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Abstract. We extend the well-known results about the process of confluence for the
Gauss hypergeometric differential equation to the case of general hypergeometric systems.
We see that the process of confluence comes from the geometry of the set of regular elements
of the Lie algebra of complex general linear group. As a consequence, we give a geometric
and group-theoretic view on the process of confluence for classical special functions.

1. Introduction. Inspired by the works of Aomoto [1] and Gel'fand et al. [7, 8, 9],
we introduced in [16], for any given partitionof n, the general hypergeometric functions of
type defined on the spacé of r x n complex matrices of rank, wherer andn are positive
integers withr < n. They are defined as solutions of the system of partial differential equa-
tions onZ called thegeneral hypergeometric system of type A. Outside the singular locus of
the system, its solution has the integral representation, which is the “Radon transform” of the
character of the universal covering group of the maximal abelian subdiguyd GL(n, C)
(see Subsection 2.2). In the case where the partitian®f = (1, ..., 1), our hypergeomet-
ric function coincides with the general hypergeometric function due to Aomoto and Gel'fand
([, 77), which is a generalization of Gauss hypergeometric function, whose system of partial
differential equations has only regular singularities. In the case whete(n), the general
hypergeometric function has already been defined and studied in [9] and it gives a generaliza-
tion of the classical Airy function Aix). It is well-known [11] that the Airy function has the
integral representation

. 1
Ai(x) = %/ eX’_tg/sdt,
A

where the path of integratiog starts fromoo in a sector in which integrand is exponentially
recessive and goes to in another recessive sector (cf. [15]). This integral can be viewed as
a simple example of an oscillatory integral whose phase funaticn 3/3 is a deformation

of the simple singularity-13/3 of A,-type (cf. [3]). The differential equation which charac-
terizes Aix) as its solution has only one singular paint= co of irregular type, unlike the
case of the Gauss hypergeometric differential equation. For the partitigndl, .. ., 1), (n),

our functions provide generalizations of special functions of one variable such as Kummer's
confluent hypergeometric function, the Bessel function and the Hermite-Weber function. In
fact, the special functions, Gauss, Kummers&sd, Hermite-Weber and Airy are obtained as
the general hypergeometric functions foe= 2, n = 4 in the cases where the partitions of 4
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are(1,1,1,1), (2,1, 1), (2 2),(3,1) and(4), respectively. See [2, 4, 10, 11] for the classi-
cal special functions mentioned above, and see also [10, 19] for a relation with the nonlinear
integrable systems such as Painlevé equations and Garnier systems.

For the differential equations of these special functions, a kind of limit process, called
the confluence of singularities, is known, and it enables us to obtain one special differential
equation from another one as illustrated in the following diagram.

Bessel

/! N
(1.1 Gauss— Kummer Airy

N /!

Hermite

For example, the process of confluence “Gauws&ummer” is described as follows (cf.
[2]). The Gauss hypergeometric differential equation is

1.2) xL—x)u"+{c—(@+b+Dx}u’' —abu=0, '=d/dx.

This equation, considered I, has three regular singular points.of= 0, 1, co. For the
equation (1.2), we make the change of variable and parameters

(1.3) x=¢c&, b=1e.

Then the equation fo, u) is

d? d
(1.4) 5(1—8g)d—;+(c—s(a+s*1+1)g)£—au=o.
We see that the coefficients @fu /d£2, du/d&é andu depend holomorphically omate = 0.
Taking the limite — 0 in the equation (1.4), we obtain the Kummer’s confluent hypergeo-
metric equation
2

u du
(1.5) éd—sz—l-(c—é)E—au:O.

Notice that by the change of variable (1.3) the singular paints 0, 1, co of (1.2) turn

into the singular point§ = 0, 1/¢, oo of (1.4), respectively, and that, astends to Q the
singular point = 1/¢ andé = oo approach to each other and are amalgamated into the
irregular singular poin§ = oo of (1.5). The name “confluence of singularities” comes from
this phenomenon.

It is natural to ask if one can extend the “process of confluence” to the general hyperge-
ometric system and if one can understand the geometrical meaning of the above classically
known process for the Gauss differential equation.

So the objective of this paper is summarized as follows:

e To construct explicitly the limit process by which all the general hypergeometric
system for various partition # (1,...,1) can be obtained from the system of type=
(4, ...,1). We call this limit process thprocess of confluence.
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e To clarify a relation between the geometry of stratification for the set of regular ele-
ments of the Lie algebrgl(n; C) and the process of confluence for the general hypergeometric
system.

Indeed, our construction will give directly the process of confluence of singular points of
the Gauss hypergeometric equation to Kummer’s confluent hypergeometric equation ([17]).

In order to realize our purpose, we need to enlarge slightly the class of systems of hyper-
geometric type given in [16] so that we can comrsithe systems associated with centralizers
of regular elements gfl(n, C), not only the systems associated with the Lie algéhrésee
Definition 2.1).

This paper is organized as follows. In Section 2 we give the definition of the general
hypergeometric systems oh each of which is determined by the centraliggrof a regular
element e gl(n, C) and a weightr of ;. We also recall results on the integral representation
of its solutions. In Section 3 we recall results on a stratification in th8 eétegular elements
of gl(n, C) and describe explicitly the relation of adherence among the straBaasfd the
properties of each stratum. In Section 4, weegiey lemmas, which will be proved in the last
section. We study in Section 5 the relation of adherence among the centrijizers B) in
an explicit way. This explicit construction yields a process of confluence among the general
hypergeometric systems (Theorem 5.3). Thus we see that the process of confluence among our
systems is nothing but the explicit realization of the relation of adherence among the strata
of regular elements ofl(n, C) and among the maximal abelid.ie subalgebras which are
defined as the centralizers @fgular elements. In Section 6ewhall show that the process of
confluence for the general hypergeometric systems also provides the confluence on the level of
integrands of the integral representations. In Section 8, we discuss the process of confluence
for the special differential equations in (1.1) and for Appell's hypergeometric systenin
detail in the framework of general hypergeometric systems using Theorem 5.3. Parts of the
results of this paper have been announced in [17].

We thank the referee for valuable comments for the improvement of this paper. We thank
also Professors M. Noumi and T. Sasaki for helpful discussion with them. The first author
thanks Professor F. Pham and the members of Université de Nice for their hospitality during
his stay in Nice. A part of this paper was written in Nice.

2. General hypergeometric systems. In this section, we reformulate general hyper-
geometric systems for centralizers of regular elemengg(af C) and their weights.

2.1. Hypergeometric systems. Lete gl(n, C) be a regular element, namely, the
dimension of its centralizgtX € gl(n, C) | [b, X] := bX — Xb = 0} is equal tan, the rank
of gl(n, C). If b has! distinct eigenvalues©@, . .., b=D of multiplicities Ao, . . ., A;_1 with
A0 > A1 > > M-1andro+---+ A—1 = n, thenitis expressed as

(2.2) b=Adgp) (0P hy+ A1) &+ & B VL, + Ay y)
for someg, € GL(n, C) and its centralizer, denoted lyy, is given as

by = (Ad gp)(i(20) & - - - B j(A1-1)) .
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Here, for any positive integes, I, denotes the identity matrix of size, A= (8i+1, j)o<i, j<m
is the shift matrix of sizen and

jm) = { S wal | we c} .
O<i<m
We consider the sequenze= (1o, ..., A;—1) as a partition ol and denote by, the set of

partitions ofn. Fori = (X0, ..., A—1) € Y,,, we calll thelength of A and denote it by (%).
Let B be the set of regular elementsgifrn, C) and B, for A = (ro, ..., A;—1) € Y, the

subset ofB whose element hddlistinct eigenvalues of multiplicitieko, . .., ;1. Then
(2.2) B= || By (disjoint union)
reY,

If we use the notation

(2.3) hr :=j(h0) B --- B (A1),
then we have
by = (Ad gp)b;. .

