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Abstract. Given a morphism of schemes which is flat, proper, and “fiber-by-fiber semi-
stable”, we study the problem of extending the morphism to a morphism of fine log schemes,
which is log smooth, integral, and vertical. The problem is rephrased in terms of a functor on
the category of fine log schemes over the base, and the main result of the paper is that this
functor is representable by a fine log scheme whose underlying scheme maps naturally to the
base by a monomorphism of finite type. In the course of the proof, we also generalize results
of Kato on the existence of log structures of embedding and semi-stable type.

1. Introduction. In light of the powerful tools of logarithmic geometry developed in
recent years, an important question to ask, when given a singular morghistd — S
of schemes, is whether there exist fine log structure(camd S making f a log smooth
morphism. In addition, if such log structures exist one would like to know to what extent
they are unique. This paper is an attempt to understand the situation for morphisms which
are fiber-by-fiber semi-stable (see below for the precise definition). Our inspiration comes
from the well-understood case of semi-stable curves, and the main result of this paper can be
viewed as a generalization of the stateméat the Deligne-Mumford compactification of the
moduli space of curves of genys> 1 is a moduli stack for certain log curves ([10]). This
work was heavily influenced by the papers of Kato ([9], [10]).

Let f : X — S be aflat and proper morphism of schemes of finite type over an excellent
Dedekind ring, and suppose that for every geometric poiat S the fiberX ; is a semi-stable
variety in the sense of the following definition:

DEFINITION 1.1. Aschemé /k over a separably closed fietds asemi-stablevariety
if for each closed poing € Y there exists an étale neighborha@d, y’) of y, integersr > I,
and an étale morphism

U— k[X1,....X1/(X1---X1),

sendingy’ to the pointX; = --- = X, = 0 (we make the convention thatlif= 0, then
(X1--- X)) = (0)).
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Let FLog denote the category of fine log schemes dyeand define théunctor of integral
and vertical log structures

IVLS : FLog — Set

as follows: for any fine log scheni® over S, IVLS(T) is the set of isomorphism classes of
pairs(Mx;., f7’?), whereMy, is a fine log structure o ; := X xs T andf}’ CpMr —
My, is a morphism of log structures making

(Pry, f2): (X7, Mx,) — T

alog smooth, vertical, and integral mbipm (recall that a morphism is vertical x,. ;7 :=
Cokerprz M7 — My, ) is a sheaf of groups). The main result of this paper is the following
theorem:

THEOREM 1.2. The functor IVLS is representable by a log scheme, and the map on
underlying schemes IVLS — S is a monomor phism of finite type.

The paper is organized as follows.

Section 2 is devoted to showing thatfif: X — S is a proper, log smooth, integral, and
vertical morphism all of whose geometric fibers are semi-stable varieties, then there exists a
canonical cartesian diagram

x L x

1
¢ i

s — S

where % : X* — S$% has a special form and the underlying maps of schemesanfd v
are isomorphisms. This result will be used to show that the functor IVLS is equivalent to the
functor defined by a paifF, Mr), whereF is a functor on the category ¢Fschemes and
M is a“log structure” onF'.

More precisely, letCogs denote the fibered category over the category-sthemes
whose fiber over a§-schemeT is the groupoid of fine log structuresty on 7. It is shown
in ([17], 1.1) thatLogs is an algebraic stack. By definition, a log structure on a fibered
categorysS is a morphism of fibered categori§s— Logs. Viewing functors on the category
of S-schemes as fibered categories, we gaition of a log structure on a functor.

Now, supposéF, M) is a functor with a log structure. Then for any elemeat F (T)
over someS-schemel’, we get a log structure* M on T by viewings as a morphism of
functorsT — F and definingg* M ¢ to be the log structure obtained from the composite
Mpot: T — Logs. This enables us to define a functBP9 on FLog as follows: for any
T = (T, M7), F'°9(T) is the set of pairgr, 1*), wherer € F(T) ands’ : t* Mp — M7 is
a morphism of log structures. To say that IVLS is equivalent to the functor defined by a pair
(F, Mr) means that there exists an isomorphism of functors . %'°9. The importance
of this is that the proof of Theorem 1.2 is reduced to showing that the (ordinary) fuRidsor
representable by a scheme, and that> S is a monomorphism of finite type.
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In Section 3 we generalize results of Kato ([9]) on the existence of log structures of
semi-stable and embedding type (see the section for definitions) to an arbitrary base scheme.
Our generalization of Kato’s work includes cohomological obstructions for the existence of
log structures of semi-stable and embedding type and so might also be of some interest for
schemes over fields. This section can be read independently from the rest of the paper.

In Section 4 we use the results of Sections 2 and 3 to prove a theorem about effectivity
of certain formal log schemes. Thisgorem will be used in Section 5.

Finally, in Section 5 we bring it all together to prove Theorem 1.2. The proof is based on
Artin’s method ([5], 5.4) and the results of ([17], [18]).

1.1. CoNVENTIONS. Throughout this paper we denote schemes by underlined letters
(e.g.,X) and log schemes by unadorned letters (&§.,For a log schem&, we denote the
underlying scheme b¥. The reader is assumed to be familiar with logarithmic geometry
at the level of ([11], [16]) and with the stackeoretic approach introduced in ([17]). Our
conventions about algebraic stacks are thd$gl@]), except we only assume that our stacks
are locally quasi-separated and not necessarily quasi-sepafatgdi$ not quasi-separated).

2. Special elementsof IVLS. Let f : X — S be a smooth, proper, integral, and
vertical morphism of noetherian log schemes, and suppose that for every geometric point
s — S, the underlying scheme d&f; is a semi-stable variety (in the sense of Definition 1.1).
The purpose of this section is to show that under these assumptions the log stuGtuoe
X is induced by base change from a smooth morphism

JARD. G
of a special form whose underlying moipin of schemes is that of the origingl

DEFINITION 2.1. Alog smooth morphisnf : X — S is essentially semi-stable if for
each geometric poirit — X the monoidg f M)z andM  ; are free monoids, and if for
suitable isomorphismef ~*Mg)z ~ N” and My ; ~ N”*S the map

(f TMs)z —> My s
is of the form

| e; if i#£r,
(2.1) “r {er+e;~+1+~~+€r+s ifi=r,

wheree; denotes thé-th standard generator bf'.

LEMMA 2.2. If f: X — S isessentially semi-stable, then étale locally on X and S
thereexist chartsN” — Mg, N"™ — My suchthatthemap N” — N’ given by formula
2.lisachart for f, and such that the map

Os ®zin ZIN™™] — Oy

is smooth.
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PROOF. Observethatif € Sis a point, then the staWS,g is a free monoid and hence
in some étale neighborhood othere exists a chal” — Mg such that the induced map
N" — Mg ; is bijective. Ifx € X is a point lying overs, then by ([15], 2.25) there exists in
some étale neighborhood ofa chart

P

N —

—_ X

M
M
such that the induced map

Oy Qz[N"] Z[P] — Ox

is smooth and such that the m&p— M y ; is bijective. From the bijectivity oP — My ;
we conclude thaP is a free monoid, and that the mald — P has the desired form (after
perhaps applying an automorphismiof). ]

REMARK 2.3. The above lemma shows that the notion of an essentially semi-stable
morphism is a natural generalization of the notion abemal crossing log variety introduced
in ([14], 82).

LEMMA 2.4. Anessentially semi-stablemorphism f : X — Sisintegral and vertical.

PROOF. To see the integrality we have to check that the IN&p— N’ described in
formula 2.1 is integral. For this observe thatif: N — N**1is the diagonal map, then there
exists a natural cocartesian diagram

e—e,
N — N’
Ns+1 €ir>€Citr—s Nr_;’_s

and since the map is integral, so is the map” — N’** ([11], 4.1 (i)). To see that it
is vertical, letQ be the cokernel oN” — N5, By definition of cokernel, to give a map
Q — M to an integral monoid/ is equivalent to giving a map’** — M such that the
compositeN” — N’ — M is zero. AmafN"** — M is equivalent to giving elements

mi,...,Meys €M,

and the condition that the m&y” — M be zero means that

my=mpz=---=me_1=my+-+my;=0.
Thus giving an arrow) — M is equivalent to giving elements, , . . ., m, 4 in M* such that
my + ---+m,+s = 0. This in turn is equivalent to giving elements, ..., m,s_1 € M*.

But the functor on the category of integral monoids
M — {r +s — 1-tuples of elementa € M*}

is represented by’ ™1, and henced ~ z"*+s—1, ]
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Recall that if P is a sharp monoid (this means that = {0}), then an elemenp <
P — {0} isirreducible if for any equalityps + p2 = p in P we havepy = 0 or po = 0. The
basic results about irreducible elements is the following proposition whose proof we omit (see
[16],1.2.1.2):

PrROPOSITION 2.5. If P isafine sharp monoid, then the set Irr (P) of irreducible ele-
mentsin P isa finite set which generates P.

SupposeS = Speck), wherek is a separably closed field, and that: X — S is
essentially semi-stable. Let € X be a singular point. Then by Lemma 2.2 there exists a
chart

Nr+s —> MX — OX

L]

N — Mg — &k
in an étale neighborhood afsuch that
k @z ZIN' ] = klxp, ..o Xl (- - Xpgg — a(er)) = Ox
is smooth. Since is a singular point, it follows that(e,) = 0 and hence the map
MS - Mx,x

is of the formN”" — N’ as in Definition 2.1 for some’ < r. It follows that if Irr(Ms)
denotes the set of irreducible elementshifig, then there is a unique element in(k )
whose image inM x ; is not irreducible. This defines a canonical map

sx : {singular points of{} — Irr(My).
DEFINITION 2.6. An essentially semi-stable morphism of log schepesk — S is
special at a geometric point s if the map
sx; : {singular points oz} — Irr(M ;)
induces a bijection between the set of connected components of the singular I6cuaraf
|YY(MS)§). If fis special at every geometric point> S, then we callf aspecial morphism.

THEOREM 2.7. Let f : X — S beasmooth, proper, integral, and vertical morphism
of noetherian log schemes, and suppose that for every geometric point s — S the underlying
scheme of X; isa semi-stable variety. Then there exist a pair of log structures (/\/lt , Mi) on
S and X, respectively, and a morphism

fExt = (X, MY) — St = (5, MY,
which is special, together with morphisms of log structures
¢ M= Ms, My - My,
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which make the diagram
X — X°F
1l
s — SF

cartesian. Moreover, the datum (M, M§(, ¢, ¥) isunique up to a unique isomorphism.

