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HUY GENS OPERATORS ON PRODUCT MANIFOLDS
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Abstract. Based on two equalities for power series which are equivalent to the Tedone
formulas, the elementary solution to the wave operator on the prodédRigmannian mani-
folds is represented as a composition, with respect to the time variatideglefentary solu-
tions to wave operators on factor manifolds a consequence, one has an infinite number of
non-trivial momentary Huygens operators. leaample, wave operators on the product of an
odd numer of odd dimensional manifolds with constant curvature are revealed to be momen-
tary Huygens operators for an appropriate chaf coefficients of the 0-th order terms.

1. Mainresults. Let(M, g) be an oriented, compact or non-compact complete Rie-
mannian manifold of clas€ > without boundary and: be a time variable. We denote the
Laplace-Beltrami operator aiM, g) by Ay,. In this article, we suppose that the metjibe
independent of. Then the Cauchy problem for generalized wave equation

32
(D) a—tz—AMu+cu=O;
0
®) u(p.0) =0, a_L:(”’ 0 =f(p).

¢ being a given constant, has a unique solutidor long period oo < t < 400) for every
function f of classC* on M. Let us denote it in the following way:

3 u(p,t)=<G(p,t,-;C),f)=/1‘40(P,t,q;6)f(q)dv(Q), peM, teR,

wheredv is the volume element afM, g). G(p, t, -; ¢) is a function of clas€ > on M xR
with values in distributions o, and is an odd function af G is said to be thelementary
solution to the Cauchy problem for generalized wave operator

52
~ o2

Letr be the geodesic distance between two adjacent poirits dfhen,G(p, t, -; ¢) has

support in the closed geodesic balle M; r(p, q) < |t|} if |¢] is sufficiently small. We say
thatG hasmomentarily a strong lacuna, or thatP. is amomentary Huygens operator, if, for
every pointp of M, there exists a positive numbg&K p) such thaiG(p, ¢, -; ¢) has support in
the geodesic sphefg € M; r(p, q) = |t|} provided thatz| < T(p). If P, is a momentary
Huygens operator, the dimensionMfis odd and not smaller than 3. This is one of theorems
established by Hadamard [H]. The elementary solution for long period is obtained by iteration

P. — Ay +c¢, wherecis aconstant
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of that for short period. However, to discuss the strong lacuna for long period, we need some
global considerations in geometry. So, in the present article, we concentrate our study only to
the question for short period.

We will prove the following theorem in Section 4.

THEOREM 1. Givena Riemannian manifold (M, g¢), there exists at most one constant
¢ such that P. be a momentary Huygens operator. Furthermore, such ¢ is a real number if
exists.

Next, let(M), ¢y, j = 1,2,...,k, bek Riemannian manifolds. Then the product
spaceM @ x ... x M® is also a Riemannian manifold endowed with the megfi¢ + - - - +
g®. We denote a point of the product spacepy= (pV, ..., p®), p e MU, If we
denote by; the geodesic distance between two adjacent poin'in and byr the geodesic
distance between two adjacent points in the poddpace, we have the Pythagoras formula:

k
@ r(p.)? =) ri(pV. g
j=1

The following is the main result of this article. We shall prove itin Section 2.

THEOREM 2. Given k Riemannian manifolds (M), ¢, let GO (p) 1, g D; 1))
be the elementary solution to the Cauchy problem for
9 ()
szm—AM(j)'FCj
on(MY, gy, 1 < j < k. Supposethat, for every point p/) of M), there exists a positive
number T (p)) such that the first order derivative 3G (p), ¢, -; ¢\/)) /3t has support in
the sphere {¢/) € MY;r;(p, ) = ||} provided that |¢| < T (p") for every j, and
that k be odd. Then the operator

32 k k ‘
Q= a2 ZAM(./) +ZC(1)
j=1 j=1

on the product manifold (M@ x ... x M® ¢@ 1 ... 4 ¢®) is a momentary Huygens
operator. In particular, if P1, ..., P, are momentary Huygens operators and if k is odd, Q
is also a momentary Huygens operator.