Note thath, = b, wheng, = I,.

Now letr andn be positive integers with < n andZ the set of- x n complex matrices
of rankr. We denote by = (zij)o<i<r,0<j<n the coordinates of, and byd, = (9;;) the
matrix whose(i, j) entry is the partial derivatioby; := 9/9z;;.

Let b, be the dual space 6f, and(-, -) the canonical bilinear pairingj; x b, — C.

DEFINITION 2.1. For aregular elementof gl(n, C) anda € bj, satisfying the condi-
tion
(24) <a1 Il’l) = —-r,
the following system of partial differential equations
Lyu:={Tr(zX'9.) — (&, X)Ju =0, X ebhy,
(2.5) Myu :=Tr(Yz'd. +Y)u=0, Y egl(r,C),
D,’i/,jj/u = {Bija,»/j/ — 8,'.,'/3,'//'}1/{ =0, 0<i, i"'<r , 0<, j/ <n
is called thegeneral hypergeometric system associated withie, ) (GHG system for short).
Let Clz;j,9;; (0 < i < r,0 < j < n)] be the Weyl algebra and(«; b) its left ideal

generated by.x (X € by), My (Y € gl(r,C)) andlJ;;r jj» (O <i,i' <r,0<j,j <n). We
often identify the system with the left ide@l«; by).

REMARK 2.1. (2.4)is a compatibility contion of the system. Indeed, ¥ = I,, and
Y = I, in (2.5), the equation& yu = 0 andMyu = 0 coincide with each other and then
(o, 1)) = =Tr(I,) = —r.
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REMARK 2.2. The equationgxu = 0 andMyu = 0 imply that a solution:(z) of
(2.5) satisfies

u(zexpitX)) = u(z)xp(a; EXprX)), X €bp,
u(gz) =detg Huz), ¢€GLrC),
where x;(c; -) is that defined in (2.8). The third equations; ;u = 0 of (2.5) are those

of ultrahyperbolic type used in characterizing the range of Radon transform, see [6], [12] and
[13].

REMARK 2.3. The system (2.5) is a holonomic system on an Zariski open sét of
The dimension of the solution space at a generic poirit &f conjectured to béf:f) This
is true for the system with of typer = (1,...,1), (n) and anyr > 2. Itis also true in the
cases = 2 with b of any typex.

2.2. Integral representation. The GHG systé; b;) for b € B anda € b} has
solutions given by definite integrals whose integrand is expressed in terms of a character
x»(c; ) of the simply connected Lie groufi, of the Lie algebra,, where the character is
determined by the following commutative diagram:

I;Ib xb(as) cx

Iogl Texp
b —s C

We give here explicit expressions of the character and the integrand.
For anyb € B, given by (2.1) for somg, € GL(n, C), we defineH,, a maximal abelian
subgroup of Gl C), by

Hp = (Ad gp)(J (A0) X -+ X J(A1-1)) ,
whereJ (m), for any positive integem, is the matrix group

J(m):{h: Z hi Al

O<i<m

hi € C, ho ;eo} c GL(m, C),

called theJordan group of sizem. ThenH,, is a Lie group of, and its universal covering
group coincides with,. Corresponding to (2.3), we use the notation

H, :=J(o) x---x J(NM-1).
Then
Hj, = (Ad gp) H,,
andH, = H, wheng, = I,.
Let us obtain an explicit expression of the charagigy; -). Suppose firsy, = I,. In

this case, we also denojg («; -) by x,(«; -). SinceH;, is a direct product off (i), 0 <
k < £()), we suppose further = (n).
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Here we introduce function (z), i > 0, of infinitely many variableg = (zg, z1, ...)
withz; € C, i > 0, zg # 0, defined by

(2.6) Y 6i(2)t" =log ( > ziti) = log(zo) + log (1 +Y G /zo)ﬂ')

i>0 i>0 i>1
as formal power series of where log 1= 0. Notice thaty(z) = logzo and eaclw; (z), i >
1, is a weighted homogeneous polynomiakefzo, . . ., zi/zo of weighti, where the weight

of zx/zp is defined to bé.
Now leth = Yo, _, hi A} € J(n) anda € b¥, . Then we have

logh = Iog( Z h,-Aﬁl) = (logho)I, + log (I,, + Z (h,»/ho)Af,>

O<i<n 1<i<n

= (logho)l, + Y 6i(ho, ... hi) AL,

1<i<n

becauset!, = 0 for anyi > n. Hence, setting

(2.7) o= (o, Ay, 0<i<n,
we obtain
X (@; h) = exp({a, logh)) = eXp((a, Z i (ho, . .., hi)AL))
O<i<n
= exp( Z a;0; (ho, . . ., h,-)) = hg° exp( Z a;0; (ho, . . ., h,~)> )
O<i<n 1<i<n
Therefore the character éf, for anyi = (Ao, ..., A-1) € Y, anda € b is given as
was )y = [T xo0@®;h®), hef,
O<k<l

wherea® := a;;,) andh® € J (i) is thek-th component of.
For a generab € B, whereg, # I,, we have sincd), = (Adgy)h, and H, =
(Ad gp) H,,

(2.8) xp(; h) = x.((Ad gp)*a; (Ad gp)"2h),  h e Hp,

where(Ad g,)* : b — b7 is the dual of the isomorphism Agl : ;. — by.

In order to give an integrand of integral representations for solutions of the GHG sys-
temZ(a; bp) (b € B;), we introduce an injective mapping from H, to the space of:
dimensional row vectors;, : H, — C". In the case of, = I,,, 1, := 1, is defined by

) © (-1 (-1
ah) =, R kg DR )

forh = Dockos 20<i<i, hfk)Aj\k € H,. For a generab € B; whereg, # I,, it is defined
by

=Ry o 0(Adg) ™,
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whereR, denotes the right multiplication operator gy Notice that, (Hj) = (H0§k<l (C*x
Ckkfl))gb*l. This mapping can be lifted to a biholomorphic mapping frpto the universal
covering space off [o; ., (C* x C’\k—l))gb‘l, which is also denoted by the same symiol
In the same way, we define a bijective mapping denoted alsg: by

w:hp > C' = < @ Ckk>gb_l.
O<k<l
Notice that for any row vector = (sg, ..., sy,—1) € C" andh € Hy, it holds that
t;l(sh) = t;l(s)h.
From this and the fact that, («; -) is a character, we obtain

xp(es 4 1 (tzh)) = xp(ets 4,1 (12) - xp@s h) . h € Hy.
Lett be the(r — 1)-form in r dimensional complex affine space defined by
T = Z (=Ditidto A -+ Adti A+ Adtr_q,
O<i<r
then the(r — 1)-form y, («; L,jl(tz)) - 7 is invariant under the homothety— ct (¢ € C*) by
virtue of (2.4), and hence it defines a multivalued complex anafytie 1)-form on an open

submanifold ofr — 1 dimensional complex projective space. Thisa; Lljl(tz)) - 7 is the
integrand of integral representations for the sysigm ), namelyintegrals

u(z) = Pp(a; z) :=/ xXb(a; t,?l(tz))-t

A(z2)

for varioustwisted cycles A(z) give solutions of the system Z («; b).

3. Stratification of regular elements and confluence of GHG systems. In the fol-
lowing part of this paper, we study confluence process of GHG systems and integral represen-
tations of solutions of the systems. In this section, we give an outline.