The proof occupies the remainder of this section.

Let us begin by considering the case wigeis the spectrum of a strictly henselian local
ring O, and Mg admits a charQ — M such thatD) — ﬂg,so is bijective (hereg denotes
the closed point). Denote F the set of connected components of the singular locus of the
closed fiber.

Recall ([16], I.1.1) that ifP is a monoid, then &ongruence relation on P is a subset
E C P @ P which is both a submonoid and a set-theoretic equivalence relation. A subset
S C E generates the congruence relation E if E is the smallest congruence relation #n
containingS. For any equivalence relatioA on P, the surjectionP — P/E induces a
structure of a monoid o®/E if and only if E is a congruence relation. Therefore, there is
a natural bijection between isomorpimlasses of surjective maps of monoils> P’ and
the set of congruence relations #n

LEMMA 2.8. Let P be a fine sharp monoid, Q < P an integral morphism (such a
morphism is automatically injective by [11], paragraph preceding 4.7), and let 7 : P —
P/ Q bethe projection map.

1. Foreachi € P/Q, there exists a unique element p; € P such that

7 i) = {pi +qlq € 0}.

2. If p € Pisanirreducible element notin Q andif i = 7 (p), then p = p; (notation
isinthe part 1).

3. If{pi,, ..., pi,} denotesthe set of irreducible elements of P which arenotin Q (we

index these irreducible elements by their images in P/Q), then the congruence relation on
0O ® N" defined by the surjection

n
Q®N"—> P, (¢.() > q+ Y _njpi
j=1
is generated by equalities

n n
D_omipiy =4+ i,
j=1 j=1
in P, where for each j either m; or n; isequal to 0.

ProOF. 1. SinceP is fine and sharp, there exists a partial ordering’dndefined by
p1 < p2 if there existspz € P such thatp; + p3 = p». By ([16], 1.2.1.5.3) the set ~1(i)
contains a unique finite set of minimal elements with respect to this partial ordering.
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Supposeps, p2 € 7~ 1(i) and supposes is a minimal element. By construction of the
quotient, there existg, g2 € Q such thatp1 + g1 = p2 + ¢g2. Since the map is integral, there
existsgs, g4 € Q andp € P such that

p1=q3+p, p2=qs+p, q1+g3=¢q2+4q4.

By definition of quotientp € 7~1(i) andp < p1. Sincep; was minimal, it follows that
p1= pandthatps = p1 +qa.

2. By definition of p;, there existg € Q such thatp = p; + ¢g. Sincep is irreducible
and has non-zero image i/ Q this means tha = 0.

3. Since Ir(P) generate?, the congruence relation is generated by equalities

q+ Y nipi; =q +Y_mipi
j j

in P. By the integrality ofQ — P, for any such equality there exigte P andgs, g4 € Q
such that

D mipi;=p+qz. Y mip;=p+qs q+93=q+qa.
J J
In addition, writingp = Zb,-j pi; + g5, we see that the congruence relation @ N”
defined by the surjection

OQ®N" > P

is generated by equalities i of the form

Znijpij = Zbijpij +q.
J

J

Moreover, sinceP is cancellative, we can assume that for eadithern;, = 0 orb;; = 0.
O

COROLLARY 2.9. Lett be asingular point of X, and let n € My s ;. Then there
exists a unique element p,, € MX,,- such that
7 = {pa+q1q € Ms)
PROOF. The mapM; ,, — My ; is integral by assumption. O

As above lekg denote the closed point 6f and letX, denote the fiber. By ([15], 2.25),
for every singular closed pointof X, there exists a chart
B

P — My
(2.2) T T
0 5 Mg

in some étale neighborhood o$uch that
(1) P — My is bijective,
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(2) themap
O ®z101 ZIP] — Ox
is smooth.
Let {p;,. ..., pi,} be the set of irreducible elements i which are not inQ (as in

Lemma 2.8 we index these irreducible elements by their imag®@g ). If i € P/Q is any
element ang; is as in 2.8, them; can be written as

pi = ijpl, .
Indeed, writingp; as a sum of irreducible elements, we have
pi=Yy mipi;+q, q€Q,
and by definition ofp; we must haveg = 0. Hence the map

V:O[Yils'-'inn]_>0®Z[Q] Z[P], Y; |—>1®e(p,-/.)

j
is surjective. Let/ be the kernel of/.

PROPOSITION 2.10. (1) Thereexistsan element go € Q such that

n
Z Pi; = 40.
j=1

(2) J isgenerated by the element

n

j=1
(3) Let O &n N bethe pushout of the diagram

N 4 N7

1~ qur

0.
Then the natural map
QanN"— P, (g, ()~ q+ ) nipi
is an isomor phism.

PrROOF. We first reduce to the case whéh= k(sp). The reduction step is trivial for
(1) and (3). Let us show that (2) holds if the proposition is true on the closed fiber. Since

n
Zpi,-=qo, qgo€ Q,

j=1
there is an inclusion of ideals

(IT¥; - o) c /.
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which defines a closed immersion
SPeeOI Yy, ..., Yi,1/J) = SpeeOlYs, ... ¥,/ ([T, — atao)) -

Since both of these schemes are flat ad@esind the reduction is an isomorphism, the closed
immersion is an isomorphism also by ([1], V11.1.9). Therefore (2) holds and hence it suffices
to consider the case wh&h = k for some separably closed fietd

LEMMA 2.11. Theideal J = Ker(y) is generated by elements of the form
ni; mj .
[T —e@]]x,".
i J
wherein P
Z”i/Pi/ = Zmi,pi_, +q, q€Q,
J J

and for each j either n;; or m;, isequal to 0.

PrROOFE. This is a restatement of 2.8.3. Indeed, it suffices to show that the kernel of the
map

Z[Q ®N"] — Z[P]
induced by the surjection

QON"> P, (q.))—>q+ Y njpi
J

is the ideal defined by any set of generators for the congruence relatigh@iN”. This
follows from the universal property of monoid algebras; for any algéhrthere is a natural
bijection
Homaig (Z[P], R) — Hommon(P, R) ,
whereR is viewed as a multiplicative monoid. O
LEMMA 2.12. (1) Thecompletion @X,, isisomorphic to
k[[T]_, L) TS: )/vils L) Yin]]/(Yil e Yin) s

where {71, ..., Ty} areindependent variables.
(2) Let L c P bethe submonoid generated by the set {p;| i € P/Q}. Then L is
isomorphicto N".

PrROOF. LetY’ be the log scheme with underlying scheme Spe&sz| o) Z[P]) and log
structure induced by — Z[ P]. Then there exists a diagram of log schemes

Xy — s,
wheren is log smooth and strict. Sindeis strict, the map

1 1
2x1s = S2xyy
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is surjective, so in some neighborhoodrahere exist elementg, ..., f; in the maximal
ideal ofr such thatifi, ..., df; map to a basis foﬂ}(/y, ® k(t). This defines a map
WX —Y xs Ay
of log schemes which is strict, and for which the map
h/*gg%,@ﬂ/y, ® k(1) > R,y ® k(1)
is an isomorphism. It follows that in some neighborhood tife mapi’ is étale ([15], 2.20).
Thus we can extend the mgpto an étale map
X — Speckl[Ty, ..., T, ] ® k[Yiy, ..., Yi,1/J))

sending to the pointly = --- =T, =Y, =---=Y;, =0.
First, we claim that the resulting map

KI[T1, ..., T, Yigs .., Yi 11 = Ox
induces an isomorphism
KI[T1, ... To, Yigs o Y N/ (T, T, Yy, Y )2 = Ox g /m?.

To see this it suffices to show that a set of defining equationg fme contained in the ideal
(Y; Y;,)%. ButJ is generated by equations arising from non-trivial equalities

Z”i.f pi; =4+ ijpi_,
in P. If Zn,»]. = 1, then the equality is

pifO =dq + Zm]pl]
for somejo. By the irreducibility ofp;;, this implies that the equation comes from an equality

19000

Pi; =4 or pi; = Pij/ .
Sincep;; ¢ Q, we must havey;; = piy and hence the equation is trivial.
Fix an isomorphism '

Ox.s >~ k[[X1..... X111/ (X1--- Xp)

for somel andh (this is possible by assumption), anddetienote the maximal ideal @x,t.
It follows from the above that

[ = dim(m/mz) =n+s.

For eachk > 1, the dimension ofn¥ /m**1 is equal to the number of monomials of degree
k in X1,..., X; which do not contain the string1 - -- X;,. In particular, the dimension of
m”/m"*1 is equal to one less than the number of monomials of defyrael = n + s
variables. This implies that we have at least one equation involving monomials 1 tbé
degreer. Fix one such equatiori(¥) = 0. By Lemma 2.11, we can choose our equation so
that it is either of the form

JX) =YYy =Yy - Yy

m
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or of the form
fX=Yy--Y,.
Let R be the ring

k[[T17 R TS7 Yi17 R Yln]]/(f) I
andlety : R — (75X,, be the natural map.

SuB-LEMMA 2.13. Let v : A — B be a surjective local homomorphism between

complete noetherian local rings. If the induced map
ar'(y) : gy, (A) — gry,, (B)
isan isomorphism, then v is an isomorphism.

PROOF BecauseA and B are complete with respect tay, it suffices to show that
A/m', — B/m’ is an isomorphism for alt. We may therefore assume thatand B are
artinian.

Since the mag is an isomorphism moduhm 4, it is enough to show thak is flat over

A (by Nakayama's lemma). The result thenefdollows from the local criterion for flathess
([1], page 91). O

To prove thaty is an isomorphism, it therefore suffices to show that for every integer

the dimensions ofn, /m’! andm* /m**1 are equal. But we can compute these dimensions

as follows: If we defineV(k, 1) to be the number of monomials of degreén [ variables,
then the dimensions of%, /m%™ andm/ /m*+* are both equal to

Nk, ) =Ntk —h,l)=Nk,n+s)— Nk —h,n+s).

