1

aij ∂j xj + βi − λi
)
(1⊗ tλ) .

If j �∈ Iσ , then it follows that
∑

ν∈Nσ(∂
νxν/ν!)∂j xj (1⊗ tλ) = 0 as shown in 1. Hence, we

have

ρ(i)(ηλ) =
∑
ν∈Nσ

∂νxν

ν!
( n∑
j=1

aij ∂j xj + βi − λi
)
(1⊗ tλ)

=
∑
ν∈Nσ

∂νxν

ν!
(∑
j∈Iσ

aij ∂j xj + βi − λi
)
(1⊗ tλ)

=
(∑
j∈Iσ

aij ∂j xj + βi − λi
)( ∑

ν∈Nσ

∂νxν

ν! (1⊗ tλ)

)

=
(∑
j∈Iσ

aij ∂j xj + βi − λi
)

ηλ .

(3) Putξλ =∑
ν∈Nσ(−∂ν/ν!)ηλ + Aν . Thenξλ is also a finite sum. In fact,

ξλ =
∑

µ∈Nσ

−∂µ

µ!
∑
ν∈Nσ

∂νxν

ν! (1⊗ tλ+Aµ)

=
∑

µ,ν∈Nσ

(−1)|µ|∂µ+νxν+µ

µ!ν! ⊗ tλ = 1⊗ tλ .

Note that{1⊗ tλ | λ ∈ Pσ } is a basis ofN overK[∂] (see (16)). Hence,{ηλ | λ ∈ Pσ } is also
a basis ofN . �

We have obtained a new decompositionN = ⊕
λ∈Pσ K[∂]ηλ. However, each compo-

nent does not have aD-module structure. Considering an equivalence relation onPσ , we
resolve this problem. Note that, for anyτ � σ , NA + Z(A ∩ τ ) containsZ(A ∩ σ). Hence,
we may define a relation∼ onPσ by

λ ∼ λ′ ⇔ λ− λ′ ∈ Z(A ∩ σ) .
It is clear that this relation∼ is an equivalence relation. We denote the quotient byẼσ , and
forΛ ∈ Ẽσ we set

NΛ :=
⊕
λ∈Λ

K[∂]ηλ .

Then, from Proposition 3.7, we can easily show thatNΛ has aD-module structure by mul-
tiplying an element ofD from the left. Hence, we can giveN a new decomposition as a
D-module:

N =
⊕
Λ∈Ẽσ

NΛ .(21)
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We note that, by Proposition 3.7 again,NΛ is invariant under the morphismρ. However, we
are not able to give such a decomposition toD ⊗K[x] K[NA+ Z(A ∩ σ)].

To simplify the description, we denoteK〈xj , ∂j | j ∈ Iσ 〉 andK〈xj , ∂j | j �∈ Iσ 〉 by
D(σ) andD(σc), respectively. Similarly, we denoteK[xj | j ∈ Iσ ] andK[xj | j �∈ Iσ ] by
K[xσ ] andK[xσc ], respectively. Recall that we can identifyD (resp.K[x]) with the external
productD(σc) �K D(σ) (resp.K[xσc ]�K K[xσ ]). Under these identifications, we obtain the
following proposition.

PROPOSITION 3.8. Let Λ ∈ Ẽσ and fix λ0 ∈ Λ. Then there exists a D-isomorphism

Φλ0 : NΛ ∼→ D(σc)

D(σc)〈xσc 〉 �K D(σ) ⊗K[xσ ] K[Z(A ∩ σ)] .(22)

PROOF. Note thatNΛ =⊕
λ′∈Z(A∩σ) K[∂]ηλ′+λ0. First we define aK[∂]-morphism

Φλ0 : NΛ→
D(σc)

D(σc)〈xσc〉 �K D(σ) ⊗K[xσ ] K[Z(A ∩ σ)]

byΦλ0(η
λ′+λ0) = 1̄ � 1⊗ tλ

′
. Secondly, we consider the morphism

D(σc)