3.1. Stratification of regular elements. We first define a relation in partitions of

DEeFINITION 3.1. We say that € Y, isadjacentto 1 € Y, and write as. — p if
(1) £(n) = £() — 1, wheret(-) denotes the length of a partition,
(2) there exist 0< j < £(u), 0 < jo < j1 < £(A) with u; = Aj; + A}, such that
{kto<k<e(u),kzj = (MJo<k<e(n),k#j1,j» @S Set.
For example, the adjacent relations among the elementg afe given by
2.2
/ N
1,111 —(2,11 4.

N /
3.1
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Compare the diagram with that of classical hypergeometric and confluent hypergeometric
equations in Section 1.
Now recallB andB;, and the decomposition (2.2) 8f We notice a well-known fact that
(2.2) defines a stratification @& in the sense that ead) is a complex manifold of dimension
n? —n+ £() and

(3.1) B = | Bu.

p<h

whereB,; is the closure o3, in B with respect to the usual topology Bfandu < A means
that there is a sequengg 1", ... of partitions ofn withA — ' — 1" — ... — pu.

3.2. Outline of confluence process of GHG systems. (LetY, be adjacentta e
Y,. Then, for anyb € B,, (3.1) says that there exists a sequence of pointB;imvhich
converges t@.

We will realize this limit process by constructing a family of mappiagss # 0) from
B, t0 B, so thato, (b) is holomorphic ine and lim._.go.(b) = b for anyb € B,,. Notice
that, for fixedb € B, ¢ — o (b) defines a complex analytic curve B, which tends t& as
¢ — 0. We will next construct a Lie algebra isomorphigmfrom b to b,, ) forb € B,,. Let
¥ be the dual isomorphism a&f, and consider GHG SySteﬁ‘((lI/S*)_l(a); bs. (1)) Of type
A foranye e b} with (a, 1,) = —r. It will be proved that the systedi(¥) ~1(@); ho, 1)
converges to the systefiw; h,) and integrands of integral representations of solutions of the
systemI((Llle*)—l(a); he. (b)) CONverge to those of the systefio; h,) ase — 0. We note
that the process reduces to the classical one in each case 8f n = 4.

3.3. Afibration structure of each stratum®f In this subsection, we give a fibration
of each stratum oB in order to understand more clearly the mapping B, — Bj, which
will be given in Section 5.

Let Y be a copy ofC" and F : B — Y a mapping which sends € B to F(b) =
(F1(b), ..., F,(b)) € Y, where

dets] —b) = s" — Fi(b)s" L+ .-+ (=1)"F,(b) .
Fori = (Ao, ..., Aen)—1) € Yn, S€LF), := F|p, and
Y = F(By).

We can verify that, is anl dimensional complex submanifold fand hence the decompo-
sition Y = | |, ¥; gives a stratification of . Fory € Y3, leta©@(y), ...,a*®=D(y) be the
distinct roots of

=yt vt 2 (= D)y, =0
of multiplicities Ao, . . ., A¢)—1 and set

(3.2) 050 = P @, + 4.
O<k<t())
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Thens; (y) is in F;1(y) and the fiberF, -2 (y) is the G-orbit O (s (y)) of s;.(y) with respect
to the adjoint action of; := GL(n, C) ongl(n, C) and hence

F () = 0(s1(») ~ G/H, .

It is easy to see that the mappifg : B, — Y, defines a locally trivial complex analytic
fibration and we can take a holomorphic local section of the form (3.2).

4. Keylemmmas. Inthis section, we give lemmas which will play an essential role in
constructing the mapping. : B, — B, and the Lie algebra isomorphis# : b, — he, )
forb € By,.

We first consider a simple case. Lgfandg be positive integers. We introduce a matrix
g(e) € GL(p + ¢, C) depending holomorphically ane C* given by

I, Gioe
@.) o= (3 o).
where thep x ¢ matrixGi12 = G12(¢) andg x g matrix Go2 = Go2(e) are defined by

© @ (N
0 @ ()

(4.2) (23=Dwﬂw Dy(e™).

-1 -1 -1
") ) ()
D, () (for any positive integem) denoting diagl, ¢, €2, ..., " 1) and(’}) denoting the
binomial coefficient which is equal to 0 if < j by the usual convention. We remark that
detg(e) = ¢P? and thery(e) is nonsingular ife = 0.
Now, foranyX = > o.;_,., x,-A;,Jrq € h(p+q), We defineX () € (Ad g(e)h(p.q) aS
follows:

o(e), ..., Yp+rq-1(8)) :=(x0, ..., Xp+q-1)9(€) ,
(4.3) Y(e) := < Z yi(S)A;> ) ( Z yi(S)A;p> € by
O<i<p P<i<p+tq

X(e) :=(Ad g(e))Y(e).
By using the notation introduced in Section 2, we can express it as
X () = (Ad g(&)) 0 1) © Ry(e) © tipr))(X) .
Then we have

LEMMA 4.1 (Keylemmal). For any X € h(p+q), X(e) € (Ad g(e)h(p,q) is holo-
morphicin ¢ in a neighborhood of ¢ = 0 and

im X(¢) =X.
e—0
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The proof of this lemma will be given in Section 7.

We next give a lemma of more general form, which is an immediate consequence of
Lemma 4.1. Leluw € Y, is adjacent to. € Y, with u; = A, + 1, forsome 0< j <
(), 0 < jo < j1 < £(X). Then we have a permutatignof the set{0,1,...,] — 1}
(I := £(2)) defined by

Ap@)s -+ s Ap=1) = (Os -+ - s Ujm1s Ajys Ajps Mty ooy I—2) -
Let g, € GL(n, C) be a permutation matrix determined by
PO ey — (O 0D
for any row vectors@, ..., s¢~D) e C, wheres® = (sék), ...,si’ill) eCH 0<k<l.

We define a matrix, ., (¢) € GL(n, C) by
(4.4) G (®) = Upgttptj 1 © 9V @) @ Ly iyt 2)p
whereg)(e) € GL(u;; C) is the matrix determined by (4.1) and (4.2) with= 1, and
q = Xj,. ForX e b,, we defineX (¢) by

X(e) = (Ad g p(e) 0 (i1 o Ry, (o) 0 L) (X) .
Then we have

LEMMA 4.2 (Keylemma 2). For any X € b, X(e) is holomorphic in ¢ in a neigh-
borhood of ¢ = 0 and satisfies

lim X(e) = X .
e—0
PROOF.  Suppose&X = Py, X© with XX € j(ur). We can verify that

Xe = P X(k)@((Adg('i)(e))oL(;il))sz)oRg(j)(g)otwj))(X(j)) b x».
O<k<j—1 JH1<k<i-1

Then the lemma follows from Lemma 4.1. O

5. Confluence of GHG systems.
5.1. Convergence of regular elements and Lie algebras.

THEOREM 5.1 (Convergence of regular elementspupposethat A — w, A, u € Y,
namely, u isadjacentto A. Givenb € B, withb € (Ad gp)b,., let

o6 (b) := (Ad gpgapu(€)) 0 ;1 0 Ry, (o) 0ty o (Ad gp) " H(B),

then o, (b) is an element of By N (Ad gy gr— . (€))b, for any fixed ¢ with 0 < |¢] « 1,
holomorphicin ¢ in a neighborhood of ¢ = 0 and satisfies

(5.1) lim o (b) = b.
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PROOF. Letpu; = Aj; +4j, for0 < j < £(n),0 < j2 < j1 < £(A), and let
pO, ... bW=D pe¢(u) distinct eigenvalues df of multiplicities po, . . ., fte(u)—1. Then
we have

ci=Adg) )= P 6P, +4,).
O<k<l(u)
Setl = ¢(1) and

B ), . B () by V) BT (€)= Ry ) 0 1) (©) -

o A—1—

Then we see that
b(()k)(g):b(k), b:(l_k)(g):]-, bl(k)(g):()’ 2<i <)\,k,0§k<lgk7éjlvj27
b(()jl) (e) = b , b:(l.jl) (&) =1, bi(jl) (e)=0,2<i< )‘,1'1 s

b§?(e) =bD +e, bYP(e)=1, bP(e)=0,2<i<hrj.