Hencey is an isomorphism.
Next, we claim thatf cannot be of the form
J@) =Yy Yy =Yy Yir .

m

SinceP/Q is a group, for every;, € P there exists an elemept;; such that
7(pi;) +m(p-i;) =0
in P/Q. Writing p-i; = > n4pi,, we conclude that there exist natural numbersuch that

n
pi; + Y napi, €7 H0).

a=1

By Lemma 2.877~1(0) = Q and hence there exists an element Q such that

n
pi; + Y napi, =q.
a=1

Since p;; is not a unit,q is non-zero, and hence there exist natural numbgrsuch that
g [Toza Yija =0.
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SinceOx., is reduced, if ] Yi':_'j = O with them; > 1, then[]; ¥;; = O. It follows that
]—[j Y;; = 0. This is impossible if
JO =Yy Yy =Yy Y
Therefore we have an isomorphism
KITL, o T Y, oo, Y, 11/ (Y -+ Y) = Ox

for somenh.
We claim thath = n. To see this note that

h
Zpi,- =ptgq
j=1

for somep € P and a nonzerq € Q. If p;, is another irreducible element with> %, then
sinceP/Q is a group, there exists an element;, as in 2.8 such thas;, + p—;, maps to zero
in P/Q. Write

n
P—iy = Zbijpij .
j=1

Then at least one of thig, with 1 < j < h must be zero, since otherwise we can write
h h h
P—i, = Zpi_,' + Z(bij - 1)Pij + Zbi,-l’i_/ =Pp + q + Zbi_,l’i_, + Z(bl, - 1)]71,
j=1 j=1 j>h j>h j=1

b;,
contradicting the minimality op_;, . It follows that]_[j Yl.j’ ¢ J. On the other handy;, +
P—i, € 7710 = Q and sincep;, is not a unit,p;, + p—_;, is a non-zero element i.
b;, ) L .
Thereforey;, ]_[j Yl.j /€ J, and hence;, is a zero divisor in the ring
k([T1, ..., 15, Yy, ..., Y, 11/ (Yiy -+ Y3y

This is a contradiction so we must have= n. This completes the proof of the part 1 of the
lemma.
To see the second part, suppose we have an equality

m;pi; = m"Pi,-
2 2.m]

in P. SinceP is cancellative, we can assume that at leastepe= 0 and hence we get
m; m’
[Tv" =]1x #0
in the ring
KGOlIT1, - Ti Vi Y11 ([T ) -

It follows thatm ; = m’j for all j. This completes the proof of Lemma 2.12. |
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From Lemmas 2.8.3 and 2.12 it follows that the congruence relatign @iN” defined
by the map taP is generated by equalities

> nipi;=4q.
j

where all thenij are greater than 0. In addition, from 2.12 we see that we must have an
equality

n
Z Pi; =40
=1

for somegg € Q. This proves (1) of the proposition. Now suppose that we had an equality in

P
/
Z”ijpi,- =4q
J

for someq” € Q and alln;; > 1. Then, after reordering the;, when necessary, we can
assume that;, is the smallest of the;;. This gives

q = Znij Pi; = i qo + Z(nij — iy pi; -
J J
The integrality ofQ — P now implies thatzj (ni; — ni)pi is in Q, which from above is
only possible ifn;; = n;, forall j. This implies (2).
To see (3), note that the map

O®NN'— P

is surjective by the definition of thg;,. To see that it is injective, suppose that (n;))
and(q’, (m;)) map to the same element. Without loss of generality, we may assume that at
least onen; = 0 and at least one;; = 0 (since there existgo € Q such that(go, 0) =

0, (1,...,1)in Q &y N™). Then we get an equality

q+ Z”/’pi./ =q' + ijpi_,
in P, and by the integrality we get that there exigte P andgs, g4 € Q such that
Z”/’Pij =p+gqs, Zm/'pij =p+qs., @a3+q=qs+q.

Since)’ pi; € Q, we may assume that = Zj bi; pi; with at least onéb;, = 0. If g3 is
non-zero, we obtain thdt] Y;;j = 0ink[Y;, ..., ¥;,1/J, which from above is impossible,
since at least one; is zero. Thugz = 0 and hence

ijpi,- = anpij +4qa.

By the same reasoning using the fact that at least:ope= 0, we conclude thajs = 0 and
henceg = ¢’ and(n;) = (m;). This completes the proof of Proposition 2.10. O
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Let L c P be the submonoid of 2.12.2, and defikieC Q to be the submonoid gener-
ated by the elemer}t_ ; p;;. Equivalently,

K=LNQCP.

If ' € X is another singular point lying over sorgec Spec©), then the above dis-
cussion shows that the submondig C MX,;/ generated by the irreducible elements of
ﬂx,,—/ not in the image of/WS,g: is isomorphic toN” for somer, and that the intersection
Ky = Ly N ﬂsyg is a free monoid of rank 1. To check this one may change base to an
algebraic closuré of k() and hence can assume that there exists a ¢hart M such
that 0 — Mg is bijective. If¢" is a closed point, the result now follows from the above
discussion. If’ is not a closed point, then choose a specializatioof ¢’ and note that the
stalk atz” is obtained by the cospecialization map frof([16], 11.2.3).

LEMMA 2.14. Suppose a chart asin 2.2 has been chosen over some étale neighbor-
hood of 7, which we also denote by X. Let L, and K; be the submonoids of P and Q,
respectively, given by the above construction. Then for any other singular point " of X lying
over some { € SpecQ), the submonoids L; C MX,,-/ and K; C Mg,g are equal to the
imagesof L; and K;.

PROOF. By Proposition 2.10, there is an isomorphism
O®k, L =~ P,
and hence an isomorphism
My~ Mg ; @k, (L:/(pi; = 0if p;; mapstoaunitiOy 7)) .
This implies the lemma. o

Let D be a connected component of the singular locus of the closed fiber. For any point
t € D we get from the above construction a free monkijdc ﬂg,so of rank 1. Proposition
2.14 implies that this monoid is independent of the choice @b see this suppose thate D
is a second singular point. Choose étale coy&t$ of D and singular pointg in the image
of U; such that over eachi; there exists a chart as in 2.14 usimgWe can also assume that
t1 = t andt, = ¢’ for somer. SinceD is connected, there exists a sequebige. . ., U, such
that for each there exists a singular poinrt of U; x x U;+1 mapping toD. It follows from
2.14 that the submonoikl;, C M g defined by, is equal to the submonoid defined hyand
xi_1. We conclude thak; = K.

LEMMA 2.15. Thereexistsa unique fine sub-log structure K p C M whoseimagein
Ms,so isequal to K, for somet € D (and hencefor all). Also, there exists a unique fine sub-
log structure Lp ¢ Mx whoseimage in MX),/ (+' any point of X) is equal to the image of
Kp if ¢’ isnot singular or if # does not specialize to a point of D and isequal to L, (notation
asin 2.14)otherwise.

PROOF. Kp andLp are uniquely determined if they exist, since we have specified their
values on stalks, ankl p exists, sinces is the spectrum of a strictly henselian local ring.
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To show thatl p exists, we first claim that the set of singular pointofvhich specialize
to D is a connected component of the singular locusXof To see this, lettS"9 be the
closed subset of singular points &fwith the reduced subscheme structure. THEH9Y is
a proper scheme over SgEY, and hence by ([2], 3.1) there is an equivalence of categories
between the category of finite étale schemes aVE¥ and the category of finite étale schemes
over Xy (the reduction ofxs"9). In a neighborhood of any point of the closed fibkris
isomorphic to

SpecO[X1, ..., Xql/(X1-+- X, — 1))

for somed, r € Z and: € O, and hencexy"™ is equal to the singular locus of the closed
fiber X, with the reduced structure. Now by thecade equivalence, the connected component
D c X5 lifts to a finite étale schem® — X9 Since the reduction of this map is
of degree 1, this is in fact a closed immersi@nd since it is alsétale, the schem® is a
connected component &fS"9 (D is connected by [2], 3.3). Moreover, the pointsidfare
precisely the singular points which specialize to point®of

It follows that if we choose a chart as in 2.2 in some étale neighborhood of arpudint,
then the log structure defined ly (see 2.14) has the properties required.@f. Moreover,
these locally constructed log structures will glue, since they are sub-log structunes of

O

DefineMé to be the amalgemation over @l
Doz Kp,

and similarly definev’ to be
Doy Lp.

Then the natural diagram

Mi&/\/lx

I I

ML M

is co-cartesian. By constructiofi? is smooth, essentially semi-stable, and the pullback to the
closed fiber is special .
LEMMA 2.16. Suppose (M, My, ¢, ¥') isa second collection of data for which
(X, My) = (S, M)
is essentially semi-stable and special at so, and for which the diagram
My L My

.

My —  f*Ms
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is co-cartesian. Then there exists a unique pair of isomorphisms ¢ : M~ M and n :
M, =~ M, such that the diagram

(X, M)
g \
b's d (X, M%)
(S, Mj)
/ \
S ’ (8, M%)

commutes.

PrROOF. If we apply the above construction (&, M'y)/(S, M), then it follows from
chasing through the construction that we recover thedeta, My, ¢', ). HenceM'; and
M’y have canonical decompositions

§=®0sKp. My =o0il).
In addition, the images df’, andK, in M andM; are the sub-log structures obtained by
applying the construction t& /S. From this the existence @£, ) follows. The uniqueness
follows from the fact that any pair of isomorphisris ) as in the lemma must preserve the

decompositions together with the fact that #ip andLp are sub-log structures @¥1s and
M, respectively. O

To complete the proof of Proposition 2.17 in the case whienthe spectrum of a strictly
henselian local rin@, and M admits a charQ — M such thatQ — M  is bijective,
it suffices to show that the morphism
(X%, My) — (8%, M)
constructed above is special at all pointsSond not just akg. For later use, we prove a
slightly stronger statement:

PROPOSITION 2.17. Let f : X — S beasin 2.7 (we no longer assume that S is
the spectrum of a strictly henselian local ring), and suppose in addition that f is essentially
semi-stable. Then the set

V:={s eS| fisspecial at 5}
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is open.

PROOF By ([1], V.4.4) it suffices to show thal is a constructible set and thatife V,
then every generization ofis also inV.

LEMMA 2.18. V isconstructible.

PrROOF. The condition is local orf, so we may assume th&t= SpecA) for some
ring A and thatM is induced from some map

N — A.
Letr, ..., € A be the images of the standard generators. For each integyat for each
choice ofn distinct elementsy, ...,i, € {1,...,r}, let A, ; be thering

At,‘l...t,‘” /(tj)j¢{i1,...,izz} .

Let S, = SpecA,. ;). Then eacls, ; is a constructible subscheme$fand the union of the
Sn.i is all of S.

