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CATANESE-CILIBERTO SURFACES OF FIBER GENUSTHREE
WITH UNIQUE SINGULAR FIBER
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Abstract. In this paper, we study a minimal surface of general type with= g = 1,
K§ = 3 which we call a Catanese-Ciliberto surface. The Albanese map of this surface gives
a fibration of curves over an elliptic curve. For an arbitrary elliptic cukyewe obtain the
Catanese-Ciliberto surface which satisfies@&lb= E, has no(—2)-curves and has a unique
singular fiber. Furthermore, we show that the number of the isomorphism classes satisfying
these conditions is four i has no automorphism of complex multiplication type.

0. Introduction. Let S be a minimal algebraic surface of general type o@erA
proper surjective morphisii: S — C from an algebraic surfaceto a non-singular algebraic
curveC is called afibration of curves of genusy if fibers of f are connected and the genus
of the generic fiber ig. It is important to study the structures of the fibrations for surfaces of
general type. For instance, Horikawa studied surfaces with fibrations of curves of genus two
[5, 6].

We setpy(S) = dim H2(S, Os) andgq(S) = dim H(S, O). Let K2 be the self inter-
section number of the canonical diviskig of S. In this paper, we are interested in the case
pg(8) =q(8) =1 andK§ = 3. If ¢(S) = 1, then the Albanese map S — Alb(S) gives a
fibration of curves over the elliptic curv€ = Alb(S). Let ¢ be the genus of a general fiber
of a. Catanese and Ciliberto studied this surface in [2, 3] and showed that the gEntugo
or three.

DEFINITION. Let S be a minimal algebraic surface of general type dves is called
a Catanese-Ciliberto surface ifS satisfiesp, = ¢ = 1 andk? = 3.

We also denote byKs the invertible sheaf associated to the divigog. In the case
g = 3, Catanese and Ciliberto showed that the direct imdge: a.Ks,r of the relative
canonical sheaKs/r = K5 ®0, (a*.Q%)V = Ky is an indecomposable vector bundle of
rank three and degree one over the elliptic cukveTherefore, there exists a poiRt € E
such that deV = O (P). Let p: Pe(asKs) — E be theP?-bundle associated witt, K g
andw: S — Pg(a.Ky) the relative canonical map. They obtained the following theorem.

THEOREM 0.1 (Catanese-Ciliberto [3, Theorem 3.1]Let S,a, E, g, P, p and o be
as above, and H the tautological divisor of Pg(a.Kys), i.e, it satisfies p.Op, 4, k) (H) =
a«Ks. If ¢ = 3, then we have:

2000Mathematics Subject Classification. Primary 14D05; Secondary 14J29, 14D06.
Key words and phrases. Surface of gneral type, fibration of curves, elliptic curve.



34 H. ISHIDA

(i) therelative canonical map w isa morphism;
(i)  w(S) isisomorphic to the canonical model of S; and
(i)  w(S) isa member of the complete linear system |4H — p* P|, where p* P is the
divisor p~1P.

Let V be an indecomposable vector bundle of rank three and degree one over an elliptic
curve E. TheP2-bundlePg (V) is uniquely determined up to an isomorphism, sintés
uniquely determined up to tensor product with a line bundle of degree 0 by Atiyah [1]. We set
Pr = Pg(V). Let H be the tautological divisor &g. When(E, V) is equal to(E, K g) in
Theorem 0.1, the image(S) of S is a relative quartic hypersurfacey which has at worst
rational double pointssasingularities by Theorem 0.1 (ii). Conversely, itis easy to verify that
the minimal model of a membetS’ € |4H — p* P| which has at worst rational double points
is a Catanese-Ciliberto surface wijh= 3.

For an algebraic variety, we denote byxiop(Z) the Euler number of. LetT be a
surface with a fibratiory': T — C of curves of genug over a curveC and with at worst
rational double points. We s@ = f~1(P) for P € C. The Euler number of the non-
singular modell* of T is given by

(1) xtop(T™) = (2 = 29) xtop(C) + Z (xtop(Tp) +29 — 2) + Z r(Q),
PeC QeSingT
wherer (Q) is the number of exceptional irreducible curves of a singular p@iof 7.

Let S’ € |4H — p* P| be a surface which has at worst rational double points. We apply
the equality (1) to the surfacg with the fibrationp|s : S" — E of curves over the elliptic
curve E. Let $* be the minimal model of” and S/, the fiber of p|s at P € E. Since
g =3, xtop(E) = 0 andytop(S*) = 9, we obtain

@) D Gop(Sp) +H + Y r(Q) =9

PeE Qes’
by the equality (1). Note thagiop(S,) + 4 is non-negative and is zero for a non-singular
fiber. We callytop(Sp) + 4 the Euler contribution of a singular fibers), andr(Q) the Euler
contribution of a rational double poing.

BecauseS’ has a fibration over a non-singular curve, every singular poiist @& con-
tained in a singular fiber af’. Therefore, the equality (2) implies th&t has at least one
singular fiber ofS” and the number of singular fibers is less than or equal to nine.

It seems that, for a general Cata@dSiliberto surface, singular fibers @have one node.

In this case, this fibraton has nine singular fdbe€Conversely, Catanese-Ciliberto surfaces
with a unigue singular fiber are most special. We know by the argument of monodromies that,
if a surface with a fibration of curves ovBt has a singular fiber, then it has another singular
fiber. On the other hand, there may exist a surface over an elliptic curve with a unique singular
fiber.

DEFINITION. Let S be a Catanese-Ciliberto surface.Slhas a unique singular fiber
and satisfieg = 3 andS = w(S), we call it aCatanese-Ciliberto surface of type .
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In this paper, we show the following theorem.

THEOREM 0.2. For an arbhitrary elliptic curve E, there exists a Catanese-Ciliberto
surface S of type | which satisfies Alb(S) = E. If E hasan automor phism of complex multi-
plication type, then there exist exactly two isomorphism classes of such surfaces. Otherwise,
they have exactly four isomor phism classes.

We show the existence of non-singular surfages |4H — p* P| with a unique singular
fiber by giving the defining equations in tf#-bundlePx. SinceV is indecomposable, we
cannot take a global homogeneous coordinate systey:oim order to describe the defining
equation, we employ the following method which was used by Takahashi [9].

Lety be anisogeny of degree three from an elliptic cubvie E. According to Atiyah [1]
and Oda [8], the inverse imag&V of V by ¢ decomposes into the direct sum @ Lo & L3
of three line bundled.; (i = 1,2, 3). Then we can take the natural unramified morphism
@: Pz(p*V) — Pg of degree three induced Ry, In order to describe a minimal canoni-
cal surfacel’ c Pg with cf(T) = 3py(T) andq(T) = 1, Takahashi obtained the defining
equation of®~1(T) c Pz(¢*V) = Pz(L1 @ L2 ® L3) which is invariant under the action
of Z/3Z. We apply this method to the Catanese-Ciliberto surfaces gvith 3. The inverse
image® ~1(S") is a relative quartic hypersurface in tRé-bundle associated with a direct sum
of three line bundles over an elliptic curve. Henit is much easier to describe the defining
equation of a subvariety iRz (¢*V). In Section 1, we explain Takahashi’s method and give
an explicit general form of the defining equation of the surf@ce(S’). In Section 2, we
show the existence of non-singular surfasés |[4H — p* P| with a unique singular fiber by
using the defining equations obtained in Section 1. In Section 3, we consider all non-singular
surfacesS’ € |4H — p* P| with a unique singular fiber. In Section 4, we consider the isomor-
phism classes of these surfaces. In order to find the number of isomorphism classes of these
surfaces, we give the defining equations of thedegnnstead of doing it irP ;.

By using Proposition 2.8, Lemmas 3.4, 4.7, 4.8 and 4.9, we complete the proof of Theo-
rem 0.2.

1. Thedefining equation in the P?-bundle. Let E be an elliptic curve with the zero
element @. It is well-known that there exists an indecomposable vector bundle of rank three
and degree one ovér (see [1]). We fix an indecomposable vector buridlef rank three and
degree one ovef with detV = O (Og). Let p: Pg = Pe(V) = Proj(&,, Sym" V) — E
be theP2-bundle associated with over E. We denote byH the tautological divisor with
p«Op,(H) = V. We are going to consider the Catanese-Ciliberto surfaces gith 3,
which has the imag#’ in Pg.

For any pointP € E, we define the automorphisify: E — E by Tp(Q) = Q + P
and call Tp the trandation of E by P. Pg is isomorphic to the 3-fold symmetric prod-
uct E® which is the quotient ofz2 by the natural action of the symmetric grodp (cf.
[1, p. 451]). An automorphism of E induces the automorphisif® of E® defined by
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h® (P, Po, P3) = (h(P1), h(P2), h(P3)). So a translatiorf» of E induces an automor-
phism of the set of linearly equivalent classes which are algebraically equivalef to n F

(m,n € Z). Using the following proposition, we see that there exists one-to-one correspon-
dence between the isomorphism classes of Catanese-Ciliberto surfaceswithand the
isomorphism classes of surfaces in the complete linear sygt&m- p*0g| with at worst
rational double points.

ProPOSITION 1.1 (Catanese-Ciliberto [3, Proposition 1.5]Let E, Pg, p, H be as
above and F' an algebraically equivalence class of a fiber of p. Then the group of tranda-
tionsof E actstransitively on the set of all linearly equivalent classes which are algebraically
equivalent to a divisor in Pg if thedivisor isnot a multiple of 3H — F.

In order to obtain the defining equation &f € |4H — p*0g|, we employ the result of
Oda [8] as Takahashi used it in [9].

1.1. The isogeny of an elliptic curve with degree three.  We first recall the following
theorem.

THEOREM 1.2 ([1, 8], [9, Theorem 2.4]). For integersr, d, let E¢(r, d) be the set of
isomor phism classes of indecomposable vector bundles of rank » and degree d over E. Let
¢: E — E beanisogeny of degreer.

If gcd(r, d) = 1, then the map

(L € Pic(E) | degL = d} —> Eg(r, d)
w w

L

@« L

issurjective. Denote G = kerg. Then we obtain

oL = PTIL.

oeG

Let E be an elliptic curve with zero elemeng@nde: E — E anisogeny of degree
three. Applying Theorem 1.2 to the case where= 3 andd = 1, V = ¢,03z(0;) is an
indecomposable bundle of rank three and degree one. Since we@ye= Of SMdM®?
for a line bundleM such thatM®3 = O, we have dep,.Oy = Og. Furthermore, since
detw*OE(OE) = det(p*OE R0 OE((p(OE)), we have d&P*OE(OE) = Or(0pg).

We seto = 0;. Leto’ be a point inE of order three. Denote hy’ the sum ofo’ and
o’ with respect to the group law d. For anyQ € E, we denote byQ’ and Q" the points
T,,(Q) andT, (Q), respectively. We denote ljy] the divisoro + o’ + 0" of degree three on
E.

If we setG = kerg = {0, 0’, 0"}, then we know

VvV = OE~(0) &) 0E~(0/) (&) OE(()N).
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We setV = ¢*V. Let p: Pz = Pz(V) — E andp: Pg(V) — E be theP?-
bundles associated withi andV, respectively. Letd be the tautological divisor & with
pOH) = V.

Let Y be an algebraic variety angd Y — E a morphism. By [4, Il, Proposition 7.12],
giving a morphismf: ¥ — Pg such thaty = p o f is equivalent to giving a line bundle
overY and a surjective map of sheavesng*V — L. The surjective map corresponding
to f is given by pulling back the natural surjective mgfV — Op, (H).

Since there exists the natural surjective njgip*Vv = p*V — OPE(FI), the isogeny
¢ induces the unramified morphis#n: Pz — P of degree three. Consider the following
commutative diagram:

~ @
l”
E
Then we have

®*Op,(4H — p*0p) = Op . (4H — j*[0]).

