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WHITTAKER-SHINTANI FUNCTIONS FOR ORTHOGONAL GROUPS
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Abstract. As generalizations of zonal spherical functions and Whittaker functions,
certain special functions op-adic orthogonal groups closely related to automorphic forms
are introduced. Their multiplicity one property and explicit formula are established.

Introduction.

0.1. The object of this paper is to study certain special functions on orthogonal groups
over p-adic fields, which naturally arise from the investigation of automorghicinctions
for these groups.

Let G = SO,, be a split special orthogonal group of degree= m’ + 2r + 1 (r > 0)
defined over a non-archimedean local fieldith the ring of integer®. Let Q be a parabolic
subgroup ofG whose Levi subgroup is isomorphic 80,11 x (GL1)". We embed another
split special orthogonal grou@’ = SO,/ into SO,,/,1 as the stabilizer of an anisotropic
vector, and regar@’ as a subgroup o&. Let U be the unipotent radical d. We denote
by G = G(k) andG’ = G'(k) the groups ok-rational points ofG andG/, respectively. (As
above, algebraic groups are denoted in boldface letters, while the corresponding groups of
k-rational points in italic letters.) We also I& = G N GL,,(0) andK’ = G’ N GL ,,(0) be
maximal open compact subgroups@fandG’, respectively. We choose a generic character
Yy : U — C*invariant under the action @’ on U.

Let us denote by. andR the left and the right regular representationgobn a suitable
function space ort;, respectively. LeC>®(G, yy) be the space of smooth functiofson
G satisfyingL(u) F = ¢y (u)F foru € U. Under the assumption afyy, the groupG’ acts
on C*®(G, ¥y) via the left translation so thai* (G, ¥y) becomes & x G’ module. (The
G-action is the right regular one.)

Let H = H(G, K) (resp. H' = H(G’, K')) be the Hecke algebra a5, K) (resp.
(G', K')) over C. They act onC>®(G, yy)X*K’, the space ok x K'-fixed vectors in
C*®(G,yy). Forw € Homc.ag(H, C) andw’ € Homc q¢(H’, C), we define the space of
Whittaker-Shintani functions attached taw, o) to be the space ofw, w’)-eigenvectors in
C®(G, yy)X*K’. Namely, a function on G is said to be a Whittaker-Shintani function
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attached tqw, o) if it satisfies the following two conditions:

(0.1.1) Luk)RK)F =yyu)F weU, K ek, keK):
(0.1.2) L@ R@F =o' (@)w(@F (' eH, 9 eH).

0.2. Inthis paper, with an application to the theory of automorpkianctions in mind,
we prove that the space of Whittaker-Shintani functions with arbitrary eigenvalyes) is
one-dimensional, and give an explicit formula for the Whittaker-Shintani functions in terms of
the Satake parameters attache¢dow’). In a subsequent paper, by using the uniqueness and
the explicit formula presented here, we will show that certain Rankin-Selberg convolutions
actually give integral expressions of the standafiinctions forSO x GL (see [KMS]). This
kind of convolution is also studied in [GPR].

Our Whittaker-Shintani functions are studied by several authors. Whea 0 or 1,
the functions considered here are the usual Whittaker functions. The explicit formula has
been given by Casselman-Shalika [CS] and one of the authors [K1] independently. In the
case wheren’ = 2, Novodvorsky studied these functions, whose explicit formula is given
in [BFF]. We note thaiG’ is abelian form’ < 2. The case wherg’ > 3 is considered
in [GPR]. On the other hand, if = 0, the Whittaker-Shintani functions coincide with the
special functions studied in [MS2], in which they are called Shintani functions.

In the course of our investigation of Whittaker-Shintani functions, it is indispensable to
study the double coset decompositibik'\G /K, since those functions satisfy (0.1.1). We
shall show that we can choose essentially a subset of maximal torus as representative for the
decomposition. This result may be considered as an analogue/mixture of usual Cartan and
Iwasawa decompositions fgradic groups.

0.3. We now explain our results more precisely. Pefresp. T) be the Borel sub-
group (resp. the maximal torus) & consisting of upper triangular matrices (resp. diagonal
matrices) inG. We assume thd& c Q. We denote by?’ andT’ the subgroups o’ cor-
responding to the abov@ andT. We have the Cartan decompositiotis= K7+t*K and
G’ = KT'* K’ for some subsemigrougs™ c T and7’*t c 7.

THEOREM 0.4 (See Theorems 5.1 and 6.1.).

(1) There exist an element g,, . € G and a subsemigroup 7++ of T containing 7++
such that the decomposition G = UK'T'**g,, . T+*K holds.

(2) The support of any Whittaker-Shintani function is contained in UK'T't" g
TTK.

m,r

Thus Whittaker-Shintani functions are determined by the value on the “torus” as zonal
spherical functions and Whittaker functions are.
Let (w, ") be a pair of “eigenvalues” as in 0.1. The Satake parameteri®fn element
Z of X,,(T), the group of unramified characters Bf([Sa]). We shall naturally identify
X, (T) with (C%)!, | = dimT so thatZ = (&1,..., &) € (C! . Similarly, we let&
be the Satake parameter®f, hencet = (&1,...,&) € €Y' ~ X, (T (' = dimT)).
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The Weyl groupW = W(G, T) canonically acts oiX,,-(T) (via permutation of coordinates
(&), Efl (1 <i <1)}). The same holds for the action & = W(G’, T’) on X,,,(T").
SinceUK'T'**g,, ,T*HK = UK'T" " g,, ,w(T*)"1K, wherew, € K is a repre-
sentative of the longest element#f, Whittaker-Shintani functions are determined by their
values o’ **g,, w,(T+H)~L
Let us define a rational functiaws(&, £) in & andé by

b(&,§)

ows(&,8) = ———————,
D= 8@ d©
where
biE.&) = [] a-q V2 a)pm)a-qV2%E)
1<i<l’
1=j=l
(¢=the cardinality of the residue field &f n;; =1(j <r +i), = =1 >r +1i))
and
H a-&qﬂa-&sgf}a—ﬁ)ﬁm=2+L
1<i<j<l 1<i<l
dn(2) =" B _
H 1-5E8H1-5:5) if m=2.
1<i<j<l

(The definition ofd,,,/ (¢) is similar.)

THEOREM 0.5 (See Theorem 10.9).For any (w, '), the space of Whittaker-Shintani
functions attached to (w, ') is one-dimensional, and is spanned by the function F given by
the following formula,

F(t'g,,wet ™)=Y owsws, we)(ws) Y20 (w's)t2)(t").
weW
w'ew’

Here § (resp. §’) isthe modulus character of P (resp. P').

The resemblance between this formula and that for zonal spherical functions ([Mac])
or Whittaker functions ([CS], [K1]) is obvious. These Whittaker-Shintani functions, zonal
spherical functions, and Whittaker functions are interpreted as spherical functions on spherical
homogeneous spaces. (This will be explained.B)4Actually, this fact plays an important
role in our study of Whttaker-Shintani functions. It is to be noted that Shintani functions
for GL, (k) ((IMS3]) and Whittaker-Shintani functions f@p,, (k) ([Sh2], [MS1]) are also
examples of those functions. We can give explicit formulas for these (Whittaker-) Shintani
functions by the same method as that in this paper. Details will appear elsewhere.

0.6. This paper is organized as follows. The sections 1 through 3 are of preliminary
nature. In Sections 1 and 2, we shall review salfacts on unramified principal series repre-
sentations ofp-adic groups and give some results for our later use in the study of Whittaker-
Shintani functions. In Section 3, we shall give several notation, definitions and preparatory
results concerning the special orthogonal gr@ug SO,, and their subgroups.
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In Section 4, we shall define Whittaker-Shintani functions precisely and give some rep-
resentation theoretic interpretations (including an integral expression) of these functions.

A double coset decompositidinK’\G/K is presented in Section 5. For some technical
reasons, we first give the corresponding decomposition for the full orthogonal @rpUp
and then handle the case f6r = SO,,(k). The support of Whittaker-Shintani functions,
which turns out to be a proper subset®ff r > 0, is studied in Section 6.

In Section 7, we shall show that the dimension of the space of Whittaker-Shintani func-
tions (with fixed eigenvalues of Hecke algebras) is at most one. (Later we shall prove that
the dimension is exactly one.) This theorem is deduced from Section 6 by using a system of
difference equations as in the case of Whittaker functions [Sh1], [K1].

Section 8 is devoted to the calculation of some integrals relevant to Whittaker-Shintani
functions. The calculation is done by case-by-case considerations.

Then we shall give the main results of this paper, the uniqueness (up to a scalar multi-
ple) of Whittaker-Shintani functions and an explicit formula of them for fixed eigenvalues of
Hecke algebras, in Section 10. The method employed here is similar to that in [CS]. To estab-
lish these results, we use the calculation in Section 8 together with a new rationality argument
in Section 9 (see also Section 2).

In the final section 11, we shall evaluate the value of Whittaker-Shintani functions at the
identity element by using a combinatorial argument.

0.7. Main results of this paper were announced at the meeting on “Automorphic forms
on algebraic groups”, 1996 (RIMS, Kyoto University, Japan), [KMS]. See also [M].

NOTATION. We letk be a non-archimedean local fiethe ring of integers ik and
7 a prime element i. The cardinality of the residue fietyf o0 is denoted by;.

We assume that the characteristica$ different from 2 for simplicity.

The normalized absolute value fiis denoted by - |. The normalized additive valuation
is given byv : kX — Z so thatjx| = ¢~*™ for x € k*.

For any algebraic group, s&y, we shall denote by; the locally compact group of its
k-rational pointsG (k).

The symboldat,, , andAlt, denote the variety ofi x n-matrices and that of alternating
matrices of size: overk, respectively.

If A C G,then we let chh be the characteristic function df.

1. Unramified principal seriesrepresentations. In this section, we shall give some
preliminary results on the unramified principal series representations of reductive groups.
The main references are [C1], [C2]. We follotetnotation in [C2] unless otherwise stated.
Throughout this and the next sections, we work with general reductive groups instead of
orthogonal groups which are the main subjects of this paper.

1.1. LetG be a connected reductive group o¥eandP a minimal parabolic subgroup
of G. We restrict ourselves to the case whérés split overk for simplicity, since later we
shall work only in this situation. However we remark here that all the statements given in
Sections 1 and 2 are valid also for non-split groups with suitable modifications.
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We fix a maximal split torug in P. The groupP is actually a Borel subgroup from
our assumption. Then we have the Levi decomposilea TN, whereN is the unipotent
radical ofP. We denote byX the root system ofG, T) and by X * the set of positive roots
corresponding t®. The unipotent radical of the opposite®is denoted byN—. SinceG is
split, we can assume th@ and other subgroupsk, P, N are defined oven.

Let K = G(0) be the maximal compact subgroup®fconsisting ofo-rational points of
G. ThenG = G(k) admits the lwasawa decompositich= PK = NTK and the Cartan
decompositiorG = KT*" K, where

TV =t eT||la@®)| <1l@eZh}.

Denote byW = Ng(T)/T the Weyl group ofG with respect tal'. We shall often identify
each elementy € W with a representative i, and regardV as a subset ok. We let
¢ : W — Zso be the length function with respect 6. The longest element dV is
denoted byw,, and the reflection associated withe X by w,,.

Let B be the Iwahori subgroup containedkncorresponding t&+ so thatB (mod )=
P(o/r0). We have various Bruhat-type decompositiaghs= PWP, G = PWB, G =
BWTB andK = BWB.

1.2. Let

Xnr(T) :={x € Hom(T,C*) | x|rnk =1}

be the group of unramified characters7of We also denote,,.(T) simply by X. We set
x(tn) = x(@) fort € T,n € N so thaty € X defines an element of Hoift, C*). For
x € X, the space of unramified principal series representdtign is given by

1(X)=1{feC®G) | f(pg) = x8YD(P)f(g9) (p e P, g € G)}.

Heres : P — RX, is the modulus character @f. The groupG acts on/ (x) by the right

regular actionf — R(g)f for ¢ € G, where(R(g)f)(x) = f(xg). Note that, by the

Iwasawa decompositiori(x) is canonically isomorphic ta2°(P N K\K) as aK-module.
We denote byP, the G-projection fromCS°(G) to I(x) defined by

Py (f)(g) = fP (x "BV (p) f(pg)dp (f € CZ(G)).

Heredp is the left invariant Haar measure Bfwith [, dp = 1 (see [C2]).

1.3. LetQ be an algebraic subgroup &. Letl/ be a locally closed subset @f
invariant under the left and right translations Byand Q, respectively. We denote by ; i)
the 0-module consisting of € C*° (/) with compact support modulB, such thatf (px) =
(x8Y2)(p) f(x) for p € P,x € U. If U is open inG, thenl(x;U) is a Q-submodule of
I (x) via extension by zero outside &f.

PROPOSITION 1.4 ([C1, 6.1.1], see also [BZ]). Let U, V betwo P x Q-invariant open
subsets of G such that &/ > V. Then the sequence of Q-modules

res

0— I V) -5 10U 2B 16U — V) — 0
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is exact. Here i isthe natural inclusion and resis the restriction map.

1.5. Now we putQ = P in the above setting. Let us pd, = |JPyP (y =
w, or £(y) > £(w)) forw € W. Itis known thatG,, is open inG, and thatPw P is closed in
G,,. Thus we have, from 1.4, an exact sequenceg-ohodules,

(1.5.1) 0— Z I(x: Gy) — I(x: Gy) —> I(x; PwP) —> 0.
L(v)>L(w)
Since the Jacquet modul€y; Pw P)y is isomorphic to the one-dimensional representation
(w1x)8Y2 of T, we have
(1.5.2) 100N ~ @ wx)sY/?
weW
for x € X™9, whereX™9 = {x € X | wx # x foranyw € W} is the set of regular characters
in X.
1.6. We assumg to be regular until the end of 1.10. L&}, , : I(x) — I(wy) be
the intertwining operator given by the following integral
(1.6.1) Ty ($)(x) = / ¢ (w tnx)dn

NNwNw-I\N

for ¢ € 1(x). Heredn is the invariant measure &f N wNw 1\ N with fumage of NAIK) dn =

1. (This integral (1.6.1) converges under certain conditiongcend is continued holo-
morphically to X™9. See [C2], [Mat].) By the Frobenius reciprocity [C1], thi3, , cor-
responds to the projectiai(x)y — (wx)8¥/2 arising from (1.5.2). We note that the image
Ty-1y,(I(yx; Gyw)) is contained inl (x; Gy) if £(yw) = €(y) + £(w) (see [C1, 6.4.3]).
The next proposition will be used in Section 2.

ProPOSITION 1.7. Foranyy, w € W with£(yw) = £(y) + £(w),

Ty1, TGx: G+ Y 1(x: Go) = I(x: Gu).
L(v)>L(w)

PrROOFE Inview of (1.5.1), it suffices to show that the composite of the maps

res

T 1,
reso Ty-1,, : 1(yx: Gyw) — 1(x: Gy) — I(x; PwP)

X

is surjective. We note that, foranye W, P\ Pz P is naturally isomorphic toN Nz~ 1Nz)\N.
Hence we have an isomorphism as vector spaces

ley =tz 2 I(x; PzP) —> C°(N Nz 1NZ\N)
given by
t(p)(n) = p(zn) (¢ € I(x; PzP),n € N).
The inverse of, is given by
THa)(pzn) = (82 (pla(n) (e € CP(NNZT'NZ\N), pe P, neN).
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Now we pute = tyy,yx andd’ = v, x. We calculate res 7,1, (¢) for ¢ € 1(yx; Gyw)
with ¢|pywp = 1 (a) (@ € C(N N (yw) "IN (yw)\N)). We then have

(t/ oreso T),—l’},x)(Qs)(i’l) = (T),,l!),xqﬁ)(wn)

= / ¢ (ynywn)dn
NNy=INy\N

= / ¢ (ywnan)dna.
wINwN(yw)~IN(yw)\w-INw

Note that the conditiong > 0 andwa < 0 imply thatywa < 0. This shows that
NNnw iNwn Gw)  INGw) = NN GGw) " INGw)
and
wiNw N Gw) INGw\wINw = NN w) T INGw)\N Nw iNw.