To prove the lemma it therefore suffices to consider the case df,theThis reduces us
to the case when the log structure $is given by a map

N — A

sending all elements to zero. In addition, by base changing to the irreducible components
with the reduced structure, we may assume thad an integral domain. In this cask¥, is
étale locally isomorphic to

AlX1, ..., X1/ X1+ X

for somel ands. Let X5"9 be the singular locus af with the reduced induced structure.
From the local description of we see that the geometric fibers "9 are all reduced and
thatXS"9s flat overA. It follows that the function

s > number of connected componentsX} "

can be identified with the function
s > hO(X¥M9 x5 Speck(s)). O ysia,  specis))) -

By the semi-continuity theorem ([8], 111.12.8), we conclude that the function
s > number of connected componentsit}"

is upper semi-continous. It follows that the set of pointshere this number is equal o

is constructible. On the other hand, the set of pointghere the map in Definition 2.6 is
surjective is open by the description of the charts in Lemma 2.2. Therefore the set of points
where the map in 2.6 is bijective is constructible. O

LEMMA 2.19. V isstableunder generization.
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PROOF. We can assume that= SpecA), whereA is a local ring and that we want to
prove that if the closed fiber is special then the fiber over some grimet is also. Replacing
A by A/p we may assume that is a local integral domain and that we wish to prove that the
generic fiber is special if the closed fiber is special. In addition, by replatibyg an étale
cover, we may assume that we have a global chart

NT = Mg,

whereT is the set of connected components of the singular Iocu§59f Letn, € NT be
an irreducible element such thatn;) = 0, and letZ denote the set of singular points of
X which map ton, under the map in definition 2.6Z is a closed set, and we vief as a
subscheme with the reduced structure. We to be shown is that the generic fiberZois
non-empty and geometrically connected.

Let s be a point of the closed fiber whose corresponding elemenf{a$n,. In an étale
neighborhood ofy there exists an étale morphism

U— Spe((A[Xl, ceey Xn]/Xl - Xy)

for somen ands. From this it follows that the generic fiber gfis not empty. From this local
description it also follows that for each pointe S the fiberZ, is reduced and th& is flat
over A. Therefore, the generic fiber @f is geometrically connected if and only if

h%(Z ® 4 FradA), Ozg ,Fraqa)) = 1,

where Fra¢A) denotes the field of fractions df. This number is at least 1 sin@er 4 Fraq A)

is not empty. On the other hand, the semi-continuity theorem ([8], 111.12.8) combined with
the fact that the closed fiber @f is geometrically connected implies that the generic fiber of
Z is geometrically connected. This implies the lemma. |

Proposition 2.17 now follows from the two lemmas. |

We can now complete the proof of Theorem 2.7. By the uniqueness we may assume that
S is affine. Note first that if is a point andS; = SpecOs 5), then by ([12], 4.18) there is an
equivalence of categories

(2.3) I|_>m (fine log structures oX x5 U) — (fine log structures oX xg S,),
U—S
where the limit is taken over étale neighborhodts> S of 5.
It follows that if we have two collections of data

(Mﬁs’lv Mg(,ls ¢17 I//.:I.) ) (MﬁS21 M%{,Z’ ¢27 I//.2) )

then there exists exactly one isomphism between them. IndeedsiE S is a point, then after
replacings by an fppf-cover we can assume that we have a adbart M such that the map

Q — Mg ; is bijective. Over the strict henselization of the local ringsdhere is a unique
isomorphism, which can by the equivalence 2.3 be extended to some étale neighborhood of
s. It follows that fppf-locally there exists a unique isomorphism, and since a faithfully flat
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morphism of finite presentation is a morphish effective descent for fine log structures
([17], A.2), there exists a global isomorphism.

To prove existence, it suffices by ([17], A.2) to prove existence in some fppf-neighbor-
hood of a points € S. Thus we may assume that there exists a ciar> Mg such that
0 — MS,‘;, is bijective. We have shown that there exist c{at&ﬁ, Mt;(, ¢, ¥) over the strict
henselization of the local ring at From the equivalence 2.3 it follows that we can extend the
data(/\/lti , Mg(, ¢, ¥) over the henselization to some étale neighborhood éfter perhaps
shrinking S, we can assume that the resulting morphism is still log smooth. We claim that
after perhaps shrinking some more, the morphisiff will be essentially semi-stable. For
this we may assume that there exists a cNart—> M , whereT denotes the set of connected
component of the singular locus &f.. Consider the sét of pointst € X for which the map

(f M7 — My ;
is as in the definition of essentially semi-stable. By Lemma 2.2, th& detopen and by
constructionV contains every point of the fiber over Sincef is proper, the image df ¢ in
S is a closed set not containing Therefore by replacing by the complement of (V°), we
may assume that? is essentially semi-stable everywhere.
It was also shown above that the set of points where the morplffsis special is
open on the base, and hence after shrinklhgome more, we have constructed datum

(Mﬁ, Mi, ¢, V) satisfying the conditions of 2.7 in an fppf-neighborhoodsofThis con-
cludes the proof of Theorem 2.7.

3. Semi-stablelog structuresand log structures of embedding type. Fix a scheme
S and a global sectione I'(S, Os). Let M denote the log structure dhassociated to the
mapN — Oy sending 1 ta, and letS be the log schemés, Ms).

DefrINITION 3.1. A log smooth morphisny : X — S is semi-stable if for every
geometric poink — X the stalkM ; is a free monoid and the map

N — Mg,f(;) —> Mx);z

is the diagonal map. If the morphisph : X — S is fixed, then we will also refer to a
pair (My, f?), consisting of a fine log structuté!x on X together with a morphism of log
structuresf” : f*Mg — My making(X, Mx) — S semi-stable, as semi-stable log
structureon X relativeto S (or just asemi-stable log structure if the reference td& is clear).

REMARK 3.2. For any integer > 0, the diagonal map — N” is invariant under all
automorphisms oN”, and hence for any free monoid there is a canonical diagonal map
N — M. This is the map referred to in the definition.

REMARK 3.3. The above definition of a semi-stable log structure is closely related to
the notion of aog structure of semi-stable type introduced in ([9], 11.6). The two notions
are, however, different. I§ = Speck) is the spectrum of an algebraically closed field, then
a log structure of semi-stable type a&hin the sense of (loc. cit.) is a log structutd x on
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X for which there exists a morphisit? : f*Mg — My making(My, ) a semi-stable

log structure in the sense of Definition 3.1. However, a log structurg of semi-stable

type does not come equipped with a specified such morphism. This distinction becomes
especially important when we speak of isomorphisms of semi-stable log structures. For us, an
isomorphismMy, %) — (M, f’*) between two semi-stable log structuresXmelative

to S is an isomorphism of log structures My — M/, such thatf”” = o f?.

We will also study a generalization of Kato’s notion of a log structure of embedding type:

DEFINITION 3.4. Letf : X — S be a morphism of schemes. A log structvéy on
X is of embedding type relative to S (or just ofembedding type if the reference t& is clear)
if the morphism(X, Mx) — (S, O%) factors étale locally through a semi-stable morphism
X, My) — S. If f: X — (S, O%) is amorphism of log schemes, then we also say that
is of embedding typerelativeto S if My is a log structure of embedding type relativeSton
X.

REMARK 3.5. By anisomorphisnMy — M/, of log structures of embedding type
relative toS, we simply mean an isomorphism of log structuresXan

It follows from ([15], 2.25) that iff : X — § is semi-stable (respf : X — (S, O%F)
is of embedding type relative t§), then in an étale neighborhood of any closed point the log
structureM x admits a chart of the following form:

DEFINITION 3.6. SupposeUy is a semi-stable log structure relativetdresp. a log
structure of embedding type relative $p on X. A standard chart for My at a closed point
x € X is a strict, étale morphism of log schemes oS€resp. overs, 0%))

(X, Mx) — (SpecOs[X1, ..., X;]/(X1--- X, — 1)), standard log str.

for somel andr, which sends to the pointX; = --- = X; = 0if r > 1, and sends to the
pointXi1 =t Xo=---=X; =0ifr = 1.

REMARK 3.7. The standard log structure referred to in the definition is that induced
by the map

N — OslX1,....Xil/(X1-- X, =), (n))j_y > ]‘[1’;’ :
j=1
The diagonal mapl — N’ naturally gives
(SpecOs[X1, ..., X;]1/(X1--- X, — 1)), standard log sfr,,

the structure of a log scheme owver

For the remainder of this section we will fix a morphism of scherfiesX — S such
that étale locally orX there exists a log structurel y of embedding type relative t6.
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PrRoOPOSITION 3.8. Any two log structures on X of embedding type relative to S are
locally isomorphic. Moreover, if ¢ : My — My isan automorphism of a log structure of
embedding type relative to S, then the induced map ¢ : My — My isthe identity.

PROOF Let M1 and M3 be two log structures of embedding type relativet@and let
x € X be a closed point. We construct an isomorphist ~ M5 in some étale neighbor-
hood ofx.

To do this, we may assume that we have standard charts

w1 X — SpecOs[Xy, ..., Xql/(X1--- X, — 1)),

w2 X — SpedOs[Y, ..., Yyl/(Y1--- Y — 1))

sendingx to the pointsX; = --- = X; = 0andY1 = --- = Yy = 0. To prove the first
part of the proposition, it suffices to show that= d’, r = r/, and that there exists a unique
automorphisnv of the set{1, ..., r} such that in some étale neighborhoodvahere exist
solutions to the equations

(3.1) ﬂf(Xi):Uingylj(i), U,'Vi=l, i=1,...,l’.

By the Artin approximation theorem ([2], 1.10), it suffices to show that there exist solutions
in the completiorOy . Letm denote the maximal ideal @y ., LG RI the ideal inOx

generated by the maximal ideal @S,f(x), and let
¢ 6s,f(x)[[X1, o Xall/ (X Xy — 1) > 6s,f(x)[[Y1, LYyl Y- Y — 1)
be the isomorphism induced iy ands,. By looking at the dimension of
%) R 2
Ox.x/(mgpg . »m%),

we see thatl = d'.
Consider first the case whenr= 0. In this case, the ring

Os. oY1, ... Yall/ (Y- V)
is naturally graded by degree in tlig Fori =1, ..., r write
(X)) =LiY)+ H(Y),
whereL; (Y) consists of linear terms arfd; (Y) consists of terms of degree 2 or greater.