The defining polynomial of the inverse image of a surfates |4H — p*0g| by @ is the
element ofH°(P;, Op. (4H — j*[0])). However, not every member ¢fO(P, Op, (4H —
p*[o])) gives the inverse image* S’ of §” in |4H — p*0g|. The elements, o’, 0" of G oper-
ate onHO(Py, Op. (4H — jp*[o])) asich, T}, T, Let HO(P, Op, (4H — p*[0])) beG-
invariant subspace a1 (P, Op_ (4H — j*[o])). Set U = {div(¥) |¥ € HO(Py, Op_(4H —
p*[o1)C \ {0}}. Takahashi [9] showed the following.

LEMMA 1.3 (Takahashi[9, Lemma 3.23]).In the above notation, we have
U= ®*|14H — p*Og|.

This lemma implies tha®*w (S) € U for an arbitrary Catanese-Ciliberto surfateith
g = 3. Let S be a member of/ with at worst rational double points. Sinde is étale,
S/G c P has at worst rational double points. Furthermore, it is easy to see that the minimal
model § of the surfaceS/ G is the Catanese-Ciliberto surface with= 3 and Al(S) = E.
So there exist one-to-one correspondences between isomorphism classes of surfaces with at
worst rational double points in the complete linear sysm — p*0g| and such surfaces in
U C |4H — p*|o]|.

1.2. Defining equationap*S’. LetPg, H,p,o0,0,0", G,UbeasinSection1.1. As
we saw in Section 1.1, Catanese-Ciliberto surfaces with3 correspond to surfaces with at
worst rational double points 1. We describe explicitly the eIementsHp(PE, Op, (4H —
7*[01))¢ which define surfaces it1. Let (X : Y : Z) be a homogeneous coordinate system
of P2. We embed the elliptic curvg in P2 such that it satisfies the equalitZ = X (X —
Z)(X —AZ)forainC\ {0,1} ando = (0:1:0). Let (o : B : 1) be the coordinate af'.
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Since the order of’ is three, we have” = (a : —8 : 1), B # 0 and the equality
(3) 3a* — 4(h + Da® 4 62?1 — 22 = 0.

Since 5+Op, (H) = O(0) ® O(0) & O (0"), we have dimH(P;, Op, (H)) = 3. Let
Zo. Z1 and Z be the elements ai°(P, Op. (H)) = HY(E, Oz(0) ® O (0)) ® O(0"))
which correspond to 1 ai%(E, Oz (0)), HY(E, O3 (o)) andHO(E, O (")), respectively.
Then we haveZy, = T, Zo andZ; = T,;Zo. We set a complex number by 1 = 302 —
2(A + D) + A and rational functiong, g andh by

X —aZ 4%(X — aZ) B 48%(X — aZ)

S = YT P —n(X—az) T 2BUHBD —pX —al)

Then f is an element o#7%(E, O;@Bo — [o])) and we havgy = T, f andh = T f. The
following lemma is essentially due to Takahashi [9].

LEMMA 1.4 (Takahashi[9, p. 286]).We define five sections of HO(P, Op, (4H —
p*lo])€ as
U = fZg+ g2+ hZ3,
Vo = ZoZ1Z2(Zo+ Z1+ Z2),
W3 = gZoZ3 +hZ1Z3 + fZ3Z,
Wq=hZoZ3+ fZ321+ gZ327,,
Ws = ghZ375 + fhZ5Z5 + fgZ875.

Then (W1, Wy, Ws, Wy, Ws} isabasisof HO(P;, Op, (4H — j*[0]))C.

PROOF. Let¥ be an element of%(Pz, Op, (4H — j*[0]))®. Since¥ € HO(P,
Op, (4H — p*[o])), ¥ can be written as

W= > yinZhZ{Z5. ij € HUE. Op(io+ jo'+ko" —[o])).
i,j,k>0
i+ j+k=4
Since we have

T, = Z Tj,lﬂ,'.,'kZizézé,
i,j,k>0
i+j+k=4
we see thatv e HO(PE, Op, (4H — p*[0])C if apd only if wjx = T2V jki for~all integers
i, j.k > Owithi+j+k = 4. We havejago € HY(E, O3 (4o—[o])) and dimH(E, Oz (40—
[0])) = 1. Sincef is a non-zero element ot O(E, O (4o — [0])), we can writeyrao0 =
arf (a1 € C). Since we havg = T, f,h = T, g, we obtain conditiong/oso = a1g and
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Yooa = a1h. Similarly, we obtain the conditions

V211 = V121 = Y112 = az,
VY301 =asf, Yizo=azg, Yoiz=ash,
Vsio=aaf, Vos1=aag, Vi03=ash,
Va2o=asfg, Yeo2=asfh, vo22=asgh,
whereq; € Cfori = 2, 3, 4, 5. Therefore, we can write
W= ay(fZ§+ gZ3+hZ3)+aZoZ1Zo(Zo+ Z1+Z2) +a3(gZoZ3+hZ1 Z3+ [ Z3Z2)

+ aq(hZoZ3 + fZ3Z1+ gZ3Z2) + as(ghZ2Z5 + fhZ5Z5+ f9Z372). O

REMARK 1.5. By an easy calculation, we hayeh = —4p2.

REMARK 1.6. LetS be a member it/ which has at worst rational double points. The
minimal modelS* of S satisfiesp, (S*) = 3,¢(S*) = 1, K2, = 9 andxiop(S*) = 27 by [9,
Proposition 2.3]. Lesp be the fiber ofp at P € E. Applying the equality (1) tg|s: S — E,
we obtain the equality
4) > GopSp) +H + Y r(Q) =27.

PeE QES

For any membes in U/, G acts onS without fixed point. So we obtain the unramified
morphisme|:: § — 5/G of degree three. LetS/G)g be the fiber ofS/G at Q € E. If
P ¢ E satisfiesp(P) = Q, then the three fiber§p, Sp/, Spr are isomorphic taS/G) .
Furthermore, the threanalytic local ringsO;'},, (’)SE")"P,, O;']M are isomorphic tcOS/”G’Q.
Thus, in order to find the Catanese-Ciliberto surfécef type I, it suffices to find a non-
singular membes in &/ which only has three singular fibers.

REMARK 1.7. We assume thate U is defined by € HO(Pz, Op.(4H — jp*[o])).
Let U, c E be a neighborhood af. Setr = X/Y, which is a parameter of at U,.
Sets = Z/Y andu = 13/s = 1+ (A + 112 — ar*u~1. We may write

f= X—aZ t—oas t—au 13 B u — ar?
- 7 - Ky - u—1s3 N 12
1+ (A + 1 — a)r? + (higher terms
= t2 ’
4p2(ut — ar® i
)= B (ut — at”) = 2Bt + ut® + (higher terms,

T 2B(u — Br3) — u(ut — ard)
_ 4p2(ut — at®) B , _
C —2B(u+ B13) — u(ut — ard) —2Bt + nt© + (higher terms.

SinceZo € HOPz, Oz (H — F,)), (Z{: Z1: Zo) = (t™2Zo : Z1 : Z,) is a relative
homogeneous coordinate systempoft(U,). Thus, the neighborhoog~1(U,) of the fiber
of S ato is defined by 1w (tZ), Z1, Z2) = 0. The sectiong/1, ¥, W3, ¥y, Ws are written
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ato as follows:

7Y (12}, 71, Zo) = 2B(Z8 — Z3) + 1 (2" + uZ3 + uZ%) + (higher terms,
N1, Z1, Z2) = ZyZ1Zo(Z1 + Z2) + 12 2172,
1YWt 20, Z1, Zo) = Z[2Zo — 2BZ173 + (uZ1Z3 + 2BZ)Z3)t + (higher terms,
YW (1 20, Z1, Zo) = Z[3Z1 + 2BZ3Z0 + (uZ3Zo — 2BZ}Z3)t + (higher term,
N1 Z), 71, Zo) = 2BZ(N(Z3 — Z3) + (WZhPZ3 + nZyP 78 — 4B 7375

+ (higher termy.

In particular, the defining polynomial of the fiber atis given by the constant term with
respect ta. Furthermore, the defining polynomials@tando” are essentially equal to that
of 0. Actually, they are permutations of indices.

2. Surfacewith unique singular fiber. As we saw in the previous section, the prob-
lem to find a non-singular surfac® € |4H — Fo,. | with a unique singular fiber is reduced to
finding a non-singular surfacgin ¢/ with only three singular fibers.

2.1. The Euler contribution of a quartic curve. In our construction of surfaces, we
have to consider the families of quartic curves in a projective plane. We know from the equal-
ity (4) that, if there exists a non-singular surfacéfinvith only three singular fibers, then the
Euler contribution of each singular fiber is ningo by calculating the Euler number of sin-
gular quartic curves, we determine singular fibers of a non-singular surfatevtrich only
has three singular fibers. L&tbe an irreducible reduced quartic curvéPf We assume that
F has a singular poinP. In order to calculate the Euler number of singular quartic curves,
we first describe the classification of singular pointsFofLet m p be the multiplicity of F
at P andsp the number of irreducible branches®t Letv: F — F be the normalization
morphism ofF. Setsp = lengthv.Of ,/OF, p. In Table 1, we list the types of singularities
of irreducible reduced quartic curves in termsigé, sp andsp (cf. [7, p. 123]). Letxiop(F)
be the Euler number af. The possibilities of the triplén p, sp, §p) are classified into nine
types in Table 1. The possdiities of singularities and the Euler number of an irreducible
quartic curve are classified in Table 2.

Let O be a non-reduced or reducible quartic curve. If we know the multiplicities of
irreducible components a® and their configurations, we can calculate the Euler number of
0. We see this in Table 3. In Table B; represent distinct lines anbl; represent distinct
conics. A1 represents a non-singular cubic curve; and A3 represent a cubic curve with
a nodeoy and that with a cuspy, respectively. In Table 3, coefficients &f and D; are
multiplicities of them. We sek;NL; = {xi;}. LiND; = {y\ h=12. LiNA; = {z{ h=12.3
andD; N D; = {wff)}k=1,2,3,4-

In Table 3, the conditioryl.(i) = yl.(f) means that; is the tangent line oD; at yﬁ).

The conditiore{ = z{? means thaL, is the tangent line ot ; at a non-singular point;.
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TABLE 1. Singularities of quartics.
Type mp  sp  dp
05 2 2 1
Cy 2 1 1
0} 2 2 2
0y 2 2 3
03 3 3 3
(oA 2 1 2
cy 2 1 3
C3 3 1 3
co 3 2 3
TABLE 2. Irreducible and reduced quartics.
Number of singularities Type of singularities Genusfof xtop(F)
1 cy 0 2
C3
Oé’ 1
co
03 0
2 Ch. Cp 2
03,Ch 1
05, Cy
03, 0, 0
3 Cy, Co, Cs 2
Co, Co, O 1
Co, 02, 02 0
02, 07, 02 -1
1 ch 1 0
0, -1
2 Cy,Cs 0
C2, 02 -1
02, 02 -2
1 Co 2 -2
0, -3

41
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TABLE 3. Non-reduced or reducible quaritics.