D(σc)〈xσc 〉 ×D(σ) ×K[Z(A ∩ σ)] → NΛ ,

(P̄ ,Q, tλ′) �→ PQηλ′+λ0 (P ∈ D(σc),Q ∈ D(σ),λ′ ∈ Z(A ∩ σ)). It clearly follows from
Proposition 3.7(1) that this is well defined and balanced. Hence, from the universal mapping
property, we have a morphism

Ψλ0 :
D(σc)

D(σc)〈xσc 〉 �K D(σ) ⊗K[xσ ] K[Z(A ∩ σ)] → NΛ

with the equalityΨλ0(P̄ �Q⊗ tλ
′
) = PQηλ′+λ0. We easily see thatΨλ0 is aD-morphism,

Ψλ0 ◦Φλ0 = id andΦλ0 ◦ Ψλ0 = id. �

Now we consider theD(σ)-endomorphism

ρ̃
(i)
λ0
: D(σ) ⊗K[xσ ] K[Z(A ∩ σ)] → D(σ) ⊗K[xσ ] K[Z(A ∩ σ)] ,

ρ̃
(i)
λ0
(1⊗ tλ

′
) = (∑j∈Iσ aij ∂j xj + βi − λ′i − λ0,i) ⊗ tλ′ . Then it is clear thatΦλ0 ◦ ρ(i) =

(id � ρ̃
(i)
λ0
) ◦Φλ0, so we define the Koszul complex̃K

• := Kos•(D(σ)⊗K[Z(A ∩ σ)]; ρ̃(i)λ )

associated withD(σ) ⊗ K[Z(A ∩ σ)] and{ρ̃(i)λ | i = 1, . . . , d} as in Section 3.1. By Corol-
lary 2.2, Theorem 3.6, Proposition 3.7(3) and Proposition 3.8, we deduce the following theo-
rem.

THEOREM 3.9. Assume that A is Cohen-Macaulay and fix a system of representatives
{λ} of Ẽσ . Then we have

Hk
[Xσ ](FMA(β)) 	

⊕
λ

D(σc)

D(σc)〈xσc〉 �Hk−dσ (Kos•(D(σ) ⊗K[Z(A ∩ σ)]; ρ̃(i)λ ) .(23)
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3.3. Main theorem. Using (23), we explicitly computeHk[Xσ ](FMA(β)). It is suf-

ficient to compute the Koszul complex̃K
•

for eachλ. Note thatrσ := rankK(A ∩ σ) �
rankK([A∩ σ ;β − λ]), where[A∩ σ ;β − λ]means the enlarged coefficient matrix ofA∩ σ
with β − λ. In fact, the vanishing of the cohomology completely depends on whetherrσ

is equal to rankK([A ∩ σ ;β − λ]) or not. We consider two cases. LetV be the subspace
〈ρ̃(i)λ | i = 1, . . . , d〉K of EndK(D(σ) ⊗K[Z(A ∩ σ)]).

First we consider the caserσ �= rankK(A ∩ σ ;β). In this case, we easily see that the
identity morphism 1 belongs toV . Then we obtain the following proposition.

PROPOSITION 3.10. Let M be a K-vector space, {fi}di=1 a sequence in EndK(M) and
Kos•(M; fi, i = 1, . . . , d) the Koszul complex associated to M and {fi}di=1. If the identity
1M is contained in the linear span of {fi}di=1, then we have

Hk(Kos•(M; fi, i = 1, . . . , d)) = 0

for all k.

PROOF. The proof is similar to that of [4, Theorem 1.6.17]. Note thatM = 1M(M) and
that the proof works even in this case. �

From this proposition, in the caserσ �= rankK(A ∩ σ ;β), we have

Hk(Kos•(D(σ) ⊗K[Z(A ∩ σ)]; ρ̃(i)λ )) = 0(24)

for all k.
Secondly, we consider the caserσ = rankK(A ∩ σ ;β − λ). In this case, note thatrσ

generators among{ρ̃(i)λ | i = 1, . . . , d} spanV . Without loss of generality, we may assume

thatρ̃(1)λ , . . . , ρ̃
(rσ )
λ spanV . Thenρ̃(rσ+1)

λ , . . . , ρ̃
(d)
λ ∈ V . Note that we have the following.