LEMMA 3.9. 1 Foranyring Aandanyi € {1,...,r}, thekernel of multiplication

o~

ble...Yi...Yr on
Ay, ..., Yal/(Y1---Yy)  (resp. Al[Ya, ..., Yall/(Y1--- Y7))

isegual to the ideal generated by Y;.
2. Thereexists a unique permutation o of {1, ..., r} such that for eachi € {1, ..., r}

there exists a unit u; € O £y SUChthat L; (¥) = u; Yo i)
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PrROOF. 1. As a module overA, the ringA[Y1, ..., Ys]/(Y1---Y,) is isomorphic to

the direct sum
Par'.

lel

wherel ¢ N4 is the subset af-tuples(/s, . .., ;) with atleastoné, = 0for1<i < r. Part
1 follows from the fact that multiplication byy ---Y; - - - Y, preserves this decomposition.
Moreover, the case of\[[Y1,..., Y;]]/(Y1---Y,) also follows, since this ring is flat over

AlY1, ..., Yql/(Y1--- 1)), R
2. Letn be the maximal ideal 0®g r(,y. We first reduce to the case when= 0.

Evidently, it suffices to prove the uniquenessoih this special case. Now suppose that we
have found units; € (Os, ¢(x)/n")* such that

Li(Y)= M,'YU(,') modn” .
We construct unitg, € (Og, ) /n"T1)* such that

Li(Y)= M;Yg(i) mod ‘I‘ln+l
and such that there exists an integgindependent o, for which

u; =u; modn""0,

To do this, choose a lifting; of u; to O% Py
get

and letD;(Y) = L;(Y) — #;Ys(;). Then we

r
0= i it ity Di(¥)Y1 Yoy -+ ¥, mod (" (yp-- ¥,)" ).
i=1
Since theD; (Y) are linear, this implies that
Di(Y) =Yy F; modn™t
for someF; € Og rx). By the Artin-Rees lemma, there exists an integgmdependent of
n, such that
Yo N0 Ox x C 070 (Vo)

and hence we may choogg to be inn"~"0. We defineu; to bei; + F;. This proves that it
suffices to consider the case wheg= 0.

Assuming now that = 0, observe that th&; map to non-zero elements in/m?, and
hence the terms; (Y) are non-zero. Since= 0, we find that

0= ]_[¢(Xi) = l_[Li(X) + terms of degree- r + 1.

i=1 i=1
From this we conclude that> r’ and hence by symmetry= r’. Moreover, by looking at
degrees in th&;, one finds thal; (Y) = u; Y, ;) for a unique permutatios of {1, ..., r} and
some unity; € O% O

S.fx)
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REMARK 3.10. Part 1 of the lemma implies that the kernel of multiplication by
Y1--- Y- Y, onOg[Y1, ..., Yy1/(Y1--- Y, — 1) is equal to the ideak; - (¥;), whereK;
is the kernel of multiplication by on Og. Indeed, the case= 0 implies that any element

o~

killed by Y1 --- Y; - - - Y, can be written as
AYi+ fat = (fit foY1---Yi- - Y)Y,

wherer(f1 + f2Y1---?,» ---Y,) = 0. SinceOg[Y1, ..., Ys]1/(Y1---Y, — 1) is flat overOg,
this implies that f1 + f2Y1---Y;---Y,)isin K, - Ox.

Next, we show that every term if; (Y)) can be written as a multiple %, ;). We proceed
by induction on the degree of monomials. Suppose true for monomials of degree smaller than
nin H;(Y). Then we can find a unit; which is a polynomial of degree less than or equal to
n — 2 such that

¢ (Xi) =uiYsqy mod(Yq,..., Yo"

By looking at monomial terms of degree-1+-n in [ [;_; ¢ (X;) we find thaty - - - ﬁ,(i) <Y
kills the degree: part of H;(Y). From this it follows that the degreepart of H;(Y) can be
written as a multiple o, ;). This completes the induction step and the proof of the case
whent = 0.

Now, suppose # 0. By the Artin-Rees lemma there exists an integegrsuch that for
alln

Yoi)) Nm's T (Yei) -
( U'(l)) mOS,f(x) C mOs,m) ( 0(1))

Given an integen and unitsz; such that

X)) =u;Ysiy modm’s
o(X;) Uj (i) mOS,f(x)’

we construct unita’ such that
A . njl
¢(X;) = u; Yg(,) mod mOS,f(x)
and such that

/o n—mo
u, =u; modm_~ .
! ' Os.r0)

LetH;(Y) = ¢ (X;) — uiYU(,'). Then
r r
I = l_[uiYa(i) + Zul'“ﬁi ceup Y1 Yoy o Yr Hi (Y) modm’g;im ,
i=1 i=1 ’
and hence

Y1 Yo - Y, Hi(¥Y)=0 mod(,ms?t ).
Os.rw
Sincet € (Y, (;)), it follows that

H(Y)=0 mod((Ysi) Nmk ,mat ).
(1) (Yo@) Nma Mo
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Hence by definition ofing, there existsF; e m’g’"o such that
S, f(x)

— n+1
H; (Z) = a(t)Ft mod més,f(x) .
This completes the proof of the existence of solutions to the equations 3.1 in the completion
Oy, and hence the proof of existence of an isomorphism betwegrand M in an étale
neighborhood of. The second statement in the proposition follows from the uniqueness of
o. O

The proposition and its proof imply that there are various canonically defined sheaves on
X:

CONSTRUCTION 3.11. The uniqueness 6fin the proposition implies that for any log
structureM y of embedding type relative t8, the sheaf\1  is invariant under all automor-
phisms. Hence there is a canonically defined shiefabn all of X, since there exists a log
structure of embedding type oh étale locally.

CONSTRUCTION 3.12. |If
(3.2) 7 X — SpecOs[X1, ..., Xql/(X1--- X, — 1))
is a standard chart for a log structure of embedding type relatiSeotn X, then the ideal
Ji=Co X1 Xi- Xpy )y

is independent of the choice of chart, and hence there exists a globally defined ideal sheaf
J C Ox. We letD C X be the resulting closed subscheme.

CoNSTRUCTION 3.13. Ifg isachartasin 3.6, l&f C O be the subsheaf of units
which locally can be written as

,
w=14 Y aXi Rie X,
i=1

wherera; = 0. ThenG is independent of the choices and has a natural structure of a group; if
we defineZ C X to be the closed subscheme defined/iymes the kernel of multiplication
by on Oy, thenG is the kernel of the ma@y, — O3.

The following is the main result in this section about log structures of embedding type
relative tos:

THEOREM 3.14. 1 Thereisa canonical classo € Hz(ge,, G) whose vanishing is
necessary and sufficient for there to exist a log structure of embedding type relativeto S.

2. If o = 0, then the set of isomorphism classes of log structures of embedding typeis
naturally a torsor under H(X,,, G).

3. If My isalog structure of embedding type, then thereis a natural isomorphism of
sheaves

AutMx) ~ G,
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where Aut(M x) denotes the sheaf on X, of automorphisms of M.

PrROOF. It suffices to prove the third statemesince we have already seen that any two
log structure of embedding type are locally isomorphic. For then the stack over the étale site
of X whose objects are log structures of embedding type relati$eida gerbe ([13], 1V.2)
bound byG. Statements 1 and 2 therefore follows from 3 and ([7], IV.3.4).

LEMmMA 3.15. Fix astandard chart for My asin 3.6, and let K, = Ker(xr : Oy —
Og). _

1. Ker(xX;:0x > 0Ox)=K;-(X1---X;---X,).

2. Thenatural map

r r
@Kt.(xl...)?i...xr)_)ZKI.(Xl...fi...Xr)
i=1 i=1

is an isomor phism.

PrRoOF All sheaves involved are quasi-coherent sheaves so that it suffices to consider
the ringOs[ X1, ..., X41/(X1--- X, — ). As a module oveOy, this ring is isomorphic to

(3.3) P osxt,

lel

wherel c N7 is the subset ofi-tuples(ly, ..., 1ly) with [; = 0 for somei € [1,r]. For
eachi € [1,r], let]; C I denote the subset @ftuples/ for which/; = 0 andi;; # 0 for all
i’ €[1,r]—1{i}. Then
K- (X1 Xi- X)) ~ P K, XL
Lel;
From this the statement 2 follows.
To see the statement 1, observe that multiplicatioXppreserves the decomposition in
3.3ifr = 0, and hence the result is clear in this special case. For the general case, note that
the case = 0 implies that if f € Ker(x X;), then there existg; and f2 such that

o~ o~

f=nX1Xi-- Xo + for =(fi+ f2Xi) X1+ Xi - X» .
SinceX is flat overS and f is killed by X;, the elemenff; + f2X; isin K; - Ox. O

Let A : N — My be the diagonal map and l¢t: Mx — Myx be an automorphism.
Then for any liftingA (1) of A(1) to My

(AD) = r(u) + A(D),

whereu is a unit independent of the choicezfl/) andx : Oy — My denotes the natural
inclusion. This defines an elemant O%. Now, if we choose a chart as in 3.6, then locally
the automorphism is induced from solution&y; } to the equations

UZ'XZ'ZX[, U[Vizl, i=1,...,r.
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Henceu; — 1 € Ker(x X; : Ox — Oyx). From the lemma we conclude that
Ui = 1+aiX1"‘§(\i"'er

wherera; = 0, and hence

r r
u=[]A0+aX1 - Xi-X)=1+) aX1- XX, €G.
i=1 i=1

Conversely, given an element
p
1+ZaiX1"'Xi"'Xr
i=1

with ta; = 0, we can define an automorphism.®f x by sending an element € My with

o~

am)=X;tor(l+a;X1---X;---X,)+ m. This proves the theorem. O

Let H be the kernel o0} — O73,. There is a natural inclusio@ — H, which is an
isomorphism ift = 0. The following proposition explains the relationship between Theorem
3.14 and the results of Kato ([9], theorem 11.7):

PROPOSITION 3.16. 1 Thesheaf(‘,’xt(lox(ﬂ}(/s,(’)x)isaninvertibIeOD-rmdule.

2. Letoe Hz(ge,, G) bethe class constructed in Theorem3.14 and let o’ € H(X,;,
07, bethe class of the invertible O p-module

Homo, (Exty, (2% 5. Ox). Op) .

Then theimage of 0 in H2(X,,, H) isequal to §(¢’), where

et

§: HYX,,.0}) > H*(X,, . H)

et
is the map obtained from the exact sequence
00— H— 0Oy — 0}, — 0.