Components oD Intersection points xtop(Q)
(1)  Li,Lp L3, Ly x;; are distinct points. 2
@ 4Ly 2
(3) Ly,Lp, L3, Lg X12 = X13 = X23. X12, X14, X24 andxg4 are distinct points. 3
4) Ly, Ly, 2L3 x;; are distinct points. 3
5) Ly,3Lp x;; are distinct points. 3
@) 2Ly,2L3 3
(7) Ly, Ly, 2L3 X12 = X13 = X23. 4
(8) Li,Lp, L3, Lyg X12 = X13 = X14 = X23 = X24 = X34. 5
9 L1, Ly, D1 y(ll() are distinct points. 1
(10) 2L1, D1 yil) are distinct points. 2
(11) Ly, Ly, Dy yill) = yizl) yill) andy<k> are distinct points. 2
(12) Ly, Ly, Dy yill) = yéll) yill) andy(z) are distinct points. 2
(13) L1,Ly, Dy yﬁ) = yizl) yéll) yézl) yill) and yéll) are distinct points. 3
(14)  L1,L, Dg WY =32 =y D andy2, are distinct points. 3
(15) 2L1, Dy Wi =3 3
(16) Ly, Ay 2 are distinct points. -1
a7) L1, Aq (11) = 2(121) (1) andz(3) are distinct points. 0
(18) Ly, 41 (111) 23 =23, 1
(19) Ly, Az %) are distinct points. 0
(20) Ly, Ap 20 =292 29 ando, are distinct points. 1
(21) L1, Az 512) = ;22) = 0. zg) andoy are distinct points. 1
(22) L1, Ap 2D =22 =23 Y ando, are distinct points. 2
(23) Ly, Az i =23 =23 = 0. 2
(24) Ly, A3 z§3) are distinct points. 1
(25) L1, A3 2 =232, z%) andc; are distinct points. 2
(26) Ly, Az 2 =23 = 5. 23 ande; are distinct points. 2
(27) L1, A3 513) = 523) = (ﬁ;} z(l%) andc; are distinct points. 3
(28) Ly, A3 %) (1%) = 2(13;3 =cp. 3
(29) D1, D wf‘z) are distinct points. 2
(30) Dy, D7 wid = w2 w w3 andwly are distinct points. 1
(31) D1, Dy (1) 522) g) = 54) (l) andw(s) are distinct points. 2

32 2Dy 2
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The conditionz? = z{? = z{? means that 1 is the tangent line ofi; at a flex point:{"
1 =% = 24 1 g j pointz; ;
of Aj. The conditiomglz) = zfz) = 02 means that.; intersectsA; at o2. The condition

Y =29 = 213 = 0, means thaL; is tangent ta4, ato,. The conditione () = z{3 = c2

means thaL; intersectsAz atcz. The conditionz%) = z%) = zg = c2 means thaL is

tangent toA3 at c. The conditionwfz) = w(li;l) means thatD; and D, have the common

tangent line at a poinb(liz). To help to understand Table 3, we describe in Figure 1 the figures
corresponding to the curves.

From Tables 2 and 3, we see © xiop(F) + 4 < 9 for any quartic curveF. The
equality (4) implies that, if there exists a non-singular mentbierZ/ with only three singular
fibersSp, Spr, Spr, then these are four lines intersecting at one point. Tables 2 and 3 imply

the following important lemma.

LEMMA 2.1. Let S be a Catanese-Ciliberto surface with ¢ = 3. Then singular fibers
of the Albanesemap a: S — Alb(S) =: E arereduced.

ProoF. It suffices to show that a singular fiber 8f € |[4H — Fp, | with at worst ra-
tional double points is reduced. We assume #iatis a singular fiber. LeUp C E be a
neighborhood and a local parameter of atUp. Let (Xp : X1 : X2) be a relative homo-
geneous coordinate gfi ~*(Up). The defining polynomial of’ at P is written by ¥ =
>0 t'y;(Xo, X1, X2), wherey; are homogeneous polynomial X, X1, X» of degree
four. Sinced;¥|;—0 = ¥1(Xo, X1, X2), singular points ofS’ satisfy y1(Xo, X1, X2) = O.
Let F1 C P2 be the curve defined by. SupposeS), is not reduced. Then any point in a
non-reduced irreducible componentdjf is a singular point of),. By using Bézout's theo-
rem, a non-reduced irreducible componensgfintersectsFi. In particular,S’ is singular at
this point ofS’,. We consider two cases as follows.

() The case tha$), contains a line. with the multiplicity greater than or equal to two.
If L intersectsF; at Q, then we can write the local equation $ffat Q as follows:

o =2 Z aijliyj +1 Z b,’jliyj + 12 Z Cijliyj + (higher terms
0<i+j=<2 0<i+,j<4 0<i+j<4
(aij. bij. cij € C, (aoo, ao1, ao2) # (0,0, 0), boo=0),

where (I, y) is an inhomogeneous coordinate systemASf such thatL is defined by
the equatiorl = 0. SinceQ is a rational double point of’, we haver(Q) > 1. We show
that the sum of the Euler contributions of the rational double point§’ @ at least four in
any cases.
If L intersectsF; at four points, then the sum of the Euler contributions of the rational

double points of§’ is at least four. Lein o (L, F1) be the local intersection number bfand

F1 at Q. First assume thatig(L, F1) = 2 or 3. Then we can assundg; = 0. By blow-

ing up¥ at the point satisfying =1 =y = 0 ({ = l1y, t = r1y), we obtain the defining
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FIGURE 1. Figures corresponding to curves in Table 3. Numbers with the bold curves are the multiplicities.

polynomials of the proper transform and exceptional curves as follows:

W’:l% Z aijliyiﬂ—i—zl Z bijliyiJrjil—i-tlz Z cijliyi+j+y(higherterm$
0<i+j<2 1<i+j<4 O<i+j<4

'|y—o = aoolf + biol1t1 + cootlz .
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Since we have

0n¥'y=0 = b1ol1 + 2coot1
0, ¥'|y=0 = 2a00l1 + b1ot1,
3y W' |y—0 = (a10/1 + a01)!? + (b20ol? 4 b11l1 + bo)t1 + (co1 + c10l1)7? + (higher terms,

the surface defined by’ = 0 has a singular point ai = /1 = 0 and we have (Q) >
3. SinceS), has another rational double point, the sum of the Euler contributions of the
rational double points of’ is at least four in this case. In the case wherg(L, F1) = 4,
we can show that(Q) > 4 in a similar manner as in the previous case. Hence, we obtain
ZQ r(Q) > 4. Furthermore, from Table 3, the Euler contribution of a non-reduced quatrtic
curve which contains a multiple line is at least six. It contradicts the fact that the sum of the
Euler contributions is nine. Hencé), does not contain a line with the multiplicity greater
than one.

(i) The case thats), consists of a coni® with the multiplicity two. If D intersects
Fy at Q, thenQ is a rational double point of’, i.e.,r(Q) > 1. If D intersectsF; at eight
points, then the sum of the Euler contributions of the rational double poir§Sisfat least
eight. Furthermore, we know the Euler contributiors@fis two by Table 3. It contradicts the
fact that the sum of the Euler contributions is nine. We can showSthatoes not consist of
a conic with the multiplicity two similarly as in the case (i). O

2.2. Defining equations of the Catanese-Ciliberto surfaces with unique singular fiber I.
Let S; be the surface defined Wy =0inP;fori =1,2,...,5. We observe these surfaces
first. The first part of Theorem 0.2 is proved by the following example.

EXAMPLE 2.2. The defining polynomial of the fiber &% ato is ¥1(0) = 28(Z] —
Z‘Z‘). The equationly(o) = 0 defines the curve which consists of four lines intersecting at
one point. The fibers at ando” are isomorphic to the fiber at Since we have

Oz0W1=A4fZ3, 87,W1=4973, 87,%1 =4hZ3

and f, g andh are non-zero regular ofi \ {0, o, 0"}, other fibers are non-singular. §§ has
singular points, then one of them is contained in the singular fiber Biowever, since the
local defining polynomial of1 ato is

Y1 Z), 21, Zo) = 2B(Z% — Z8) + 1(Z}" + nZ$ + uZ3) + (higher terms,

Sy is non-singular. Hence, we obtain the Catanese-Ciliberto susfaeeS; /G of type I.

EXAMPLE 2.3. Since almost all fibers @b consists of four linesS, = S»/G is not
normal. In particular, it is not a Catanese-Ciliberto surface.

ExaMPLE 2.4. The defining polynomial of the fiber of; at o is ¥3(0) =
Z2(—2BZ1Z3 + Z3). Sincep is not zero, the fiber of3 at o is the union of a cuspidal
cubic curve and the tangent line at the cusp. Since there exists no pdinsafisfying the
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equations
0zWs = gZ3 + 32822 =0, 8z,W3=hZ3+39ZoZ2=0,
0z,¥s = fZ3 4317125 =0,
S3 has no other singular fibers. Because the local defining polynomial affo is
17YW3(1 2}, 71, Zo) = —2BZ1Z3 + Z(>Z2 + (2BZHZ3 + nZ1Z3)t + (higher terms,

S3 has a rational double point of typ at (o, (0: 1 : 0)). Hence, it has the same singularities
overo’ ando”.

We define the involution: E — E of the elliptic curveE by ((P) = —P. This in-
volution is lifted to those oP andOpE_ (H) so thatZo, Z1, Z, are mapped t&o, Z2, Z1,
respectively. We denote this involution by

REMARK 2.5. We see that'f = f, *g = h and/*h = g. By these equalities, the
automorphisna induces an isomorphisi, : S4 = S5 of divisors ofP.

ExaMPLE 2.6. Since all fibers ofs have singular pointg0 : 0 : 1),(0 : 1 : 0),
(1:0:0), S5 = 55/G is not a Catanese-Ciliberto surface.

The automorphisri induces an involution of;. Let S € ¢/ be a surface with at most
rational double points defined by = Ziszl a;¥; € HO(PE, (’)pé (4H — p*[o])“. Inthe
following remark, we note some propertiesbE ¢/ with an involution which need later.

REMARK 2.7. If we assumes = a4, thent|g gives an automorphism of with order
two, because we havey; = ¢; (i = 1, 2,5) andi*W3 = Wy, 1"y = V3.

() Eachoffibers ab, o’ ando” contains a line. The fiber atcontains the line defined
by Z1 + Z> = 0. Hence, these fibers are reducible singular quartic curves.

(i) We assume thafp has a singular poinQ = (qo : ¢1 : g2) for a point P on
E \ {0,0',0"}. Letw(P) be the defining polynomial of the fiber éfat P. Since we have
f(P) = f(=P), ¢g(P) = h(—P) andh(P) = ¢(—P), we obtain® (P)(Zo, Z1, Z2) =
W (—P)(Zo, Z2, Z1). ThereforeS_p has a singular poirtyo : g2 : q1)-

(iii) Let y1, y2, y3 € E be points of order two. I5p is a singular fiber, theSp/, Sp»,
S_p.S_p andS_p» are also singular fibers since the groGipof order three is acting on
S. SetI" = {o0,0,0", y1. Yis V12 V2: Vo Vo V3. Vs v5 ). If P e E \ I', the number of
elements of the sgtP, P/, P”, —P, —P', —P"} is six, i.e.,S has six singular fibers which
are isomorphic to each other.

(iv) Similarly, if S has a singular point in the fiber & < E \ I', thenS has five other
singular points. Moreover, these analytical rings are isomorphic to each other.

As we saw in Example 2.1 = S1/G is the Catanese-Ciliberto surface of type I. The
following proposition implies that there are at most three other possibilities forBach
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PROPOSITION 2.8. For an arbitrary elliptic curve E, let S be a Catanese-Ciliberto
surface of type | with Alb(S) = E. Letg: E — E beanisogeny of degreethreeand ¢1, ¢2, {3
the cubic roots of —24. Then the pull-back of S by the unramified finite morphism®: Pz —
P of degree three induced by ¢ is defined by one of the four equations ¥1, ¥;,, ¥r,, ¥z,
where

W= fZ3+gZi+hZ5=0,

W, = fZ3+ 928 + hZy — 1202 7071Z2(Z0 + Z1 + Z2)
+ MGZ0Z3 + hZAZ3+ FZ3Z2) + MhZoZi + fZ3Z1+ 9Z372)
—6C72(ghZ275 + fhZ3Z5 + fgZ322) =0 for ¢ =1, 82, (3.

PROOF. Let S be a non-singular surface i with only three singular fibers. We prove
thatS$ is defined by = 0 or¥, = 0 for a cubic root of —28. Let¥ be defining equation
of §in Pz. Then¥ can be written as

W = ay(fZ§+ gZ1 + hZ3) + a2ZoZ1Z2(Zo + Z1 + Z2)
+as(9ZoZ3 + hZ1Z3 + fZ3Z0) + aa(hZoZi + fZ3Z1 + 9Z372)
+as(ghZ375 + fhZ8Z5 + fgZ8Z3).

A singular fiber ofS consists of four lines intersecting at one point. We assumeSthais a
singular fiber ai? € E andSp consists of four lines intersecting at a poft= (¢o : ¢1 : ¢2).