Hence(i; ' o Ry, (&) otu)(c) is of Jordan’s normal form withdistinct eigenvalues® (k #
j1, j2), b, b)) + ¢ of multiplicities A (k # j1, jo), Aj,Aj, for 0 < |e| < 1, which
implies 0. (b) € Bj. The propertyo, (b) € (Ad gpg1— . (€))h, follows from its definition.
The equation (5.1) is derived froln= (Ad g»)c and

lim ((Ad ga—p(£)) 0 ;1 0 R, () 0 1) (0) = C,

e—0
which is verified by Lemma 4.2. |

THEOREM 5.2 (Convergence of Lie algebras)Let b € B, and o.(b) be those given
inTheorem5.1,and let . — . For any X € b, define ¥, (X) by

We(X) i= (Ad gpgrmspu(€)) 0 0 Ry, ey 0 1 0 (Ad gp) " H(X).
Then ¥, isa Lie algebra isomorphismfrom b, to b, () satisfying
(5.2) Iimolllg(X) =X, Xebhy.
£—>

PROOF. Asinthe proof of Theorem 5.1, we can verify that(X) e (Ad g, gr— . (€)) b,
which imples¥; (X) € b, ) and (5.2). Since?; is a linear isomorphism and botj and
he. (») are abelian, it is a Lie algebra isomorphism. ]

It would be better to explain how we understand the constructian @f) in Theorem
5.1 in the picture of fibration structu®, : B, — Y, for the stratumB, of the stratification
of B explained in Section 3.
Let us restrict ourselves to the case wheee (p, g), u = (n) = (p +¢q) andb € by, is
of Jordan’s normal form
b=bV1,+ A,.
First we formed

be i= (51 0 Ry, 0 ) (0) = (00T, + Ap) @ (BP + )1y + Ag) .

For anye # O, b, is a regular element belonging ®),.. Let yo = F(b) € Y, andy, =
F(b,) € Y, (¢ # 0). Theny, defines a holomorphic curve— y, in ¥, which tends to
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o L Y

4
Y,

Iz 4\

FIGURE 1. Curveog.

Yo € Y, ase — 0. Butb,, which is a lift of the curvey, and defines a holomorphic curve in
By, tends not to the regular eleménibut to a subregular eleme 1,4+ A ,) bV 1, +4,)
ase — 0. So we moveé, in the fiberF~1(y,) by twisting it by the action Adj— . (). This
process defines a desired holomorphic curve o.(b) in B;, which is a lift of holomorphic
curvee — vy, in Y, and satisfies (5.1) (see Fig. 1).

Theorem 5.2 says that the same limit pracesrks well not only for a regular element
b € B, butalso for any elements of Lie algelfyaobtained as a centralizer of regular element
b e By.

5.2. Conflucence of GHG systems. Lt : h;e(b) — b, be the dual isomorphism
of ¥ : by = b, ). Then we have the following theorem, which is the first main assertion
of this paper.

THEOREM 5.3 (Confluence of GHG systems)Suppose 1 € Y, is adjacent to A €
Y,. Given a GHG system Z(«; by) for b € B, and a € b with (a, I,) = —r, consider the
GHG system Z(x(¢); by), where
a(e) = (Ad gy gr—p(6))* o (¥ H(@) € b} .
Then the change of variables
= wgngaﬂ(@

transforms the system Z(«(¢); by) in z t0 Z((¥,) "1(); ho,r)) in w, namely,
(R(gygs . nen-1x T(@(®); 53) = (W) (@) bo, 1)
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and

lim Z((&7) ™ @); by e)) = Z(@ by)
in the sense that a set of generators of the ideal Z(«; h) are obtained as limits of a set of
generators of Z((¥,) ~1(a); by, (e)) @Se — O.

REMARK 5.1. Inthecasewhete=2,n=41=(1,1,1,1) andu = (2,1, 1), the
theorem withg, = 14 reduces to the confluence process from Gauss to Kummmer explained
in the introduction. Indeed, the systefig; b,) with 8 € b3, (8, I,) = —2, the change of
variables and parametets= wgy— . (¢), B = a(e), the systemZ((LI/s*)—l(a); Bo. 1)), and
the systent («; ) reduce to (1.2), (1.3), (1.4), and (1.5), respectively (see also Section 8).

In order to prove the first part of Theorem 5.3, we first show the following lemma.

LEMMA 5.1. Letb € B; anda € b with (a, I,) = —r. Then, for any g € GL(n, C),
the change of variables z = wyg transforms the system Z(«; bp) in z to the system
Z((Ad g™1)*(@); had gyp) in w, namely,

(Ry-1)+ Z(: bp) = Z((Ad g~ H* (@) hadgyp) -

PrROOF oFLEMMA 5.1. Recalling thad, andd,, are the matrices whosg j) entry is
d/0z;; andd/dw;;, respectively, we have

taz — gfl taw .
Therefore the mappin®,-1 takes the generatosy (X € hy), My (Y € gl(r,C)) and
Oy, j;» of the idealZ (b ; o) to
(Ry-1)«Lx = Tr(wgXg~"dy) — (o, X)
= Tr(w((Ad 9)X)'9,,) — ((Ad g™ H)*e, (Ad g)X) ,
(Ry-1)«My = Tr(Ywgg '8, +¥) = Tr(Yw'dy, + ¥) ,
and

(5.3)  (Ry-1):Divjy =Y (gY@ ™D = (07D (g™ ji) ik vk

kK’
Hence it is sufficient to show that the elemeks-1)..L;;v j;» (0 < i, i"<r,0<j,j <n)
generate the same ideal of the Weyl algebr&aas

- [
Ow,iiv,jjr = Ow,ijdw,i'j’ — Ow,ij/Ow,irj,» 0=i,i' <r,0<j,j <n.

Take arbitrary indices, a’(a # a’). Multiplying both sides on (5.3) by,; g,/ j» and summing
them up with respect tg, j/, we have

Z gajga/j’(Rg*l)*Dii/,jj/ = Z(aakaa/k’ — Sak'Sa'k) Ow, ik O, ik

JJ’ kK

= aw,iaaw,i’a’ - aw,ia’aw,i’a = Dw,ii’,aa’- g
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PrOOF OFTHEOREM 5.3. Since the first half of the theorem is obtained by Lemma
5.1, we have only to show the second half.

As generators of the idedl(«; h), we takeLy (X € bhp), My (Y € gl(r,C)) and
Oiir,jjy 0<i,i" <r,0<j,j < n). Since the mappin@; : h, — b, ) is a Lie algebra
isomorphism, we can choose, as generators of theﬂe@z[j)—l(a); b, (b)), the elements

Lx(e) = Tre¥(X)'d;) — (¥ M), (X)), X € by,
My, Y € gl(r,C) andd;;r ji», 0 <i,i’ <r,0< j, j' < n. Therefore itis sufficient to show
that
lim Lx(e) = Lx, X €byp,
e—0

and this follows from lim_,o ¥, (X) = X (Theorem 5.2) and the trivial equation

(W @), W (X)) = (@, X) . O

6. Confluence of integral representations.

6.1. Convergence of integrands. In this section, we show that the process of conflu-
ence of GHG systems given in Section 5 can be lifted to the convergence of integrands of
integral representations.