The Huygens property has been systematically investigated by GunthlefofGper-
ators with variable coefficients. To be precise, febe a second order hyperbolic operator
of metric principal part in a-dimensional curved space-tim&endowed with a metrié of
signature(+, —, - -+, —) (v = 2). Here,P is said to be ofmetric principal part if the second
order part ofP coincides with that of the Lapladgeltrami operator with respect to Given a
real-valued smooth functiop and a positive smooth functianin a neighborhood of a point
in N, we can define a conformal chanie— ¢2“h of metric and a gauge transformation
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u — au of unknown function onV. So, we have a new operatBrby setting
(5) Pu = e V2912p[o0=20/201/q .

P is said to be theonformal gauge transform of P depending on(g, a) (see Cotton [C]).
Following Gunther [G], we say a hyperbolic operatér of metric principal partto beivial if
every point; of N has a neighborhood such that an appropriate conformal gauge transform
P of P in V has an expression

.9 82 82
P=— - — ... -
Iy Oy dy,?
in an appropriate local coordinate systém, yo, ..., y,). The operator on the right hand

side is said to be the Alembertian of v independent variables.

An operator is a momentary Huygens operator if one of its conformal gauge transforms
is. A trivial operator is a momentary Huygens operatov i dimN is even and > 4.
Nishiwada [N] has proposed an important class of hon-trivial Huygens operators.

We have the following corollary to Theorem 2 which will be proved in Section 3.

COROLLARY. Thereexists an infinite number of non-trivial momentary Huygens oper-
ators.

The author expresses his sincere gratitude to Professor Daisuke Fujiwara who informed
him of the preprint of Kannai [K] after the preparation of this work.

2. Proof of Theorem 2. The existence and uniqueness of the solution to the Cauchy

problem (1)—(2) allows us to represent the solution in the following way.
sin(z+/A) du

6 )=——>f, —(,1)=costVvA where A =-A .
©  u.0 i fooooo G VA f M+c

LEMMA 1. LetG(p.t.q:; Z’;zl ¢))) be the elementary solution to Q on the product
manifold defined in Theorem 2. Then the following hold.

(i) Ifkisoddandk > 3,weset k = 2h + 3. Then we have

k
6(p.0 zcm)

" G W)
:oc(;g){kZ/ /S“n (PP, wjt, gD “))ds}
where
1/ay = 2k+D/2 k=172
o = (w1, ..., wy) isthe generic point of the sphere $¥~1 of radius 1 centered at the origin of

Rk and d S isthe surface element of ¥~ induced from the Euclidean metric of R*.
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(i) Ifkisevenandk > 2,weset k = 2h + 2. Then we have

k
6(pt0 zcw)
aG(J) . . du
_g (12 |k 2D it gD )
ﬁk<t3t){ / /Bkn b 45 ) 1—|u|2}’

VB = (2m)/2,
BF istheball of radius 1 centered at the origin of R and du = du - - - du.

(8)

where

PROOF OFLEMMA 1. SetA; = —Ay g +cY) forl < j < k. Then we have
k operatorsAy, ..., Ax which commute each other. Given a smooth functjoon M =
MWD x ... x M® | letu; be the solution to the Cauchy probléi—(2) for 0. Analogously
to (6), we have
© wpon = VAL A

VAL + -+ A

We shall prove in Section 6.1 the following two equalities involving arbitrary complex num-
bersas, ..., ar, whereh, o, Br are the same as ifv), (8), respectively. Ifk is odd and
k > 3, then

sin(t,/a? + -+ a?)
(10) ay a = ( > { = 2/ / l_[cos(aja)jt)dSw}.
/a12+---+ak2 t ot sk—1

If kis even and > 2, then

Sin(t,/a12+~~+ak2) -
/a12_|_...+ak2 _'Bk(t 3[) { / —/B‘\ Hcoqajujt)\/ |u|2}

(See also Kannai [K].§9) and(10) imply, for the odd case,

(12 ur(p,t) =ak(——> { k= 2/ / vr(p,t, w)dS, }

where

(1D

V(- 1, @) = coSwity/A1) - - - coSwit/Ar) f .
Therefore, we havér). Analogously(11) implies(8) for the even case.
On the right hand side af7), we first calculatd G/ (p!), s, ¢); ¢)/ds and then sub-
stitutes = w;z. A similar computation is to be done also @). g.e.d.