() The case thaP is other thar, o’ ando”. Since¥ is G-invariant, Sp: and Sp»
are also quartic curves which consist of four lines intersecting at one point. We may assume
g2 = 1 by replacingP by P’ or P”, if necessary. Denot¢ = f(P), g = g(P) and
h = h(P). SincemQ(§p) = 4, Q satisfies the following equations:

(5) 02002002, (P) = 6asf + 24a1fqo + 6asafq1 =0,
(6) 07,070,027, ¥ (P) = 2az + 6aafqo+ dasf gq1 =0,
(7) 07007007, ¥ (P) = 4as fh + 6a3 fqo + 2a2q1 = 0,
(8) 02002102, ¥ (P) = 2az + 4as f gqo0 + 6azgq1 = 0,
(9) 07,07,07,¥ (P) = 2ap + 2axq0 + 2a2q1 = 0,
(10) 32007,02,% (P) = 6ash + 4as fhqo + 2a2q1 = 0,
(11) 07,027,072, W (P) = Basg + 6azgqo + 24a19q1 = 0,
(12) 07,072,072, % (P) = 4asgh + 2azqo + 6asgq1 = 0,
(13) 07,02,07,% (P) = 6ash + 4asghq1 + 2a2q0 = 0.

From (9), we obtaim, = 0 or 1+ go + g1 = 0.
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(i1) Thecasep =0. From (6), (7), (8), (10), (12) and (13), we obtain conditions

(14) 2a5q9q1 + 3aaqo = 0,
(15) 2ash + 3azqo =0,
(16) 2as5fqo+ 3azq1 =0,
(17) 2as5fqo+ 3a4 =0,
(18) 2ash + 3asq1 = 0,
(19) 2a59q1 + 3a3 =0.

If we assumeiz = 0, a4 = 0 oras = 0, then we obtain conditiongs = a4 = a5 = 0 and
¥ = Y3, Thus we supposes, aa, as # 0, SO we obtaig = —2ash/3a3, g1 = —2ash/3aa.
From (14), (16), (17) and (19), we have

(20) 342 + 2azasg =0,
(21) 3a2 + 2agasf =0,
(22) Bazas+ 4ad fh =0,
(23) 3azaq + dadgh = 0.

By taking the differencé&22) — (23), we obtain the conditiorf = ¢. Therefore, we obtain
the conditiona? — a3 = 0 from (20) x a4 — (21) x az. Thenaa is equal toaz or was, where
w € C satisfiesw® = 1, w # 1. If as = as, then$ has a singular fiber at according to
Remark 2.7(i). This contradicts the fact tiahas only three singular fibers. df = was,
then we have = w?go. From (5), (11), (21) and (22), we have the following equations:

(24) Basf + 24a1fqo+ 6azfqo =0,
(25) Bazwf + 6azfqo + 24a10° fqo = 0,
(26) 3a32, + 2wazasf =0,

27) 3a3w +4aZfh =0.

By considering24) x w? — (25), we haveyg = w? andg; = w. On the other hand, we obtain
conditionsw?az — 2ash = 0 andgo = —w?/3 from (26) x w — (27). So (5)—(13) have no
common solutions fofgo, g1), i.e., the casa, = 0 does not occur.

(i) Thecase ¥ go+ g1 =0. From (5)and (11), we have

(28) az + 4aiqo — asqo —as =0,
(29) a4 + aszqo — 4aiqo — 4a1 = 0.

If a3 = 4a1 or ag = 4ay holds, then we haves = a4 by (28) and (29). Thers, is a
singular fiber by Remark 2.7(i). It contradicts the fact tRatas only three singular fibers.
Therefore, we havgy = (a4 — a3z)/(4a1 — as) = (da1—aq)/(az—4ag) andg; = —go—1 =
(a3 — 4a1)/(4a1 — aq). Hence, we haveogqs = 1. By gog1 = 1 and 1+ go + g1 = 0, we
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obtain(go, ¢1) = (», ®?). We get the following equations by (6), (8), (7), (12), (10) and

(13):

a2+3a4fa)+2c15fga)2 =0,
2as5fh +3a3fa)+aza)2 =0,
3ash + 2as fho + aza)z =0,

We set the matrix

az + 2as f g + 3azge’ =0,
2as5gh + axw + 3a4ga)2 =0,
3azh + Za5gha)2 + axw = 0.

3fw  2fgw?
0 2fgw
0 2fh

3gw?  2gh
3n 2fhw
0 2ghw?

Let M;;1; be the determinant of the matrix consistingi of, k, I-rows of M. If rankM = 4,
i.e., if M;ji # O forsome(i, j, k, 1), then we obtaim, = a3 = a4 = a5 = 0.
By an easy calculation, we have

(30) Mi23a=18(f — 9) fg(fo + go® + 1),
(31) Mi2s6=18(g — f)h(ghw + fho® + fg),
(32) Mizse=18(f — h) fh(fw + go® + h) .

If all of them are zero, therf = g = h. Sinceg(P) = h(P), P is a point of order two, i.e.,
Pisoneofthe pointg0:0:1),(1:0: 1) and(x:0:1). Ifwe assume® = (0: 0: 1), then
we obtain &2 — 4(A + 1) + 51 = 0 from f(P) = ¢(P). Since this and3) are not satisfied
simultaneouslyp is not(0: 0: 1).

Similarly, P is neither(1: 0: 1) nor(A : 0: 1). Thus, f(P) = g(P) = h(P) does not
occur. One of (30), (31) and (32) is not zero, hence, we have a3 = a4 = a5 = 0, i.e.,
S = §1. Then this is not the case by Example 2.2. Hencegd + g1 = O is also impossible.
Thus, case (i) does not occur.

(i) The case thaP coincides with one ob, o’ ando”. As we saw in the Section 1.2,
we may assume tha = o. By Remark 1.7, the defining equation £f can be written as

3
W (0) = 2Ba1(Z] — Z3) + a2Z{Z1Z2(Z1 + Z2) + azZao(—2B717Z5 + Z{°)
+aaZ1 (287372 + 7°) — 2BasZy(Z5 — 73) = 0.
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SincemQ(S’o) = 4, Q satisfies the following equations:

(33) 0202002,¥ (P) = 6aaq1 + 6azg2 = 0,
(34) 07002002, ¥ (P) = 6aaqo + 8asq1p = 0,
(35) 202,02, ¥ (P) = Bazqo — 8asq2p = 0,
(36) 07007,072, W (P) = 2a2q2 + 8asqop = 0,
(37) 02002,07, ¥ (P) = 2aq1 + 2a2q2 = 0,
(38) 07,07,07,¥ (P) = 2a2q1 — 8asqopf = 0,
(39) 07,02,07, ¥ (P) = 48a1q18 + 1204928 = 0,
(40) 87,02,02,% (P) = 2a2q0 + 12a4q18 = 0,
(41) 07,07,07,¥ (P) = 2a2q0 — 12a3g28 = 0,
(42) 07,07,07,¥ (P) = —12a3q1 — 48a1q26 = 0.

From (37), we haveay = 0 org1 + g2 = 0.

(i) The casen; = 0. We easily obtaimiz = a4 = a5 = 0 by (33)-(42), i.e.,
¥ = a1¥. ThenS = §; covers the Catanese-Ciliberto surfazen Example 2.2.

(i) The caseyr + g2 = 0. If we assume1 = g2 = 0, then we obtaiy = a3 =
as = a5 = 0. Hence, we can assumej; = g2 = 1. By (33)—(42), we obtain conditions

az=as =4a;, 3aiqo—asp =0,
2az + 8asqof =0, axqo — 24a18 = 0.

If a1 = 0, then we havey; = a3 = a4 = a5 = 0. So we may assumg = 1. Therefore,
we obtainas = 3gop 1, az = —1242 andgd = —28. Sincep # 0, the equation = —2
has three distinct solutions. Thu$,is defined byw; = 0 or ¥, = 0 for a cubic root; of
—28. O

REMARK 2.9. Let§; be a surface defined b, for a cubic rootz of —28. We set
S; = S;/G. In the proof of Proposition 2.8, we saw th&t has the singular fiber atwhich
consists of four lines intersecting at the pdimt (¢ : —1: 1)). If §; has a singular point in the
fiber ato, then it must be this point. Hence, we have the equéiign (o, (¢ : —1: 1)) = 0.
Itis easy to see tha ¥, (0, (¢ : =1:1)) = 27¢% — 18u. If A ¢ {0, 1}, then there exists no
common solution of equationg 3— 23?2 — 2L+ D)a+ 1) =0, 3 +28 =0, 2 —a(a —
1)(« — 2) and (3). Thus$, have no singular points on the fibersSfato, o’ ando”.

3. Smoothness of the three surfaces. Let S; be the surface defined k¥ = 0 and
§; the surface defined by, = 0 in Remark 2.9. Since is a cubic root of—28, there are
three choices for. We setS; = $1/G andS; = S;/G. We already know thag; is the non-
singular surface in Example 2.2. In this section, we show $has non-singular. It suffices
to show tha@; is non-singular. We first show the following lemma.
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LEMMA 3.1. Let § bethe surface defined by ¥ = "> ; a;%; = 0inPj. Then S is
reduced. Furthermore, § is reducibleif and only if ¥ satisfiesa1 = a3 = a4 and as = 0.

PrROOF. If S is reducible or non-reduced, then we can wéite- 71, + 7> by non-zero
effective divisorsTy andT». We assume thaf; are in|m; H + p*D;| with D; € Div(E) and
degD; = n; fori = 1, 2, and we assume; < my. The complete linear system H + p*D)|
with degD = n contains an effective member if and only if:
@ m>0m+n>0;
(b) m>0,m+n=0,0z(D)=0z(—io—jo' —ko") i+ j+k=m,i,j k=0,
or
(c) m=0,n>0.
In particular, we have:; > 0 andm;+n; > 0. SinceS € |4H — p*[0]|, we haveni+mo = 4,
andOz (D1 + D2) = Oz(—[o]). Hence, we have; + n; = —3. Sincen; < 0 implies
ny > —3, there are three possibilities, i.e., i} = 2, n1 < 0, (ii) m1 = 0 and (iii))m1 = 1.

() SinceSis G-invariant,7 ;71 and7, T1 are also components of If 71 is notG-
invariant, then we have:; = 0, 1. Thus,T1 is G-invariant, i.e.,T; D1 is linearly equivalent
to D;. Hence, we have; = 0 (mod 3. Frommy + n1 > 0, we obtain—2 < n1 < 0. It
contradicts the condition; = 0 (mod 3.

(i) Sinceni > 0, mp» =4, np = —n1 — 3 andmy +np = —n1 + 1 > 0, we have
n1 = 1l andnz = —4. SinceTr = p* Dy is notG-invariant,p* T D1 and p* T, D1 are also
components of. Hence, the divisoﬁ—ﬁ*(DlJrT;j D1+T}, D1) which is linearly equivalent
to 4H — p*[o]— p*(D1+ T D1+ T}, D1) must be effective. However A— 5*[o] — p*(D1+
T D1+ T, Dy) satisfies none of the conditions (a), (b) and (c).

(i) Sincen1 = —1,mp = 3, np = —n1 — 3 andmy + np = —n1 > 0, we have
n1=-1or0.
(i) The caser; = —1. SinceTy is an effective divisorD; is linearly equivalent to

—o0, —0’ or —0”. In this case, the components $fare linearly equivalent té — F,, H —
F,, H— F,» andH. Itis easy to see that@-invariant surface which is linearly equivalent to
H is defined byZg+ Z1+ Z» = 0. ThereforeW is divisible byZo, Z1, Z> andZo+ Z1 + Zo.
Itiseasytosee; = a3 =a4 =as5=0,i.e.,¥ = ¥>.