Thus the integral in the right hand side above is written as

¢ (ywnan)diz = / a(nan)dris.

/wleﬂ(yw)lN(yw)\wle NNGyw)~IN(yw)\NNw—1Nw

Obviously the mapr from C2°(N N (yw) N (yw)\N) to CX(w~INw N N\N) given by

w(a)(n) = / a(nsn)dns
NN(yw)~IN(Gyw)\NNnw-1Nw

is surjective. Thus the map red/, 1 ,, = !omouis surjective. O

1.8. LetH = H(G, K) be the Hecke algebra @f5, K). Forx € X, (T), we let
ok = ¢k, be the function orG given bygx (ntk) = (x6Y2)(t) (n e N, t € T, k € K).
This is a basis element of the one-dimensional sgaggX , the space oK -fixed vectors in
I(x). After Satake [Sa], we defineGhomomorphismw, of H to C by

wy () = /G ¢k (9e(g)dg (9 € H),
whered g is the Haar measure @f with vol(K) = 1. Hence we have
R(p)pk = wy (9)dk .
where
(R(¢)¢1<)(X)=/G<P(g)¢1((xg)dg

by definition. Thery — w, givesrise to a bijection betwedW\ X, (T) and Hong aig(H, C).
1.9. Letus puby, = ¢u,, = Py(Chpyp) (w € W) so that

(x8Y% () if k € BwB,

1.9.1 w =
( ) Pul9) {0 otherwise,
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forg=ntk (ne N,teT,keK). Then{¢, (weW)}is a basis forl(x)?. Let c.(x)
(o € X) be the c-function in [C2] (see also [Mac]). According to [C2], there is another basis
{fw (w e W)} for I(x)? satisfying

(1.9.2) R(chgp) fu = VOI(BtBY(wx)8Y2(t) fry (1 € THY),
(1.9.3 Jwe = Guy
and
(1'9«4) ok = Z Cw(X)fw ,
weWw

wherec, (x) =[] cx(x) (@ > 0, wa < 0). We easily see thalt, 1, (Dugwx) = fuww-

PROPOSITION 1.10. Thereisa basis {g,,(w € W)} for I(x)® satisfying the follow-
ing properties:

(1.10.2) R(chg,-15)g,, = Vol(BtB)(wx) 18Y?(1)g,, (1 eT*h);
(1.10.2) 91=¢1;
(1.10.3) ¢k =" ") (g

weW

where T, (x) = [ (%) (@ > 0, wa > 0).
PROOF We note thatv, (1) e 7Tt if r € T**. Forr € TT1, we have
(1.10.4) Bw¢B - Bt 1B = Bwyt ™ B = Bwi(t)" B - Bw/B

by using the lwahori factorizatioB = (BNN~)(BNT)(BNN) and the facts(BNN)r~1 ¢
BN N andr1{(BNN")t ¢ BN N~. LetH(G, B) be the Hecke algebra ¢&, B). This
is a C-algebra under the convolution product with a bagihg,p (w € W)}, where
vol(B)~1chg is the unit element. Then (1.10.4) implies that

chpy, B - Chp,-15 = VOI(B)CthN—lg = cth(,)_lg - Chpy, B

in the Hecke algebra((G, B). Note that basis elements ghs (w € W) are invertible.
Therefore we have (1.10.1) if we pygt, = R(CthzB)*lfww forw € W. Sincefy, =
$w, = Py(chpy, ), we see that

91 = VOl(B)R(Chgu, )Py (Chpu,8) = Py (Chy) = ¢1.
Finally applying vol B) R(chg,, ) ~* on both sides of (1.10.3), we get

qfe(w{)(bK — Z Cw(X)gw(w = Z Cw(X)gw' U

weW weW
We note that

(1.10.5) Jw = Tw_l,wx (¢l,wx)
forw € W (cf. [Mat], [K2]).
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1.11. For a suitable subs#& of X = X,,(T), we consider an analytic family of
representations(x) (x € Vx) (see [C1, 2.7]) in a certain algebraic way.

Let C[X] be the coordinate ring of the affine varieky ~ (C*)4™M7, Sincex =
Hom(T/T N K,C*), we see that each elemenbf T (moduloT N K) defines a regular
functionn(r) on X by n(#)(x) = x(¢) (x € X). Note thaty : T — C[X]* is a homomor-
phism. We regarg as a homomorphism from to C[X]*. As in [K2], we define aG-module
I overC[X] by

I ={f eClX]1®c C®(G) | f(pg) = m8Y>(p)f(9) (p € P, g € G))
~ C[X]®c C®(PNK\K) (asC[X]-modules)

This C[X]-module ! reduces tal (x) under the specialization at € X. Also, under the
notation of 1.3, we can defing[X]-module! (/) for a P x Q-stable open subseét of G.
The specialization of (/) aty € X isI(x; U).

Let Vx be a Zariski open subset &f. We denote bYC[ V] the ring of regular functions
on Vx. Then we define a&-module overC[Vx], the restriction off to Vx by I|y, :=
ClVx] ®crx] I. We use a similar notatiodi({/)|v, for 1) above. LetX"9 be the set
of all the regular elements iX. We know that the intertwining operatdt, , : I(x) —
I(wy) (x € X) is regular onX'9, i.e., T, , (P, (f))(g) is regular iny € X9 for any
f € CX(G)andg € G (see [C2]). This follows from the following two facts:

(1.11.1) The restriction of,, onI(x)? is regular iny € X"9 (see [Mat], [C2]).
(1.11.2) The spac&(x)® generated (x); or more strongly/ 2 generates as aG-module
overC[X] (see [Mat, 5.3.14]).

Let I, (w € W) be theC[X]-module whose specialization gtis given by (wy).
(Hencely = I by definition.) Since the intertwining operatdfg , (w € W) are regular in
x € X9 we haveG-homomorphisms oveE[X"®9], T,, ; : I |xres — I,;|xres that induce
Ty-1.y : 1(zx) — I(wy) foranyw,z € W andy € X',

1.12. We saythatalinearforip: I(x) — Cisrational in x if [, is obtained from the
specialization of £[Vx]-homomorphisni : 7|y, — C[Vx] for some Zariski open subs&k
of X. More generally, if a family of subspacéq ) of I(x) (x € Vx) is the specialization of
aC[Vx]-submoduld’ of I|y,, we can define the rationality of a linear fOlQ’]: I'(x) - C

as well. LetP be the canonicali-map fromCZ°(G) to I given by

P(f)(g) = fP =YY% (p) f(pg)dp (f € C(G))

(see 1.11). The image &f generate$ as aC[X]-module. Hence, in order to see that a linear
forml, : I(x) — Cis rational, it is enough to check that, for afiye C°(G), the function
of x € X given byl, (P, (f)) isin C[Vx] for some operVx (independent of).

Suppose that a linear fory , : I(x) — C has a parameter € Y, whereY is a
parameter space (a Zariski open subsefafs > 0, for example). Then we say thjt,
is rational in(x, o) if I, is the specialization o[V xy]-homomorphisnC[Vy «y] ®cx]
I — C[Vx«y] for some open subsély.y C X x Y.
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Finally, we remark here that we can formulate 1.7 as a stateme@f (6F9-modules:
(1.12.1) Ty-1,(Iy(Gyw)) + Z 1(Gy) = I(Gy)
L(v)>L(w)

foranyy, w € W with £(yw) = £(y) +£(w). This shows that a linear forfy : I(x; G) —
C is rational in x if both the restriction ofl, to 7,-1,,(I/(yx;Gyw) and that to

Z@(v)>g(w) I(x; Gy) are rational.

2. Equivariant linear forms. In this section, we study the space Hgti (x), p) for
asubgrou of G and a one-dimensional representatiosf Q. We note that Horg (1 (x), p)
is naturally isomorphic to the space of distributioAson G satisfying L(p)R(x)F =
(x~18Y2)(p)p(x)F for p € P,x € Q. HereL andR are respectively the left and right
regular actions of; on the space of distributions.

2.1. LetQ be an algebraic subgroup Gfsuch thatQ has finitely many orbits o\ G.
We let{p = p, : Q0 — C*} be a family of one-dimensional representations with a parameter
o € Y, where the parameter spate= {o} is a Zariski open subset & for somes > 0.

LEMMA 2.2. LetObeaP x Q-orbitin G. ThendimHomy (I (x; O), p) < 1.

ProOOE We have

I(x; 0) ~Ind.(¢ 1 (xsY% | 0ng~tPg, Q)

by definition, if O = PgQ for someg € G. Here the right hand side denotes the space
of smooth functionsf on Q with compact support modul® N ¢ 1Py such thatf (px) =
x8Y2)(gpg™Hf(x) for p € QN g tPg,x € Q. Thus, if we lets, be the modulus
character o N ¢~1Pg, we get
dim Homy (I (x; 0), p) = dimHomy (Ind. (g " (x8"*) @ p™* | @ N g~ Py, 0),O)
= dimHomy,-1p, (9 (X8 ® p 1. 8,)  (ICL 243))
<1l O

Now we assume the following properties #n Q, x andp.

ASSUMPTION 2.3.
(2.3.1) There exists a unique opghx Q-orbit Ogin G.
(2.3.2) There exists an open dense sulietf X x Y such that

Homo (1 (x; O), ps) = {0}

forany P x Q-orbit O distinct fromQq if (x,0) € Z.

PROPOSITION 2.4. Supposethat Assumption 2.3 holds. Then therestriction map from
Homg (I (x), ps) to Homg (I (x; Oo), ps) isinjectivefor (x, o) € Z, and hence

dimHomg (I(x), ps) < 1.
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PROOF Letus sell; = |JO (codimO < d) ford > 0. Thenli; are P x Q-stable
open subsets af for d > 0. Note that/p = Og and that{; = G for d large enough. We
have exact sequences@fmodules

0— 16 Us1) — TG UD) — Y 1(x:0) — 0
codimO=d

foranyd > 1 by 1.4. Thus, from (2.3.1) and (2.3.2), the restriction map is injective and

(2.4.1) dimHomy (1 (x), po) < dimHomy (1(x; Oo), po) - 0

REMARK 2.5. (1) The argumentin 2.4 actually shows that
dimHomy (I (x; U), ps) <1

forany P x Q-stable open subsgt of G under the assumption 2.3.
(2) Similar result holds when there are finitely many oper Q-orbits with a suitable
modification (of 2.3 and 2.4).

2.6. Now we shall work withQ satisfyingQ c P in the following situation:

(2.6.1) For some open (but not necessarily Zariski open) sub%enf X x Y, there exists
a family of non-zero elements , € Homg (I (x), ps) ((x,0) € Z).

We shall give conditions o, , € Homg (I (x), ps) to be meromorphically (rationally)
continued to the whol& x Y (see 1.12). Note thatw, P is aP x Q-stable open subvariety
of G. We impose the following condition on the family &f, for (x,0) € Z*.

ASSUMPTION 2.7. The restriction off, , to I(x; PweP) depends rationally on
X x Y. Namely, there exists a Zariski open subZétof X x Y so that the function of
(x,0) given byl, - (Py(f)) for afixed f € CX(PwP) is a regular function orz’. In
particular, one can exterd ; |;(,. pw, p) 10 geNErC(), 7).

2.8. The Weyl groupV acts onX x Y by (natural actiony (trivial action). We may sup-
pose thatZ in 2.3 is identical taZ’ above, and moreover thdtis W-invariant and contained
in X"™9 x Y, by replacingZ by a dense subset if necessary.

Let Ty = T, -1y ° I(wtx) — I(x) be the intertwining operator in 1.6. Then
Tilyo =lyo o Ty € Homo(I(w™tx), ps) for (x,0) € Z*.

Thus the uniqueness property 2.5 (1) shows that (under 2.3 and 2,7)eif € ZNZ™,

(2.8.1) Tolx.o w1y Pwepy = W, X 0)ly-1y o |11y Puy p)

with some scalar factar(w, x, o). (Note that/
rational in(y, o) by Assumption 2.7.)

w-Ly.0|1w-1y: Pw, py IN the right hand side is

ASSUMPTION 2.9. The scalar facter(w,, x, o) for any simple rootr depends ratio-
nallyon(x,o) € X x Y.
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PROPOSITION 2.10. Under the assumptions 2.7 and 2.9, I, , € Homg(I(x), ps)
depends rationally on (x, o) € X x Y. In particular, for generic (x, o), I, is defined and
satisfiesHomp (I (x), ps) = C-ly,6.

PROOF.  We shall prove that the restrictiongf, to I (x; Gww,) depends rationally on
(x, o) by induction oné(w). (For the definition ofG,,,,, see 1.5.) This is valid fow = 1
from the assumption 2.7. We assume th@b) > 0 and thaﬂx,(,|,(x;gw) foranyy e W
with £(y) < £(w) depends rationally iriy, o). We decomposa asw = wyy (L(w) =
£(y) +1,a € A). Then, by (2.8.1),

*
Ty lx o | 1wax:Guy) = @Was X 0)lwy x.0 11 (wax:Guy)

for (x,0) € ZNZ™. Since the right hand side above is defined om, x; Gyu,) for generic
(x, o) (and is rational) by the induction hypguasis, the uniqueness 2.4 implies that

* —
TwalXao' |l(wocX;Gywl) - a(wa’ X5 G)lwax!all(wax;G}'ufl) .

The intertwining operator,, = Ty, , depends rationally op (see 1.11). Thus the restriction
Ly | Ty (1 (wax: Gyuy)) d€PENAS rationally oy. The induction hypothesis and 1.7 (see also
1.12, especially (1.12.1)) show that, 76t Gy is rational in(x, o). Therefore we see that
Iy - s rational in(x, o), and hence is defined for gene(ig, o). Moreover the uniqueness
argument 2.4 shows that HQ/ (), ps) = C- I+ for generic(x, o). O

2.11. In Section 9 we shall construct a family of the equivariant linear fdgrgsin
the following way. Suppose that there exist an open suBdetf X x Y and a family of
continuous functiond, » ((x,o) € Z*) satisfying

(211.1)  Yyo(pgx) = (x Y5 (p)ps () Wy o(g) (peP. geG, x€Q).

TheseY, , give element$, , of Homg (1 (x), ps) by setting

.o (Px(f)) =/Gf(g)YX,a(g)d9 (f € C(G)).

3. Orthogonal groups. In what follows, we shall give several notation, definitions
and preliminary results concerning the split special orthogonal gr@ps= SO,, (m =
1,2,...) and their subgroups. We often handle the odd case (wheseodd) and the even
case (wheren is even) separately.

3.1. Letm be a positive integer and puts [m/2], the integral part ofn /2. Let S, be
a symmetric matrix of degree given by

0 J if mis eve

J 0 n
Sm = 00 J

0 2 O if misodd,

J 0 0
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where

0 1
Ji = e GL; (k).
1 0

Denote byG,, (or SO,,) the special orthogonal group of the symmetric maskjx
Gy =80, =S0(Su) =1{g € SLu | tgsmg = Su}.

The groupG,, is split overk and defined over. The rank ofG,, isl = [m/2].
3.2. LetT, ={d,@(1,...,5) | 1,...,4 € GL1} be the subgroup of diagonal matri-

ces inG,,, which is a maximal split torus d&,,. Hered,, (71, ... , ;) denotes the diagonal
matrix diagz, ..., 1, 1,47t .. 7Y if mis odd (resp. dia@1, ... 6. 67 . gD ifm
is even).

We letP,, be the standard Borel subgroup consisting of all upper triangular matrices in
G,. ThenP,, = T,,N,,, whereN,, is the unipotent radical o?,, consisting of all upper
triangular unipotent matrices i®,,. We also denote bi;, the group of lower triangular
unipotent elements i, so that the grouf ,,N;, is the opposite oP,,.

We letK,, = G,,(0) be a maximal compact subgroup@f, = G,, (k). Letw : K,, —
G, (0/70) be the reduction module. ThenB,, := @ ~1(P,,(0/70)) is an lwahori subgroup
of G,,. We have the Iwahori factorizatioB),, = N,y 1) Tn, @ Nim,0)- Here, for any subgroup
V of G,, overo, we set

Vi :=V() (=VNKy,)
and
Vi = Ker(wlv(o) : Vo — V(0/m0)) .