Let A, u € Y, such thatu is adjacent to.. Forb € B,, we define an isomorphism
Ve : Hy — H,, () SO that the following diagram commutes

- Ve -
Hy, — Hy, )

g ) J1og

by — Do) -
namely,
Ve(h) = (log) *(@:(logh)), I € Ho, ) -
We first note

THEOREM 6.1 (Convergence of Lie groups)Suppose A — u. Then, for any h €
Hj,, we have

lim vy (h) = h.
e—0
PROOF. TakeX e b, such thatX = logh. Then, by Theorem 5.2, we have
lim e () = lim (log) ™ (¥ (X)) = log™(X) = 4. =
e— e—
Concerning a characteg, ) of H,,(»), We notice the following trivial property.

THEOREM 6.2. Foranyh € H, anda € b}, it holdsthat

Xoo ) (W) 7H(@); Ye () = xp(as h), 0 < le] < 1.
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PROOF LetX =logh € bp. Then we have
o0 h) = expller, X)), Xo, o) (FF) 7H@): e () = exp(((¥) " Ha), Pe (X)) .
Hence the theorem is derived fro(mlfs*)—l(a), . (X)) = (a, X). O

Now we give the following theorem, which is the latter part of our main assertion of this
paper.

THEOREM 6.3 (Convergence of integrands)Suppose that A — u, b € B, anda €
b;. Then we have

(6.1) M o by (W) 7H@): 15 (16 (1)) = (@t )
for any h € Hp, and hence we have
1M o () 711 154, (12)) = (e 1,7 (12))
REMARK 6.1. We remark thatin Theorem 6.3
Xow (o) (W) H@)s 1) (th () # Xp (s )

for generah € Hj. This fact does not contradict Theorem 6.2, becaye%ﬁ(zb(h)) = Y (h),
although
(6.2) Ly (b (B) = Y (W) (I, + O(e)) .
We omit the proof of (6.2), since it can be verified by the same argument as in the next
subsection.

6.2. Proof of Theorem 6.3. We first show a lemma which will be used in proving
Theorem 6.3.

LEMMA 6.1. Let x = (xg,x1,...) and let y(x,1) = (yo(x, 1), y1(x,1),...) be a
sequence of formal power series of ¢ defined by

ik .
.Vi(xst):Z< L >Xi+kfk, i >0.

k>0
Then we have
i+k k .
6:(o(x, ), y1(6, 1), .y =Y (7 )oialao, 31,0k i 20,
k=0

where 6; are functions defined by (2.6).
PROOF. Denote byf (x, r) the formal power serie} ;.o x¢tk. Then
Yi(x, 1) = (1/i(d/d1)' f (x,1) .
Therefore, we have
OG0, ) =Y (A/iNd/d) fx,0s" =YD fe, ) = flx i +s).

i>0
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By expanding both sides of lofy(y(x, 1), s) = log f (x, ¢ + s) into formal power series of,
and by comparing the coefficients gf we obtain the desired result. m]

PROOF OFTHEOREMG6.3. Letu; =Aj; +1j,for0<j < £(n), 0< j2 < j1 <L€(X).
Sinceo, (b) € (Ad gp 91— (€))hy, we have
Ko o) (W) 7M@) 1 (5 ()
= X0 (Ad gogr— ()" () (@) (Ad g gas (€)1, 5y 6 (1)) -

We can verify that

((Ad gb g (€)* o (T H(e) = (f:"H*(Ad gp)* (@) ,

(Ad g5 95— () 11 ) (16 (R)) = ((fe) © (Ad gp) " H(h)
where

fe = L;l oRg ()0 -
Notice that by the same lettgf, we express an isomorphisya : h,, — b, and a mapping
fe : H, — H;. We have also
X (s 1) = 2, (Ad go)*(@); (Ad g)"*h) ,

sinceb € (Ad gy)b,.. Therefore (6.1) is equivalent to

(6.3) lim x5 (D7 @) fe() = xa e h)

for anya € by, andh € H,. Set) := (Aj;, 1)) € Yoy 1= () €Yy 0 i=alig;) and
denote by:’ € J(u;) the j-th component ofi € H,. We also seff, := L)T,l 0 Ryii)(e) © -
Then we can verify

Xx((fg_l)*(a); Je(M)/ x.(e; h) = xw((fg'fl)*(a’); Je))  xw @5 1) .
Therefore we have only to prove (6.3) in the case whete (p, ¢) andu = (p + ¢) with

p+q=n.
Hereafter we suppose= (p,q),u = (p +¢q) = (n) and f, = L;1 o Ry, () 0ty FOr

h=2 o<i<ptq h"A;M' put
fu(h) = < > hg(s)A;,) ® < > h;f(g)A;>.
O<i<p O<i<gq
We notice that;(e) = h;, 0 <i < p and

|+ k
(6.4) h(e) = (’JT )h,-+kgk, 0<i<gq.
l
k=0
Fora € by, set

o :=(a,A;+q), O<i<p+gq,
aj(e) :=((f7H*@). AL ® 0y), 0<i<p,

af (&) = =((f7H (@), 0p ® A, O0<i<q,
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whereO, and O, are zero matrices of sizeandp, respectively. We see that

(6.5) (ag(e), ..., @, (e), ap(e), ..., @ (€) 'Grspule) = (@0, ..., Upiq) -
Therefore we have
log . (£ H*(@); fe() = Y aj(©)bi(ho, ha, ...)

O<i<p
+ Y o @0 (hg(e), hi(e)....) .
O<i<gq
From (6.4) and Lemma 6.1, it follows that
|+ k
(67) el(hg(g)vhé{(g)?"‘) = Z(l —i]; >91+k(h07 hls"')gks OS i <q‘
k>0

Substituting (6.7) into (6.6), we obtain

logy, = ) (aﬁ(s)+ > <;>a£(8)e"")ei(ho,hl,...)

O<i<p O<k<gq

+ 2 (Z (,i)aé’(e)e"k)ei(ho,hl,...>+o<g),

p<i<p+q ~0<k<q

(6.6)

Here we notice that the relation (6.5) means

al(e) + Z (;)a,g(e)ei_kzai, 0<i<p,

O<k<gq

i ,
Z (k)a,’!(s)e’k =q;, p<i<p-tg.
O<k<gq

Therefore we get
log Xx((fg_l)*(a); Je(h)) = Z ;i (ho, h1,...) + O(e) =log xu(a; h) + O(e) .
O<i<p+q
Thus we have completed the proof of Theorem 6.3. a

7. Proof of Lemma4.1. Denote byAi>the p x g matrix whose(i, j) entry(0 < i <
p,0<j<gq)is (;) and byAz, theg x ¢ matrix whose(i, j) entry(0 < i, j < q) is (”;”).
Then we have

(7.1) G12=Dp(e)A12D4(e ™), Goz=e"Dy(e)A22Dy(e™Y).

Set

(7.2 Yu= ) yi(S)Ai,<= > xz'Afp), Y=Y yiEag "
O<i<p O<i<p p<i<p+q

Then

Y11 (-YuGi2+ G12Y22)G221)

(Ad g(e)Y () = ( 0 GoyoYoGol
22
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We first obtain lim_o GzzYzngzl. From (4.1), (4.2) and (4.3), we have

Yo=Y w@a "= Y Y <i fp>Xk8k_i+pAf,p-

p<i<p+q p<i<p+q 0<k<p+q

Then, frome =7 A7 = D, () AL " D, (7 1), it follows that

(7.3) Y22 = Dy (g)[ > e, + Aq)k:| Dy(e™h.
O<k<p+q

By (7.1) and (7.3), we have

(7.4) G22Y22Go) = Z xee* Dy (e)Ana(ly + ADFASI Dy (™) .
O<k<m
Denote byA theg x g matrix whose(i, j) entry(0 < i, j < q)is (;) Then we notice
thatA is a lower triangular matrix with the diagonal entries 1 and its inversgis the matrix
whose(i, j) entry is (—1)*/ (;) (cf. [5], pp. 465-466). Notice also that, for any integer
m > 0, we have the identity

(7.5) ALy + A" = ((’ + m)) ,
J 0<i,j<gq

which can be seen by virtue ¢f) + (,”;) = ("t%). In particular, we have
(7.6) Ao =A(ly; + Aq)p .