PROOF OFTHEOREM 2. The functiorvs introduced in(12) has an expression

k .
G W) . . .
vf(p,r,w)=/ / f@T] (Y, wit,q; cMydvi(@?) - - - dug(g®) .
MO M & =1 ot
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We fix a pointp of M and a small positive time. Suppose thayf be smooth and have
support in a geodesic ball of radidscentered ay® and thatr(p, ¢°) + 8 < 7. Then we
haver(p, q) < t for every pointg on the support off. For p, ¢, g fixed, we definelU; =
{we S5 w;lt > ri(pP, ¢V}, 1 < j < k. From(4), {Uj}’;:l is an open covering of
§¥=1. So,vs(p, t, ») vanishes identically o§*~* by hypothesis 0@ G/ /3. This implies
thatu s (p, 1) = 0, which is true for every smooth functiofi with support in the geodesic
ball {g € M;r(p,q) < t}. ConsequentlyG (p, 1, -; Z’;zl ¢y has support in the geodesic
spherg € M: r(p,q) =1). ' g.e.d.

REMARK 1. The difference betwee(l0) and(11) is important. To be more precise,
if k > 2, there exists a distribution @ on R¥ with support in $¥~1 such that

siny/aZ+---+a? k
(13) a i =<q>,]_[cos(a,-p,)>

a12_|_..._|_ak2 j=1

for arbitrary complex numbersasy, .. . , a if and only if k is odd.
We shall prove this in Section 6.5. This explains why the d’Alembertidgnief variables
is or is not a Huygens operator according to the parity (fee (14), (15) and (16) below).

REMARK 2. (8) or its variant (37) in Section 6.3 may also be useful to discuss the
strong lacuna. In Section 6.4, we shall show this for one of the simplest examples.

3. Fundamental examples of trivial operators. Proof of Corallary. In this paper,
we confine our investigation to an operator of type

2

d
PCZW—AM‘FC

on a Riemannian manifold/ endowed with a metrig independent of. The space-time
M xR has a metri: = dt?> — ¢, and P, is of metric principal part. We denote= dim M
and suppose that > 3 for simplicity.
The following is a particular case of a result established by Giinther. We prove it in
Section 5 for the sake of completeness.

LEMMA 2 ([Gy, pp. 486-494]). (i) Take a small open subset U of M and a small
open interval I of R. If there exists a smooth function ¢ such that ek be a flat metric in
U x I, then g isof constant sectional curvaturein U.

(iiy If g isof constant sectional curvatureo inU x I, then P istrivial inU x I if and
onlyif ¢ = o (n — 1)2/4.

There are three fundamental examples of trivial operators.

(2°) The d’Alembertian of: + 1 variables

92 " 92

— — —s, , N eR"xR,
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is trivial. It is a Huygens operator if and onlysifis odd and not smaller than 3. The solution
u to the Cauchy problertil)—(2) is given by classical formulas. The d’Alembert formula for
operator representing the vibration of an infinite string=( 1) is given as follows:

t

1
(14 u(p,t) =z | f(p+q)qg, (p,t)eRxR.
t

2)_
We reproduce the Tedone formulas ([T])zlfs odd and: > 3, we set» = 2m + 3. Then,

t ot
If nis evenandi > 2, we sets = 2m + 2. Then,

(16) u(pr)—ﬂn( ){1// f(”“” q}, (p.1) € R* xR.
q\<l

Here,«a,, 8, are the same as {{7), (8), respectlvely.
(15), (16) are proved by means of the Fourier analysis in most of textbooks. Now, we
can verify them easily froni7), (8), respectively, andl4) becaus&®” =R x --- x R.

(2°) The operator
92 <n - 1)2
P = — Agn +

(15 u(p,t) = an(}i> {t"2/~~ 1f(p—i—ta))dSL,)}, (p,t) e R" x R.
sn=

ar2 2
on the unit spherd” is trivial for any dimensiom, and it is a momentary Huygens operator
if and only if n is odd and: > 3. We can define a local coordinate system in every hemi-
spherexinterval in the following way for any: odd or even. Letv = (wo, w1, ..., w,) be
the coordinates iR"*1 of a point ofS”. We set
sint oy

17) y0=7, }’j=E

., l=<j=n,

where
¥ =y (o, 1) = wo + COSt,
for example, in the regiof(w, 1) € §" x R; wp > 0, || < 7/2}. Then we have

n

92 92
(18) Pu = 1//—<"+3>/2(—2 -3 —2)(1ﬁ("_1)/2u).
g Ty
A background o0{18) will be sketched in Section 5.
The solution to the Cauchy proble)—(2) is obtained from(18) together with the
Tedone formuld15) or (16). If n is odd and: > 3, we setn = 2m + 3. Then,