We denote byik the normalized Haar measure &f,. Letdn (resp. dt) be the Haar
measure oV, (resp.T,,) normalized so that voN,, N K,;,) = 1 (resp. volT,, N K,,) = 1).
We denote bys,, the modulus character df,, (or of P,). Namely,§é,, is defined to be
Sm(t) = d(tnt™Y)/dn. Fort = dy(t1,...,1) € T, 8u(2) is given explicitly ass,, (r) =
]_[ﬁz1 |t;|~2% . Then the Haar measudg of G,, with vol(K,,) = 1 is given by, symbolically,
dg = 8,,(t)dndtdk as usual. (See the lwasawa decomposition given below.)

The Weyl groupW,, := Ng,, (T,»)/ Ty acts onT,,. As in Section 1, we shall choose
representatives d¥,, in K,, and often regardV,, as a subset of,,.

3.3. LetHon(T,,, GL1) be the character group ®f, and Hom{GL 1, T,;,) the group of
its one-parameter subgroups. We gfye(1l < i < )}, the standard basis of Hdaim,,, GL 1)
so thate;(dy, (1, ... ,1)) = t; forr,...,p € k*. Let{d; (1 < i < 1)} be the ba-
sis of Hom(GL 1, T,;) that is dual to{e; (1 < i < I)}. Namely,d; is given byd;(r) =

d.(@,...,1, ;, 1,...,1) (¢t € GLy) for1l < i < [. We denote the canonical pairing on
Hom(T,,, GL1) x Hom(GL1, T,,,) by (., ) so that(e;. d;) = 8;;.
SetA,, = Z'. Forx € A,,, we putt(A) = d,, (7™, ..., 7™) € T,,. We can naturally

identify A,, with Hom(GL41, T,,) by the mapy : A,, — Hom(GL1, T,,) defined to be
{y,n(W)) = v(y@())) (y € Hom(T,,, GL1), A € A,,). For simplicity, we identifyA,, with
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Hom(GL 1, T,,) throughn so that we write(y, 1) instead of(y, n(1)) (see Section 7). We
have a bijective correspondence betwegnand7,,/(T,, N K,,) given as

A€ A, <— t(W) (Mod T, NKy) € Ty /(T N Ky) .
The lwasawa decomposition shows that
Gm=|_| NutKn.
)LEAm
Let us denote byt;! the subsemigroup of,, given by
At — A=Q1, ..., 2D €A, |[A1>--->2 >0} if m is odd,
" lr=00 M) € Ap A== Mo = I} i miseven

Under the identification above,!, corresponds to the dominant coweights in H&h 1, T,,).
Then we have the following Cartan decomposition:

Gy = |_| Kt (W) K, .
reAy

The Weyl groupW,, acts on4,, in a natural manner. We may regdhd, as a subgroup
of GL(A,,), which induces permutations ¢tteq, ... , g}

3.4. LetX, (k*) be the group of unramified characters igf. We shall identify
X (k) with C* by the correspondencE,, (k*) > x < x(wx) € C*. Moreover, by
abuse of notation, we shall often dengtér) simply by x in the above correspondence. We
denote byX,, = X, (T,,) the group of unramified characters®f. Then, as in the above, we

can identifyX,, with (C*)! so thatZ (r(A)) = 5;*--- £/ for & = (&1, ..., &) € (C*)\.
The Weyl groupW,, acts onX,, by wE(#) = E(w=1@1)) (w € Wy, & € Xy, 1t € Tp). It
induces permutations d€1, &1 %, ..., &, & ).

3.5. The root system afs,,, T,,), which is a subset of Hofit,,,, GL 1), is denoted by
X = 2(G,, T,y) and given as follows:

MEeixeil<i<j<D, x5 A<i<D} fm=2+1,
"Tlka ke A<i<j <) if m=2l.
Fora € X, we letX, be the corresponding root subgroup. More precisely, we choose
each isomorphism, : k — X, overZ in the following way:x,(¢) (¢ € k) is given by
I+t(Eij — En_jt1m—i+1) if a=e—e;(A1<i#j=<;
I +t(Eim—jy1— Ejm—it1) if a=e+4+e;(1<i<j=<i);

I —t(Em—iv1,j — Em—jy1,0) if a=—-g—¢;(1<i<j=<l);
I +1tQEi 141 — Erxam—i+1) — t°Ei m—i+1 if a=e1<i<lm=2+1);
I —tQ2En-it1041— Ei+1i) — 1?Em—it1, if a=—g(1<i<lm=2+1).

HereE;; denotes the matrix unil < i, j < m), andk the algebraic closure @f
Let ¥ € Hom(GL1, T,,) be the coroot corresponding to € X,,. We puta, :=
(@) e Ty.
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We record here a well-known formula:
(3.5.1) Xo (1) = Xt Hwea, " Phx_o (™Y (@ € Dyt € k)

with some element € T,, (o) = Tn N K. Herewy, is the reflection associated with This
is a consequence of the decomposition

m#o_(é )-(A D) 2)0A )

Let X,f O A, be the standard sets of positive roots and simple roots, respectively, with
respect td>,,:

Z:Jr:{e2,~:|:e2j(1§i<j§l),ae,'(lgifl)} if m=21+1,
{esite; (L<i<j<D)} if m=20,
and
{oi=¢6i—6iy1(1<i<l-1), =g} if m=21+1,

Am =

o =6 —e1(L<i<l—-1),qp=¢-1+¢} f m=2.
Hence the standard Borel subgrd®p corresponds tg C A,,, andN,,, the unipotent radical
of Py, is written asN,,, = [, o Xa-

3.6. WeletQ,, , (1 <r <) be the standard maximal parabolic subgroup correspond-
ingtoJ = A, — {o}. Whenr = 0, we putQ,, 0 = G, for convenience. The standard Levi
decomposition 0Q,, , is given byQ,, , = M, ,U,, .. Here

Mpy,r>~GL, x SOpy1 (m=2r+m' +1)

is the standard Levi part containiig,, andU,, , is the unipotent radical d,, .. We write
M., = G® x G@ whereGWY ~ GL, (resp.G® ~ SO,,/;1). The root systems oV
andG® are given by

IV =t —ep)A<i<j<nr)

and
{eixe; r+1l<i<j<r+10l), e +1<i<r+1)}
@ = it m=2r4+2'+1,
{feitej r+1<i<j<r+0'4+1))} if m=2r+2'+2,
respectively.

Subgroups o66¥) (i = 1, 2) are denoted bP"") (the standard Borel subgroup of upper
triangular matrices)N) (the unipotent radical dP®), T® (the standard maximal torus of
diagonal matrices), etc. In matrix form, some of these subgroups are given as follows: We set

1, th)CSmer Jr(y — %Smer E9))
Vm,r(x’ y) = 0 Lu—2 —X € Qm,r
0 0 1
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for x € Mat,,—2,,, ¥ € Alt,.. Then we have
Um,r = {Vm,r(x,y) | x € Matm—Zr,ra y € Alt,}.

We also have

a 0
Mp.r = m.r(a, h) = h aecGL,, heG,_y
0 a

Herea = J,'a1J, fora € GL,. LetZ, be the group of unipotent upper triangular matrices
inGL,. ThenN® = {1, -(z,1) | z € Z,}.

3.7. Henceforth we fix two non-negative integersandr satisfyingm = m’ +2r + 1.
Note thatM,, , ~ GL, x G,,/41 in this setting. We seé6 = G,,, G’ = G, and so on. Hence
we put

K=Ky, T=Tn,, H=Hn, [=I[m/2],

X=X,2>& =(&1,...,&)
and
K/sz” T/sz’a H/sz’a l/=[m//2],
X/ZXml 9%‘ =($17"'a€:l/)a
for example.

3.8. We define an embedding- ¢, of G, into G,,/+1 as follows:
(@) If m’ = 2!’ is even,

b a 0 b
(o)-(334)
¢ c 0 d

where ‘z Z ) € G, is the block decompositionocresponding to the partitiom’ =

U+,
(b) If m" =20’ + 1is odd,
a1 ar as al az/2 az/2 as
. bi by b _| br (b2+D/2 (b2—-1)/2 b3 ’
o ¢ by (b2—1/2 (b2+1)/2 b3
€ c2 c1 c2/2 c2/2 c3

ayp a2 as
where| b1 b2 bz | € G, is the block decomposition corresponding to the partition
c1 c2 c¢3
m =1'"+1+1.
Note that the image af, is the stabilizer ir5,,,, 1 of the anisotropic vector

I'+1 U'+1 I'+2
’©,...,0, 1,0,...,0) (resp/(0,...,0, 1,-1,0,...,0)
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in k"' *1 for m’ = 2I' (resp. m’ = 2/’ + 1). Henceforth we shall rega@ = G,, as a
subgroup ofG = G, under the magy’ — (1, t,w(g")) (¢ € G’) unless otherwise
stated.

3.9. We shall call the case where= 2r + 2’ + 1, m’ = 2I' (hencel = r + 1) the
odd case and the case where = 2r +2I' + 2, m’ =2/’ + 1 (hencd = r + 1’ + 1) theeven
case, respectively.

In the odd case (where’ = 2/’ is even), we takd @ = T N G as a maximal toru$’
of G'. Then the embedding’ — G®@ corresponds to the injection

Y ={tejte, A<i<j<l)}— »@

givenbye; = ¢, (L <i <I').
In the even case (Where’ = 2/’ + 1 is odd), we take K&k, ;1) N T? as a maximal
torusT’ of G’. The embedding’ < G corresponds to the surjection

P & 5 = (ke ke, A<i<j<) & A<i <)}
induced by the natural projection

Hom(T®,GLy= Y Ze—HomT.GLy=( Y.  Za)/Zerra.
rl<i<r+l'+1 rtl<ier+l/4+1

(We denote the image of ; under this projection by;.) The root subgroups @’ are given
by

X:I:sl/. = {le:gl/.(t) = xi€r+iZF€r+[/+1(t)-xié‘r+,‘i€r+]/+1 (t) I t e k} 5 Xj:gl/_j:g} = Xi6,+ii€r+j .

As in the case 06 (i = 1,2), we denote by?’, T’, N’ etc., the counterparts of the
objects forG.
3.10. LetQ be the parabolic subgroup & with P ¢ Q C Q,, , whose Levi factor is
T x G@ ~ (GL1)" x SO,/,1. The unipotent radical o is given byU := NOU,, .
Then the groufgs’ normalizesU (see 0.1). Let us denote Y the semidirect product d&’
andU. Obviously the unipotent radical &f is U.
Lety be an additive character s#fwith conductor. We define a charactery of U by
r—1
1ﬁU(Vm,r(x’ y)I/Lm,r(Z’ 1) = 1ﬁ(xl’+l.,1 — €mXr421+ Zzi,i-i-l)
i=1

for x € Mat,,_o, . (k), y € Alt,(k) andz € Z,, where we put

_ ] 1 if miseven,
m=10 if misodd.

The charactetyy is invariant under the conjugation l6y/. (This is a consequence of the fact
that G’ is the stabilizer inG@ of certain anisotropic vector, see 3.8. See also [GP] for the
definition of ¥y in an algebraic way.) Thus we can extepd to the character off, which

we denote by the same symbfal;, by puttingyy | = 1.
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Itis convenient to see the restrictionf; to each root subgroups i for our later use.
The set of roots appearingihis ¥ := ¥\ £@* . Letus define a charactey, : X, — C*
by ¥y (xq (1)) = ¥ () (t € k). Then we have

WU|X5’4—5’4+1 = wsi—8;+1 (1 <i<r- 1) P
Yulx,, = e, (inthe odd case)

-1 .
VUlXe s, = Yer—en » YUI Xopre) = ””er+e,’ (in the even case),

and
Yulx, =1 (otherwisg.

3.11. SetPy = PU = PPNDU,, .. This is a Borel subgroup dfi. The unipotent
radical ofPy is Ny = N'U and hencéy = T'Ny, whereT’ = T,/ is a maximal torus o6’.

We are concerned with the open orbitt\ G/ Py, wherePy = Py (k). Henceforth we
restrict ourselves to the case whére- 0. We can easily modify the argument below in the
case wheré = 0; we putg,, . = 1in that case, for example. Fpr="(y1,..., yr) € k', let
9m.r(y) be an element of; given by

L2y —Jny'y
Mm,r 1, 0 1 —’le/ if m isodd,
0O O /
gm,r(y) = 1{
alyy O . .
Won.r (1,, ( 0 af) )) if m is even,

wherea(y) = < lé 3{ > € GLy41(k). We put

Gmr = Gm,D (L:="(L..., ) k).
In the odd case,

(3.11.1) Imr V) = Xe, (V1) -+ - xe,,, (i)’

for somen’ € N'. Thus we have

(3.11.2) {m DY €KY X Ny 2N (g 0o 11) < G VD11)

(as topological spaces). Note that, for any permutagiasf 1, ... , [, there exist&” € N’

(depending oty ando) such that
Xer o Vo @) Xe oo Do) = ey (V1) -+ Xe (0.
On the other hand, in the even case,
9m,r (y) = x8r+1_£r+l’+l ()’1) e x£r+l’_£r+l’+l ()’l’) .
(Observe that the factors in the right handesate mutually commutative.) We note that
(3.11.3) gm,r(y)N/ = Xepyate, g V1) 0 Xe e, g (N,
sincexgm._w,+l (DX, ite, 0, (D) € N’. Hence we also have (3.11.2) in the even case.
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PropPOsITION 3.12. (1) Onehas
6= U Pwgn., Pu.
weW ye0,1)
(2) Theorbit Og = Pweg,, , Py isopendensein G .
B Opg=PxPy~PxP xU.
PROOF The Bruhat decomposition @f shows that
G= |J Pwg,, 0P
weW, yek!’
We know thatPwyg,, ,(Y) Py = Pwg,, ,(Ye) Pr, whereye = (ex, ...ey) € {0, 1) c k" is
defined to be; = 0 if and only if y; = 0; see for example, the equality
(3.12.1) gm,r(y) =d- gm,r(l) d7t
with

r 4

—— e —
g dn @, ..., L1, ..., ) (inthe odd casep = 2r +2I' + 1),
- I'+1
A .
d.@,...,1,y1,...,y,1) (intheevencaser =2r + 2/’ + 2)

fory = (y1,...,yr) with y1---yr # 0. Thus (1) is proved. Sina@q is the open subset of
the big cellPwy P >~ P x N given by

(3.12.2) Oo = {pwen € PweN |n=g,,,Y)ng (y1---yr #0, ny € Np)},
(3.12.1) shows (2) and (3.11.2) does (3) of the proposition. O

REMARK 3.13. Obviously, the proof of this proposition works owenstead ofc. In
particular, we see thd&w,g,, ,Pn C G is Zariski open.

3.14. We construct some relative invariants ®@runder the action oP x Py, and
describe the open orb®o = Pweg,, Py (Or Ot = Py g,, ,weP) in terms of these
relative invariants.

From now on, we shall fixv,, a representative of the longest elementigfas follows:

Ji
wy = (-1 if m=21+1,

= < J’) if m=2I,[even,
Ji

Ji—1

= O

if m =21, [ odd.

o

Ji—1
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Let/ ={i1,...,is;}andJ = {j1,..., js} be two subsets dfl, ... , m} with cardinality

s. Forg € Mat,, (k), we define a polynomial function; ; on Mat,, (k) by
Apg(g) =detg, ),

whereg; ; = (g, j)1<k,1=s € Mats (k).