PROPOSITION 3.11. Let M be a K-vector space and {fi}d+d ′i=1 a sequence in EndK(M).
If fd+1, . . . , fd+d ′ ∈ 〈fi | i = 1, . . . , d〉K , then we have

Hk−d ′(Kos•(M; fi, i = 1, . . . , d + d ′)) 	 Hk(Kos•(M; fi, i = 1, . . . , d))⊕(
d ′
d ′−k)

for all k.

The proof is similar to that of [4, Proposition 1.6.21].
From this proposition and the acyclicity of the Koszul complex in the case ofσ = Q≥0A

(see Proposition 3.4), we immediately have

Hk−dσ (Kos•(D(σ) ⊗K[Z(A ∩ σ)]; ρ̃(i)λ i = 1, . . . , d)

	 (�[XQ�0(A∩σ)](FMA∩σ (β − λ))
⊕( dσ

dσ−k) .
(25)

(Recall thatd = rσ + dσ .) Note that, ifλ 	 λ′, then

rankK(A ∩ σ ;β − λ) = rankK(A ∩ σ ;β − λ′) ,
�[XQ�0(A∩σ)](FMA∩σ (β − λ)) 	 �[XQ�0(A∩σ)](FMA∩σ (β − λ′)) .
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Thus, in both cases, these results are independent of the choice of representatives forΛ up to
isomorphism. Hence, we write�[XQ≥0(A∩σ)](FMA∩σ (β −Λ)) and rank(σ ;β −Λ) instead of

�[XQ≥0(A∩σ)](FMA∩σ (β − λ)) and rankK(A∩ σ ;β −λ), respectively. Putting̃Eσ (β) := {Λ |
rank(σ ;β −Λ) = rσ }, we finally obtain the main theorem by applying Theorem 3.9 to them.

THEOREM 3.12 (Main theorem). Assume that A is Cohen-Macaulay. For all k and
all σ ∈ SA, we have

Hk[Xσ ](FMA(β)) 	
⊕

Λ∈Ẽσ (β)

D(σc)

D(σc)〈xσc 〉 � (�[XQ�0(A∩σ)](FMA∩σ (β −Λ)))⊕(
dσ
dσ−k) .(26)

In particular, Ẽσ (β) = ∅ if and only if R�[Xσ ](FMA(β)) = 0.

4. Examples and an application of the main theorem. Throughout this section, we
assumeK to be the complex number fieldC.

4.1. Some examples of Cohen-Macaulay type. We provide some examples of
Cohen-Macaulay type for computation of thealgebraic local cohomology modules.

EXAMPLE 4.1. Letd = 1 andA1 = (1). Then we easily see the following:

Q≥0A = {p ∈ Q | p ≥ 0} , SA = {Q≥0, {0}} , IA(x) = 0, V(IA(x)) = C .

Note that the orbitsXσ corresponding toσ ∈ SA are given by

X{0} = {0} , XQ≥0 = C× = {x ∈ C | x �= 0} .
We examineẼσ (β) corresponding toσ ∈ SA. First, forσ = {0}, we have

P{0} = Z \ N , Ẽ{0} = Z \ N .

Note thatr{0} is equal to 0. Hence, we have

Ẽ{0}(β) =
{ {β} β ∈ Z \ N ,

∅ otherwise.

Secondly, forσ = Q≥0, we have

PQ≥0 = Z , ẼQ≥0 = {0} .
Note thatrQ≥0 is equal tod. Hence, we havẽEQ≥0(β) = {0} for an arbitrary parameterβ.

Table 1 summarizes the results of the calculation. The first row of the table means the
elements ofSA. The second row ‘OrbitsX(·)’ means the orbitXσ corresponding toσ ∈ SA.
The third rowẼ(·) �= ∅ means the condition ofβ for non-emptiness of̃Eσ(β) corresponding
to σ ∈ SA.

EXAMPLE 4.2. A2 =
(

1 1 1
0 1 2

)
. See Table 2. Note that

|ẼQ�0
t(1,0)(β)| = 1⇔ β2 = −1,−2, . . . ,

|ẼQ�0
t(1,2)(β)| = 1⇔ 2β1− β2 = −1,−2, . . . ,

|Ẽ{0}(β)| = 1⇔ 2β1− β2, β2 = −1,−2, . . . .
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TABLE 1. A1.