By (7.6), we havedpo(1, + Ag)F A5y = A(I; + A,)* A=, Noticing that bothA andA~* are
lower triangular matrices with diagonal entries arevke see thatoo(/, + A,,)"AZ‘Zl is the
matrix whose entries of the-th upper diagonalm > k) are all zeros and those of theth
diagonal are 1t follows that

G22Y22G 5 = Z xi[Af + 0()] — Z xi Al
O<k<p+q O<k<q

ase — 0.
We next compute lig,o(—Y11G12 + G12Y22)G521. By (7.1), (7.2) and (7.3) together
with the reIationA’;,Dp(e) = ¢kD, () AK, we have

(7.7) (—Y11G12 + G12Y22) Gy

= Y xePDy(e)[— AN A+ Ara(ly + A)MAZ Dy
O<k<p+q



CONFLUENCES OF GENERAL HYPERGEOMETRIC SYSTEMS 19

Let yfj andzfj, (0<i<p, 0= j<q)bethe, ) entry of Ak A1 and A12(1; + Ap)F,

respectively. Then
. (’Jfk) ifi<p—k—1,
;= J

0 ifi>p—k—1,
k i+k)
Zii = . s
! < j
which yields
0 fi<p—k-—1,
(78 Yij Y (l—iik) ifi>p—k—1.
J
Then, by (7.6) and (7.8), we have, for< p,
0 0
0 0
(7.9) [—AK A2+ Ara(l, + Ap*1AZ, = B . () |t A)PAE
i1 -1
(") o (5
0 0
0o 1
=| (o0 0 -
- (0) (q—l) AT
k-1 k-1
(o) - (D)

and, fork > p,
[— A% A1+ Ara(ly + A 1ASy = Ara(ly + AF Uy + A PA™!

0 0

(7.10) @ - ()
= : Do Uy AYFPATL
-1 -1
("o - (2D
Now, letwf; be the(, j) entry of [— A% A12 + A1a(1, + A)M1ALy. Then, from (7.9)

and (7.10) together with the identityA—1 = 1, it follows that

) _{1 it (j+p) —i=k,

7.11 ko
(7.11) YiTlo i (GGp)—i>k.
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Denote bys* the p x ¢ matrix whose(i, ) entrysfj (0<i<p, 0<j < q) satisfies

oL G —i=k,
Y 0 otherwise.
Then, by (7.7) and (7.11), we have
(—Y11G12+ G12¥22) Gy = Y xulS +0@1— Y xSt
O<k<p+q O<k<p+q

ase — 0. Thus we have completed the proof of Lemma 4.1.

8. Examples. We explain the confluences of the Gauss hypergeometric differential
equation described in the diagram (1.1) in Introduction and those of Appell’s hypergeometric
system(F1) of two independent variables in the framework of GHG systems.

First we notice that the GHG functiomgz) for the systen¥ («; b;) satisfy

{u(gz) =detg Hu(z), g¢eGL(r;0),
u(zh) = u@xp(a; h), he Hy

if the branch ofu(z) is appropriately chosen.
We recall ([18]) that the Gauss hypergeoriteéquation and the confluent family in the
diagram (1.1) in the Introduction are

(8.1)

(Gauss) x@Q=—x)u" +{c—(@+b+Dx}u' —abu =0,
(Kummer) xu”" + (¢ —x)u' —au =0,

(Bessel) X2 +xu' + @2 —vHu =0,
Hermite-Weber) u” — 2xu' +2vu =0,

(

Airy) u' —xu=0.

(Airy

These equations will be denoted by (G), (K), (B), (H-W) and (A), respectively. The solutions
of these differential equations are expressed by the integrals

(G) u(x) = /C 1—x)"b@—pneee1g;
(K) ux) = /C A — e gy,
(B) u(x) =/ WA= 0 =v=1gy
C
(H-W) u(x) = /C 2=t =1ygy
(A) u(x) = / 113y
C

when the paths of integratiafi are appropriately chosen.
Looking at these integral representations, we see that the above equations (G), (K), (B),
(H-W) and (A) correspond to the GHG systems associated with the digupth the Young



CONFLUENCES OF GENERAL HYPERGEOMETRIC SYSTEMS 21

diagrams of weight 42 = (1, 1,1, 1), (2,1, 1), (2, 2), (3,1) and(4), respectively, defined
on the matrix spaces, given by

1 1 1 0
X111y = (O e 1 1) x #0, 1} ,
1 0 1 O
X1y = (O . -1 1) X # O} ,

1 00

o= |(3 0 9 3)|re].
1 0 O

X@E1y = 0 1 \/ix 1 ,
1 00 O

X = (o 10 —x>}

with the parameters;, € b} (expressed using the basistpfas in (2.7)):
a111y=0G—-c,—b,a—1lc—a-1),
a1y =(—c,l,a—1,c—a-1),
aey=wv-11-—v-1-1),
agny=w0w-101-v-1),
ag =(-2,0,0,-1).

Sometimes it is preferable to consider the GHG systems on

, 10 x2/4
a5 8 7))

1000
¥au={(o ¥ ¢ D)}

in place of those 01X (2 2) and X3 1), respectively. Then the differential equations (B) and
(H-W) change their form to

= o roOo

(B) [0 + V)2 +x2—v3u =0, 9, =xd/dx,
(H-w’) u" —xu +vu =0,

respectively, and the integral representations of the solutions are
(B)] u(x) = / et_xz/(4t)t_”_ldt,

C
(H-W") u(x) = / ext*tz/ztfvfldt,

C

respectively. The equation (B’) is related to)(id the following way. In the integral repre-
sentation for (B), we make a change of integration variable s = xt/2. Then we see
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that

v
u(x) = / W/ nDp—v=1gy <%> / eS*xz/(“")s*”*lds
C /

and the change of unknown — v defined byu = (x/2)"v transforms the equation (B)
to (B’). The equation (H-W’) is obtained from (H-W) by the simple change of independent
variablex — x’ = +/2x.

8.1. Gauss— Kummer. In the present and following subsections, we denote by
(resp.£) the independent variable of the source equation (resp. target equation) in the process
of confluence. Namely, in the present casés the variable of (G) and is the variable of
(K). We denote byt anda the matrix variable and parameters for the source GHG system
corresponding to the source equation, andugnda those of the target GHG system. In the
present case,

)Z=<é _];C _11 ](_)>€X(1,1,1,1), a=bB—-c,—b,a—1,c—a-—-1)

and

w:((])' ? _11 f)eX(z,l,l), a=(—cla—1c—a-1).

Then the recipe of the confluence given in Theorem 5.3 is to consider the GHG system of type
(1,1, 1, 1) with the matrix variable;(¢) and the parametes¢) defined by

1
€

1
o=wie= (g 7 5 ) ww=[""

1

ae) =a'gle) t=(—c—eteta—1c—a-1).

Noting thatz(e) is obtained fromk by substituting—¢¢ in x, we have the change of variable
and parameters (1.3), which transform the equation (G) to (1.4) and gives the Kummer’s
equation (K) in the limit — 0.