Now we define polynomial functiong onG = SO,, by the following formula

ai(9) = A, inn.iy(weg) L<i<I).
We putapg(g) = 1 for convenience. Thep € G is contained in the big celPw, P if and
onlyifa;(g) #0foranyi =1,...,1. Obviously,
i (g, Ywe) =1 (y k')
and
o (p(l)gp(Z)) — (til) . ti(l))_l(t:EZ) . ti(Z))O[i (g)

for p@ = d, (¥, ..., 1) -n@ € P (a = 1,2) with /) € k¥, n®@ € N. Setw; = e1 +
o4 g eHOM(T,GLy) 1<i <) andw]f = s/1+---+s; e Hom(T',GLy) 1< j<!).
These are dominant weights GfandG’ (relative toP andP’) respectively. Then the above
formula shows that; has a highest weight

(i, 0) 1l=<i=<r),

(i, @]_,) (r+l1<i<r+l0),
or

(@r4r+1, @) (@ =r+1"+1=1; inthe even case
under theP x P’ action.

To obtain the open orb®o, we need other functions: Fgre G, we set
Bi(9) = A rtj—Lrtl+1L (L. r+jy(weg) (A< j <)

in the odd casen{ = 2r + 2/’ + 1) and

Bi(9) = A, r+j—Lr+l+1)(1,... r+j}(Weg)
=A@ L2 L oy (weg) A< j<I'+1)
in the even caser = 2r + 2/’ 4 2), respectively. For eachwith 1 < j <!’ in the odd case
and 1< j <!+ linthe even case, it is easily checked that
1 if j =1’ 4+ 1 inthe even case

IIBJ(gm,r(y)wZ” = |yj| otherwise

fory e k', and
Bi(prgp) = (11t )M t1+ try B (9)
for py = dpw(ty, ..., t)) -ny € Py, p=dn(ta,... . 1)) -n € Pwith#;,1] € k>, ny €
Ny, n € N. This formula shows that; has a highest weight
(wr—i-j’ w_‘;fl)

under theP x P" action. Here we putry = O for convenience.
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Then we easily have the following lemmas.
LEMMA 3.15. Forg € G, g € Pyg,, ,weP ifandonly if
ai(9) #0,  Bj(g) #0
for anyi, j.
LEMMA 3.16. Supposethatg € Pyg,, ,w¢P iswrittenin theform
g=ng Aty ... .1)gy,weldn(t, ... .0) n

for someny € Ny, n € N, and 1, t} €ek*(1<i=<lI 1< j<VU). Thentheabsolute
valuesof ¢;, t} (1<i<l 1<j<l)aregivenby

lt:| = @ily) l<i<nr),
oi-1(g)
] = | P19 1<i<l in the odd case
T aio1(9) 1<i<I'+1 intheevencase |’
and
/ i(9) . ,
W= 29 acj<n
ar+j(g)

4. Whittaker-Shintani functions. In this section, we shall introduce the Whittaker-
Shintani functions on orthogonal groups that are the main subject of this paper. Then we shall
give an integral expression of these functions through a representation-theoretic interpretation.

DEFINITION 4.1. For(&,&) € X x X/, a functionF € C*(G) is said to be a
Whittaker-Shintani function attached tq &, &), if the following two conditions hold:

(4.1.1) Lwk" Y R(K)F =yyw)F weU, kK eK', keK),

(4.1.2) L@ R@F = w:(9hws(@)F (¢ €H, p € H).

HereL (resp.R) denotes the left (resp. right) regular representatio@ ¢or its restric-
tion to subgroups) ol (G) so that(L(g1)R(g2) f)(x) = f(gIlXQz) (91,92, x € G).
We denote the space of Whittaker-Shintani functions attached8té) by WS(&, &).

REMARK 4.2. These functions are the special functiongtoalready studied in the
following cases. When = 0 (henceU is trivial), they coincide with the Shintani functions
firstintroduced and studied in [MS2]. On the other hand, whég:- 0 or 1 so thal/ = N,, (a
maximal unipotent subgroup @f), they turn out to be the class-1 (or unramified) Whittaker
functions ofG = SO, (k) (see [CS], [K1]). In the case’ = 2, they appear in the context of
Bessel models (see [BFF]).

REMARK 4.3. These functions are examples of spherical functions on spherical ho-
mogeneous spaces. To explain this,@atbe a reductive group defined overandH1 an
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algebraic subgroup dd;. Let K1 = G1(0) be a “good” maximal open compact subgroup of
G1 andH1 = H(G1, K1) the corresponding Hecke algebra. For a charagtesf H1, we set

C*®(G1,¥1) ={f € CZ(G) | L f = Ya(h) f (h € HD)},

on whichG acts on the right, as above. Then tor € Homc ag(H(G1, K1), C), we call a
function f € C*®(G1, ¥1)X1 satisfying

(4.3.1) R(p)) f = wi(pn) f (91 € H1)

a spherical function of the homogeneous spaég\G1 (with the representatiotf;) attached
to w1.

If H1\G1 is spherical, namely a Borel subgroup @f has an open dense orbit on
H1\G1, then we can expect that spherical functionsiin G1 have good properties, such
as multiplicity-one (-finite), an explicit formula, and so on. Zonal spherical functions and
Whittaker functions are well-known examples of them. Such spherical functions, which are
of interest in representation theory in its own right, have often been playing important roles in
number theory in various context, especially in the theory of automotpffimctions. (See,
e.g., [K3] and [M].) We refer [HS1], [HS2] and [H] for spherical functions on symmetric
spaces (which form an important family of spieal homogeneous spaces) and other number
theoretic applications of these spherical functions.

Now we return to our case. Let us define a subgidiugd G = SO,, to be the semi-direct
product ofG’ >~ SO,,» andU, as in 3.10. (Note that is not reductive when > 0.) We set
G1 =G x G/,

Hi={(h, p(h)) € G| h e H} ~H,

wherep : H — G’ is the natural projection. Then 3.13 shows thRaf\G1 is spherical.
Sinceyy : U — C* is G'-invariant, ¥y naturally defines a charact¢n : H1 — C* by
V1((h, p(h))) = Yyy@w) forh = g'u € H (¢’ € G',u € U). Note thatH;\G; ~ U\G.
Thus we can see that our Whittaker-Shintani functions are spherical functions on a spherical
homogeneous spacé \G1.

As is noted in the introduction, Shintani functions 8L, (k) (MS3]) and Whittaker-
Shintani functions foSp,, (k) ([Sh2], [MS1]) are also examples of those functions. Explicit
formulas for these functions are obtained in a similar manner.

4.4, LetlI(¢) be the unramified principal series representatiog;ofor £ € X’. The
groupH = G’ - U (semidirect product) acts oh¢) via H — G’ = H/U. On the other
hand, we have a charactgr of H (see Sect.3). Thus we can defifthe unramified principal
series representation &f”, I (&, yy) .= 1(¢) Q@ Yy (= Ind(sa’l/2 ® Yy | Py, H)). Note
that the underlying;’-space ofl (¢, ¥y ) is the same aé(¢). The action ofy’'u € G'U = H
onI(&) is given bygo > Yy (u)R(g o (¢o € 1(£)).



WHITTAKER-SHINTANI FUNCTIONS 23

Denote by(, )o = (. )o, the canonical’-invariant pairing orn/ (§) x I1(¢~1) given
by

{¢0, dp)o = /K Po(K)po(kdk'  (do € 1(5), ¢y € I(ETH)).

This ( , )o naturally defines arH-invariant pairing onl (¢, yy) x I(£71, wljl) by the
same formula. (We still denote this extension by )o.) Let T be an element of
Homy (1(8), 1€, ¥;1)). Then the functiorsy on G given by

(4.4.1) St(g9) = (¢ &, T(R(g)9k,=))0

is a Whittaker-Shintani function attached Z'). (Recall 1.8.)

Let 2 : I(&,yy) x I(E) — C be anH-invariant bilinear form. Namelys2 is a
bilinear form onl (§) x 1(&) satisfying$2(R'(¢")¢o, R(g'u)d) = vy (u)$2(do, ¢) for ¢g €
1(§),¢ € I1(E), g’ € G'andu € U. Then the functiorS; on G given by

(4.4.2) Sa(g) = Q¢ e, R(9)bk, =)

is a Whittaker-Shintani function attached =').

It is easy to see that the construction of (4.4.1) and (4.4.2) are equivalent. Actually,
T and £2 above correspond each other in the following way. If we h&ve e
Homy (I(&), I (671, w(jl)), then the bilinear form2; on I(&, yy) x I(E) given by
27 (¢o, ¢) = (¢o, T(¢))o is H-invariant. Conversely, lef2 be an H-invariant bilinear
formonI &, yy) x I1(E). We can defind,; € Homg (1(&), I1(&, yu)*) by To () (¢o) =
2(¢po, ¢). (Herel (¢, yy)* is the dual ofl (¢, ¥y).) Sincel (&) is a smoothG’-module, the
image of7T, is also smooth. Hence we may regdre Homy (1 (&), I (671, w(jl)).

4.5. Suppose thaf = Yz ¢ (5 € X, & € X') is a continuous function (or a distribu-
tion) onG satisfying

(4.5.1) Y(pgp'u) = (E"%Y2(p) 8 AP u)Y(9) (peP.p e PLucl).
Then we have an equivariant linear fofg): € Homp,, (1(&), «5_15'1/2@1#&1) defined from
Yz as

ls,g(PE(f))=/Gf(g)Y(g)d9 (f € CP(G)).

(See 1.2 for the definition oPz : C°(G) — I(&).) The intertwining operatof'z ¢ €
Homy (I(&), I (671, w(jl)) corresponding tdz ¢ via Frobenius reciprocity is given by
Tz:(Pz(fH() =1ge(RX)Pz(f))
= / FxxHY(x)dx (f € CX(G), x' € G).
G

Hence theff -invariant bilinear form2z ¢ = 27, attached td’z ¢ is given by

@52) Rzl P = [ W)WY ) ds

X
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for fo € C°(G’), f € CX(G). Here we identified the spadé¢), the image ofPg, with
1(§, Yv). In particular, the functiosz . is given by the integral

(4.5.3) Stze(9) = / Y (kg k" dk dk
K'xK

(see also [MS3, 4.8—4.9]).
4.6. In the rest of this section, we shall show how to construct a funétipnon G
satisfying (4.5.1). Consider the functiafy ¢ on Py g, ,w¢P = UP'g,, ,w¢P given by

1)~ o— _ 1/2
Yse@p' g, wep) = Yu@) N ESY(p)E () weU peP,peP).
We extend this'z ¢ to the wholeG by puttingYz :(9) =0if g € UP'g,, ,w,P.
LEMMA 4.7. Ifg e UP'g,, ,weP, then

r

Yze(g) =vu (@) [[E &L 17H@i9)

i=1
I'-1
(4.7.1) < [TEEL - 1775 (9) - & (@i (9))
j=1

l/
< [TE &l - 175 Brl9))
k=1
intheoddcase(m =2r + 2’ +1, m' = 2/’), and

Yze(9) =yu (@) [ [E &L T @i9)

i=1
-1
(4.7.2) x [T &2l 175 @ j(9))
j=1

l/
< [ & sl - 175 Br(9)) - Ersrpa(Briae))
k=1
intheevencase im = 2r +2I' + 2, m' = 2I' +1). Here u(g) isthe U-component of g.

PROOFE This is a consequence of 3.14. O
Then the lemma above shows the following proposition.

PROPOSITION 4.8. Let Z, be the nonempty open subset of X x X’ given by

! 1<i<r)

1EiE S <a™
lg; 2t l<q?2 A<j<l)
(4.8.1) Z.=4{(E,8e X xX I+ , =J=
& Bkl <q ™Y A<k<l)
&) <1
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intheoddcase(m =2r + 2’ +1, m' = 2/’), and

158 5l <q™ 1l<i<r)
g1 -1/2 .

(4.8.2) Zo={(E. 6 eXxX I$/51r+j+1l<q o 1=<j<l)
& Bkl <q ™Y A<k<l)
|Er 441 <1

intheevencase (m = 2r +2I'+2, m' = 2/’ + 1). Thenthefunction Yz ¢ on G iscontinuous
for (&2,¢) € Z.

4.9. Now let us set

Yee(9) =Yze(g™H (9€G).

For(&,&) € Z., thisYz ¢ is a continuous function o&. Moreover it satisfies the condition
—_— ~-1/2
Yz (pgp'u) = Yy @) (E 1852 (p)(e8 5 (p)Yz6(9)
forue U, pe P, p € P'with
Yze(wegy,) =1.

(Note thatg,;}r € N/T(/O)gm,,T(o).) Thus we can construct a Whittaker-Shintani functiere
fromthisYz ¢ asin (4.5.3) for =, &) € Z..

5. Cartan-typedecompositions. In this section, we shall give a double coset decom-
positionU K'\G/K explicitly, whereU K’ is a subgroup o = UG’. This decomposition
is indispensable for our study of Whittaker-Shintani functions.

Letg,,, = g,..,(1) be an element of; defined in 3.11.

THEOREM 5.1. The double coset decomposition
G=| |UK'' ) gp, t (WK
holds, where A runsover Z" x A* , C A, and A’ over A7

First we shall show that this theorem canreeuced to the special case of the theorem
wherer = 0, thatis;n’ =m — 1:

THEOREM 5.2. The double coset decomposition

Gy = |_| Kmfltmfl()t/)gm,otm MK

+
m—1*

holds, where A runsover A}, and 1’ over A

5.3. PROOF 0OF5.1BY USING 5.2. Recall the definition of the parabolic subgroup
QOm.r introduced in 3.6. By the Iwasawa decomposition, we have

(5-3-1) Gm = Qm,er = Um,rMm,er .
SinceM,, , >~ GL, (k) X Gu—2,
Mm,r/(Km N Mm,r) ~ GLr(k)/GLr(O) X G2/ Kn—2r .
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We know that

(5.3.2) GL, (k) = || Z,diagn , ... , 7 )GL,(0)
Kk=(k1,... ,kr)EZ"

from the Iwasawa decomposition fGi ., and that

(533) Gm—2r = I_I Km—2r—ltm—2r—1()‘/)gn172r,0tm—2r()\)Km—Zr

AEAm—Zr
MNeAn_21

from 5.2. Hence, by applying,, , to (5.3.2) and (5.3.3), we get the decomposition
G = || WUn NP K20 -1tm—2r-1 (X G 1, (AiRYT, ., ), b2 (1)) Ko

from (5.3.1), where., A" andk run overA,j,_Zr, A:;, andZ", respectively. This is nothing but
the decomposition of 5.1,

G = |_| UK't'W)gu, tO)K (L€l x A _, C Ay I'€ Al). O

5.4. In order to prove Theorem 5.2, we need a variant of the theorem for orthogonal
groups
Om = {g € GLm | thmg = Sm}
SetG}, = O, (k) andK,;;, = O,(0). HenceG,, andK,, are subgroups o}, and K},
respectively. Definet**, a subset ofp,,, by

m o
A ==01... . ) M= =1 =0
We embed),,_1 into O,, as in 3.8.
THEOREM 5.5. The double coset decomposition
G = |_| K} 1tme1() g otm WK,
holds, where 1 runsover A% and A’ over A%" .

REMARK 5.6. We shall not give a proof for the disjointness of the decompositions
appearing in these theorems 5.1, 5.2 and 5.5 in this section. The disjointness of 5.1 will be
shown in Section 7. (That for 5.5 follows similarly.)

5.7. Subsections 5.7 through 5.11 are devoted to a proof of Theorem 5.5. We put
G*=G}, GY =G _, K* =K andK* = K _,.
Let W(B;) be the Weyl group of type B We regard thisW (B;) as a subgroup of
GL(Ap) as in 3.3. We remark that the “Weyl group 6", W* = Ng«(T)/Zg+(T) is
naturally isomorphic to
W*:{WzW(Bl) - if m is odd,
W - (ym) (semidirect product) W (B;) if miseven

wherey,, € GL(A,,) is an involution given by

Ym(e) = —¢€1, ym(ei) =& (@ #1).
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As in the case o6, we identify all the elements iiW* with their representatives ik *.
Note first that the Cartan decomposition
G* = K*T*TTK*
where
T = {dp (1, ... 1) [ 0(t2) = - = v(1) = 0 (6 € k)

yields the decomposition

(5.7.1) G* = BW*T*TtK*.