19 u(p,t) =an<,ii> {(sint)”_Z/---/ f(q)qu}, peS'0<t<m.
2(p,t)

sint ot

Here we denot&(p,t) = {q € §"; r(p, q) = t}, which is a sphere of dimension— 1 of
the Euclidean radius sin so we represent every point &f(p, t) by means of a point of the
unit spheres”—1. d ¥ stands for the volume element §f~. The solution in a long period
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is obtained if we extend of (19) to an odd function of in the interval(—x, 7) and to a
periodic function of period 2 for all z. If n is even and > 2, we sets = 2m + 2. Then,

/(@)
(20) up.1) = (smt 8t> / _/g(p 0 V2(p.q) — 2cosrdsq’

pes", O<t<m,
where2(p,t) = {qg € S"; r(p, q) < t} anddS is the volume element .

(3°) The operator
PN n—1\°
= atz Hll 2

on the hyperbolic spadd” with sectional curvature-1 is trivial for any dimensiom, and it
is a Huygens operator if and onlysifis odd and: > 3. We identifyH " with the seR" whose
geodesic distance between two poiptg; is defined to be the non-negative numbép, q)

satisfying cos(p, ¢) = pogo— (p. q), where(p, q) = 3}_; pjq; andpo = vI+ (p, p).

In terms of a global coordinate systdém, ... , p,) in H", we can defin€yo, y1, ..., y) in
the following way for any: odd or even.
sinht Dj
14 Ty
where

¥ =¥ (p,t) = po + cosh
(see Section 5). Then we have

2 n 2
22 Pu=y- <n+3>/2( L )(wm b2, .
2
8y0 iz 18

The solution to the Cauchy proble¢h)—(2) is given by the following formulas. lf is odd
andn > 3, we sets = 2m + 3. Then,

A SR N R n
(23) u(p,t)_otn<sinht8t> {(smht) / /E(p’t)f(q)qu}, peH"t>0,

whereX (p,t) = {¢g € H"; r(p,q) = t}. We represent a point af'(p, t) by means of a
point of "1, d ¥ is the volume element &*~L. If n is even and > 2, we setr = 2m + 2.
Then,

f(q)
24 1) =B 120,
@ w0 =9 (smhtat) / /mpn JZcosh — 2cosh (p.q) -
where2(p, 1) = {qg e H"; r(p, q) <t} anddv, = (1/qo)dq1- - -dqn.

PROOF OF COROLLARY TO THEOREM 2. Letk be odd andk > 3. For everyj,
1<j <k let(MP, g), of odd dimension:;, be either the Euclidean space, sphere or
hyperbolic space. Denoting the sectional curvaturgdfby o;, we set’) = o (n; —1)%/4.
Then, Q in Theorem 2 is a momentary Huygens operator. Unlesaf4il’s are Euclidean,

Q is non-trivial because the metrid? + .- - + ¢® on M@ x ... x M® is not of constant
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sectional curvature. For a fixéd various choice of sectional curvature of every factor space
gives rise to an infinite number of non-trivial momentary Huygens operators. g.e.d.

4, Proof of Theorem 1.

LeEmMA 3. Thefollowing equality holds for arbitrary complex numbersc, y:

' 3
(25) G(p,t,q;c+y)= /0 Jo(y v (t2 — 52))£G(p, s,q; c)ds ,

where Jo(z) = .0 o (—z?)" /(4"m!?) isthe Bessel function of order 0.
PROOF OFLEMMA 3. Power series expansion and term by term integration yield
sinva? + b2 1
(26) —_— = / Jo(bv/'1 — s2) codas)ds .
a2 + b2 0
(25) follows from this and6). g.e.d.

Denoting byu ¢ (p, t) the solution to the Cauchy problefh)—(2) for

32
PCIﬁ—AM‘FC,

we set

4 0
(a2) v (p.1) =/0 Jo(y/y (2 = 5225 (p. 5)ds

LEMMA 4. Given a non-zero complex number y, a positive number R and a continu-
ousfunction¢(s) in0 < s < R, we set

t
(a2) (40) =/0 Jo(\/y (12 —s2)¢p(s)ds, O0<t<R.