(iip) Thecasei; = 0. |If Ty is notG-invariant, then we havé — (T + T5Ti+T),T1)
is linearly equivalent taH — p*lo]. However,T1 is G-invariant sinced — p*lo] satisfies
none of (a), (b) and (c). S, is alsoG-invariant. Similarly as in Lemma 1.4, we see that
[Z3+9Z3+hZ3is asection oHH?(P;, Op, (3H — j*[0]))?. Thus, we have = a1(Zo+
Zi+ Z)(fZ3+ 9Z3 + hZ3), i.e.,a1 = a3 = ag andas = 0. O

By Lemma 3.15, defined by, is irreducible and reduced. Sindge = ¥7 — 1220, +
4(W3 + Wy) — 67 2Ws, S; has a non-trivial automorphism of order two. LetandI” be as
in Remark 2.7. By Remark 2.7(iii), i§ has a singular fiber at a point ii \ I", thenS has
five other singular fibers. I§ has a singular fiber at a point ifi, thens is two other singular
fibers.
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In order to prove the smoothnessﬁgf, we consider the fiber at a point in. We already
know that fibers o@; ato, o’ ando” consist of four lines intersecting at one point and do
not contain singularities Oi{. ForP ¢ I' \ {0,0',0"}, the sef{ P, P', P, —P,—P', — P"}
contains a point of order two. So we prove that all of the fiberé@&t points with order
two are non-singular in the following lemma. By this lemma, all the fibers at pointsane
non-singular.

LEMMA 3.2. Let S, be the surface defined by ¥, = Oin Remark2.9and P € E a
point of order two. The fiber of S; at P isnon-singular.

PROOF. The order ofP € E is one or two if and only ifP is zero of the rational
function g — h. Let (S;)p be the fiber ofS, at P and ¥, (P) the defining polynomial of
(S;)p. We denotef (P) andg(P) = h(P) simply by f andg, respectively. Suppose that
(S;)P have a singular poin@. ThenQ is a common zero of the following equations:

0z0Wr (P) = Af Z8 — 120271722270 + Z1 + Z2) + 49(Z3 + Z3)

(43) 2 -2 2 2
+ 12fZO(Zl + Z2) —12f gt Zo(Zl + ZZ) =0,
s 07,9, (P) = 4 Z3 — 1202707 2(Z0 + 271 + Z2) + 49(Z3 + Z3)
+129Z3(Zo + Z2) — 129t 72Z1(f 2§ + 923) = 0,
) 02,9, (P) = 4 Z3 — 120%Z071(Zo + Z1+ 2Z2) + 49(Z3 + Z3)

+12973(Zo + Z1) — 129 2 Z2(f 23 + gZ?) = 0.
By taking the differencé44) — (45), we obtain the condition
120729(¢% + 9)(Z1 — Z2) (629~ Zo + Z1)(6%g ™  Zo + Z2) = 0.

Therefore,Q is a solution of (i)¢2 + g = 0, (i) Z1 = Z», (i) ¢2¢71Zo + Z1 = O or
(iv) t2971Zo+ Z> = 0.

() Thecasey = —¢2. Sincefgh = —°by Remark 1.5, we obtaifi = g = h =
—z2. However, as we saw in the proof of Proposition 2(8P) = g(P) = h(P) does not
occur. Hence, we obtain # —¢2.

(i) The caseZ; = Z,. Since(P, (1 : 0 : 0)) is not contained in§;, we can write
0 = (Zp:1:1). By substituting 1 forZz; andZ2 in (43) and (44), we obtain the following
equations:

(46) AfZ3 —24:%(Zo+ 1) +8g + 24 Z5 — 24f g¢ °Zo =0,
(47)  4fZ8 —120°Zo(Zo+3) + 89 + 129(Zo + 1) — 129 2(fZ5 + g) = 0.

The resultant of the left-hand sides of (46) and (47) with respegte g ®(g+¢2)2(— g+
2¢2)3. SinceQ is a common solution of (46) and (47), we have®(g+¢2)2(—g+2¢2)3 = 0.
Sowe havey = h = 272 and f = —¢?/4 = —g/8. We can show that there exists no point
P € E which satisfies-8f(P) = ¢g(P) = h(P) similarly as we proved that there exists no
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point P € E satisfying f (P) = g(P) = h(P) in the proof of Proposition 2.8. Thus, we have
Z1 # Zo.

(i) The caser?¢g~1Zo+ Z1 = 0. By replacingZo of (43) and (44) with—¢ ~2¢Z1,
Q is a solution of the following equations:

(48) 8973 + 249727, — 2452737, — 240272175 + 4975 — 24:273 = 0,

20973 — 129%¢ 2727, — 1292¢ 273 — 12¢%¢ 7272172 + 369727,

(49)
+1297175 + 4973 = 0.

Since the resultant of (48) and (49) with respecttpis zero, we obtain the condition
(g +¢2)(—g+2:9)Zy = 0. If Z = 0, then we hav&g = Z1 = Z» = 0. Thus, we have
¢2971Zo+ Z1 #0.

(iv) We canshow?g—1Zo+Z # 0inthe same way. Singe+¢2 # 0 andg —2¢2 #
0, (43), (44) and (45) have no common zero.(ﬁp)p is non-singular. O

Next we show thas; is normal.
LEMMA 3.3. Let S, beasinLemma 3.2 Then S isnormal.

PROOF. Since the algebraic surfade is defined by one equatiodi, = 0 in the non-
singular varietyP ;, it suffices to show that the codimension of the singular locus Siirig at
least two. If there exists an irreducible compong&nof Sing§¢ with dim D = 1, thensz (D)
is either a point or an elliptic curv&. However, we know thaf; has non-singular fibers. So
we can assume that(D) is a pointR € E. By Lemma 3.2, the order ok is not two. Let
(S¢)r be the fiber ofS; atR € E and¥, (R) the defining polynomial oS, ). Then(S;)r
contains a multiple line or a multiple conic.

(i) The case tha(S;)R contains a line whose multiplicity is at least two. We denote
f = f(R), g = g(R) andh = h(R), for simplicity. In this case(§;)R is written as follows:

W (R) = (boZo + b1Z1 + b2Z2)*(coZ§ + c1Z0Z1 + c2Z0Z2 + c3Z2 + caZ1Z2 + c523).

By comparing this with the expression &t (R) in Proposition 2.8, we obtain the following
equations:

(50) bjco— f =0

(51) 2bobico + bic1 — 4f =0,

(52) 2bobaco + bica —4f =0,

(53) b2co + 2bobict + bgcz +6¢ 2 fg =0,

(54) 2b1boco + 2bobact + 2bobica + bica +12c% =0,
(55) b3co + 2bobaca + bies + 6, 2 fh = 0,

(56) b2c1 + 2bobicz —4g =0,

(57) 2b1bycy + b3cp + 2bobacs + 2bobica + 12c% =0,
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(58) b3c1 + 2b1baca 4 2bobaca + 2bobics + 1202 =0,
(59) b3cp + 2bobacs — 4h =0,

(60) b563 —g=0,

(61) 2b1bocs + bicq —4g =0,

(62) b3cq + 2bibocs — 4h =0,

(63) b3cs —h =0.

Since f # 0, we can assumky = 1. By (50)—(55), we see thab, ..., c5 are poly-
nomials inb1, b2. Furthermore, by (56)—(63), we obtain the following conditionsh@mnd
bs.

(64) —12b3f +4b3f —4g — 12b1fgc 2 =0,

(65) —12b2f — 24b1bof 4 12b2bo f — 12bpfgr ~2 + 1202 — 24b1¢% = 0,
(66) —24b1byf — 12b3 f + 12b1b3 f — 12b1 fhe ™2 + 1202 — 24bpt% = 0,
(67) —12b3f + 4b3f — 4h — 12bafh 2 =0,

(68) —8b3f +3b1f — g —6bif9¢ % =0,

(69) —8b3f — 24b2baf + 12b3baf — 4g — 12b1bafgr 2 — 12622 =0,
(70) —24b1b5 f — 8b3 f + 12b1b3 f — 4h — 12b1bp fh ™% — 12b3¢2 = 0,
(71) —8b3f +3b5f —h —6b3fh 2 =0.

By taking the differences; x (65) — (69) andb, x (66) — (70), we have
(72) —4b3 f + 4g 4+ 12b1¢% — 1262¢% = 0,
(73) —Ab3f + 4h + 12bpc% — 12b3¢2 = 0.

The resultant 0ot64) + ¢ x (68) (¢ € C) and (72) with respect th is written as polynomial
in ¢ and vanishes for any € C. Hence all coefficients of this polynomial are zero.

f29%+2f%gh + 3£ g?h + 2f gh® + g°h? — 6f ght? — 6 f g¢*

74
(74) —3fht* —6ghc* =0,

a5 31292 — 8f2gh — 10f gh — 6 f gh® — 3¢g°h% — £2h¢? + 16 ghc? + 19f g¢*
+8fhe*+ 18ghc* =0.

Similarly, by taking the resultant @67) + ¢ x (71) (c € C) and (73) with respect thy,
we obtain the following equations:
2F2gh + 2f g°h + f2h? +3f gh® + ¢°h® — 6fghc? — 3fgc*

76
(7) —6fht* —6ghc* =0,
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—8f%gh — 6f9°h — 3f%h* — 10f gh® — 3¢°h? — f2g¢” + 16 ght® + 8f g¢*
+19fhc* 4+ 18ght* = 0.

By computing the difference§4) — (76) and(75) — (77), we have

—fg—m(fg+ fh+gh—3" =0,

fg—m@Bfg+3fh+4gh— [t —11*% =0.
Because the order & is not two,g — h # 0 and we have
f9+ fh+gh—3"=0,
3fg+3fh+4gh — fr?>—11*=0.

However, if these equations hold, then we have i by an easy calculation because we have
fgh = —4p?% = —®. Hence, this case does not occur.

(i) Thecase tha(b})R contains a conic whose multiplicity is two. In this cage(R)
can be written as

(77)

W (R) = (boZ§ + b1Z0Z1 + b2Z0Z2 + baZ? + baZ1Z3 + bsZ5)? .

By comparing coefficients of; (R), we obtain the following equations:

(78) bs—f =0,

(79) 2bob1 —4f =0,

(80) 2boby —4f =0,

(81) b3 + 2bobs + 62 2 fg =0,
(82) 2by1by + 2bobs + 1262 = 0,
(83) b3 + 2bobs + 672 fh =0,
(84) 2b1b3 — 49 =0,

(85) 2bobs — 4h = 0.

By computing (78)—(82), we obtain the conditions

b1=2by, bz=2by, bs=—2bo—3¢ gho,

by = (4+46¢2/f)bo, bs = —2bo— 3¢ hbo.
By (84) and (85), we obtain the following equalities:
(86) (—2-3¢2g)b5— g =0,
(87) (—2—3¢72h)b5 — h = 0.
Here we gey = h which contradicts our assumption. Thus, the lemma s proved. O
By using Lemma 3.3, we will show thé‘g is non-singular.

LEMMA 3.4. Thesurface 3{ defined for a cubic root ¢ of —28 in Remark 2.9 is non-
singular.
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PROOF. SinceS; is normal, singular points of; are isolated. Let: S; — S be the

minimal resolution. Letpg(S;, P) be the geometric genus ().fi;, P). Then, by the Leray
spectral sequence, we have

(88) X(©O5) = xOs) = 3" pg(S. P).
PeSingS;

If 5; has a singular point, the.ﬁ’g has two other singular points since the cyclic group of
order three acts on it freely. Therefore, the right-hand side of (88) is a positive multiple of
three.

We havex (S7) = 1, sinceS; has a fibration of curves of genus three over an elliptic
curve. In particularx((’)sg) > 0. By [9, Proposition 2.3], we know((’)gg) = 3. Hence, the
left-hand side of (88) is at most three. Therefore, if there exist singular points which are not
rational double points 0&;, then these singular points am@nimal elliptic singular points
and the number of them is three. By Remark 2.7(iv)§;ifhas a singular point in the fiber
atP e E\ I', thenS; has six singular points. Since thezist only three minimal elliptic
singular points on§;, these points are mapped info and one of these singular points is
contained in a fiber at a point with order two.

However, we already know that a fiber at a point with order two is non-singular. Thus,
S, has at worst rational double points. Becatse sum of the Euler contributions is 27,
§; does not have other singular fibers and rational double points. Hence, we sé@ that
non-singular. |

We showed thaf; andS; are non-singular in Example 2.2 and Lemma 3.4. We know
that, for a given elliptic curvé, there exist almost four isomorphism classes of the Catanese-
Ciliberto surfaces of type | witlz = Alb(S).