Let us defing), a subset o*, by

(5.7.2) Vi=K*"-{g,uoy) |yeo0.
Then we have

(5.7.3) Ng CV

from 3.11.2. (Note that the decomposition in 3.11.2 is defined okeln the even case, we
also remark that

(5.7.4) V=K {Yu@mo) | yed)
(see (3.11.3)). Set
Uy = VN, qwT* K"
forw € W*, where
Now= [] Xew-

a>0, w—la<0
In particularlfy = VT*TTK*.
Now we prove the following proposition.

PrROPOSITION 5.8. Foranyw € W*, U,, isa subset of /1.
This proposition implies the following factorization.
COROLLARY 5.9. OnehasG* =V .T*tt.K*.

5.10. HRROOF OFPROPOSITIONS.8.  We proceed by induction diiw) := #{a > O |
wla < 0} forw € W*.

First consider the casgw) = 0. If w = 1, then 5.8 is obvious. Otherwise we have
w = Y. (Hencem should be even.) In this case, we may assumejpthas represented by
the matrix

(m=2'+2),

which is in the image of the embeddingGf’ in G* (see 3.8). HencH,,, = U1 by (3.11.3).



28 S. KATO, A. MURASE AND T. SUGANO

To prove the proposition 5.8, it suffices to show that
uw C uy

for somey € W* with £(y) < £(w) from the assumption of the induction.
Suppose that(w) # 0. Then there exists a simple roetso thatw=la < 0. This
implies thatw is written asw = wyw’ with £(w’) < £(w). In this setting, we note that

(5.101) Nuj)(]_)w =X_¢,(1) * Wa N;’,(l)w/
and that
(5.10.2) X-a,© Ny qyw C N,y ' N,

since(w’) (—a) < 0.
We now consider the odd case (casenAi= 2!’ + 1) and the even case (case/B;=
2’ + 2) separately. Furthermore, we divide each case into several subcases.
eCase A-lo=a;=¢ —¢c1(l<i<l'-1)
In this case, we have
VX_gwe CV,

sinceX_, (1) (C K*) andw, (€ K*') normalizeK* - {g,,0(y) | Y € d’'}. Thus, by using
(5.10.1), we havéf, C U, .
e Case A-2u = ap = €&p

In this case, we have

Uy = Vwy, - Xa,(l) . Nu—)/’(l)w/T*++K*

N !kt gk
C VX @Xa Ny w177 K Wo = Ym-1 € K*' = Opy_1(0)

( since we may assume that >
=VXo, ) X-a,0 ° Nuj/,(l)w/T*++K*
C Uy (by (5.10.2))
e Case B-1ix = ¢; =8i—8i+1(1§i§l/—1)
We can show thatl,, C U,, exactly in the same way as in the case A-1.
e Case B-2u = o, = ¢, — €41 andw/_l(oq/+1) <0
In this case, we have the decompositior= wy,, wal,ﬂw” with £(w”) = £(w) — 2. We
may assume thama,/ Wy, € K. Herewy, wa, gives a permutatiosy — —eyr, gyy1 —
ery1 in X, which induces a permutatiorli — —el’, in 27, Namely,wy, ,we, corresponds
to w, in W*. Thus
Un = Vo oy Xay, ) Xay 1,0 - Ny (3 w' TR
C VX 0, Xy, 0 Xy, (1) Xay,1,(1) Nuj,,)(l)w”T***K*
= VXoy. 0 Xay 1.0 X0y ©X -0y ,1.0) - Ny qyw T K
C Uy, (by (5.10.2))

e Case B-3u = oy = ¢y — Er41 andw’_l(a1/+1) >0
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SinceVX_q, 1)(T NK) = VX gy, (T NK), we have

Up = Vway, - X—ay,,.1) - Nu_),’(l)w/T*++K*

C Vwe, - Ny ' T K.
Hence we get, by using (5.10.2),
(5.10.4) Uy C K" Nwe, - Ny ' THHKE,

where we putN = Xe; ¢, ,.0) - Xey_y—e,4.0) SO thaty = K'N' Xy, ). Now recall that
we can decomposey,, in the formw,, = x_xyx— (Mod7 NK), x+ € Xiq, (o) from
(3.5.1). Substituting this in (5.10.4), we have

Uy C K¥Nx_x, - Nuj/’(l)w/T*"’*'K* .
Note that there exists an. € X_, (o) such that
K¥*Nx_ =K¥x_ N =K"x_ N =K"Nxi_.
Hence we finally see that

Up C K'NxyZo - Ny qw' T K

C K¥Nxy - Ny qw'T* K" (by (5.10.2))

- It gk
CV-Nw,!(l)wT K*=Uy .

eCaseB-4du =ay =¢y_1+ 8; and(w’)‘lal/_l <0
We can show that,, C U, exactly in the same way as in the case B-2.

e Case B-5u =ay =¢y_1+ 8; and(w/)*lal/_l >0
We can show thatl,, c U, exactly in the same way as in the case B-3.
Combining all of these, we have completed the proof of Proposition 5.8. O

5.11. RROOF OFTHEOREM 5.5. Forgq, g, € G*, letus writegy ~ g, if g4 =
k'gok for somek € K*, k' € K*'. Then, by 5.9, proof of Theorem 5.5 (except the disjoint-
ness) is reduced to the following lemma. Recall thaty = g,, o(1).

LEMMA 5.12. Foranyy e 0 andv € A%, thereexista € AT and 2 e AXH
such that

(56.121) gm,O(y)t(v) ~ t()\,)gm,o(l)t()‘) .

PROOF We prove the lemma in the case where= 2/’ + 1 is odd. The proof in the
even case is almost similar and is omitted. Recall that

Noy9m,00Y) = Nigyxe; (y1) - - - xe, (1)

fory ='(y1,..., yr). We may assume thgt=(z"1, ... ,7*'), u1, ..., uy > 0.
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Suppose first that1 > --- > u; andp; < pivg forsomei, 1 <i <1’ — 1. Then, by
commutator relations, we have
Xejpq—e; (L= 171 g o(Y)E(V)
€ Nfo)gm,o(m)t(v)xs,-+1—s,- (VTVH(L = g
wherey; is the element ot/ obtained by substituting theé + 1)-st entry ofy by #i, that
is, y1 = f(mHe, ... ,ni‘f,zéﬁf,... , ). Thereforeg,, o(Y)1(v) ~ g,.0(YD?(v), which
implies that we can assume; > --- > pup. Next, we shall show that we may assume
vy — up > 0. Actually, if vy — uy < 0, we have
ImoWMtW)xe, (L— '™ € Nfo)gm,o(YZ)t(V)
withyp ="(z#1, ..., 7#'-1, "), Henceg,, o(Y)1(v) ~ g,,.0(¥2)t (v). Now suppose that
Vi — Wi < Vitl = Ki+l,  Vidl — Hi+l = 2V — 1y
forsomei, 1<i <!’ —1. Then
G0N (W) Xe; gy (1A qhiHiFLI Vit
€ N(gyXej—eppy (THTHIHL — VTVt g o(Y3)E (V)
whereys is the element o0&/ obtained by substituting thieth entry ofy by s/#i+1+vi—vis1

i

thatis,yz = "(z#, ..., g+ tvi=vis1 - gir), Therefore, if we put
M= il F V= Vigd, Ay = il e Ay = A,
we have
Vi— A =vigl— A== —Ap =0
and

gm,O(y)t(V) ~ gm,O(y4)t(v)

A

. ’ / .
with 4_—’71“1,...,71“1'—1,71i,...,nkz/.Slnce 1> > pi1=>A>--.>x,>0
M M i 1

fromu; > A} > u;iy1, we have
M=o >=2,>0, vi—A > >u—i,>0
by repeating this argument. Thus we finally get
gm,O(y)t(V) ~ gm,O(y*)t(V) = t/()‘/)gm,o(l)t()‘) ’
wherey* = (x*1,... ") andiy = vi — Ay, ..., Ay = vy — A O

5.13. RROOF OFTHEOREM 5.2. Now we shall give a proof of Theorem 5.2 by using
its variant forO,,,, Theorem 5.5.

Suppose thay € G is decomposed ag = k't (V) g,, of (Wk for & € A%FT, A €
ATtk e K*, k' € K* with detk = detk’ = —1. (We have nothing to do for the case

m—1°

detk = detk’ = 1.)
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We first handle the case whereis odd (n = 2’ + 1). Set
1

Sodd = 1 € K::l—l C Kl;kl .

g
This sodd corresponds tg,,—1 € W) _, so that we haveodd’ (A)sgjq = t(¥m—1(1")) and
Ym-1(2) € AT . Thensogqis written as
Sodd = X—g, (—1)xe, (Dx—g, (DA,

where

14
h = —13 eT*NK* (deth = —1 = detsoqdq) .
14

Sinceg,,,0 = uxe; (1) - - - xg, (1) for someu € N(’O), we have

Soddd m,0 = (sOddzugdld)xel(l) o xgy  (Dx—g, (Dsodd
= (SoddtSggeXes (1) -+ xXe,_, (Dxe, (Dx_g, (= D)h.

Note thatsodds gy € N(o,- Thus we have

9 = (K'sodd) (sodd’" (XS oqie) Soddd m of (WK
= (K'sodd?’ (Ym—1(A)xe (1) - - - xe,_ (Dxe, (Dx—g, (=Dt (1) (hk)
= (K'sodd)?’ (Ym—1(1")) g ot W) (1 (k)*lesl, (=Dr(A)hk) .
Since detk’'sodd) = det(t(A)—lx_g], (=Dt (M)hk) = 1, we see thak'sqgqg € K’ and that

t(k)—lx_gl, (=Dt (AMhk € K. Therefore we are done in this case.
Now we shall consider the remaining even case- 2/’ + 2. Set

11/
Seven = -1 K* K*
even = -1 € Ky C Ky
1,
This seven € K* corresponds tg,, € W). Then we see that, since\,e,f/(k’)s(;}en =t'(\)
andk’seven€ K', g = (k'sevent’ (\)Seveng .ot (MK is contained in
K't' )Xoyt 1 (=1 Xeppey 1 (— 1) (Severd (M) Saven (Severk)
= K/t/()\/)xelfe,/_*_l(_l) s Xey 751/+1(_1)t(3/m (M) (severk)  (by (3.11.3))
CK'1'W)gmot (Ym(W)K.

Thus we have completed the proof of Theorem 5.2 (except the disjointness of the decomposi-
tion). O
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6. Support of Whittaker-Shintani functions. The following theorem gives the sup-
port of Whittaker-Shintani functions.

THEOREM 6.1. For F € WS(&, &),
SUpPF C | UKt (W)g, 1 K
where A runsover A and A’ over A,

PrRoOFE In what follows, we shall give a proof of this theorem in the odd case. The
proof in the even case is similar and is omitted. Recall the decomposition 5.1,
G=| |UK''DW)gp, t WK,

wherex runsoveZ” x Al _, C A, and)\’ overA’,. We shall showthak (i’ (\)g,, .1 (1)) =
Ounlesshy > ... > A > Apgaforai = 1, ooo s ArsArga, ... A) € 27 x AL L Let
a=¢ —¢ei+1 (L <i<r—1). Then, foru € o,
F(t,()\,)gm,rt()‘)) = F(t,()\,)gm,rt()\)xa(u))
= F(xo (@)’ (V) g, 1 (1)
= Y@ ) F (' (W) gt (V) -
Since the conductor af is o, this implies thatF (t'(1") g, ,t (1)) = 0if &; < A;11. Next, let
a = g — g4+1. We note that
Xo (1) = Uy r (Xy, 0
forx, = (U,0,...,0) € Mat,,_o.,(k) withu =70, ...,0,u) € k%1 (m —2r = 21’ + 1).
Then we have, by a direct calculation,
)Gt Wxa ) = ' () g X (0 T4 0U)E (1)
=t/ (W v (' 1x), 0) g 1 (M)
= W (T Ry g (0, L )R], O (V) gt (V)

i '+1 ,
wherex/, = (U, 0,...,0) € Mat,_z.,(k) with ' = "(—u, ..., —u,0,...,0,u) € k¥ +1,

Therefore, as in the first case, the definition of the charagteof U shows that

F' W) gmrt W) = F@' W) g rt WXa W) = Y (=1 7 2u) F (A (V) gt (1)
foru € o. This implies thatF' (' (1) g,, -t (X)) = 0if 4, < A 41. O

7. Multiplicity one. In this section, we shall prove the following theorem that shows
the multiplicity one property of Whittaker-Shintani functions.

THEOREM 7.1. Supposethat F € WS(Z,¢) for (£,&) € X x X'. Then F = 0Oif
F(1) = 0. Inparticular, dimc WS(Z, &) < 1forany (&2,£) € X x X'.
To prove this theorem, we shall study closely the double cosets in Theorem 5.1. For the

purpose, we introduce a partial ordetys” on the setA,, x A,.
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DEFINITION 7.2. Forany(u, u), (A, 1)) € Ay x Ay, we write(u, ') >ws (A, 1)
if the following conditions hold:

Wi = A 1=<i=<r,
j j J J
YRS SITED SNIES SN
s=1 =1 s=1 =1

J j-1 J j—1 . i
1< j <!'"inthe odd case
/ / — —
21“’“ +21“’ = Zl)””" +Zl)”’ ( 1<j<U!l+1lintheeven casg :
§= 1= s= =

We can rewrite the conditions in 7.2 above by using dominant weightm-r]/. in 3.14
as follows:

(wi, n) = (@i, 1) Ql=<i=nr;
(@) 1) + (@) 1) = (@1, ) + (@], )) 1=j=D;

, / / , / / 1 < j <! inthe odd case
(@rejo i)+ (@ g 1) 2 (@rpjp 1)+ (@) g, ) ( 1<j<l'+1lintheevencaseg

Incidentally, we recall the usual order" on the character group HofM, GL1); o >
7 (0,7 € Hom(T, GL1)) if o — 7 is a linear combination of positive roots with nonnegative
coefficients. (We denote the corresponding order on HOnGL 1) by the same symbob”.)
Now we can state the following theorem. (Compare with [BT; (4.4.4) (i), (ii)].)

THEOREM 7.3. Supposen € A and ' € AT,
(1) Ifre A, and) € A, satisfy the condition

Kt (W)Kt (W) K NUK'Y V) g wet ) TIK # 0,

then (i, ') >ws (A, ).
(2) Ifu e U satisfiesthe condition

K't (WKt K NuK't (1) g, ,wet (WK £ 0,
then vy (u) = 1.

PrRoOF (1) By the assumption, the element= t'()\')gm,rwgt()\)_l is written as
g = uk't’' (wW)kut (n) "1k for someu € U, k. k1 € K, k' € K'. Let f = o L<j<l)
(see 3.14). Therf € k[G] is a highest weight vector under the rightaction with highest
weightz; (resp. highest weight vector under the I€ft-action with highest weighiv]f).
Since

@1 j () (O (g we)

@1 () e 07,

FE ) g, wet W)™

we have

v(f(9)) = —(@r4j, ) — (@}, 1)
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On the other hand, we know th#te o[G], the coordinate ring o& overo. Sinceo[G] is a
Hopf algebra, we have
Fk't kit (07 =D fay (k) fp (¢ (wkat i)Y fizy (k)

by using the comultiplication i®[G]. Here we may assume that gy € o[G] above are
weight vectors under both the l&# and the righG-actions so that

Ffo (' Wkt ™) = o' (' (W) Yo (1 (W)~ fio) (k1)
for someo € Hom(T, GL1) ando’ € Hom(T’, GL1). Note thato < w,4; ando’ < w;.
Therefore '
v(£(9) = v( X fin &) for ' kar (07 fizy K

. I{ir)(feK,(v(f(l)(k')f(z)(t'(u')klt(u)_l)f(s)(k)))

inf (—(o, 1) = (" 1)

v

v

v

_(wr+j7 H’) - <w_j,7 H'/> .
This shows that
(@r4j, 2) + (w]f, V) <@gy ) + (w]f, w).