In particular, if t = Osothat G = H, then o = 0if and only if there exists a line bundle £
on X such that

L®Op ~ ExtH(R5/5. Ox) .
PROOF 1. The question is local and so we may assume that we have a standard chart
X — SpeaOs[X1, ..., Xql/(X1--- X, — 1))

for Mx. LetR = Og[X1, ..., X4] and let! be the kernel ok — Ox. Then the conormal
sequence gives an exact sequence

(3.4) 117 — 20 ®Ox — 25,5 — 0.

LEMMA 3.17. The conormal sequence 3.4is exact on the |eft.
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PROOF. The moduIeQ}?/OS ® Oy is a freeOx-module with basigd X;}¢_,, andI/1?
is a freeOx-module with basisX1--- X, —t. The mapI/I2 — Qzle/os ® Oy is the map
induced by

r
XpoXp—t> Y X1 Xjoo- XedX;
j=1

and therefore the kernel can be identified with

{(feOx|fX1---X;---X,=0 foralll<j<r}.

Now the kernel of multiplication by - - - X ; - - - X, is equal tok X - (X;), wherek X denotes
the kernel of multiplication by on Oy, and therefore the kernel ¢ 12 — “Qlle/(?s ® Oy is
isomorphic to

(K" X
j=1

Using the notation of the proof of Lemma 3.15, the idEgiq - (X;) coincides with the ideal

P k. X’

leL;

whereL; denotes the subset éfconsisting of elementswith /; # 0. The lemma therefore
follows from the statement that

hL,’ =0.
i=1

It follows that there is a natural map
(3.5) Hom(I /1%, Ox) — Ext (2% 5. Ox).
which sits in an exact sequence
0 — Der(X/S) — Der(R/Os) ® Ox — Hom(I /1%, Ox) — Ext (2%/5. Ox) — 0.
As mentioned above, the sheafl? is an invertible sheaf with basis the image of
X1+ X —1t,

and the map

Der(R/Os) ® Ox — Hom(I /1%, Ox)
is the map which sendi/d X; to the map

1/I1° > Ox, X1-Xr—tr>X1--X;- Xr.

From this it follows that the map in the equation 3.5 becomes an isomorphism when tensored
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2. Ifweview HZ(&I, H) as the group of equivalence classes of gerbes boutifi duy

X, (7], IV.3.1.1), thens (¢’) can be described as the class of the gerb& grwhose objects
are pairg L, €), where, is an invertibleOx-module and

& : Homoy (L, Ox) ® Op = Exty (2% /5, Ox)
is an isomorphism o p-modules ([7], IV.3.4). Thus to prove the proposition it suffices to
exhibit a functor
(stack of log structures of embedding type relative}o
F
(stack of pairg L, ¢))
such that for any two log structurégt; and M, of embedding type relative t§, the natural
map
Isom(M 1, M2) — Isom(F (M1), F(M2))
induces an isomorphism
1S0M(Ma, M2) x¢ H — ISOM(F (My), F(M2)),

where Isong, -) denotes the sheaf of isomorphisms.

To defineF, supposeM x is a log structure of embedding type relativeStoWe define
L to be the invertible sheaf associated to the torsor of liftinga @f) € My to My.

To defines consider first the case when a standard chart is chosen and &efind /
as in the proof of the part 1 of the proposition. The choice of chart defines trivializations of
I/1% and £ and hence an isomorphisi 12 ~ £. From the map 3.5, we therefore get an
isomorphism

Hom(L, Ox) ® Op ~ Exty (%5, Ox) -

By a local calculation (which we leave to the reader), this isomorphism is independent of the
choices, and hence we get a global isomorphism ]

Define a second sheaf
G2 :={ueO% |ut=t}.
Any log structure of embedding typetx defines aG,-torsor
Ppt, i= {m € Mx | m maps toA(1) in Mx anda(m) = t}.

By definition, a mapf*Ms — My, giving Mx the structure of a semi-stable log structure
relative toS, is equivalent to a trivialization oPa, .

From the proof of 3.14.3 it follows that the action@fon Py, induced by the isomor-
phismG >~ Aut(My) is simply the action obtained from the inclusiGh— G». It follows
that a semi-stable log structure relativestadmits no automorphissnand hence the presheaf
onX,,

SS' : U — {isomorphism classes of semi-stable log structure& pn
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is a sheaf. The shedf; is naturally identified with the sheaf of automorphismsféiM s,
and hences, acts naturally or$'S? by

(f*Ms — Mx)” == (f*Ms 5 f*Ms — My).

Again, because any two log structures of editiag type are locally isomorphic, this action
of G, is transitive. Moreover, from above we see that this mak#sa torsor under the sheaf
G2/G. Thus we obtain:

THEOREM 3.18. Thereisacanonical obstructiono € HY(X, G2/ G) whose vanishing
is necessary and sufficient for there to exist a semi-stable log structure on X relativeto S. If
o = 0, then the set of isomor phism classes of semi-stable log structuresis canonically a torsor
under Ho(X, G2/ G).

It will be useful to have a better description of the sh@af G:

PrROPOSITION 3.19. Let K; C Og (resp. K,X C Oy) bethe kernel of multiplication
byt on Og (resp. Ox), and let (r) € Ox betheideal generated by ¢. Then thereis a natural
exact sequence

(3.6) 0— (KXN®))®0p - G2/G — O} — (Op/KX-Op)* — 0.
Moreover, the image of o under the natural map

H*(X,;, G2/G) - H*(X,,, O})
isequal to the class of

Homo, (Exty, (2%/5. Ox). Ob) .

PROOF. To see the exactness of 3.6 we may work locally and hence can assume that a
standard chart as in 3.6 has been chosen. Moreover, the exactness of

G2/G — O% — (Op/K¥ -Op)* - 0
is by definition ofG2.

LEMMA 3.20. 1 KXNJ=Ker(xt:(t) = @)+ Y 1 KX - (X1---Xi--- X,).
2. ONYiq K X1 X X)) =Y (KX N @) - (X1 Xi -+ X)),

PROOF. Note first of all that since( /S is flat, KX = Ox Q0 K.
Since all sheaves involved are quasi-coherent, it suffices to consider the ring

OslX1, ..., Xal/(X1--- X —1).
In terms of the decomposition given in equation X3 is equal to the ideal
@ K XL,
lel

andJ has a decomposition

P osOxL,

lel



426 M. OLSSON

where

5() = {O if / € I; for somei € [1, r],} '

1 otherwise

From this 1 follows.
To see 2, note that multiplication byj; on K,X(Xl .- X;--+-X,)is the zero map. Hence

p
D OKX(X1- X X)) = P KX,
i=1 lel’
wherel’ C I is the subset of element$or which there exists exactly ories [1, r] such that
l; =0. O

It follows from the first part of the lemma that the kernek®f — O7, can be described
as unitst which can be written as

r
3.7 1+ ft+) aiX1Xi- X,
i=1

wherer? f = ta; = 0. Define amagk X N (1) — G, by
ft— 1+ ft.

Then by the second part of the lemma the map induces an inje(mém(t)ea(?p) — G2/G,
and since any element as in 3.7 can be written as

.
1+ ft)(l+ Zaixl"‘?i "'Xr> ,
i=1
we get the exactness of the rest of the sequence 3.6.
To get the second statement, recall (proof of Proposition 3.16) that to any log structure
My of embedding type relative t8§ we associated a pailC, €), whereL is an invertible
sheaf and is an isomorphism

& : Homoy (L, Ox) ® Op =~ Extly (2% /5. Ox) .
Now, from the proof of proposition 3.16, a mgif Mg — My making My semi-stable
relative toS defines a trivialization of.. Hence we get a map
§S8' — 1somOp, Homo,, (Exty (%5 Ox), Op))

compatible with the actions @¥2/G andOy3,. O

4. A theorem about effectivity of formal log structures.

THEOREM 4.1. Suppose A isthe completion at a point of a scheme of finite type over
an excellent Dedeking ring, and let f : X — SpecA) be a proper morphism of schemes
such that all the fibers of X are semi-stable varieties in the sense of Definition 1.1 For
eachn > 0, let A, = A/m’}ﬁl and X, := X xspega) Spe€A,) be the reductions and let
fa X, — SpedA,) bethe natural map. Fix alog structure M4 on SpecA) and let My,
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be the pullback of M 4 to SpecA,). Then any compatible family of pairs (M., f?), where
M, isalog structure on X, and f? : f*M,, — M, isa morphism of log structures
making the map

(for 17) (X, M) — (SPegA,), May,)
log smooth, vertical, and integral, is induced by a unique pair (M, f?), where M isalog
structureon X and f*M 4 — M isamorphism of log structures making

(f, 7)1 (X, M) — (SpecA), M)

log smooth, vertical, and integral.

PrRoOOF By Theorem 2.7, it suffices to consider the case when all the morphisms
(fu, f1) are special in the sense of Definition 2.6. Moreover, by descent theory we may
assume that the residue fieddm 4 is separably closed.

Let I denote the set of connected components of the singular locus of the closed fiber
X, Then by the definition of a special morphism (2.6) there is a canonical isomorphism
N =~ My,, and we fix a charBo : NI — M 4, inducing this isomorphism. Sincé is
strictly henselian and local, there is an isomorphism

HO(SpecA), M) ~ My, .
Moreover,H1(SpecA), 07) = 0, and hence from the exact sequence
0— 0;—>M§§”—>Mi”—>o
we see that the map
HO(SpecA), M) — HO(SpecA), M)

is surjective. Therefore, there exists a chartNT — M4 inducingSo. By the construction
in the proof of Theorem 2.7, there is a canonical decomposition far all

M, =~ eayeF,(’)}”MZ .
Lets, be the image of the standard generatoXéf— N underthe mapl’” — M, — A,
and Iet/\/lz (resp.Mff\”) denote the log structure defined by the map> A (resp.N — A,)
sending 1 ta,,. Then eachM] is a semi-stable log structure relative(@pecA,,), MZ,,) on
any open set ok, not intersecting the componerits— {y}.
Next, we claim that for any closed poirg € X in the closed fiber, there exists an étale
neighborhood/ of xg and an étale morphism
(4.1) U — SpecA[Xy, ..., Xql/(X1--- X, — 1))
for somed, r andy. To see this, choose an affine étale neighborhiéedf xo and a standard
chart (see 3.6)
Uy — SpecAol X1, ..., Xal/(X1--- X;))

for MQO. For each integen, there is a unique étal¥, -schemeU, reducing toU,. We
inductively lift the standard chart ovér, to a compatible family of standard charts o¢gy.
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For each, view Spe€A,[Xy, ..., X41/(X1--- X, — 1)) as a smooth log scheme over
(SpecA,), Mﬁn), and note that giving a lifting t&/,, of a standard chart ovér,_, is equiv-
alent to finding a dotted arrow filling in the diagram of log schemes

U,_1, M§,1_1) — (SpecAn[Xy, ..., X41/(X1--- X, — 1)), standard log str.
.4

U MY ) (SpecA,), MY, ).