Suppose that there exist two more real numbers R, R, such that
O<Ri1<Ry<R, ¢@u)=0 ifRi<s<R, y@®) =0 if R<t=<R.

Then, ¢ (s) isidentically equal to zero intheinterval 0 < s < R.

PROOF OFLEMMA 4. By the assumption on the supportggfwe have

R
V() = / 1 Jo(\/y (12 = s2))p(s)ds if Ri<t<R.
0

The domain of integration is independenttpfo the right hand side is extended to an entire
function ofz. On the other hand, the left hand side vanishes in a non-empty open interval
R> <t < R by the assumption on the supportyf Therefore, we have

Ry
/0 Jo(/y (1% — 52))p(s)ds = O



HUYGENS OPERATORS ON PRODUCT MANIFOLDS 149

identically by the theorem of identity. We operated/ar)/ and multiply by;! to both sides
to have

" ( y/4)’" 2\m
/ Z m'(m_|_ )y Z—s Y@ (s)ds =0.

Letting j — oo, we see that the integral @f(s) vanishes by the dominated convergence
theorem. We eliminate the term withh = O from the integrand, multiply again by+ 1 and
tend to the limit asi — oo. After repeating this procedure, we set= 0. Then, we have
successively

Ry
/ szmq)(s)ds:O, m=20,12,....
0

Thereforep (s) is orthogonal to every polynomial ef and hence to every continuous function
in the interval 0< s < Rj. S0,¢(s) is identically equal to 0 in the interval 8 s < R; and
hencein0< s < R. g.e.d.

PROOF OF THEOREM 1. Suppose that botl®. and P.., be momentary Huygens
operators and that % 0. Then, for every poinp® of M, there exists a positive number
T = T(p® such that the support @ (p°, z, -; ¢) and the support of (p°, 1, -; ¢ + y) are
both contained in the geodesic sphgres M; r(p°, q) = |t|} provided thats| < T.

Let f be an arbitrary function of clags> on M non-vanishing ap® and with support
contained in a geodesic bal} € M; r(p°, ¢) < 8}, where we suppose that9s < T. The
equality(a2) holds for

¢(s) = dus(p®,5)/ds, w(t) =vr(p° 1),

¢(s) =0if§ < s < Tandy(r) = 0if § <t < T because bottP. and P.,, are
supposed to be momentary Huygens operators. Then, we can apply Lemma 4 by setting
R1 = R2 =8 andR = T to conclude thap (s) is identically equal to zeroon 8 s < T. So,
(% = limsy0¢(s) = 0 contrarily to our assumption. Hence, at least on.cdnd P, is
not a momentary Huygens operator.

Next, remark thatG (p, ¢, q; ¢) = G(q, t, p; ¢) for any complex number becauseA y,
is symmetric. So, ifP. is a momentary Huygens operator, then s@isThe uniqueness af
implies¢ = ¢ and hence is a real number. g.ed

5. Proof of Lemma 2, (18) and (22).

PrOOF OF(i). If (s1,...,s") is alocal coordinate system iii, ¢ has an expression
9apds®ds? in U. We denote = s® andh = di? — g = hjids/ds*. Here and in what follows
in this section, Roman indicegsk, ... range from 0 to:, Greek indiceg, g, ... range from
1 ton and we make use of the summation convention of Einstein.