Similarly, if we apply the same argument fgr=p8; (1 < j < !’ in the odd case and
1< j <!l'+1linthe even case), then we have

(@r+j, A) + (W},l, V) < A(@rgj, 1) + (wj/-,l, w.
sinceg; € o[G] is a highest weight vector with highest weight.. ; under the righG-action
(resp. that with highest Weiglzﬂr]/.fl under the lefG’-action). Here we putry = 0. Also, in
the case wher¢g = «; (1 <i <r), we have
(@i, ) = (@i, u) .

These prove (1).
(2) Itis sufficient to show that

1" (ke (u) = uk't' (1) g, 1 (ks (k k1 € K, k' € K',u e U) = yy(u) = 1.

We shall prove this by induction on If r = 0, the groupU is trivial so that there is nothing
to prove. We shall assume that- 1. Setg = '(u/)kt (). Thenfor(0, ... ,0,1) € '(0™),

0,...,0,1)g =(0,...,0, Dkt (n) ="Kpmt () .
Here’kp;; is thei-th row of them x m matrix k. On the other hand, the expressign=
uk’t' (') gt (k1 shows that
(07 LA} 07 1)9 = (Os st Os 1)t(lu‘)kl = nilul(tkl,[l/ﬂ]) .

Therefore the vectotv = w#1("kpt () (= 'Ka[m)) is primitive, i.e.,v € 0" andv
(modm) # 0. Suppose that = (u1, ..., ta, hat1, - - - , i) Satisfies the conditiop; =
o= g > Mga1l = -0 > . Ifwe put’v = (vy, ..., v,), We see that at least one of
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Um—a+1, - - - » Um (S&Y,um—i+1) IS N 0*. Letw be an element o transposing 1 and Then
the (m, m)-coefficient ofkw 1 is in 0*. Let us set
ST = Sm-2;

G' = soish, k'=G"0)=G"NGL,,_20);
1 —'xst —1sTx]

vn1,0 = [ 0 1, X (x € 0"9);
0 O 1

we(ny) (Y €o"?).

ny

ny

The Bruhat decomposition & (mod ) implies thatcw 1 is written as

ny
-1
forsomek’ € KT, x,y € 0”2, ande € 0*. Hence we have

€
1 (W)kt () = t'(W)nx Kt L |

€
= (' (Wnxt' (1) "Hyr' (i) kT ) 1) (1 () " Tywr (1))

€

Heret'(u)nxt' (1)~ € U andr () ~taywr () € K, sincew commutes with (). On the
other hand, we havey (t'(1/)nxt’ (u/)~1) = 1. (Recall the definition of the charactgy;.)
Setu® = (u2, ..., ttr4n) € A} _,. Then, from the decomposition
' (uhke (u) = uk't' (/') g, ot (WK1,
we see that
¢ (kT () = Wtk (1) g et DK

for somek} € K', ki € kT, ut € UT = GT N U with ¢/ (W)nxt' (W)~ Hu' = u. Note that
the induction hypothesis implies theg;+ (") = 1. (Herey+ is the counterpart of for
UT.) Therefore we finally have

Y () = Yo (¢ ()ynet’ (1) "'y = 1. 0

7.4. PROOF OF THE DISJOINTNESS OF THE DECOMPOSITION IB.1. The proof of
7.3 above and the decomposition= J UK't'(1)g,, .t (1)K given in Section 5 show that
g € UK't'(M)g,,,t (MK if and only if the minimum values

min v(f (k'gk))
k'eK’
keK
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for the relative invariantg defined in 3.14 are given by

—(wi, A) for f =a; Q=<i=n),

and
—(@r4j,A) — (@]_q,2) for f=B; (

This implies the disjointness of the decomposition. O

1 < j <!'inthe odd case
1<j<!l'+1lintheevencas

REMARK 7.5. The above approach using relative invariants (see also the proof of The-
orem 7.3 (1)) to the study of double cosets is effective for general spherical homogeneous
spaces. Details will appear elsewhere.

7.6. PROOF OFTHEOREM 7.1. Now we can prove a “multiplicity one” result for
Whittaker-Shintani functions.

Let us putF (u, ') = F(t' () g, 1(w)) for w € A} andu’ € A,Jn“,. By Sections 5
and 6 and the definition of Whittaker-Shintani functions (Section 4), we have only to show
that (0, 0) = 0 implies thatF (u, 1') = 0 for any(u, ). (Note thatF (0, 0) = F(g,,,) =
F(1),sinceg,, , € K.)

Let chk,yx and ch,-1x be the characteristic functions of7(u)K and
K't'(W)~1K’, respectively. We then have

/ F(x)dx = (L(chK,,/(M/)_lK/)R(chK,(M)K)F)(1)
K't'(W)Kt(u)K

= wg (ChK[(M)K)CL)S’: (ChK/t/(M/)—lkl)F(l) .

Therefore, if we write

a
K't' WKt K =| |u K1) gm t i) K
i=1
iy € U, My € Z" X A o0 My € Af)

according to the decomposition in Section 5, we have a system of difference equations on
FOL ) (A A) € A x Apy),

(7.6.1) 0z (Chks (k)@ (Chrp -1 ) FO.0) = Y ca i F(1, A)
rEA
NeA,,

m

forevery(u, 1) € A, x A, where

Crp = VOIK (XY g 11 G K) > Y () -
i with (A.(i),A,/(i)):(A.,A./)

Now 7.3 (2) shows that, ,, above is positive and hence is non-zero. On the other hand,
by 7.3 (1),F(», 1) # 0 only when(u, 1') >ws (A, A"). Thus we can see that the solution
to (7.6.1) is uniquely determined by the initial val&&0, 0) and that, especiallyf' = 0 if
F(0,0) = 0. O
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REMARK 7.7. The system of difference equations employed here is similar to those
appeared in [Sh1], [K1] (see also [MS1], [MS3]). This argument implies that each value of
the Whittaker-Shintani functiof (., u’) of F with F(1) = 1is, if it exists, regular iz, &).

8. Rank 1 calculation. In this section, we shall evaluate some integrals related to
simple roots inG x G’. These results are essential in our later use for the determination of an
explicit formula of Whittaker-Shintani functions.

8.1. Letusdenotebyd, (w € W)} (@, = Pz (chgyp)) and{¢, (w' € W)} (¢ =
Pe(chgryyp)) the natural bases df(£)% and 1) arising from Bruhat decompositions
K = BWB andK’ = B'W’'B’ (see 1.10), respectively.

We shall evaluate the values

I :=vol(B)"Wol(B) 12 (¢1, R(g ., we) (@1 + Pu,)) (@ € A)
and
Jg == vol(B) " Wol(B") 12 (¢1 + duy. R(g,, w)P1) (B A).
Here2 = 2z ¢ : 1(§,yy) x I(E) — Cis abilinear form introduced in Section 4, given by

PP = |
for f' € I(&,yy), f € I(&). We recall thalt = Yz ¢ is a distribution orG satisfying
Y (tnwe g, £'n'u) = (E718%2) 1) (682 (Yo (w)

fort e T,n e N,t' € T',n’ € N andu € U. Throughout this section, we assume that the
paramete(Z, £) belongs taZ, so thatYz ¢ is actually a continuous function a# (see 4.9).

£ FEOY ex’ Vdx'dx
G

LEMMA 8.2. Thefollowing inclusions hold:

(821) N(l)gm,r - T(O)gm,rT(/O)N/(l)U(l) ’
(8.2.2) Nayywegmr C Toywedm TN @Uq
(823) wegm,rN/(l) - Na)wegm,r .

PrROOFE By the commutation relations, there exigts (0*)" C 0" such that

nGmr € Gmr VN @ Uq)
forn € Nq. Thereforeg,, ,(y) € T(O)gm’,T(’o) shows (8.2.1). (8.2.2) is a consequence
of (8.2.1). As for (8.2.3), since = 1 (modx) for anyn € Ny, weg,, , Ny, gmiw; ™ C
N(E)' ([
LEMMA 8.3. Onehas

vol(B)~vol(B") 12 (¢1, R(g,, , we)®1) = 1.

PROOE Since

R(gmrw£)¢l - PE (R(gmrw[)ChB) - PE (ChB(gm,rwl)il) )



38 S. KATO, A. MURASE AND T. SUGANO

we have
vol(B)~tvol(B") 12 (¢1, R(g,,., we) 1)

= voI(B)*lvoI(B’)*lf Y(x(gm)rwg)flx/)dx/dx
B’'xB

= voI(B)*lvoI(B’)*lf Y (xweg,, x")dx'dx .
B'xB
Note thatg,, . € T(0)g . T(o,N(g, in the above. By Lemma 8.2, we have
©.3.1) Bwegy B = Bwiegpm  NipyNioyT(0y = Bwegm.NioyT(o)
C ToNowedm. TN Uw = PowWedm, Pr© -
This implies that

Y(xweg,,,x)=1 (xeB,x' €B).
LEMMA 8.4. Fora € A, with the normalized Haar measure dt of o,

Iy=1+g¢ / (8@l )Y (Wex—wea (171 g, )dt .
(o]

PROOE AsinLemma 8.3, we have
vol(B)~tvol(B") 12 (¢1, R(g ., we) Pu,)

= VOI(B)*lVOI(B’)*lf Y (x(g,, ,we) " 2x")dx'dx
B'xBwy B ’

=voI(B)_1voI(B/)_1/ Y (xweg,, )dx .
Bwe B ’

In view of the decomposition
BwyB = T(O)N(O)waXa,(O)N(_l)

and the fact valBwy, B) = ¢ - vol(B), we see that
f Y (xweg,, ,)dx = q - VOI(B) f Y (Waxa (DWeg,, )dt
Bwy B o

by using 8.2 again. Recall the formula
X (1) = x_o (1T Hwgay " Ohx_ot71)
with some elemeni of T(g) (r # 0), see (3.5.1). Since
Y (WaXa(Dweg,,,) = (B8 (ag " )Y wex—uwa g,
we have the lemma.

Similarly, we have the following lemma.
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LEMMA 8.5. ForB e A/,

Ji=1+4g / €5 Y@, )Y (wegx' b1
(o]

We shall give without proof the following elementary lemma which is useful in our
calculation.

LEMMA 8.6. Let x, x' € X, (k*) be two unramified characters of k*. If |x]|,
x| < q,then

1—q%xx'
A—qg 00 —g )’
where x and x () € C* (resp. x’ and /() € C*) areidentified asin 3.4.

l+g¢q / x®x' A+0dt =(qg—1)
o

By virtue of (4.8.1) and (4.8.2), we can apply this lemma to the calculation given below.
8.7. THE EVALUATION IN THE ODD CASE. Now we shall evaluaté, (o« € A) and
Jg (B € A') in the odd case first. Namely, we handle the c@$e= SOy (k) C G =
SOyy42-4+1(k). Inthis case, the double cos€T w,g,, ,N'T'U is open dense iw. We note
here thaty,,, ,N' = x¢, ., (1) - - “Xe, .,y (1)N'. Note also that-wya = a for anya € A.

PROPOSITION8.8. Fora=¢; —¢i11 (1 <i <r),

ILh=q(1-q '5E}).

PROOF We have
(B2 (@) = (& &L 1THO)
foray = d;(m)d;+1(m) 1. Consider first the case where<li < r—1. We see (1 1)g,, , =
gm.rXa (1) so that
Y (Wexa (1™ gm,) = Y (Weg - Xat™H) = YY),
On the other hand, in the case- r,
Xyt 1 G = G Xyt (0 DX, (07X e (—17 )

Since the support of the charactley is one; — ¢;41 (1 <i <r — 1) ande, (see Section 3),
we have

Y(wex—wgot (til)gm,r) = Y(wegm,rxﬁr—?fr-u (til)xﬁr (til)x8r+€r+1(_til))
=y

also in this case. By 8.4, we see that

Io=1+gq / (E B 1THOY Wex—wa (g, )dt
(o]
o

=1+¢) A-ghHe EED / Y Fuydu,
k=0 ox
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wheredu is the normalized Haar measure@h. This completes the proof of our proposition,
since

1 k=0,
/ v *uwdu={-1/q-1) k=1,
o 0 k>1). O

PROPOSITION 8.9. Fora =g,4; —&r4iy1 (1 <i <l' = 1),

-1z . 7-1
1-g &y Srtitl
1 qil/zéflEH»i)(l _ q*l/Z%_i E;l,-];'-i-l)

Iaz(q_l)

PrROOF By 8.4,
Io=1+gq / (Ersi B35 41 THOY (wexa(t™Y g, dt
o
sinceay = dy4;(m)d,+i+1(r)~ L. The commutator relation shows that
xa(t_l)gm,r = xé‘r+i*5r+i+l(t_l)gm,r
€ xe,H(l) e x3r+i—1(1)x5r+i 1+ til)x€r+i+1(l) c o Xepgn (HN'
= dr+i(1 + til)gm,rdH»i(l + til)ilN/«
This implies that
_ —_—— 1a— ~1/2 1
Y (wexa (N gm,) = (E7%8Y2 i1+ Y ™HES Y s L+ 7D HY (weg )
=& 8l TYHA+ Y.
Thus, by 8.6, we finally have
I,=1+¢ f EGE L 1TYHOE T B 1A+ ndr
[e]

e
1-95+iE i

=(@-1 — — .
A-q Y27 8, )(1—q Y25 )

PropPoOsSITION 8.10. Fora = &,4y,

—1m2
Sl

A—-q Y2 B )1 —q Y2 5, )

1-g¢g

ly=(q -1

PrRoOOFE The evaluation is similar to that of 8.9. Singe = dr+,/(n)2, we have
(712 (@) = (&2, ITHO).
On the other hand,
X (TG, € Xep (D xe,  (Dxe, , (L+1"HN

=dryr L+ 1 g dryr L+ 1H TN
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Hence we have

Y Wexe (0 gm0 = (B2 (dr (L4 7D HES Y2 A A+ 7D HY (wig,, )
= & B TYAD@+ 1Y

and, by 8.6,

Iy=1+¢q f EErr| - ITYHOE B - 7Y A+ ndt
(o]

172

1- q dr+l/
(1—q= Y25 8,.)A~q Y2 5,1p) O

—(¢-1

PROPOSITION 8.11. For g = ¢ — 8§+1 1l<i<l -1,

1- q 71‘51’ ‘i:,;]i

Jp=(@q@—-1 — — .
A—q Y251 A —q V2% B i)

PROOF.  In this caseq; = dy1i(m)dy4i+1(7)~L. Note that

-1 -1
gm,rxfﬂ(t ):gm,rx75r+i+5r+i+l(t )

is contained in

Xepa (D) X,y (DX g, (DN
= x*€r+i+€r+i+1(t_l)x€r+1(1) X (D, (1 + t_l)x€r+i+1(1) Cr Xe (DN’

= x5t Ndryi A+ 1Y g,, drpi(L+17HTIN

(see 3.11). We have
Jp=1+q / &)@y (E Y2 i L+ 1Y) E YD i@ 1Y N
o

=1+gq / GE LA TYHOE LSyl 1T A+ ndt
o

1-q %8}

=@-1 — — .
A—q Y28 DA —q V2% Eryiga) O

PROPOSITION 8.12. For 8 =¢;,_; + ¢,

1—q Y _q1&

Jg = (q — 1 — .
A—q V2% 18,1 -q V2% 875)




42

S. KATO, A. MURASE AND T. SUGANO

PROOF.  In order to calculatdy in this case, we consider,, ,x_g(t~1) explicitly by
using matrix form. It is sufficient to handle only the case 0. Sets = +~1. Since

1| 21| —111
Imr = 1 -1
1
and
L
1
1
X_p(s) =X—g,_;—¢,(5) = 1 ,
K 1
-5 1
1L
we have
—S S
11/,2
—s 21 11
0 0|1-s s
0 0| —s 1+
gm,rxfﬂ(s) = —s s 1 11
s 0
0 -5 1
L
Lo
1
1
= x,ﬂ(s) —s s d(A)gm,r ’
s2 —s2| —25 |1
—s2 52 2s 1
L
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A
whered(A) = 1 with
JtAT g

—s s
11/,2 : :
A= —s Ky S GL[/(k) .
1—5 )
—s 1+s
Set
1
B= e € GL (k)
1
1:Ss 1
and
1 —s s
C= 1 —s s € GLy (k).
1-s s
1
1-s

ThenA = BC so thatd(A) = d(B)d(C). Hence
d(A)g,,, = d(B)A(C)g,,.,
1y | 2C1| —Cc1(CL)Jy
=d(B) 1 —CcyJy (o[(®)]
1
€ N xey (D) - Xy, (Dxe, (L= ) D11 = 9)dypp (L= 5)"HN'

Therefore we see that
Gmrx-plt =) € N dryy (A=t Ng,,  drp_a(1—tTHN'.