4. Isomorphic classes of surfaces. In this section, we consider the number of iso-
morphism classes of Catanese-Ciliberto surfatebtype | with Alb(S) = E for a givenE.
In order to count the number, we use the defining equations of these surféges in

4.1. A transition function of an indecomposable bundle. Eédbe an elliptic curve
andV an indecomposable bundle of rank three withWdet Of (o). In order to describe the
defining equations of canonical models of Catanese-Ciliberto surfa&ggIn), we describe
a transition function system of.

We embed the elliptic curvé& in P? so that it satisfies the equalif?Z = X (X —
Z)(X —AZ) forx € C\ {0, 1} ando = (0: 1: 0). Now we recall the following lemma which
we need.

LEMMA 4.1 (Atiyah [1, Lemma 16]). Let r and d be positive integers. Let V' be an
indecomposable bundle of rank r and degree d over E. Then there exists an indecomposable
bundle of rank r +d and degree d over E, unique up to an isomor phisms, given by an extension

0—>O?S—>V—>V/—>O.
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By the above lemma, there exists a unique indecomposable bupglef rank two and
degree one oveF satisfying the extension 8 O — V2.1 — Og(o) — 0. Moreover, we
see that there exists a unique indecomposable bundierank three and degree one over
satisfying the extension 8 O — V — V21 — 0. Note that the determinant line bundle
of the above vector bundlé is equal toOg (o).

LetUy ={(go:q1:q2) € E | q1 #0},Uz = {(q0: q1:q2) € E | g2 # O} and
Uyz = Uy NUyz. Letry, rp andrz be the points irk of order two. TherUy = E\ {r1, r2, 3}
andUz = E \ {o}. We describe a transition matrix &f at Uy for basesYp, Y1, Y»} of
Vv, and{Zo, Z1, Z2} of V|y, as follows. Note thaZ; in this section are not equal to those
in Section 3. Set = X/Y. Thenr is regular onUy and has zero of order one at So
a transition function of0g (0) at Uy is given by{r~}. Since V> 1 is given by a non-zero
element ofH X(E, Hom(Og (0), OF)), a transition matrix oV 1 at Uy z is given by

1 0
=2 1)

Furthermore, sinc& is given by a non-zero element af'(E, Hom(V2,1, OF)), atran-
sition matrix of V at Uy z is given by

Yo 1 0 0 Zo
(89) Y1 = 11 1 0 Z1
Yo 0 2 1 Zo

4.2. The defining equations iRz (V). In this section, we give defining polynomi-
als of Catanese-Ciliberto surfaces which are elementd &Pz (V), Op.(v)(4H — F,)).
Since we have1®(Pg(V), Op,(v)(4H — F,)) = HO(E,SynfV ® Of(—0)), it suffices
to give elements oHO(E, Synf' V ® Ox(—0)). By the previous section, we haWdy, =
Di—0120uv,Yi andV|y, = P;_g 1.2 Ou,Zi with the relation (89). Then we have

HO(Uy. SynfV ® Op(—0) = @D Or(—o)(Uy) Y§Y{Yh,
i+j+k=4

HOWz, SynfV @ Og(-0) = @D OrWU2) 24775
i+jt+k=4

The section& Y] Y5 andz},z] 7k satisfy the relation oty N Uy as follows:
YY{ Y] = (20 (72 Zo+ Z0) (P21 + 17" 220"

We give an explicit basis of the vector spa@8(Px (V), Op,(vy(4H — F,)) in the following
lemma.

LEMMA 4.2. Let E, A, Uz, Zo, Z1 and Zo beasabove. Setx = X/Zandy =Y/ Z.
Then HO(Pg(V), Op,vy(4H — F,)) hasabasis {F1, F, F3, Fa, Fs} defined by

F1=5)2Z5 + 8.y Z3Z1 + 80xZ3Z2 + (4(h + Dx? — 2(20% + A + 2)x — 24(A + 1)) 2573
+ 8L+ 1)yZ3Z1Z2 + (A0 + D)x — 60)Z5Z3 + (=3x2 + 200 + Dx + (0 — D) 77
—8yZ3Zs + (—6x + 20 + 1)) 2323 + 73,
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Fa = (=33%x + 402(L 4+ 1)) Z§ + 8222375 + (2ax2 — 200 + D)x — 4322272
+ ANy ZEZ1Z2 + 20x Z8Z5 + (x3 — 200 + D% + (h 4+ 1) Z7
+ (By(x — 1) — 8Ay)Z3Zp + (6x% — B(r + L)x 4+ 4A) 2275 + 4y Z1 75 + x 73,
F3=—AxZ§— 200+ 1D)yZ8Z1 + (—2(x + Dx + 30 232>
(=32 + (4 Dx + 2002 = A + 1)) 2372 — 6yZ371 72 + (—3x + 2(A + 1)) 2373
— 2yZ0Z3 + (=3x + (A + 1) Z0Z3Z2 + Z0Z3,
Fa=—3%Z8 = AyZ3Z1 — \xZ3Z2 + (—Ax + A(h + 1) Z52% + 12873
+ (xy — A+ DY) Z0Z3 + (3x2 — 3(A + D)x + 20) Z0Z5Z2 + 3y ZoZ1Z5 + x ZoZ3
Fs = =32y Z§ + (—=42x + 2220 + 1) Z3Z1 + 6y (x — (1 + 1)) 2822
+ (A0 + Dx® — 4207 + 1+ 2x% + 2203 + 22 + 4 + 2x — 200 — 1)*N) ZoZ3
+ 124 (x — M) (x — 1) Z3Z1Z2 + 6AyZ3Z5 + 12y((h + D)x — (W2 + 1)) Z0Z2 25
+ (120, 4 1x? — 12002 + & 4 D)x 4 611 + 1)) Z0Z1Z3 + 4(A + 1)y ZoZ3
+y(3x% =204+ Dx — (A = DA ZF + 1263 — o+ Dx? + ) 232
+ (18xy — 6(x + 1)) Z2Z5 + (12x% — 8(A + D)x + 40) Z1Z5 + 3yZ3.

PROOF. Lety be an element off°(E, Synf'V ® Og(—o0)). Theny|y, andy|y, are
written as

ylvy = caoo¥y + a310Y3 Y1 + aa01Y§Y2 + 0220V E VY + 11V Y1Yo
+ OtzongYzz + Ot130Y0Y13 + 0t121Y0Y12Y2 + 06112Y0Y1Y22 + Ot103Y0Y23
+ 04040Yf1 + a031Y13Y2 + OtozszYz2 + 04013Y1Y23 + 04004Y24 ,
vlu, = BaooZg + ,33102821 + ﬂstSZz + 2202572 + B211257122
+ B202Z5 25 + 1302023 + P12120Z2 Z2 + P11220Z1Z5 + P103Z0Z}
+ BoaoZ + B031Z3 Za + 02222 Z5 + Bo13Z1Z3 + PooaZs .
wherew;;x andg;jx are inOg(—o)(Uy) andOg (Uz), respectively.

Since (¥ lu)lvynu, = (Ylu)luynu,, We have the following relations of the coeffi-
cients.

(90)  wooa = 1*Booa,

(91) w013 = r*Bo1z— 4r*Pooa.

(92) 022 = 1?Bo22 — 3tPo13 + 6Bo04,

(93) o031 = tBos1 — 2022+ 3t o1z — 4t *Booa,

(94) @040 = Boso— 1 Boa1+ 1 2Boaz — t >Bors+ 1 *Booa,



(95)
(96)
(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

Let v, be the valuation of the local rin@r ,. Sinceq;j is in Og(—o0)(Uy), we ob-
tain v, (%) > 1. Hence, by (90) and,(r) = 1, we havev,(Boos) > —3, i.€., Boos €
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@103 = 1B103 — 12Bo13 + 41004,
o112 = 1*P112— 3tP103 — 2tPoz2+ 6Bo13— 12 Booa,
@121 = 1B121 — 28112+ 3t 1 B103 — 3031 + 61 B2z — 9 ~2Bo1s+ 12 >Booa,

@130 = B130— 1 *Pr21+ 1 2B112— 1 >B1os— 4L Boao+ 4t 2os1 — 4 3Bozz
+ 4t~ *Bo13 — 4t > Booa,

@202 = 12B202 — 1B130+ 3B103+ Bo22 — 3t~ Bo13 + 6t % Booa.

@211 = 1B211 — 28202 — 2121+ 4 B112 — 6172 B103+ 3t L Boz1 — 6172 Po22
+ 9r3Bo13 — 12r~*Booa,

@220 = B220— t LB211+ 18 2B202 — 3t 103+ 3t 2B121 — 3t 3B112

+ 3t 7*B103+ 612 Boao — 61> Pos1+ 6t Bo2z2 — 617 Bo13+ 610004,

@301 = 1301 — P211+ 2t~ p202+ 17 B121 — 2r 2 B1a2+ 3t Pa0s — 1 2Pos1

+ 20738022 — 3t~ *Bora+ 4> Booa,

@310 = B310— 1 L B301 — 2t 1 B220+ 262 B211 — 263202+ 32 B130
— 3173121+ 3t *Br12— 3t 3Bro3— 4 3Boso+ 4 Boz1

— 47°Bo22+ 415013 — 41 Booa,

@400 = Baoo— 1 LB310+ 1 2B301+ 1 2Bazo— t >Par1+ 1t B2z — 1 3B130
+ 174 B121 — t7°Br12+ 17 ®Br03+ 14 Boso — 1 °Pos1+ 1 P02z

_7 —
— 17 "Bo1z+ 1 "8Booa.

HO(E, O£ (30)). By (91), we have

Vo (t3Bo13) = Min{v, (2013), Vo (t%) + vo(Bood)} = —1.

Thus, we obtain, (Bo13) > —4, i.e.,fo13 € HY(E, Og(40)). Similarly, we obtaing;x €
HOE, Op((3+ j)o)). Since{l, x, y, x?, xy, x3, x?y} is aC-basis of HO(E, O (70)), Bijk
can be written as follows:

Boosa = ap + arx + azy ,

Bo13 = bo + b1x + boy + bax?,

Boz2 = co + c1x + c2y + cax? + caxy,

Bos1 = do + dix + doy + dax? + daxy + dsx®

Boao = eo + e1x + e2y + e3x2 + e4xy + e5x3 + eexzy R
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B1o3 = fo+ fix + fay,

Brio= go+ g1x + goy + gax?,

B1o1=ho+ hix + hoy + hax? + haxy,
B130 = i+ i1x + izy + i3x? +isxy +isx°,
B202 = jo+ jix + j2y,

Ba11 = ko + kix + kay + kax?,

B220 = lo + l1x + loy + [3x° + laxy,

B301 = mo + m1x +m2y,

B310 = no + nix +nay + nax?,

Baoo = po + p1x + p2y,

whereao, ai, ..., p1, p2 areinC. Sincew;;; has zero at, by these equations and (90)—(104),
we obtain relations of the complex numbegsas, . .., p1, p2. By the equality (91), we have

o013 = t_l(bguz — 4daqu) + (b2 — 4a1)u + (higher term .

Sincevp(ap13) > 1, we obtain condition$s = 4ap andb, = 4a;. By these equalities and
(92), we have

@022 = 1 3((ca — 12a2)u® 4 Bazu) + 1~ %(cau® — 6ayu) + 1~ (cou — 3b1u)

+ (c1u + 6ag) + (higher term.
Sincev, (xp22) > 1, we obtairncs = 6a2 andcz = 6a1. By these equalities and= 1+ (A +
172 — at*u~1, we have
@022 = —Bazt " (A + Du — At?) + 6a1((h + Dyu — Ar?) + 1L (cou — 3b1u)
+ (c1u + 6ag) + (higher term
= 1"Y(=6as(A + Du + cou — 3b1u) + (6ar(r + Du + c1u + 6ag) + (higher term .