SA {0} Q�0

OrbitsX(·) {0} {x �= 0}
Ẽ(·) �= � β ∈ Z \ N Arbitrary

TABLE 2. A2.

SA {0} Q�0
( 1

0

)
OrbitsX(·) {0} {x1 �= 0, x2 = x3 = 0}
Ẽ(·) �= � 2β1 − β2, β2 ∈ Z \ N β2 ∈ Z \ N

SA Q�0
( 1

2

)
Q�0A

OrbitsX(·) {x1 = x2 = 0, x3 �= 0} {x2
2 − x1x3 = 0, x1x2x3 �= 0}

Ẽ(·) �= � 2β1 − β2 ∈ Z \ N Arbitrary

TABLE 3. A3.

SA {0} Q�0
( 2

0

)
OrbitsX(·) {0} {x1 �= 0, x2 = x3 = 0}
Ẽ(·) �= � β1, β2 ∈ Z \ N β2 ∈ Z \ N>0

SA Q�0
( 0

1

)
Q�0A

OrbitsX(·) {x1 = x2 = 0, x3 �= 0} {x2
2 − x1x

2
3 = 0, x1x2x3 �= 0}

Ẽ(·) �= � β1 ∈ Z \ N Arbitrary

EXAMPLE 4.3. A3 =
(

2 1 0
0 1 1

)
: not homogeneous. See Table 3. Note that

|ẼQ�0
t(2,0)(β)| = 1⇔ β2 = 0 ,

|ẼQ�0
t(2,0)(β)| = 2⇔ β2 = −1,−2, . . . ,

|ẼQ�0
t(0,1)(β)| = 1⇔ β1 = −1,−2, . . . ,

|Ẽ{0}(β)| = 2⇔ β1, β2 = −1,−2, . . . .

EXAMPLE 4.4. A4 =
( 1 0 0 0

0 1 0 1
0 0 1−1

)
. Puta1 = t(1,0,0), a2 = t(0,1,0), a3 = t(0,0,1),

a4 = t(0,1,−1). See Table 4.
Note that for anyσ ∈ SA, Ẽ(σ ) �= ∅ implies|Ẽσ (β)| = 1.
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TABLE 4. A4.

SA {0} Q�0a1

OrbitsX(·) {0} {x1 �= 0, x2 = x3 = x4 = 0}
Ẽ(·) �= � β1, β2, β1 + β2, β2 + β3 ∈ Z \ N β2, β2 + β3 ∈ Z \ N

SA Q�0a2 Q�0a3

OrbitsX(·) {x2 �= 0, x1 = x3 = x4 = 0} {x3 �= 0, x1 = x2 = x4 = 0}
Ẽ(·) �= � β1, β1 + β3 ∈ Z \ N β1, β2 ∈ Z \ N

SA Q�0a4 Q�0(a1, a3)

OrbitsX(·) {x4 �= 0, x1 = x2 = x3 = 0} {x1x3 �= 0, x2 = x4 = 0}
Ẽ(·) �= � β1 + β3, β2 + β3 ∈ Z \ N β2 ∈ Z \ N

SA Q�0(a2, a3) Q�0(a2, a4)

OrbitsX(·) {x2x3 �= 0, x1 = x4 = 0} {x2x4 �= 0, x1 = x3 = 0}
Ẽ(·) �= � β1 ∈ Z \ N β1 + β3 ∈ Z \N

SA Q�0(a1, a4) Q�0A

OrbitsX(·) {x1x4 �= 0, x2 = x3 = 0} {x1x2x3x4 �= 0, x1x2 − x3x4 = 0}
Ẽ(·) �= � β2 + β3 ∈ Z \ N Arbitrary

4.2. The solution sheaf ofFMA(β). In this Section, we examine the solution sheaf
of FMA(β). Note that Hotta and Kashiwara gave in [9] the following relation between the
solution sheaf of a system and that of its Fourier transform.