Sinceag = dyy—1(w)d, 4y (), we finally have
=144 / €5 Y2 @) )Y (weg k' L1
o]

=1+4gq / EEL YO E 80| TYHA - ndt
(o]

1—q Y _q1&

=(@-1 — .
A—q V2% 18, )AL — g~ Y28

This completes the evaluation in the odd case.
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8.13. THE EVALUATION IN THE EVEN CASE. We evaluatd, (¢ € A) andJg (B €
A') in the even case whe®’ = SOy, 1(k) C G = SOg42.42(k). In this casey,, , =
Xepi1—e,ppr (D Xe =g, (1) SOthatNTwyg,, .N'T'U is open dense iG.
Let y be the outer automorphism 6f which arises from the non-trivial graph automor-
phism ofA . Thisy is given by the conjugation by
lr—i—l/
0 1
10 ’
1r+l’
whichinduces the substitution — ¢; (i # I'4+r+1), ;441 <> —&,4p+1 ONHOMT, GL1).
Note thaty (9,,,,) = Xe, 146, (D -+ Xe, te, (D) @Ndy (g, ) € g, ,N'. The sub-
groupsN, T, G', N, T’, U are invariant undey. This implies that the open dense sub-
setNTwqg,, ,N'T'U is alsoy-invariant. Sincey naturally acts onX asz; < &; (i #
r+l'+1), B 55 4, we see that

Ye:(v(9) =Yy a),:(9) (g €G).
Note also that

’a if » +1 + 1is even,
—wpa =

y(a) ifr+1'+1isodd
foranya € A. Hence we have

& G#r+1'+1),

—Wye&; = . ,
e 41 G=r+1"4+1).

PROPOSITION 8.14. Fora=¢; — g1 (1 <i <r),
1

~ =1
E; ).

Iy =q(1—q~ i1

PrROOFE The calculation of,, in this case is similar to that of 8.8. Note that the support
of the characte¢y isong; —g;41 (L <i <r—1), e —&ypy1 ande, +¢&,411 (See Section
3).f1<i<r—1x0tYg,, =g, %@ sothat

Y Wexa (g m) =@,
On the other hand, the equality
Xep—tria (D G = GonrXey—erpn (0 DXy ()
shows that

Y (Wex—wea (0N g =™

also in this case. Hence exactly as in 8.8, we are done. O
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PROPOSITION 8.15. Fora =¢&,4; —&rip1 (1 <i <1'),

1z .5-1
1-978+iE i

Iy=(0@—-1 — — :
A—q V2% E, )1 -qV2%EL )

PROPOSITION 8.16. Fora = &4y + &-4141,

Ih=(qg—1) 1-q7 '8 18 i
L= — L .
A—q Y2, 5, ) - g Y% 5, 141)

PROOF OF8.15AND 8.16 First we note that 8.15 far= ¢, — ¢,4+1 and 8.16 are
equivalent viay (see 8.13). Hence it suffices to calculate

le=1+g f (E57Y2) @ O)Y (wex syt~ g1
(o]

for —wea = g,4; — &,4i+1 (1 < i <!’). Note that

= —we(Er4i — Ertitl) = Erti — €Er4itl

for somee = £1. (We remark that = 1 wheni < /’.) From 3.11, we see that

x8r+1—8r+1/+1(1) h 'x8r+i—1—8r+1’+1(1)

-1 e ,
X Xepgi 7s,+1/+1(1 +1t )xe,+,-+176,+,/+1(1) cee if i <1,
1 _ -1
Xeppi—&rpitl (t )gm,r = X xs,_H/76,+,/+1(1)xs,+,-76,+,-+1 @)
x8r+1—8r+//+1(1) o 'x8r+1’—1—8r+1’+1(1) if i =1
-1 =t
X x€r+l’—8r+l/+1(1 +177)

Therefore we have
Xeyimersis (D Gmr € drai A+ 171 g dryi L4+ 17H7IN
in either case. Hence we obtain
(8872 (a" )Y (wexa (N g, )
= (Eri Bl THO Gl 17 DA+ 7 HE YD) @+
= GE Sl T OE  El - T A+,

which yields
1-g7 1557
Ih=(q—1) — 71"]_' r+i r+t;—i-12 —
(1_q7 / éj :‘I“H)(l_qi / éidr-}-i-}-l)
fora =er4; —esr4irv1 (1 <i <!’) by 8.6. O

PROPOSITION 8.17. Forg = ¢, — 8§+1 Al<i<l -1,

1- q 71‘2‘1' %‘,1]:1

Jg=(@q—-1 — — .
A—q YV2%5E1 DA —q V2% Eryiga)
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PROOF.  The calculation of/4 in this case is similar to that of 8.11 and is omitted.]

PROPOSITION 8.18. For 8 =¢,,

1- q_lgﬁ

Jp=1( -1 - .
(- g Y2 5L — g Y285, )

PrROOF We handlq;,n,,x_,g(z—l) explicitly by using matrix form, as in 8.12. We may
assume = 0. Sets = r~L. Since

111 O
1 0
gm,r = 1 —tl
1
and
L
1
S 1
X_’B (S) = x—8[/—8[/+1 (S)x—sl/—8[/+1 (S) = s 1
—s2 | —s —s|1
14
in G = SOy 42(k),
s
L
s
1+
gm,rx*ﬂ(s) = S 1
s+s2| s l+4s|-1 -1
—s2 | —s =5
1,

= X_¢p 4oy, (—52/ L+ $))x_p(S)dp 1L+ 5)"2g,, ,d(A) 7
€ N dpia(L+s) g, ,dr(1+5)" 1N,
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whered(A) = < A JiA-Ly >with

g
s € GLyya(k) .

1+s

This shows that

& Y@y Y (weg 5 —pt™)
= 8@y NEYD A+ 7H)ES P @+ H Y
= E@E ol TYHOEE - T+,
Here we putw,(ey4+1) = —eep41 for somee = £1 as in the proof of 8.15 and 8.16. There-

fore, using 8.6 as before, we have the proposition. O

9. Rationality. The purpose of this section is to show the rationality of the linear
form iz ¢ introduced in Section 4 with respect to the parametérs;).
We first show that Assumption 2.3 holds in our case (see 9.1, 9.2 below).

PROPOSITION 9.1. For any (£, £), dimHomp, (I(5; Og), £ 18Y? @ yy) = 1.
PROOF This is obvious from 3.12 (3). O
PROPOSITION 9.2. Let O bea P x Py-orbitin G different from Og. Then
dim Homp,, (1(2; 0), e 1'Y2 @ yy) = 0
for generic (&, &).

PrROOE ForO = Pg Py, we have

dim Homg,, (1(Z; 0), £ 1552 ® yy)

= dimHomy, y1p, (9 HESYD) ® (£8, D) @ vyt 8y) |

whered, is the modulus character & N g 1Py (see 2.2). Hence we must show that

1, = -1/2 - _
97HESYD) pyng-1pg - (85D @ Uy pyng-1pg 05 £ 1
on Py N g~1Pg for generic(Z, £). To do this, it is sufficient to see that we can choose a
representativg of the P x Py-orbit O = Pg Py such that
(@) T’'nNg¢~1Tg contains a non-trivial torus;
or
(b) 1//U|1\/ng—1Ng # 1.
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Here Ny = N'U is the unipotent radical oPy. LetO = Pwg,, ,(Y)Py (w € W, y €
{0,1}/) be aP x Py-orbitin G. Let us put

Xe, 1 (VD) - xe (1) in the odd case

Xepp1—6,, 011 () - “Xe, yy—e,0p41 () = gm,r(Y) in the even case

Sinceg;, ,Y)Nu = g,, ,(Y)Nu, we may takgy = wg;, .(y) as a representative 6}.
Suppose tha®) £ Og. Then eitherw # wy ory # 1 = (1,...,1) holds. We first

consider the case wheye£ 1 so that the-th component of is 0 for some with1 <i < /.
In this case, we have

ImrY) =

T'ng~1Tg > Image ofd, ;.

Hence the condition (a) holds.

We next consider the case where= 1 andw # we. We putg = wg,, ,(1). By
the assumption, there exists a simple raosatisfyingwa > 0. Assume first thatr =
gi —&i+1 (1 <i <r —1). Then, since

Nwgy, (1) = Nwg,, (Dxe;—g (1),
we have
NuNg NG 3 xe_g 1 (1)
for anyr € k, and we see that (b) holds. Next we assumedhates, — ¢,41. In the odd case,
ng;kn’r(l) = wasrferﬂ(f)g;:,,r(l)
= Nwg,, ,(Dxe,—e, 1 ()Xe, () Xe, 4, 1 (—1)
foranyt € k. Hence
Nu N g NG 3 xe -, 43 (DXe, (DXey 46,1 (—1)
for anyt € k, which implies that (b) holds. Similarly, in the even case,
Nwg,, (1) = Nwxe,—, () g,, (1)
= Nwgy, ,(Dxe,—e, s )Xe,—e, 1 (1)
foranyr € k. Hence
NuNg NG s xe,e,(DXe, e, 4 ()
foranyt € k so that (b) holds. Whea = ¢; —¢;4+1 (r +1 <i <r+1'—1)in the odd case,
Pwgn (1) = Pwxe, ¢, (=Dgp (D)
= Pwg, , (VXe;—e; g (—DXe;4er,5 (D)
withy =(1,...,1,0,1,... 1) sothat

ngzw(l)PH = ngzw(y)PH,
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and (a) holds. We can handle the even case whetes; —¢;41 (r +1 <i <r+1/0)ina
similar manner. Finally, itx = ¢, in the odd case, an argument similar to the above shows
that

Pwg, () Py = Pwg,, (V)P

fory =1(1,...,1,0), hence (a) holds. On the other handyif ¢, + &,4 41 in the even
case, since

Xy p = D¥e, e, D = X (D) € N,
we have
Pwg,, ,(DPy = Pwxe , ,+e, (DG, (D Pu
= Pw(xe;—s,,y (Dxeyge, (=) x - -
X (Xey =6, i1 DXy 4o, g (CIDXey—e s (D Xeppe, (D PH
= Pwg,, ,(Y)Pu
fory=1'(1,...,1,0). Therefore (a) also holds in this case. O
Together with 2.4, this proposition shows the following generic multiplicity one result.
COROLLARY 9.3. LetV bea P x Py-stable open subset of G. Then
dim Homp,, (1(2; V), 6 15" ? @ yy) < 1
for generic (2, &). In particular,

dim Homp,, (1(&), £ 182 @ yy) < 1.
9.4. Asin Section 4, we defirlg ¢ € Homp, (1(5), 67182 ® yy) by

ls,s(PE(f))=/Gf(9)Y(9)d9 (f € C°(G))
for (8,¢) € Z.. HereY = Yz ¢ is a continuous function 0@ defined to be

Y(g) =Y (pwigm,pr) = (E- %Y (p)E8 > @ yu)(pu) (p € P, pu € P)

for g = pweg,, ,pu € Oo = P x Py andY(g) = 0forg ¢ Op. Obviously,/z t |1z, 04 IS
defined (and rational) for any&, &).

Now we proceed to the rationality argument. We shall show that the equivariant linear
formiz ¢ onI(Z&) defined above is rational i(E, £). First we shall see that the assumption
2.7 holds.

PrRoOPOSITION 9.5. Therestriction of Iz ¢ onI(&; Pw,P) isrational in (&, §).
PrROOE Fory € X, (k*), we first note that the functiop™ on k defined by

x(x) (x €kX),

x (x) = {0 = 0)
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can be viewed as a distribution @nwith rational parametegy = x(x) € C*. Actually,
the integrall (x, f) = fkf(x)x“(x)dx converges for any’ € C°(k) when|x| < ¢ and
A —q 501, f)isregulariny . If y = “(y1,..., yr) with y; # 0 for anyi, we have
ImrY) = d(y)gwd(y)*l for somed(y) € T’ ¢ T. See (3.12.1) for an explicit form of
d(y). This shows that

Y (pwegm,Wnw) = (7Y (pwedy)))(ES 2 @ yu)(dy)ny)
(

E7YY2 (p)ypy (np) (we(E~1Y2E 162 d(y))
l/

= (E7YAH(pyyu ) [ [Eri& - 17200

i=1

forp e P, ny € Ng. Since

{pwen € PwgN | n =g, ,Yng (y1---yr # 0} (= Oo)
~ P x k" x Ny

is an open dense subset®iv, P ~ P x k' x Ny, the functionY™ on Pw, P defined by

l/
Y™ (pwegm, W) = (E 2 (p)yyy ) [ [ (Ervi&™- 1755 (00)
i=1
(peP.yek' ngeNp

gives a linear formz ¢ on I(&; PweP) if (5,&) € Z.. Therefordz ¢ onI(Z; PwP) is
rational in(&, &). O

REMARK 9.6. The above proof shows tﬂé{lﬁ/zl(l—ql/zEngfl) -lz ¢ isregularin
(Z, &). Hence, together with the argument given below, we can evaluate the “denominator”
of the linear form g ¢.

9.7. Proposition 9.5 above (see also Section 2) implies that we can éxtends. pw, p)
for generic(Z, £). Then 9.3 shows that, for genelig, &),

— —1q71/2
(9.7.1) Homp, (1(5: Pw,P), 6262 @ yu) = C-lzeli@: pue) -

Let Ty, = Tw,.w,z : [(weZ) — I(&) be the standard intertwining operator iog €
W, a € A (see Section 1). Consider genetig, £) € Z.. We know from 9.3 that the equi-
variant linear formglj;alE,&' |l(waE;Pw( P) = (ZE,EOTwaNI(waE;Pw{ P) andlwa.’:}‘,&' |l(waE;Pw( P)
in Homp,, (I (wy E; Pw; P), 55’1/2 ® Yy) are proportional. Note théd, z £ |1 (w, Z: Pw, P) IS
rational in the parameters thanks to 9.5.

The following result gives the explicit form of proportional constants which is crucial
for our discussion on the rationality @£ ¢ (Assumption 2.9) and the explicit formula of
Whittaker-Shintani functions.
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PROPOSITION 9.8. Let w, € W bethe simplereflection associated with @ € A. Then
for generic (2, &) € Z,, theconstant a(wy, &, &) defined by

(981) Tw*alE,Eh(waE;Pw(P) = a(wa’ Ea ‘S‘_)lwaE,&'h(waE;Pw(P)

is given asfollows:

1—q717iE.71
- +1
a(we, 8,8) = —————

1-E77"Ein1

(=6 —¢€41,1<i=<r),

o 5.5 = L g EE DA - gV E A -7V ET
a @ d’ = —1 —~ —1 —~ —_ —~—
1= 58— V2% 80— g6 E0)

1

(@=¢ —¢ipr,r+1<i<r+1 -1,
A-g¢8hHA-q V2% 5 A - g Ve E
1- &1~ q Y25, E5)A - ¢ Y2 8))
(a = &,4p inthe odd case) ,
A—q 8180 -q V2%, 5, A - g Y2 15,1
A-&8 A - g Y2, By (A — g~ Y2g_18))
l 1 1
(¢ = gy_1 + ¢y intheeven case) .

a(wotv Ess) =

a(wlih Eag) =

PROOF Forua € A, let us define the elements, ¥,,, € I(&) by putting

U1 =¥z = R(ChB/gmy,w(B)Ql,E = PE(R(ChB’g wgB)ChB)

m,r

and
Y, = Yu,,2 = R(Chpg, wB)Pu,,z =Pz (R(Chgg, w5)ChBW,B).