Define the Christoffel symbols and the curvature tensogsafid/ to be

Torp = (1/2)(0ag s+ 08Gan — 09ap) - Ljrk = (1/2)@jhar + dhjr — 0:hj1) .
Raﬂy& = ayraﬂé - aéraﬁy + g)\ﬂ(rakyrﬂué - Fakérﬂuy) s
Rjkrs = 8erkS - astkr + hpq(Fjerkqs - Fjpsrqu) ,
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respectively, wheré; = d/ds/. Sincehoo = 1, how = 0 andhgp = —Jqp, We can verify that
Rjirs = 0if 0 € {j, k, r, s} and thatRyp,5 = —Repys. The curvature tensa i, of e h is
obtained if we replacg j; by ez‘/’hjk. We have (see Eisenhart [E., p. 89])
(27 6‘_2('(J],éj'krs - Iéjkrs = hkrajs + hjsakr - hksajr - hjraks + (hjrhks - hjshkr)b >
where
aj=e’ViVie ™ =a;, b=h*0;0) ().
andVv; = @3/3“ is the covariant differentiation with respectitoTo be more precise,
ago = e‘/’aoze*‘/’ ,  aog = e%000qe™?, aup =e?VyVge ™,
b = (d0p)* — 9% (9a9) (9p¢) ,
whereV,, = Vj,5,« is the covariant differentiation with respectgo
Suppose now that?*h be flat onU x 1. Then,ﬁjm = 0 for all j,k,r,s. Since
Rowgy = 0, we haveig, = 0 for all «. So,e~% is of the form
(28) Y=e? =yo) + Yt ... 5",
where yg is independent ofs?, ..., s") while y1 is independent of. Next, note that
Roa()ﬂ = 0 yields (n2 + n)/2 equalitiesasg = (aoo — b)g,.g- From these and28), we
see that there exist two constaats such that
Yo +ovo=1, VaVg¥r+ (0yY1+1)gep =0,
Y2+ oy — 2t0 = 9% (3a 1) (9p¥1) + o Y2 + 2Ty .

Furthermore, we havéaﬁyg = —Rypys. Then it follows that

(b1)

(29

Ropys = 0(9us9py — Yay9ps) -

Therefore, the sectional curvaturepfs constant and equal to.
Note that(29) yields the following equation foy = e¢~%.

2
(b2) Po[y /2] = _a<”_;1> yd-m/2

wherePy = 82/31%2 — Ay.

PrROOF OF(ii). Suppose that there exists a coordinate systefny?®, ..., y") and a
smooth functioru in U x I such that
9%u 9%u 9%u
30 P, . & P
<0 el =ems { 0692~ a(h2 a(y")z}
wheref = v 1="/24, This implies first of all that?. f = 0 andP.[ fy”] = 0, that is,
31 P.f =0, 23 log f)(3%y?)+ Poy? =0, 0<p<n.

(30) also implies thatP.[ fy? y9] = 2¢P1¢%¢ £, that is,
(32 (3 yP)h*BryT) = e2ePh, e hjx = (3;yP)epg(hy?), O<j k,p,g<n,
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wheree® = ggg = 1, 6% = g4 = —1 ande?? = ¢, = 0 for p # ¢. (30) holds for anyu
if and only if (31) and (32) hold. We multiply,,d;y? to both sides of the-th equation of
(31) and then contract. Then, by a repeated usgaf, we have

—2¢%9; 109 f = &g (3;yP) Vi (W 3 y7)
= VilB* (3 37)e pg 01y D)} — (1/2)V H{EM (B3P )e pg (919))
= Vi@ h i) — (1/2)V (e WM hyy) = (1 —n)e®d;¢.

So0,d;a = 0. Thereforeq is a (positive) constantP, f = 0 means nowP.[y1~"/2] = 0.
This together with(by) yieldsc = o (n — 1)2/4.

Conversely, suppose that= o (n — 1)2/4. Let us confine ourselves to the case where
o =1,—1or0. Then, if moreovet is small, (U, g) is isometric to an open subset 8f,
H" or of R?, respectively (see Eisenhart [E, p. 85]).

If o =0, U is an open subset &" and if (s1, ... , s") is a standard coordinate system
of R", thenP. (¢ = 0) is naturally trivial. Soyr = 1 (p = 0) is a solution tq29) with t =0
andy’/ = s/, 0 < j < n, satisfy (30).

For o = 0, one of solutions tq29) with t = 2 isy¢y = y(s), wherey(s) =
> 4—0€pgs’s?. Changing letters, we define = x//y(x), 0 < j < n. Then we have
the following equality for: with support in the domaify (x) > 0} (note thaty (x)y (y) = 1).

n
% (x)(n+3)/4 Z ehd
p,q=0

Ly ()@ ]

dxPox4
(33)

n 2
9 _
=y ("I 8pq78ypayq [y ()T 4u].
p.q=0

This is nothing but the reflection méiple in the Mirkowski space-tim&”" x R.
For the proof of Lemma 2, it remains only to verif$8) and(22).