Thus, we obtain the relations6az (A + 1) + ¢2 — 3b1 = 0 and @1 (A + 1) + ¢1 + 6ag = 0.
Similarly, we obtain the following relations:

8ar(\. + 1) daz)
bz =4ay, by=4ay, b1=—f, b0=T, c4=06az, c3=6ay,
cp=—2a>(A+1), c¢1=—-6ag—6a1(A+1), co=2@ao(r+1) + 2a1)),

ds=4ay, ds=4a1, dz=—4da(\+1), dr=—4(2a0+a1(rA+1)),

2ax(A + 1
dy=4azh, do=0, es=az, es=ua, e4=—%,
ar(n — 1)?
= 30— 200 +1), ep= 2L o= i+ Dao+an(h+ 1),
_ dat+ D

eo =ao(r — 12, f2 g3 =4ax(A +1), g2=3f1,

3 )
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g =—4a02 +1+1), go=2ar(A+1), ha=4ax(A+1), h3=3f1,
hy = —4az(02 + 1), hi=-3(fo+ A+1Df), ho= fol+1) +2fxr,

. dax(h+ 1) . 4arx(2A® +1+2)

p=—73— l=fi, B=-————7——, 2==2/o- H0+D),
L 202340240 +2) 2ap. (0 — 12
11 = 3 ) o= — 3 ) ‘12:202)"7

J1=-3fo+2ar+4ap(A+1), jo=(—6ao+ fOr+2fo(A+1), k3=4azk,
ko = —6fo+ daih + 8ag(h + 1), k1= —dasA(h +1), ko=4aor?, ls= 2as:,
I3 = —3fo+ 2a1h +dao(r + 1), lp = —2a0(A + 1),
1= foO+1) — 2a2(23% + A+ 2) — A(f1 + 2a1(A + 1)),
lo=2fo(x% =241+ A(fa(h + 1) — darr — 2a0(r + 1)),
mp=0, my1=@B8ao— f)rA—2fo(A+1), mo=ArBfop+8a1r), n3=0,

4ap)? 2a20°(A + 1) as\?
— no= — = — .
3 s 0 3 s P2 3

p1=—A(fo+3a1r), po=r%5ag— f1+4dar1(A +1)).

By the above relations, we see that by, .. ., es, €6, f2, 90, 91, - - -, P1, p2 @re the linear
combinations ofig, a1, az, fo, f1 with coefficients inC. So,g;;« are the linear combinations
of ag, a1, az, fo, f1 with coefficients in rational functions d. By replacings;; in y |y, with
such linear combinations ab, a1, a2, fo andf1, any elemeny € HO(P(V), Op,(v)(4H —
F,)) is represented as

v= D BixZoZ{Z;

i,j,k>0
i+j+k=4

nz2 = (8ap — fuA —2fo(A+1), n1=

az
=aoF1+a1F2 + foF3+ f1Fs+ §F5.

Hence, the vector spadé®(Pg(V), Op.(vy(4H — F,)) is generated by, ..., Fs. By [3,
Theorem 1.17], we see that the dimensioHO Pz (V), Opyy,(4H — Fy)) is five. Thus, the
vector spacéi®(Pg(V), Op,(vy(4H — F,)) has a basi§Fi, F2, F3, Fa, Fs}. O

REMARK 4.3. LetS be a Catanese-Ciliberto surface definedrby= 21'5:1 si F;. Let
F (o) be the defining polynomial of the fiber sfato. Then it is easy to see th#t(o) =
t=YF (Yo, =t~ 1Yo + Y1, t72Yg — t~1Y1 + tY>2)|,—0. By a calculation, we obtain

F(0) = s1(8A2Y3Y1 + 400 + DYSY2 + 120YoY Y2 + 8(A + 1) YoY1YE + 4YoYs5)
+ 52(BA% (L 4+ DY3Y1 + 8A2Y3Y2 — 4A%YoY] + 4rYoY1YE)
+ 53(=2(0 + DYFY1—2(0% — 1 4+ 1YY —AYoYE —2(h + 1) YoY2Y2—3YoY1YZ)
+ 54(=202Y3Y1 — A + DYFY2 — AYoY2Y2 + YoY3)
+ 55(A2(0 — D)2V — A%Y} + 6AY2YZ + 40, + HY1Y3 + 375
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4.3. Defining equations of the Catanese-Ciliberto surfaces with unique singular fiber II.
In Section 2.2, we obtained the defining equations of the unramified triple coverings of the
Catanese-Ciliberto surfaces. These were give@-#svariant global sections ap, (4H —
p*[o]). The defining equations of Catanese-Ciliberto surfaces are elemeft8(Bf; (V),
Op,(vy(4H — p*0)). Hence, by Lemma 4.2, it is described Bs= Z?:]_SiFi- First, let us
mention a result which we need later.

LEMMA 4.4. Letrw:V — E beanindecomposable bundle of rank three and degree
one. Then the group Aut(V) of automorphisms @* of V satisfying @* o 7 = 7 isisomorphic
to C*.

PROOF. LetY; andZ; be as in the previous section. L&t be an automorphism df
such tha®* o m = 7. SinceZg (= Yp) is a unique global section 8f up to multiplications
of complex numbers, we havg*Zg = ¢Zp and®*Yy = cYp, wherec € C*. Sinced*Z;
(resp.@*Y;) is contained inV (Uz) (resp.V (Uy)), we can write

@Y1 = a10Y0 +a1,1Y1 + a12Y2,
DYy = azoYo + 211+ a22Y2,
@*Z1 = P1r0Zo+ Pr1Z1+ P12Z2,
D*Zs = B2,0Zo+ P2,1Z1+ B2,2Z2,

wherew; ; andg; ; are inOg(Uy) andOg(Uz), respectively. Sinc&; = 170+ 71 and
Yo = 17271 +t~1Z5, by the transition relation (89), we obtain

QY = i 0Yo + ia1Y1 + ;i 2)2
= (a0 +1 Y00 Zo+ (i1 + 12 2) 21+t 2 22
Also, by (89), we have
DY) =11 d*Zo+ ¥ 71
= (ct 71+ B10) Zo + BL1Z1 + B1,2Z2,
D*Yy = 1720%Z1 + 17 10* 7,

2
=Y (B +1 B2 )2
j=0

Hence, by comparing coefficients @b, Z1 and Z, for @*Y1 and ®*Y>, we obtain the fol-
lowing relations.

(105) a0+t tar1 =t + Bro,
(106) @11+t 212 = P,

(107) a1 = pr2,

(108) w20+t Yaz1 = 1721041 B20.

(109) 21+ fzaz,z = fzﬁl,l + flﬁz,l,
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(110) t7rapp =t72p12+ 17 B2,

Sincea » is regular ab € Uy, we see thapy > € HO(E, Og(0)) = C by the equality
(107). If B1,2 # 0O, thenu,(a1,1) = vo(B1.1 — t71B12) = —1. So we obtaiy » = a12=0.
By the equalitya; 1 = B1.1, we havepy 1 € HO(E, Og(0)) = C. Similarly, by equalities
(105)—(110), we obtain the following relations:

a12=pfr2=010=Pro=0a21=P21=0a20=P20=0,
a11=Pr1=oaz2=Pr2=c,
i.e., we haved*Z1 = ¢Z1 and®*Zy = cZ, i.e., ®* is the multiplication of the constant
c. O
Now we give the defining equations of these surfacd®gn

LEMMA 4.5. Let bea complex number in C\ {0, 1} and E ¢ P2 the elliptic curve
defined by the equation Y2Z = X(X — Z)(X — AZ) and D; (T) the quartic polynomial
A2T* — 6AT? — 4 + 1)T — 3 with the variable T. Let £ be a complex number satisfying
the equality D; (£) = A%&% — 6AE2 — 4(L + 1) — 3= 0. Let Ly (¢) bethe matrix defined as
follows:

L&) =
—BAZE—M(A+1) —D2O+DE—82 AL+ DE+2002—A+1) 22 +A(A+1)
—120 12x2¢ 3NE+2(A+1) X
—120& —8(A+1) —a). 20.+1E+3 AE
8(A+1E+12 M —3 3

Let (s1, 52, 53, s4) be a non-zero vector with L; (&) s1, s2, s3, s4) = 0. Then we obtain the
following.

(i) For every » € C\ {0, 1}, the quartic equation D, (T) = 0 has four distinct so-
lutions. The rank of L, (&) is three for any . € C\ {0, 1} and ¢ satisfying the equality
D, (¢§) = 0. In particular, There exist four choices of (s1, s2, 53, s4) Up to multiplications of
complex numbers for each A € C\ {0, 1}.

(i) The equations Zf‘zl s; F; = 0 define Catanese-Ciliberto surfaces S of type | with
Alb(S) = E. Conversely, a Catanese-Ciliberto surface of type | with Alb(S) = E is defined
by one of four equations Zle siF; =0.

PROOF Let S be a Catanese-Ciliberto surface of type | with Mllp = E. We use the
notation such as ¢ andP in Section 2. By Proposition 2.8 and Remark 2.7, the unramified
triple coveringS of S has an automorphism obtained by restricting an automorphisfn
Pz which commutes with the involution of the elliptic curveE. Moreover, the defining
equation ofS in P is t*-invariant. SinceG = {o, o', 0"} acts onP as translations and we
havei o T, = T,» o1 andS/G = S, S has an automorphism obtained by restricting an
automorphism oPg which commutes with the involution of the elliptic curée
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Let 2 be the involution of £ and7; an automorphism oPg defined by*Zy =
Zo,12%Z1 = —Z1 andiz*Z; = Z;. Then, by the propertiegx = x, 5y = —y, itis clear
thatiz; commutes withy. By Lemma 4.4, an automorphism 8f which commutes withy is
equal torp.

LetF = Z,.Szl s; F; be the defining equation ¢f. Sincerz*Zg = Zo,12*Z1 = —Z1 and
12°7Zo> = Zo, we havaz* Fs = —Fs andio*F; = F; fori =1, 2, 3, 4.

Sinces isiz-invariant, we have F = *F = Zf‘zl s;F; — ssFs5 for c € C*, i.e., we get
s5 = 0.

By Proposition 2.8, the unique singular fiber$fs at the poinb. By Remark 4.3, the
defining equation of the fiber ¢f ato is written as follows:

F(0) = s1BA2Y3Y1 4 8L (A + DYEY2 + 12 YoYPY2 + 8(h 4 1) YoY1YE + 4YoY3)
+ 52(822 (L + DYEY1 + 81 2Y Y2 — 4A2YoY] 4 4AYoY1Y2)
+53(=2 (A + DYFY1—2(0% — A + DYEY2—AYoYS — 201 + D)YoY2Y2—3YoY1Y2)
+ 54(=222Y3Y1 — A + DYEY2 — AYoY2Y2 + YoYs3) .

Moreover, this fiber is a quartic curve which consists of four lines intersecting at a point. One
of these four lines is defined By = 0. SetF = F(0)/Yo. Then the equatio = 0 defines

a cubic curve with a triple point on the ling = 0. Thus, there exists a point satisfying the
following linear relations i1, s2, 53, s4:

3,0y, Flyg=0 = —2((—812Y1 — 4A (A + 1)Y2)s1 + (4220 + 1)Y1 — 81%Y2)s2

+ (O A4 DY1+ 2002 — A+ DY2)s3 + (2A2Y1 + (A + DY2)s4) =0,
dy, 0y, Fly=0 = 2(12).Y251 — 122%Y1sp — (3AY1 + 2(A + 1)Y2)s3 — AY2s4) = O,
dy, 0y, F lyg=0 = 2((124Y1+8(A + 1) ¥2)s1 + 4AYas2— (2(h + 1)Y1 + 3Y2)s3—AY1s4) = O,
vy, Flyg=0 = 2((8(A + 1)Y1 + 12Y2)s1 + 4AY1s2 — 3Y1s3 + 3Yas4) = 0.

By using the matrix_, of the coefficients, we write these equalities as
0yodyo F. 0y, 0y, F . 3y, 0y, F, 91,0y, F)|ye=0 = Ly, \(s1. 52,53, 54) = 0.