This is because a map between flat schemes 4yés étale if and only if its reduction tdg

is étale. Since the map labelledn the diagram is log smooth, such a dotted arrow exists. It
follows from the Artin approximation theorem ([2], 2.5) that there exists an étale neighbor-
hoodU of xp and a map as in 4.1 approximating our formal solutio@mxo obtained from

the charts over th&,,. Since the resulting map is formally étale (and hence étaley, ate
obtain the claim.

To prove the theorem, we construct log structurescanducing theM], . The fact that
X/A admits étale locally a log structure of embedding type implies that the singular locus
of X has a natural scheme structure: defiff&9 to be the closed subscheme defined by the
annihilator of the sheaf

Ext (2% /4. Ox) .
If we choose a map as in 4.1, th&§"9is by Proposition 3.16 the closed subscheme defined
by the ideal
Coon X1 Xi- Xpy o )g.

From this local description it also follows that the reductionxst" to X, is equal to the
disjoint union of theD?,, whereD7 is the closed subscheme defined in 3.2 applied to any open
set of X, not containing the other componeifts- {y}. Now, by the Grothendieck existence
theorem ([6], 111.5), the functor which sends a closed subschem¥etofits reductions induces

a bijection

(closed subschemes &f)

(compatible families of closed subschemes ofXhg .

Therefore X5"9 has a canonical decomposition
sing __
w0 ],.
yel

whereD, reduces taD’, over X,,. Then to construct a log structure(” inducing theM;,,
we may as well replac® by V := X — UV/#V D,. We apply the results of Section 3 Ya
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Let G, G2 and D (resp. G", G and D") be as in Section 3 applied 1 relative to
(SpecA), MZ) (resp.V,, relative to(SpecA,)., Mzn)). Note thatD is proper over Sp&d),
flat over Spe¢A /1, ), and that there is a natural isomorphism

D"~ D X Specd) SPEEA,) .

By Theorem 3.18, it suffices to show that the map

(4.2) HY(V, G2/G) — lim H'(V,,, G3/G")
is injective, and that the map

4.3) HO(V, G2/G) — lim HO(V,,, G5/G"™)
is bijective.

LEMMA 4.2. For any A/(t,)-module M of finite type, the natural map
M — H(V, M ® Op)
is an isomor phism.
PROOF. SinceD is proper over, the natural map

HO(V. M ® Op) — lim HO(V. M ® Opr) = lim HOV, M ® A, ®a, Opr)
n n
is an isomorphism by ([6], 11.5.1.2). Therefore, it suffices to consider the case whean
Artin local ring. SinceA is noetherian and artinian, there exists a filtratiombhby A /1, -
modules

O0=M,C---CMyCM1=M
such that for each, M;/M;11 ~ A/m4. Now, if the results holds foM = A/m, andM;,
then the snake lemma applied to the commutative diagram
0— M; — M1 — A/mgy — 0
0— HO(V,M; ® Op) — H(V, Mi+1® Op) — HO(zfoDw
obtained from the exact sequend2 i flat overA/t,)
0> M®0p = Mi11®80p — Opo— 0

yields the results foM; 1. Therefore, it suffices to consider the case win= A/my4.

In this case we may even base change to an algebraic closdréwgf, and hence we may
assume tha#i /m, is algebraically closed. But theB® is a reduced proper scheme over an
algebraically closed field, and heng€(D°, O o) = A/m 4. O

Let K;, (resp. K,’;) be the kernel of multiplication by, on A (resp. on4,), and letF
(resp.F") be the image of the ma@, — O7, (resp.G; — O7,,). Note that sincé/ is flat
over A, we have in the notation of Proposition 3.19

(Ki, N1y A) ®4 Op = (K N1, 0v) ®o, Op
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and
(K} Nty Ag) ®4, Opn = (K" N1,0v,) @0y, Opr .
COROLLARY 4.3.
HOV,F) ={u € A*|ut, =1,}/{u € A*|1—u € K;, Nt,A)
and
HOV,, F") = {u € A} |lut, = t,}/fu € A | 1—u € K' N1, Ay}
PROOF. SinceX is flat overA, there are natural isomorphisms
Op/KXOp ~ Op @ayi, (A/t))/Ky, - (A/1)),
and
Opr /KX Opn 2= Opy ®an/t, (An/1y) /K[ - (An/ty)).
Hence Lemma 4.2 and the exact sequences
(4.4) 0— F = 0} > (Op/K}0Op)* - 0,

(4.5) 0— F' — Oy — (Opi /K" Opn)* — 0,
give exact sequences

0— HO(V.F) = (A/t))* — ((A/t,)/Ks, - (A/t,)*,

0— HO(V,, F") = (An/t,)* — ((An/ty) /K7 - (An/1y))"
From this the corollary follows. ]

The corollary implies thatH%(V, G»2/G) — HO(V, F) is surjective, and hence there is
a commutative diagram

0—> K, NyA — H%V.G2/G) — H'(W,7) —0
(4.6) ¥ \J ¢

0— lmK} N, Ay — L@Ho(zn, G3/G") — lim HOV,, F™)
with exact rows. The following lemma implies that the map 4.3 is bijective.

LEMMA 4.4. Let L;’y =Im(K, Nty A — Kt”y N1, A,). Then there exists integers ng
and ng, such that:
1. For eachn, the map

(K, N1y A) ® Aping — (Ki, N1,A) ® Ay

factors through Lj ™.

2. For every n, the map
n+ng n
Kty N tVAnJrné) - Kty
n+ng
ty :

factorsthrough L
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3. Thenatural map
HO(V, F) — lim H(V,,, F")

is an isomorphism.

PrROOF. By the Artin-Rees lemma there exists an integgsuch that

Ky, N, AN ™ Cmly (K, Nty A)

for everyn. From this 1 follows.

Similarly, the Artin-Rees lemma implies that there exists an integeuch that

n-ng
)2 Nm, 0 cm(r,)?.

Suppose, f € K,”VJF"O Nty A,y andletf € A be alifing of f to A. Theni2 f e m/troth

and hence?f € m™ (1) Letg e m’;"* be an element such tha}f = 12g. Then

ty(g — f) € K, N (), and hence the image of
Ko A, oy = KD
is contained inLy ™. This implies 2.
To prove the part 3, leti,, be the group
{fueAyll—uc KZ, Nt,An}.
Then by Corollary 4.3 there are exact sequences
0— A, = {u€Allut, =1} - HV,, F*) — 0,
and by the part 2 the,, satisfy the Mittag-Leffler condition. Hence if denotes the group
{ueA*|1-uec K, Nt A},
there is a morphism of exact sequences

0— A — {wueA'lut, =t} — HV,F) — 0

| |

i i i 0
0— I(|mA,1 — le{MEA;Huty:ty}—) I(@H v, F") — 0.

Part 3 of the lemma now follows because the part 1 implies that the left vertical arrow is an
isomorphism. O

The preceding lemma also implies that the natural map
Hl(z’ (K[y N tyA) ® Op) — le Hl(zm (K;; N l‘yAn) & Opn)
is an isomorphism. By Corollary 4.3, the maps

HYV, (K, Nt,A) ® Op) - HYG,/G),

HYV,,, (K Nt,Ay) ® Opn) — HY(G3/G")
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are injective. From this and the diagram

0 0
HY(V,(K;, N1, A)® Op) —> lim HY\V,, (K,’}ﬂ tyAp) ® Opn)
HY(V, G2/G) — lim H*(V,,. G5/G")
HY(V. F) — lim HL(V,,, F")

we see that to verify that 4.2 is injective it suffices to show that the map lalzeledhe
diagram above is injective.

The exact sequences 4.4 and 4.5 together with Lemma 4.2 imply that there is a commu-
tative diagram

HY\V,F) — HYV,0%)

imH'(V,. F") — ImHV,, O},

n’
where the horizontal arrows are injections. Therefore, to verifydliginjective it is enough
to verify that the map

H(V, 0}) = lim HY(V,,, Op)

is injective. This follows from ([6], 11.5.1.6)and hence the proof of Horem 4.1 is complete.
|

5. Proof of Theorem 1.2. We now prove Theorem 1.2. Let IVLBe the fibered
category over the category ¢fschemes which to an¥ — S associates the category of
triples(Mr, Mx,, f}’), whereM7 is a log structure off, My, is a log structure oX x g
T, andf}’ i prsMr — My, is amorphism of log structures making

f, £+ Xp, Mx,) — (T, M7)

a special morphism in the sense of Definition 2.6. There is a natural log structure on the
fibered category IVLSsee the introduction for the definition of a log structure on a fibered
category)

M IVLS — ﬁog(ﬁ)op, M7, Mx,, f#) = Mr.

Since IVLSclassifies sheaves for the étale topology, IMkS stack overs, and by ([12],
4.18) IVLS:is limit preserving. By Theorem 2.7, {i', M) is a log scheme, then to give an
element of IVLS overT, M/, is equivalent to giving an obje¢Mr, My, f}’) of IVLS
over T together with a morphism of log structurddr — M. Hence, to prove Theorem
1.2, it suffices to show that IVL$ representable by a scheme, and that the map MLS

is a monomorphism of finite type.
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Now, any algebraic space which admits a quasi-finite map to a scheme is also a scheme
([4], 3.3), and hence it suffices to show that IVisSan algebraic space. We proceed in two
steps (Theorems 5.1 and 5.4).

THEOREM 5.1. IVLSisrelatively representable and IVLS is equivalent to the stack
defined by a sub-functor of S.