PrROOF OF(18). (w1,...,w,) in Section 3,2°) is a coordinate system in the hemi-
sphereU = {wg > 0}. ¥ = wp + cost is positive inU x (—n/2, 7/2) and satisfieg29)
(0 =1, 7 =0). Letus defing/’s to be

yl=—X/logy, 0<j<n,

whereX® = 9/0r , X* = wpd/dw, (see(17)). X/’s commute withP,, and equation®, f =
0,X/P.f =0,X/XFP. f =0 (f = v17"/2) reduce ta31), (32). Hence we havéls).

PROOF OF(22). (p1,..., px) in Section 3,(3°) is a coordinate system valid every-
where in the hyperbolic spadé”. v = pg + coslr is positive and satisfie9) (o =
—1,7 = 0). Let us defing//’s to bey® = d(logv)/dt, y* = pod(logy)/dp. (see(21)).
Then we havé3l), (32) and(22). g.e.d.

6. Proof of (10), (11) and related remarks. Throughout this section, we denote sim-

plya:,/alz—i—'u—i—akz.
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6.1. Proof of (10), (11). A power series expansion yields

)‘ 2+l K .

Sln(at) nl't 2x)!
= here A; =

=) A l[ (zx oW YT 2n+ 1! 1!

Here, the summation on the right hand side is extended over all non-negative integers
M, ..., A andn stands forzl;zl Aj. Then,A, splits into a produch, = A(Al)A(f), where

A(l)

T+ (k/2))2+1 19 htZ" h2
=ar| —— ;
47 D721 (n + (3/2)) 1 ot

k

@ _ 2 1
Y= T w2 ]HZIFO’ * 2) '

Af) is equal to an integral over a simplex of dimenston 1:

A? _2/ / l—[ SRR
§;i>0,81++sp=1" j=1

We rewrite it by setting; = a) ,1<j <k.Since 27 *dsy---dsy//s1-- -5 is the volume
element ofs*—1 and]’[jzla) i is an even function on the sphere, we have finally

k
@ _ 2%
A _/.../Skill_[wj ds,, .
j=1
Therefore, we havél0).

For the proof of(11), we proceed analogously to the above.

=~

)‘ 2+l kK .

sm(at) nl't 2x)!
= , Wwhere C) = ,

=) C 1_[ (ZA )" T 2t 1) oA

andn = Z§=1 A as aboveC; splits asCy = Cil)Ciz):

I+ (k+ 1/t (} o >ht2n+k—1
2720 (n +(3/2)) P ot ’

k
@ _ N 1
G = Fn+ (k+1)/2) ]1:[111()\., + 2)'

o =
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We represenCiz) as an integral over &-dimensional simplex and rewrite it as an integral
over the ballB* to have

k
1/2 ds1---ds
c? = // l—[ 2j—(1/2) 1 %
5;>0,51+ s <1’ =1 1—s51—---—s;

SR Gt

Therefore, we havéll). g.e.d.
6.2. Derivation of (10), (11) from (15), (16). We set
sin (at)
u(p,t) = f(p) , f(p) =codaip1)---CcoLaipr), p=(P1L .., DK)-

u solves the Cauchy proble)—(2) for the d’Alembertian ofk + 1 variables for this initial
value f becaus@’;:1 32f/8pj 2 = —a?f. So,(15) or (16) holds according to the parity of
kif k > 2. By settingp = 0, we have immediatel§10) or (11), respectively.

We have shown thgfl0) implies(7) (see the proof of Lemma 1(7) combined with(14)
implies (15) (see Section 3(1°)) and that(15) implies (10) as above. Therefor&y), (10)
and(15) are equivalent. Analogouslgg), (11) and(16) are equivalent.

6.3. Variants of (7), (8). Letusremark that
19 < 1 9 sm(m)) sin(at)

9 Tt

1<j<k.

ajda; « o

In (10) or (11), we make use of thisfof =1, ..., p, where 1< p < k.
If k is odd andk > 3, we have

sinr) _ (1 8)“” i 2+p/ / w, Sln(aja)]t)}
o« \ior N aj

X 1_[ COE(aga)gt)dSw:|.

l:p+l

(35)

Therefore, we have a variant 6f):

) 19 h+p
G 1, q; J —
() =an(35)

j=1

p
(36) « I:tk2+l7 / . / l_[{wa(])(p(j)’ wijt, 6](]); ¢y
Sk—1 j:l

k

el
x [ =V q" ”>>d5}
I=p+1
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Analogously, ifk is even and > 2, we have a variant aB):
k

) 19 \"*
G(p.t,q; ) = -—
(p ¢y ) ﬂk(tat)

j=1

14
37) 5 |:tk—1+l7/, . ./k 10699, s, 4 )
Bk .
j=1

k
X ]_[ —(p(),uzt,q();c())il
I=p+1 ot V1= |uf?
(36) or (37) may be simpler tha(7) or (8), respectively, in some of applications.