The determinant of the matrik; is calculated to be

— 19200 — 1)2A2(A%Y} — BAY2YZ — 40 + 1)Y1Y3 — 3Y))

= —19200 — 1)?A2D; (Y1/Y2) Y3 .

We obtain the matrix., (&) by replacingY: andY> by & and 1. Then(sq, s2, s3, s4) satisfies
L;.(£) Y(s1, 52, 53, 54) = 0if (0 : £ : 1) is the triple point of the cubic curv€ = 0. Hence,
the defining equatio = Zle si F; of S satisfiesL; (&) ¥(s1, s2, 53, s4) = 0, wheret is a
solution of the equatio®, (7') = 0.

Furthermore, the equatiof, (T) = 0 in T does not have multiple solutions. Thus,
the number of solutions @b, (T) = 0 is four. By an easy calculation, we see that the rank
of L, (&) is three. So a vectap, s2, 53, s4) is determined uniquely up to multiplications of
complex numbers fak € C\ {0, 1} and¢ € C satisfying the equalityp, (§) = 0.
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Conversely, we assume thatand (s, s2, 53, s4) satisfy equalitiesD, (§) = 0 and
L&) Y(s1, 52, 53, 54) = 0. Then the surfacé defined bny‘:1 s;i F; = 0 has a fiber with
a quadruple point. Therefore, we have only to show shistnon-singular. Since the unrami-
fied triple covering ofS has three singular fibers with a quadruple point, this is isomorphic to
Sy or S;. Note thatS; andS; are as in Section 2. By Example 2.2 and Lemma $;4ndS;
are non-singular. Hencé,is non-singular, i.e.§ is the Catanese-Ciliberto surface of type I.
Therefore, we complete the proof. O

4.4. Completion of the proof of Theorem 0.2. L&) = (s(&)1, 5(§)2, s(€)3, s(£)4)
be a non-zero vector satisfyig, (£) 's(&) = 0 for each solutior§ of the equationD; (£) =
224 —6)E2—4(A+1)E—3 = 0. SetF; = Y1, s(£); F;. We know that the surfac® defined
by Fr = 0inPg(V) is a Catanese-Ciliberto surface of type I. Hence, it suffices to consider
the isomorphic classes among the four surfazesSet CC) = {S: | § € C, Dy (&) = 0.

LEMMA 4.6. Leté&; and &> besolutionsof D, (T) = 0. If there exists an isomorphism
®: Sy — Sg,, then @ induces an automorphism ¢ of E with ¢(0) = o, and @ is the
restriction of an automor phism of Px which commutes with ¢.

PROOF. Since All(Sg,) = Alb(Sg,) = E, @ induces an automorphisgt: £ — E by
the universality of the Albanese maps. Since eac:plndSg, has a unique singular fiber at
0, we havep(o) = o.

Letig;: Sg; < Pg be the natural closed immersion fgr= 1,2. By the adjunction
formula, we have'gj*OpE(H) = KSs,- sinceng andKp, are linearly equivalent to#¥ — F,
and—3H + F,, respectively. In other words; is the relative canonical map 6f,. Since
@ is an isomorphism frons, to S¢,, we have an isomorphisk* K s, = Ks,, . Hence, we

have an isomorphism*(pls,,)«Ks., = (Pl )«P*Ks,, = (plse, )«Ks,, which we denote
by @*. By [4, I, Proposition 7.12]@* induces the automorphism of Py satisfying the
following commutative diagram:

@
Pr = Pe((plsgy)«Ks,) —> Pe((plsy,)«Ksy,) = Pr.

o] T

D
Sey St,
plsfl l lplsgz
E 4 E
Note that(p|ggj)*KS$j coincide with an indecomposable bundteof rank three and
degree one with dét = Og (o) by the construction of; . O

By the above lemma, we have the following consequence.

LEMMA 4.7. If E has no automorphism of complex multiplication type, then there
exist no isomor phisms among the four surfacesin CCl,.
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PrROOF. Leté&; andé, be solutions ofD, (T) = 0. It suffices to shovg; = &> if there
exists an isomorphisn®: S;; — Sg,. It is easy to see that(£1)1, s(62)1 # 0. We can
assume that(&1)1 = s(&2)1 = 1. By Lemma 4.6@ is the restriction of an automorphism
@ of P which commutes with an automorphispmof E leavingo fixed. Since® gives an
isomorphism fromSg, to Sg,, we haveFs, = c®*Fs, (c € C*), where we also denote liy*
the automorphism of Syf induced byd*.

Since E has no automorphism of complex multiplication typeis equal to ig: or ¢,
wherets is the involution ofE.

If ¢ =idg, by Lemma 4.4, we see thé@*Zo = dZo, ®*Z1 =dZyand®*Z, = dZ>
for d € C*. Therefore, we hav@*F;, = d*F, fori = 1,2,3,4,5. We obtainFz, =
c®*Fs, = cd*Fg,. By the assumption(é1)1 = s(&2)1 = 1, we haverd* = 1 ands(&1); =
s(&p); fori = 1,2, 3,4. Thus, we havé; = & if ¢ = idg.

We consider the case whepe= (,. Leti; be an automorphism d?x as in the proof
of Lemma 4.5. By Lemma 4.4, we see tht= 13, i.e., ®*Zg = dZo, ®*Z1 = —dZ1
and®*Z> = dZ, ford € C*. Therefore, we havé*Fs = —d*Fs and®*F; = d*F; for
i =1,2,3,4. We obtainFs, = c®*Fz, = cd*Fs,. m

Now, we consider the casehare the Albanese torushas an automorphism of complex
multiplication type. Since® is defined by the equatior®Z = X (X — Z)(X — 1 Z), we have
to consider the cases whexe= —1 andx = (1 + /—3)/2. First we consider the case
Ar=-1

LEMMA 4.8. Assumethat A = —1. Then, there exist four solutions +&g, &1 of the
equality D_1(T) = 0, and there exist isomorphisms Sg, = S_g, and Sg; = S_g,, while S,
and Sg, are not isomorphic.

PROOF. First, we describés (&)1 : s(€)2 : s(€)3 : s(§)4) for a solutiont of the equation
D_1(T) = 0. By substituting-1 for A of L; (¢§) in Lemma 4.5, we get
-8 -8 6 %
12 1z -3 -1
12¢ 4 3 ¢
12 -4 -3¢ 3

L_1(§) =

From this matrix, we have
(s(E)1:s5(E)2:5(8)3:5(E)a) = (BE*— 1) : 65 : —4E(E7 — 1) : 2489)
i.€., Fr = 3(62 — 1) F1 + 65 Fp — 46(§% — 1) Fy + 24£°Fs.

Let {&0, —&o, £1, —£1) be the set of solutions db_1(T) = T* + 6T2 — 3 = 0. We use
the notation as in Lemma 4.6. By Lemma 4.654f is isomorphic to another surfadg, then
there exists a unique automorphignof Pz which commutes with an automorphispof £
leavingo fixed such thatb* F (§9) = c¢F (£) for ¢ € C*.

Letyy: E — E be the automorphism of with (3(X/Z) = —X/Z andy(Y/Z) =
V/—1Y/Z. Then we see that the order qfis four and the group of automorphisms Bfis
equal to the sefidg, 2, ta, ta 0 12}.
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In the cases wherg = idg andg = 15, we see thatb* F (&) = cF (&) for ¢ € C*
similarly as in the proof of Lemma 4.7.

We consider the case whege = (4. Let iz be the automorphism d?r defined by
4*Zo = Zo, 1" Z1 = —/—1Zy andia* Z, = —Z». Then, by the propertiagx = —x, ijy =
/=1y, it is clear thatz commutes with4. By Lemma 4.4, an automorphism Bf; which
commutes withy is equal taz, i.e.,® = 7. We obtain the following equalities:

WFL=F1, @WF=—-F, 4'F3=-Fs3,
@'Fa=Fs, 143 F5=+—1Fs.

Therefore, we have

14" Fy, = {3((—40)” — D) F1 + 6(—%0) F2 — 4(—%0) ((—£0)* — 1) F4 + 24(—£0)* Fs} .
i.e., 14" Fy, = F_g,. Hence,Sg, andS_g, are isomorphic to each other.

In the case where = o 1, We see thath = 17 o 1. Sinceiz*Fy, = Fz, and
4* Fg, = F_g,, We obtaind* F, = F_g,.

By the above argument, for any automorphigmf E leavingo fixed, we haved* F (£o)
= F (&) or F(—&p). Thus,Sg, is not isomorphic t&5s, andS_g, . ]

Next, we consider the cage= (1 + vV—3)/2.

LEMMA 4.9. Assumethat 2 = (14 +/—3)/2. Then&y = A — 2 is a solution of the
equation D (T) = 0, and Sg, is not isomorphic to the other elements of CCl;.. Let &1, &2, &3
be the other solutions. Then Sg,, Sg, and Sg, are mutually isomorphic.

PROOF. We use the notation as in Lemma 4.6. Lgbe the automorphism of with
w5(X/Z2) = —MX/Z - 1), §(Y/Z) = =Y /Z. Letig be the automorphism d?z defined
by 6" Zo = Zo, 6°Z1 = —A%Z; andig*Z>, = —A(Zo + Z2). Then, by the properties
gx = —Alx — 1), gy = —y, itis clear thatig commutes withig. By Lemma 4.4, an
automorphism o which commutes withg is equal tag, i.e.,® = 7s. By these properties,
we obtain the following equalities:

6" F1= (—AF1 — 4\F3), T§"F2=—A%(F1— F +4F3 — 4Fy),
6"F3=F3, 16 Fa=MF3—Fy4), 16 F5=ArFs.

We will find te-invariant surfaces in CCly. If Sg is te-invariant, then there exists a
complex number # 0 such that Y7, s(§); F; = Y%, s(£)iT6* F;. Then we have

—A—c —-(-=-1 0 0 s(&)1
0 A=1) —c 0 0 s(&)2 —0
—4) —-4x—-1) 1-¢ A sz
0 40 —1) 0 —A—c s(E)a

From this equality, we know that either the equality

(111)  (s(8)1, 5(E)2, 5(8)3, 5(8)a) = (5(8)1, 0, —v/—322(4s (&)1 — 5(£)a)/3, 5(£)a)
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or the equality

(112) (s(€)1, s(§)2, 5(€)3, s(€)a) = (V=3)25(E)2, s(€)2, Mhs(£)2/3, —4v/—3)%5(£)2/3)

is satisfied.

Since (s(&)1, s(€)2, s(£)3, s(€)4) satisfies the conditionL; (s(€)1, s(&)2, s(£)3,
s(&)4) = 0, we have

(=120& —8(A + 1))s(§)1 — 4rs(E)2 + (2(h + 1§ + 3)s(§)3 + Aés(6)a = 0.

If (112) is satisfied, then the left-hand side is equak-tBes (£)2/+/—3 by the equality
13 = —1. This is impossible since # 0 ands(£)2 # 0. Hence, (112) is not satisfied.

We consider the case (111) next. By the conditiari(s(&)1, s(£)2, s(£)3, s(£)4) = 0, it
is easy to see that(£)1 : s(£)2 : s(§)3 : 5(£)4) = (3: 0: 4/=342: 24) ands = &g = A—2.
Therefore Sg, is te-invariant andSg,, Sg, andSg, are noteg-invariant.

By Lemma 4.6, ifSg, is isomorphic toSg,, then there exists the automorphigimof
Pr which commutes with an automorphispnof E leavingo fixed such thatb (Sg,) = S,.
However, ®(Sz,) = Sg, since® = g for somei. Thus, Sg, is not isomorphic to every
S, i=1,2,3).

We assume that(§;); = 1 fori = 1, 2, 3. SinceFy, # cig" Fz, for everyc € C*, we can
assume thag* Fg, = cFg, for c € C*. SinceFg, # dig* Fy, for everyd € C, i6* Fg, coincides
with d F, or d Fy, for d € C*. If we assume thag* Fr, = d Fg,, then we haveée, = eig" F,
for e € C. This contradicts thaFy, is notig-invariant. Hence, we havig* F;, = d Fg, for
d € C*. Thus,S,, S&, andSg, are isomorphic to each other. 0
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