8.2. Kummer— Bessel. We show the confluence from (K) to (B’) instead of {K)
(B). Let

X =

. (1 0 0 1
0 x 1 -1

)Gx(z,l,l), a=(-c,l,a—-1,c—a-1)

and

2
w=(é 2 tl) ($/§)>€X22,2)’ a=@w-11-v-1-1
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be the data for the GHG systems corresponding to (K) and (B’), respectively. Then the recipe
of the confluence is to consider the GHG system of t§hd, 1) with

1
2
z(8)=wg(8)=<é 2 2 (5/21)8), g(e) = 01 11

&
ale) =a'gle) = (v —1,1,—v—1+¢1 —8_1)
and relate it to the GHG system for (K). Noting

(—(E/2)%)7t

2 2 \—
Z(g):(—@/zn 1) e) (— (/%) .
-1

with X(¢) = (é S f _11> andx = —(£/2)2¢, we see that the GHG functiods(@; z(¢))

and® (a; X(¢)) are related a® (@; z(g)) = —x“~1®(@; % (¢)) by virtue of the formula (8.1).
Therefore we make a change of unknowns> v by u = x~“*1y to (K) to get
(8.2) [y — )Py —c+ 1) —ax]v=0

which corresponds t@ (a(e); z(¢)) after the changes of variable= —(£/2)%¢ and of pa-
rametersy = @(¢). Thus if we make a change of variable and parametets— (& /2)% and

a = a(e) for (8.2) and take a limit — 0, then we get the equation (B’). Summarizing the
discussion above, we have the following.

ProPOSITION 8.1. For the equation (K), we make a change of variables and param-

eters
2 2 (v

Then thelimit ¢ — O givesthe confluence (K) — (B').

8.3. Kummer— Hermite-Weber. To realize this limit process, it is needed to recover
a parameter in (K), which became invisibfethe course of reduction from GHG system to
Kummer's differential equation. In order to recover it, we make a change of independent
variablex — x’ by x = a1x’ to (K). Writing x” asx again, we get the equation

(8.3) u” + (¢ —o1x)u’ —aoqu = 0.
Since the solutions of (8.3) are given by the integral

U = /ealxt(l _ t)cfafltafldt ,
it is seen that the equation (8.3) corresponds to the GHG system of2ypel) with

(8.4) i:(é )? _ll f), a=(—c,a,c—a—1,a—-1).
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Note that the Hermite-Weber equation (H-W’) corresponds to the GHG system of3ype
with

(8.5) w:((])' 2 ; ](_)), a=0w-101—-v-1.

Then the recipe of the confluence described in Theorem 5.3 guides us to consider the GHG
system of typa2, 1, 1) with

1 1
1 0 1 0 1 ¢
(86) Z(E) = wg(g) = (O 1 e+ 824‘;: 1) ’ 9(8) = 82 ,
1
ae)=a'gle) t=@w—1—e2 -1 2 —v—1).
Noting
1
1 - 1
Z(E) - ( —(8 +82§)> x(g) 1
—(e + %)™
with
(8.7) = 2 4 D) am-ereot

we see that the GHG functionB(@; z(¢)) and @ (&; x(¢)) of type (2,1, 1) are related as
@ (a; z(e)) = x*®(@; X(¢)) by virtue of the formula (8.1). Hence we make a change of
unknownu +— v defined by = x~%v to the equation (8.3) and get

(8.8) [ —a+c—1—a1x)(® —a) —aarx]v=0.

We can check that, if we make a change of variable- ¢ defined by (8.7) and a change of
paramters

(8.9) a=-v, ap=—-¢1, c=eg2—-v+1

induced from (8.6), then we get the equation (H-W’) in the limit> 0. We summarize the
above process as follows.

PROPOSITION 8.2. The change of variables
x=¢e Ne+e%)t, u=(—e—e%)"v

and the change of paramters given by (8.9) for the the Kummer’s equation (K) induces the
confluence to the Hermite-Weber equation (H-W') ase — O.

8.4. Bessel> Airy. To apply the framework of confluence for GHG system to this
case, we must recover a parameter in the equation (B’) which disappeared in the course of re-
duction of GHG system of type (2,2) to the equation (B’). Explicitly, we introduce a parameter
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a1 in (B’) so that we can treat the integrals
(8.10) / eevt e/ vl

instead of those for (B’). To derive the differential equation for (8.10) from (B’), we make a
change of variable — x’ = x/a1. Writing againx’ asx, we get
(8.11) [(Fy + v)2 + a%xz —v2lu =0.

Viewing the integral representation (8.10) for (B"), we see that (B") corresponds to the GHG
system with

. (1 0 0 x%/4 s
x—<0 1 1 0), a=w—-—1La1,—-v—1 —a1).

Let w anda be the data for the GHG system corresponding to (A). Then the recipe of the
confluence is to consider the GHG system of type?) with

1 1
z(e) = wyg(e) = (é 2 . —1s3g 1_ 282$> . g(e) = ! 882 218 ,
g3 3¢?
ale) =alge) P =(—2-2e7%672,2:73, 7).
To relate this GHG system to the equation (B”), we decompg@seas
1 X(e) -1
2(e) = <1 Xib‘)) x(£) ' X&) X'(e¢) ;. X@)= (é 2 (1) X/(()g)) ’
X (g)
where
X@ =%, X =20 o é:figz :

Then we see that the GHG functio@%a; z(g)) and® (a; x(¢)) are related as
D (@: i(e)) = X () "L XOX N (g; 7(e))

by virtue of the formula (8.1). So if we make a change of variable, unkown and parameters

2

% = X'(e) = —(1— 3e%) (e — £36) 72,

u = X(8)26*365*2(X(e)7x’(e))v’ p=—1-2:3 g =g2
to (B”), then we get the Airy equation (A) by letting— O.

8.5. Hermite-Weber~ Airy. To derive (A) from (H-W’) by confluence, we must
recover parameters in (H-W’) which disappeared in the course of reduction from the GHG
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system of typg3, 1) to (H-W’). To this end we recall thahe solutions of (H-W’) has the
integral representation

(8.12) u(x) = / X112 =1y,

which is the GHG function of typ€3, 1) corresponding to

(8.13) X = ((])' 8 )? ](_)), a = (ag, 1,2, 23) =(v—1,01,—v—1).

We recover the parametars, a2 so that we can treat
v(x) = /ealtJraz(xtftz/Z)tfvfldt
instead of (8.12). To derive the equation igr) from (H-W’), we make a change of inde-
pendent variable — x':
(8.14) X = alagl/z + ot%/zx’
to (H-W) and write again’ asx, we get
(8.15) u' — (a1 + aox)u’ + vaou = 0.
On the other hand, the Airy equation (A) corresponds to the GHG system of4ypséth

1 00 O
w= <0 1 0 —E) , a=(-2,0,0-1).
Then the recipe of the confluence in Theorem 5.3 tells us to consider the GHG system of type
(3, 1) with
1 1
1 00 1 1 e
Z(8):“’9(8):<0 10 8—835)’ 9(&) = 1 2|
&3
ale) =algle) P = (24636271 —79).
To relate the GHG system to the equation (8.15), we decomgiesas
2

1 x x
Z(s):(l i)i(s)h_l, h = 1 ; . x=(e—g3%)1,

X

where (¢) is the matrix obtained froni in (8.13) by the substitution = (¢ — £3¢)~1. By
virtue of the formula (8.1), the GHG functions of tyg& 1) for z(¢) andx(¢) are related as
D@ 2(6)) = x30@ hHP@: F(e) = e 2 /2B (G; K ().