6.4. OnRemark 2 in Section 2. Set
92 92 92 92 92 92 92 92 92
— s, PP=——-——S———, P3=_—— — — — )
02 ap,? 2 3T 52 op2  ap2  apP
P3 is a Huygens operator although neittigrnor P is. To verify this, we assumgl4), (16)
for n = 2 and proveg15) for n = 3 with the aid of(37) fork =2, p = 1.

Let u be the solution to the Cauchy problei)—(2) for P3 with initial value f. From
(14, (16) and(37), itis evaluated ap = o = (0, 0, 0) as follows.

Py =

1 0
u(o,t) = HELU),

where

3 2
t did At, t, t
L) n// 2 " 2z S, ug qu)dqqu&
B

—_ 22 _ 2
V1= nw B2 /1_q22_q32

We restrict the domain of integration with respecfutdo the partw > 0. For fixedu, we
change the variables from., g2, ¢3) t0 (x1, x2, x3) = (A, ng2, ng3). Then we have

3 J1-x 2
L(t) = %// . f(tx)dx/ ' Zudp

2, .2 ’
\/Xz +x3 \/1—x12 — ,u,z\/,u,2 —x22 —x32

The integral with respect tp is equal tar for everyx, so

L) =13 // f(x)dx and u(o,t) = L // fGw)dS, .
B3 4 52

The last equality is precisel{l5) at p = o forn = 3.

6.5. On Remark 1 in Section 2. Suppose ttER) holds for a® with support in
§¥=1. Since sinx/a is an even function of; for every j, we can replac@ by its even part
@, defined to be

(@, f) = <a>, 2753 fleapr, e2p2. .. 8kPk)>
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for every test functionf € C*°(R¥), where the summation is extended ovért@ms with
e; = +1 or —1. &, has also support is*~1. Next, we can replace cas p;) by ¢/“i?i
because si@; p;) is an odd function. Sq;13) is rewritten as

. k

sin ,

(c1) T _ (@, P, where (a.p) = ajp;.

o " T

j=1

Since sinx/« is invariant by rotationa — Ua (U € SO (k)) and{Ua, p) = {(a,! Up), we
can replace&, by its averagar over SO (k) defined to be

(W, f) = <¢e,/ f(’Up)dU>
SO (k)

for every f, wheredU is the Haar measure with total mass 150 (k). So,(c1) is rewritten
as
sin :
(c2) =2~ ey,
o

Now, ¥ has support ins*~1 and is a rotation invariant distribution oR¥, that is,
(W, (d/ds){ f(eX p)})|s—0 = O for every f and every anti-symmetric real mattkof order
k. Hence there exists a polynomiabf single variable such that

(. f) =/ {t](ri)f(rw)} dSy = {t](ri) fr w)dSw}
sk—1 ar 1 or ) Jsk-1

for every f . This and(cp) imply

sin il ;
(c3) e {q(r—)/ e’r<a’“’>d5w}
o or ) Jsk-1

By a computation analogous to that in §6.1, we have

r=1

r=1

(—a?/4"

o0
i(a,w)dS = (271 A+1 7)\‘] — 27.[,)\.+l
/SHe v = (@) (@) 2 mC(m+r+1)

m=0

whereAr = (k — 2)/2 andJ,, is the Bessel function of order This and(c3) yield
(ca) e _ (zn)Hl[q <ri>{(r°‘)_kfx(ra)}}
o ar 1

Comparing the coefficients e in the Taylor expansions of both sides, we obtain a system
of an infinite number of equations
7 A=R2 [ (m + (k/2))

(c5) q(2m) = 2 Tt 32) form=0,1,2,....

(13) holds for a® with support ins*~1 if and only if (cs) holds with a polynomiad.

If k is odd,(cs) defines a polynomia} of degregk — 3)/2. If on the contrary is even,
there does not exist such a polynomjabecause the right hand side @t) behaves like a
positive number multiple of:*~3/2 asm — oo due to the Stirling formula. g.e.d.
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