THEOREM 4.5 (Hotta-Kashiwara [9, Theorem 3.2]).Let M be a coherent homogene-
ousD-module (see Section 2.1), and Z the closed subset of Cnx × Cny given by

{(x, y) ∈ Cnx × Cny | Re〈x, y〉�0} .
Let τ and π be the projections from Cnx × Cny onto Cnx and Cny , respectively. Then we have

Sol(FM) 	 Rπ∗R�Z(τ−1 Sol(M))

in the analytic category.

Recall that, if there exists an integral vectorc ∈ Zd such that

cA = t(1,1, . . . ,1) , homogeneity condition,(27)
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thenMA(β) andFMA(β) are homogeneous regular holonomicD-modules (see [8, 9]). We
assume the condition (27). Then, by applying Theorem 4.5 toFMA(β), we easily deduce that

Sol(FMA(β)) 	 Rπ∗R�Z(τ−1 Sol(MA(β))) .(28)

Furthermore, Gel’fand et al. [7]proved the following theorem.

THEOREM 4.6 (Gel’fand et al. [7]). We have

Ch(FMA(β)) ⊂
∐

σ∈S(A)
T ∗Xσ (C

n) ,

where Chmeans the characteristic variety and T ∗Xσ (C
n) means the conormal bundle ofXσ ⊂

Cn.

Note that this statement is equivalent to the statement that Sol(FMA(β)) is constructible
with respect to the algebraic stratification{Xσ | σ ∈ SA}.

Let ισ : Xσ → Cn be the inclusion map of smooth algebraic varieties, andιan
σ its ana-

lytification. Then, note that for a regular holonomicD-moduleM, we have

ι−1
σ Sol(M) 	 Sol(ι†σM)(29)

(see, for instance, [10] and [3]). Here,ι†σ means the inverse image functor with respect toιan
σ ,

(the sign ‘an’ is omitted for brevity). Now recall that we can identifyXσ with the algebraic
torusTσ := (C×)dimσ (see (4)). Ifσ = Q≥0A, then from Kashiwara’s equivalence we easily
see thatι†σFMA(β) is isomorphic to a connection of rank oneR(σ ;β) := DTσ /DTσ 〈ti∂ti −
β̄i | i = 1, . . . , rσ 〉 (see [6, Sections 3.1 and 4.2]), whereβ̄ := −∑

j∈Iσ aj −β. For the other
faces, applying Kashiwara’s equivalence to Theorem 3.12, we have the following.

COROLLARY 4.7. Assume that A is Cohen-Macaulay with the condition (27). Then
we have

Hkι†σFMA(β) 	
⊕

Λ∈Ẽσ (β)
(R(σ ;β −Λ))⊕( dσ

dσ−k)(30)

for all k and all σ ∈ SA.

Note that, for a connectionL, Sol(L) has no higher cohomology. So we defineL(σ ; •) =
H 0 Sol(R(σ ; •)). Then we have the following theorem.

THEOREM 4.8. Assume that A is Cohen-Macaulay with the condition (27). Then we
have

ι−1
σ (Hk Sol(FMA(β))) 	

⊕
Λ∈Ẽσ (β)

(L(σ ;β −Λ))⊕( dσ
dσ−k)(31)

for all k and all σ ∈ SA.

PROOF. Fix σ ∈ SA, and take the solutions of both sides in (30). Then we immediately
deduce the theorem by (29). �
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We see that, whenA is Cohen-Macaulay, the structure of the local cohomology modules
Hk
[Xσ ](FMA(β)) (resp. the constructible sheaf Sol(FMA(β))) has symmetry with respect to

the cardinality of the direct summand. Moreover, the structure is completely controlled by
Ẽσ (β). In this sense, we can identifỹEσ (β) with the restriction of the solution sheaf to the
orbit Xσ . However, whenA is not Cohen-Macaulay, the Koszul complex in Section 3.1 is
not always acyclic. Hence, the symmetry of the number may break down in the non-Cohen-
Macaulay case. So we have the problem as to what structure the local cohomology (resp. the
solution sheaf) ofFMA(β) has in the non-Cohen-Macaulay case. This remains unsettled.
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