Thus we get the change of unknown— v: u = e1¥+ax?/2 a3, together withx = (¢ —
e38)~1 anda = a(e) to get the differential equation for the GHG functidn(e); z(¢)).
To summarize, we have the following.
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PrROPOSITION 8.3. The confluence (H') — (A) is carried out by the following steps:
(1) thechange of independent variable x — x’ defined by (8.14) and that of unknown
u — v defined by

alx/+a2x’2/2x/ol3

u=-=e v,

(2) the second change of independent variable and that of parameters:

¥ =—e%)t, m=e¢?, ap=e1, v=-14+¢3.

(3) totakealimite — 0in the equation obtained by the steps (1) and (2).

8.6. Appell's F; and its confluent family. Appell's hypergeometric functiéh and
its classically known confluent family ([2]) are defined by the power series:

o0
b), (b’
Fi(a,b,b' c;x,y)= ) @Dnsn®n @ i 0
m.n=0 (C)m+nm!n!
& (@mtn (D)
P1(@,5,¢: %, )= Z A eyt = fim Fi(a, b, —1/e, ¢; X, —€y) ,
m.n=0 (C)m+nm!1’l! 60
(8.16) "=
I (b)m(b,)n mn . o
P20, b, i %, y)= Z ——————x"y"=lim Fi1(=1/e,b, ', c; —ex, —¢y),
m.n—0 (©)mynm!n! 60
=
P3(b, c;x,y)= Z ()7’"'”6’"})’1: Iim0‘152(b, —1/e,c; x, —€y),
m.n=0 C)m+ninin: PN

where(a),, = I'(a + m)/ I (a) is the Pochhammer’'s symbol. The functiafis @1, &2 and
@3 satisfy the systems of partial differential equations:

X(L—=xX)uyy + y(d —xX)uxy +{c — (@ + b+ Dx}uy —byuy, —abu =0,

P
(F1) YA = uyy +x(L = Yuxy +{c— (@a+b + Dyluy — b'xuy —ab'u =0,
(@) X(L—=X)uyy +y(Ad —xX)uxy +{c — (@ + b+ Dx}uy —byu, —abu =0,
1
Yy + Xutyy + (¢ — Y)uy — xuy —au =0,
XUyxx + YUxy + (C — .X)I/lx — bu = 0’
(2) )
Yyy + Xyy + (¢ — Y)uy —b'u =0,
XUyx + yuxy =+ (C — X)Mx — bu = 0,
(P3)
YUyy + Xty +cuy —u =0,

respectively, where the suffixor y in u, or u, denotes the derivation with respectrtar

y. Itis known that the limit processes in (8.16) induce the confluence of the systms>

(@1), (F1) — (®2) and(d2) — (P3). We shall explain that these confluence processes can
be treated in a unified way by Theorem 5.3. To relate the systEms(®1), ($2) and(P3) to

the GHG systems with the Young diagrams of weighiv® recall the integral representations
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for the solutions, in which we omit the domains of integration since we don’t need them:
Fi1=C1 /(1 —y) Pt — el — xp)yhar
=Cy /(1 — x5 — yt)f“sbfltb/fl(l —5 — t)“*b*b/fldsdt,
@1 =Cs / QYA — A = xn) P,
@y = Cy / et ey 4 ) (x +1)"Pdr
=Cs / RN Lol & RS Gl el Y 1
@3 = Cg / e (x + 1) "Par
where C;, are some constants depending on the parametérsb’ and c. From these 1-

dimensional integral representations, we see tlfa}, (®1), (®2) and (¥3) are the GHG
systems of typél,1,1,1,1),(2,1,1,1),(2,1,1,1) and(2, 2, 1) on the space of matrices:

1 1 0 1 1
Xa1111) = <0 Sy o1 -1 _x> xyx =Dy —-Dx—y) # 0} .

1 0 0 1 1

X111 = <0 y 1 -1 _x) xy(x = 1) # 0} .

(8.17) Lo o
y X

XEZ,l,l,l) = <0 1 1 1 1) ‘ xy(x —y) # 0} )

1 0O X
X@21 = <0 11 )6 1) Xy # 0} ,

respectively, with parametedss :
o111y =0bG+b —c,—b',a—1,c—a—1,-b),
11y =0b-c,l,a-1c—a—-1-b),
Qo111 =(—=2,=Lb+b —c,=b',-b),
a2y =(c—-2,-1,b—c,—1,-b).

(8.18)

Corresponding to 2-dimensional integral representationg’faand @2, we can regard
(F1) and(®>) as the GHG systems on the matrix spaces

1 1 0 0 1
Ya111y=1(0 —x 1 0 -1]|xyx—D(y—-Dx—y) #0¢,
0 —y 0 1 -1
1 0 0 0 1
Yo111 = 0O x 1 0 -1 xy(x—y)#0
0y 01 -1
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with the parameters:

Q1111 =(@—c,—a,b—1, V—-—1c—b—-b -1,
ae111 =(—c,1,b—-1, V—1c—b—-b -1,

respectively.

8.7. Confluenc€F;) — (®1). Inthe present and following subsections, we denote
by x, y the independent variables for the system of source (nat#glyin the present case)
and byé, n the independent variables for the system of target (narf@ly in the present
case) in the process of confluence. We also denote(bssp.w) anda (resp.«) the matrix
variable and parameters for the GHG system corresponding to the source (resp. target) system.
In the cas€ F1) — (P1),

(8.19) z= 1101 1 , a=0b+b —c,—b,a—1,c—a—1,-b)
0O —y 1 -1 —x

and

(8.20) w=<1 ©co 1 1

0On 1 -1 _s)a a=0b-c,l,a—1,c—a—1,-b).

Then the recipe of the confluence given in Theorem 5.3 is to consider the GHG system of type
(1,1,1,1, 1) with

11 0 1 1
z(e) = wy(e) = <0 en 1 -1 —é) .ogle) = 1 ,
ae)=a'ge) t=b—-c—et et a-1lc—a—1-b).
Comparing these with (8.19), we getthhange of variables and parameters:
x=§&, y=-—en, b =-gt

for the systeni{F1), which induces the confluen¢&) — (®1) in the limite — 0.
8.8. ConfluencéFi) — (®2). Inthis case, it is convenient to use the GHG systems
on the matrix spacefz,1,1,1,1) andY 2 1,1,1). Let

1 1 00 1

821) z=|0 —x 1 0 1|, @a=@-c,—a,b—16 -1 c—b—b —1)
0 -y 0 1 -1

and
1 0 0 0 1

(8.22) w=|0 & 1 0 -1|, a=(-c,1,b-10-1c—b-b -1
0O0n 01 -1
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be the matrices and parameters for the syst@fasand (®2), respectively. Then we apply
the recipe of Theorem 5.3: put

11
1 0 00 1 3
z2e)=wge) =10 & 1 0 =-1], g(e)= 1
0 ey 01 -1 1

1
ae) =a'gle) t=(—c—e e L b—1b —-1c—b-—b—1)

and consider the GHG system of ty(le 1, 1, 1, 1) with z(¢) anda(¢). Comparingz(¢) and
a(e) with z anda in (8.21), we find the desired change of variables and parameters:
x=—cf, y=—en, a=—& t

for the systeni{F1), which induces the confluen¢é&y) — (&2) in the limite — 0.

8.9. Confluencé®d,) — (®3). Letz e XEZ,l,l,l) anda be the matrix and parameters
for (@2) and letw € X221y anda be those fo®s) given in (8.17) and (8.18). Then, as in
the previous case, we consider the GHG system of (2pg, 1, 1) with

1

z<e>=wg<e)=<é > §1>, g(e) = 11|,

ae) =a'gle) t=(c—-2,-1b—c+et -1 —b).
Then puttingz = z(¢) anda@ = «(e), we have the change of variables and parameters
x=§&, y=en, b =¢1,

which induces the confluen¢e,) — (®3) whene — 0.
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