PROOF. SUpPOS&€Mr, Mx,, f7)and(M}., M ., f7') are two objects of IVLSver
some schem@&. What has to be shown is that there exists unique isomorphism&1y =~
My andg : My, =~ M) such that the diagram

b

M L My,
PR
f
f*M/T AN M/
commutes. Let us begin by showing the uniqueness of the(@agr). For this it suffices to
consider the case whéh= SpecA) is a complete local ring.

Let SS(T, M7)) be the set of isomorphism classes of pai¥dy, 1), whereMy is a
log structure orX and f? : f* M7y — My is a morphism of log structures making

(X, Mx) — (I, Mr)

a special morphism (in the sense of Definition 2.6).
Let

p : Aut(Mr) — EndSS(T, Mr)))
be the action given by
(f*Mr — Mx)P) = (f*Mr = f*Mr — Mx).
The following proposition implies the uniquenesyef ¢).

PROPOSITION 5.2. 1 For a pair (My, f") as above, there are no automorphisms
of Mx compatible with the map £°.
2. Theaction p on SS(T', M7)) issimply transitive.

ProoFr. 1. It suffices by descent theory to consider the case whdras separably
closed residue field. In this case, any objéesty, ) € SSSpecA)) has a canonical
decomposition

(5.1) Mx = @yer.os My,

wherel" denotes the set of connected components of the singular locus of the closed fiber.
Moreover,(My, f?) induces a decomposition

(5.2) Mr ~ @VEF,O;M)T/' .

This implies 1, for any automorphism @d#x must preserve the above decompositions and
hence induces automorphisms of the log structhe’;’g overM;. But by the discussion
preceding Theorem 3.18, there are no such automorphisms other than the identity.
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2. We first reduce to the case wharis an artin local ring with separably closed residue
field. Let M, be the reduction oM to 4, := A/m’}jl. By Theorem 4.1 and the fact that
the functor AutM ) is representable, the natural maps

AUt(M7) — lim Aut(Mz,), SS(SpecA)) — lim SSSpecA,))
are bijective, and hence it suffices to consider the case whemn artin local ring. Moreover
by 1, both AutM7) and S$SpecA)) are sheaves on the étale site, so we can by descent
theory assume that has separably closed residue field.
In this case, any objeciM x, f?) € SSSpecA)) has a canonical decomposition as in
5.1 and induces a decomposition/ofr asin 5.2.
Suppose given two objects
(Mx, f7), (M, ") € SISpecA))
inducing two decompositions
Mr ~ Gayer,o;./\/l; ~ Gayer,o;./\/l;/.
The following lemma, applied to the completion ©f at a point iny, shows thatM?. and
M;' are isomorphic as log structures (not as sub-log structurad pf.

LEMMA 5.3. Supposer,t’ € A aretwo elements such that there existsd, d’, r, ¥’ € Z
and an isomor phism

¢ AllX1, ..., Xall/ (X1 X — 1) = Al[Y1, ..., Yo 1)/ (Y1 Y — 1)
Then there exists a unit u € A* such that ur =¢’.

PROOF. If the result holds withA replaced byA /(t"), thenr € (') and by symmetry
(1) = (¢'). Therefore it suffices to consider the case whes 0. Moreover, in this case it
suffices to consider the reduction modifo Write

pXi)=ci+fX), i=1...r,

wherec; € A and f(Y) consists of terms of degree 0 (as in the proof of Proposition 3.8,
Al[Y1, ..., Yy11/(Y1---Y,) is graded since& = 0). By Proposition 3.8; € (¢), and hence
since we are assuming thét= 0 we havg [/_; ¢; = 0. Thus

r
t=[]oxn=[]ci+9=9.
i=1
whereg € (Y1, ..., Yy). If t £ 0, this is a contradiction, since
ANY,...,Yy) ={0}.
]

Thus there exists an automorphisnof M such that the decompositions 6f 7 ob-
tained from

f*MT — Mx
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and
f*MT i> f*./\/lT — M/X
are the same. Decompose
My >~ @yel‘,(’)}M))/(’ M'X ~ @yEF,O§M§/~

Then to prove the theorem it suffices to show that there exists a unique automoephism
M. — MY and an isomorphisn : M}, ~ MY such that the diagram

ML MY

| v

fMp — My

commutes. For this we may, as in the proof of Theorem 4.1, reptabg an open sev,

which contains the componeptbut does not intersect any of the compondnts {y}, and
we can also choose a chart

N—> M.

Lets, € A be the image of 1. Then using the notation of the proof of Theorem 4.1, we want
to show that the natural map

{ue A* |ut, =1,} — H°(V, G2/G)

is bijective. This follows from the exactness of the first line in the equation 4.6 and Corollary
4.3. O

Inlight of the uniqueness @b, ¢), to prove Theorem 5.1 it suffices to prove the existence
of (o, ¢) étale locally. IfT is the spectrum of an artinian local ring, then it follows from
Lemma 5.3 thatMr and M/, are étale locally isomorphic, and hence by Proposition 5.2 a
pair (o, ¢) exists in this case. By passage to the limit using Theorem 4.1 gqap) also
exists in the case wheh is the spectrum of a complete noetherian local ring.

For generall’, lett € T be a point. Then from above there exists a fgairp) over
the completior@T,t. By the Artin approximation theorem ([3], 1.6), there exists a pointed
T-schemev € V together with an isomorphisr@z,v ~ (’9\7,, and a pair(oy, ¢y) over
V inducing the paino, ¢) over @T,,. By constructionV /T is étale atv, and hence after
shrinkingV we can assume th&t is an étalel’-scheme.

This concludes the proof of Theorem 5.1. i

THEOREM 5.4. VLS admitsa smooth cover.

PrRoOOF. It suffices to show that for any map
(5.3) T — Logs,0%
the product

T X fogyg o) VLS

.
(5.05
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is representable by an algebraic spaceMf is the log structure corresponding to the map
5.3, then the product is the functor

SS: (T — schemep— Set,
which to anyk : T’ — T associates the set of special elements in
VLS (T, h* Mr1)).

We prove that SS is representable by verifying the conditions of ([5], 5.4). HFoseheme
h:T'— T denote byMr|; the pullbackz* M7 and letX 7, denote the produdt’ xr X.

By Proposition 5.2SS is a sheaf for the étale topology, and SS is limit preserving by
([12], 4.18).

LEMMA 5.5. Suppose A’ — A is a surjective morphism of rings with square-zero
kernel, and suppose M x, € SS(SpecA)). Thento givealifting of Mx, to SS(SpecA”)) is
equivalent to giving a 1-morphism

Mx, + Xy = Log(speca’), Mrl,)

filling in the diagram

X4 Xa

My,

'S

Log(speea), Mrla) Logspeea’), Mrl,)

SpecA)

SpecA’)
(that is, a 1-morphism M ,, together with anisomorphismi* My, ~ Mx,).

PrRoOOF. To give a 1-morphism as in the lemma is equivalent to giving a lifting/6¢ ,
to X 4, and a morphism of log scheme¥ ,,, Mx,,) — (SpecA’), Mr|4) lifting the map
from (X 4, M4). Thus the lemma is equivalent to the statement that any such lifting is a
special morphism. Now by ([11] 4.1 and [17] Theorem 3.13)), any such lifiig fac-
tors through the maximal open substd¢kC Log(specar). My, flat over Speed’). Since
X ,//A" is flat, this implies thatMy ,, is smooth, since its reduction t is smooth. The
other conditions in the definition of a special morphism evidently only depend on the reduced
structure of the base. Hence the lemma follows. a



UNIVERSAL LOG STRUCTURES ON SEMI-STABLE VARIETIES 437

It follows from the lemma and ([18]) that Schlessinger's conditionY&#lds, and that
for any A-modulel, the module S§4X (A[I]) is isomorphic to
Ext, (MY, Lzoe D,

Log(specag). Mripg)/ A0’
>-2
Log(speaag). Mr|ay)/A0
Log(specao), Mrlay (S€€[18] or [12]). Moreover, ([18]) shows that the modules
Exth, (M, Lzoe frD

Log(speeag). M4y /A0

define an obstruction theory for SS. To see that the condition8 andO of ([5], (S2) and
4.1) are satisfied, use ([6], I11.3.1.2 and 111.4.5) and ([3], Lemmas 6.8 and 6.9).

Next, we claim that ifAo is a reduced ring, and My, and/\/l’XA0 are two elements
of SSSpecAp)) which are equal at a dense set of points of finite type, then they are equal
on a dense open set. To see this observe that by theorem 5.1 there exists a unique pair of
isomorphisms : Mr|a, = Mrla, ande : MXAO — M’XAO such that the diagram

whereL denotes the truncated cotangent complex of the algebraic stack

f*MT|A0 I MXAO

f*(a)l in)

f*MT|A0 I M/

Xag

commutes. The condition that{y, andMY —define the same element of SS is therefore
the same as the condition that= |d Now, smceﬁog(T o3) is algebraic, ifo = id for a
dense set of points of Spety) of finite type, thens equals the identity on some dense open
set by ([5], page 182).

Finally, observe that ifi is a complete local ring with residue field of finite type ofer
then the map

SS(A) — lim SYA/m’")

is bijective by Theorem 4.1. It therefore follows from ([5], 5.4) that SS is representable by an
algebraic space ovér. This completes the proof of Theorem 5.4. i

To complete the proof of Theorem 1.2, it remains only to see that L@ finite type
over S. For this it suffices by the argument given in ([3], page 59) to show the following:
Given an integral domair o, and a dense set of poings C Spe¢Aop) of finite type such that
IVLS(Speck(p)) is non-empty for allp € G, there exists a dense open geiC SpecAo)
for which IVLS(U) is non-empty. LetKg = FraqAg). Then by assumptiorX g, is étale
locally isomorphic to

Kol X1, ..., Xal/(X1--- X»),
and so we can replacty by an affine open set so that, is étale locally isomorphic to

AolX1, ..., Xql/(X1--- X;).
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Let M 4, be the log structure on Spetp) associated to the mdyp — Ag, 1+ 0. By Theo-
rem 2.7, to prove the IVL$ non-empty over some dense open set of §pgx; it suffices to
prove that there exists a semi-stable log structur& gnrelative to(SpecAo), Ma,).

By Theorem 3.6 there exists such a log structure if and only if the invedplenodule

1 1
Ext (QXAO/AO’ OX)

is trivial (where D is defined as in Section 3). By ([3], page 70) this holds over some dense
open set in Spéa), and hence there exists a dense openlset SpecAg) for which
IVLS(U) is non-empty. This completes the proof of Theorem 1.2. O
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