(Note that®, = Pz(chg) and®,, = Pz(Chgy,p).) In particular,¥y € I(E; Pw,P)
because the support Rf(chg/gmyrwg)chg is B(gmrwg)*lB/ C Pwg P (see the proof of 8.2).
From Sections 4 and 8, we have

lgg(W1e) =1z:(Pz(R(Chpyg,, wp)ChB))

= / Y(ngl)dxdg
BxB'g,, ,weB

= vol(B) Y(g hdyg
B/gm,erB

= vol(B/gm,rweB)vol(B/)‘l/ ,Y(g(gm,rwe)_lg’)dgdg’

BxB
= VOI(B'g,, ,w¢ B)VOI(B) 12 (¢1, R(g,,., we) 1)
= Vvol(B'g,, ,w¢B)Vol(B) .
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Similarly,

2.6 (W) = VOI(B' g, we BVOI(B') L / Y (g (g we)"Lg))dgdy’
BwyBx B’

=vol(B'g,, ,weB)VOI(B) x 2(¢1, R(g,,.,we)Puy,) -
On the other hand, we have
Ty PLugs = (C(E™H = D@12 + ¢ 1Py, =
from [C2, 3.4]. Hence we get
TwgWLwes = (C(E™) = D15 +q Wy, 5.
Therefore we finally have
Ty lzs(W1u,5)
=gt (Tw,¥Y1,u,58)
= CQ@E™H = DigeWrz) +q Mz, 5)
= vol(B'g,, ,w¢B)vol(B)
x{(Ca(E™YH — DR2(¢1, R(gy ,we)P1) + q 12 (¢, R(gm we)Pu,)}
vol(B'g,, ,w¢B)Vvol(B)
(@Y -1-gH+qg 2, R(g ., we)(P1+ Puy))}

for generic(Z, &) € Z.. This shows that
a(We, 8,8) = ((E™H —1—¢™H + ¢722(¢1, R(g 1, we)(P1 + Do)

foranya € A. Now substituting the values @ (¢1, R(g,, ,w¢)(P1 + Py, )) calculated
in Section 8, we get the explicit form af(w,, &, &) from case-by-case consideration. This
completes the proof of the proposition. O

We have verified that all the assumptions in Section 2 are satisfied (9.1, 9.2, 9.5 and 9.8).
Thus we obtain the following theorem from 2.10.

THEOREM 9.9. Theequivariant linear formiz ¢ isrational in (2, £). In particular,
for generic (&, &), [z ¢ isdefined and satisfies

Homp,, (1(2), 82 @ yy) =C-lzs .

COROLLARY 9.10. Up to a constant factor, there uniquely exists an H-invariant bi-
linear form 2z ¢ : 1(§,yy) x I1(E) — C for generic (Z,£). This 2z ¢ isrational in
(&,8).

PrRoOOF Recall thatH -invariant bilinear forms?2 : I1(¢, yy) x I(8) — Cand Py-
equivariant linear formé € Homp,, (1(&), 58/1/2 ® Yy) are in one-to-one correspondence
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(see Section 4). Hence the existence and the uniqueness follow from 9.9. On the other hand,
the rationality of ¢ ¢ implies that of©2z ¢. Actually, we have forf € C°(G), fo € C°(G'),

Q5.:(Pe(fo), Ps(f)) = / SN @)Y (g dg'dg

G’ x
=lz:(Pf"),
where f* € C*°(G) is defined as
e = [ o) sy’ 0

REMARK 9.11. By the rationality of2z ¢, the formulas on the values & andJg
calculated in Section 8 hold for genefig, &).

10. An explicit formula.
10.1. Inthis section, we shall give an explicit formula for the Whittaker-Shintani func-
tion Sz ¢ given by

Sze(9) =R2z6(Pk e, R(9)Pk.5)

= / Yz (kg™ k' )dk'dk
K'xK

introduced in Section 4. Recall that theédgral above defines a rational function(, &) by
“analytic continuation” (see Section 9).

10.2. LetZ € X and¢ € X’. We shall identifyZ and& with (&1, ... , &) € (C*)!
and(&, ..., &) € (! respectively, as before.

Fora € X (resp.8 € X’), we lete, (&) (resp.e/ﬁ(g)) be the numerator of the c-function
Ca(Z) (resp. c,(£)); namelye, (&) = 1 — g 15 (ay) andey(§) = 1 - q_lf(a;g). We set
&) = [[yes+ & (&) and€(§) = ]_[/362/+ e(ﬁ(g). We also letd, (&) be the denominator
of ¢u(&) sothatdy (&) = 1 — E(ay). We setd(Z) = [[,cx+ do(&). Similarly we define
djy (£) andd'(6).

10.3. We let
bg, &)= [[ A—q Y& En"HA-q5)),
1<i<l’
1<j<i
where
o 1, if j<r+i,
Mij 1, ifj>r+4i.
Let us put

e(E)€§)

{(E.8) = b(5.)
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LEMMA 10.4. (1) Foranya € A,

{(weE, &)  Quw,z.6(P1, R(gy ,we)(P1+ Puy,))
(8,8 Rz:(¢1, Ry, we)( @1+ Pyy,))

(2) Foranype A/,

(=, wﬁé) _ QE,wﬁé((ﬁl + (bwﬁy R(gm,rwe)¢l)
((E.§)  Qze@1+ duy. R(g,,we)P1)

(10.4.1)

(10.4.2)

PROOF We can verify these equalities from case-by-case considerations. For example,
if @ = ¢4 —&ryiv1 (L <i <1’ —1),itis easily seen that the left hand side of (10.4.1) is
equal to

A-q V2% 5, 01— q V25 DA-q 5 Bt

A—q Y2751 A—q V258 HA - ¢85 )
On the other hand, the results of Section 8 (8.9 and 8.15) show that the right hand side of
(10.4.1) is identical to the above. We can check the other cases in similar ways. [

THEOREM 10.5. For generic (&, &), thevalue Sz £(g)/¢(E,&) (g € G)isW x W'-
invariant as a function of (&, &).

PrROOF We first recall that, by the uniqueness argument in Section 7 Haityariant
bilinear form onI (¢, yy) x I(Z) is a scalar multiple of2z ¢ for generic(&, £). Since a
bilinear form onl (¢, ¥y) x I(ZE) given by

(Tw/,’;‘ x T ,E)*QwE,w’&' = *QwE,w”;‘ o (Tw/,&' x T ,E)
is alsoH -invariant, there exists a scalar factgy (&, £) such that
(Tw g X Tw.2)* 2wz we = Cw(E)C, (E)by,w (8, §)R2z.¢
for generic(Z, &). Consider the case whetie= w, (a € A) andw’ = 1. Since

Twa (®l + ®wa) = Ca(E)(él + ¢wa) s

we have
Ca(E)bwa,l(Es S)-QE,E(QSL R(gm,rwé)(él + qua))
= (Ty,z X D*Q2y, 2.6 (@1, R(g,,we) (D1 + Py, )
= Ca(E)-QwaE,é((ﬁl’ R(gm,rwé)(Ql + ¢wa))
and hence

by 1(5.6) — R0y 5.6 (D1, R(gp,we) (D1 + Puy))
“ Rz.(@1, R, we) (P14 Puy,))
_ t(weE,§)
R
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Therefore we have

Swe2.6(9)/S(Wa 8, €) = Ru,5.6(@k, R(9)PK)/¢(we B, )
= (&) " Quy 5.6 @k’ Tu, (R(9)PK)) /S (we &, )
= bu, .1(8. £)2z.:(¢x', R(9)PK)/C(Wa T, £)
= Qg (px, R(9)PK) /(5. £)
= Sz.:(9)/C(5.8).

This implies that the function of given by Sz ¢(g)/¢(Z, &) is invariant undeW. The
W'-invariance follows exactly in the same manner. O

10.6. We are now in a position to give an explicit formula of Whittaker-Shintani func-
tion Sz ¢ in a form analogous to the case of zonal spherical functions or Whittaker functions
(Mac], [CS], [K1)).

Recall 6.1. It suffices to know the val$g; ¢ (¢) with ¢ = t/(k’)gm,,wgt()»)*l for ' €
Al x e A, since—wy (A} = A} and

m?

t’(x’)gm),w@t(x)*l ='W g, t(—weODwe (A€ Af, Ve Al).

Let us put
c(&)C'(§) _ b(&,§)
(&, 8) d(&)d)
Then we can give the following theorem by using an argument similar to that in [CS].

Cws(&,§) =

THEOREM 10.7. For )’ € Al andx € A},

Sz W) g, wet ) H/E(E, £) = g' "M Dvol(B)vol(B')
x Y ows(wE, we)(wE) M) () (w'e) YA 1)) .
weW
w'ew’

PROOFE We fix generic parameters, &). We first note that

Sz e’/ t()™h = vol(B't' (W) 1 B)vol(Bt(») "B
(10.7.1) £ A Gp pwet (A)7) (B't'(A)""B')vol(Br(2)""B)
X L(ChB/I/(A/)_lB’)R(ChBt()\)_lB)SE,E(gm,rwf)

forA’ € AT, andi € A;f. To show this, it is sufficient to prove that
B'Y (\)B'g,,,weBt() B C UK t' () g et 1)K .
By the Iwahori factorizatiorB = N;,T(o)No) andB’ = N5 T N' (3 ,

B'{'(0)B'g,, ,weBt (W) B C Kt O)N' (19, weN gt (1) 1K
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(Note thatt(A)N(o)t()»)*l C N andt/()/)N(’o)t’()J)*l - N(’O).) Then we see exactly as in
Proposition 8.3 (see also Lemma 8.2) that
Nla)gin,rw@N(]_) C gm,rwa(E)N(l)
C gmrweNgy ToNwy C UoNy Ty 9mweToNa) -

This implies (10.7.1).
By 1.10, we have a basjg,, (w € W)} for I(Z)? satisfying

(10.7.2) R(chg,g)-15)9, = VOI(Bt (W B)(wE) 162t (1))g,, (€ A7)
(10.7.3) g1=¢1;
(10.7.4) ¢k =q" ™ Y Cu(&)g,

weW

with €, (&) = [[C«(&) (@ > 0, wa > 0). We also have a basig/, (w' e W)} for
1) = I1(&, yy)? with the similar properties

(10.7.5) ¢k =q" "0 Y T (&gl

w'eWw’
and so on. Put
S =Sz’ (W)g,,wet W) H/0(E.8).
Then we have, by substituting (10.7.4) and (10.7.5) in 10.1,

ewo+e) PE§)

S =
I e(5)€@)
x Y C(@)T, E)wE) Y2 ) w'e) T2 (V) 22 (0 R w0)g0)
weW
w'ew’

from (10.7.1), (10.7.3) (and its counterpart {gr , (w’ € W')}). We know that
Rz.£(91, R(g,we)g1) = vol(B)vol(B')

from 8.3. Thus the coefficientfar =1, w’ =1inSis

’ b(Z, &) ’
C(we)+L(wy) / _ A(we)+E(w)) 1 —
q vol(B)vol(B )76( 7)e @) =q vol(B)vol(B")ews(&, &).

Hence theW x W'-invariance ofS and the linear independence of characters show that
S = ¢! @0+ @W)yol(B)vol(B')
x > ows(wE, we)(wE) Y2 () (w'e) YA ().

weW O
weWw’

The valueSz £ (1)/¢(E.§) = Sz.&(gm.,)/E(E &) = Sze(gm,we)/C(E,§) Is given
by the following theorem.



WHITTAKER-SHINTANI FUNCTIONS 57

THEOREM 10.8. Thevalueof Sz ¢ at 1, Sz (1), isgivenas
Sz.£(D/C(E.§) = g 0T Dvol(B)VOI(B') x Oy

where Q,, isthe constant given by
-1 ’
1—q™" l_[(l— inZ) if m" =20,
=1
Ow = r l

[Ja-4a% if m' =2 +1.

We shall prove this theorem in the next section and assume this for the moment.
Now we define the Whittaker-Shintani functidiz ¢ by normalizingSz ¢:

Fge(9) = Sz,6(9)/Sz,6(gmrwe) .
Since we already know thals ¢ /¢ (&, £) is rational in(&, &), the explicit formula 10.7 of
Sz.£/¢(E, &) shows that the valuEz £ (g) is regular in(Z, &) with Fz £(1) = 1.
Thus we finally have the following theorem from 10.7, 10.8 and the multiplicity one
result in Section 7.

THEOREM 10.9. For any (Z,&) € X x X/, dimc WS(&,&) = 1. The basis of
WS(E,8), Fge € WS(E, &) with Fz £(1) = 1, isgiven by the formula

Fz, (r/(x/)gm cwet(W)™h

(10.9.1) £) 1Y)t ) (w'e) 1A ()

m’ wEW
w'ew’

for A, 1) € A} x AL,

11. Thevalueat theidentity: Proof of 10.8. We shall calculate the sum

_ - bws, w)
Arm = A (8, 6) = Z dwa)d (w's)

weW

forregular(Z, £) € X x X’'. (Recall thatn = 2r +m’ + 1.) We have
Sz.6(1) = Sz.6(g,,we) = S(F, §)g T DV0I(BVOI(B') X Ap
from 10.7. Therefore we can rewrite Theorem 10.8 as follows:
THEOREM 11.1. Thesum A, , isaconstant, and isequal to Q,, givenin 10.8.

In what follows, we shall calculate

b E*l’ /e—1
AT = A rm/(uily l)— Z d (w wé: )

o wE-Hd'w'g=h

w EW/
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instead of4, ,,;, and show than;r,m is equal to the above constant.

11.2. From now on, we shall consider the odd case 2r + 2" + 1, m’ = 2I'. We
can handle the even case in a similar way.

We shall regards; (1 <i <r+1')and; (1 < j <!') asindeterminates. Hen@é’m,

is in the Laurent polynomial ring[ &, sjﬂ] by Weyl's character formula. We put

bl (5.8 :=b@E e
= [] a-¢aY&shH ] a-q4%%'a)

1<i<l’ 1<i<l’
1<j<r+i rti<j<r+l’
12, -1g@-1
X l_[ (1 q gi “‘/ ) )
1<i<l’
1<j<r+l’
d&)t:=dE"1 = ]_[ 1-gtgHa- 5;15.;1) ]_[ (1-572
1<i<j<r+4l’ 1<i<r+l’
and
deT:=de™H= [] a-gpa-gh.
1<i<j<l
11.3. Set
p=pm=0+0,r+0'—1,...,2) e A, =21
and

p=p, =0 -11=2..,1,0¢eA,=2".
Thenp (resp.p’) is the half-sum of positive roots in,¢, (resp. ). We put
gp — grtl grtl'-1 o2 g
=T EL =2 TS+l
and
’ U=1.0'-2 2
Ep = 51 52 e '$l/_2«51/—1~

As in the case of Weyl's character formula, we have

Al =DE™DE™ Y sgrw)sgnw)ww' (8°E7b!  (8.8)).

weW
w'eWw’
where
— - - — —~—1-1 — ~—1
D@E) =Du(&)= [] @E-zpa-ztsih [] @-&H
1<i<j<r+l' 1<i<r+l’
and

D& =D,E = [] &-&g)a-gh.

1<i<j<l
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We say thak. € A,, = Z'* or the monomiaE* = &, - Erlj (resp.ju € Ay =
Z" orgh = gt .gl’f”) is regular if the stabilizer ofx in W = W(C,,) (resp. the stabilizer
of win W = W(Dy)) is trivial. We also call the monomiat*£* regular if bothZ* and
&" are regular. Letus s, ,, = Eﬂsp’b;r_m/(E, £). Then, by expandin®, ,,; as B, ,y =

> e ErEH, we have
Al =D@DE™ Y au Y. sgnw)sgnw)ww (FHEH) .

Ergm regular weW(C, )
w'eW (D))

11.4. REDUCTION TO THE CASEr = 0. Now we look at the expansion &, , in
the above more closely to study regular terms in it. We write d8wgp as

Bow= [] E-a"% [] &-a"%3)

1<i<l’ 1<i<l’

1<j<r+i r+i<j<r+l’
r
-1/2e-1 -1 —~r—j+1
X H (1-q~ % *”j)l_[“j :
1<i<l’ j=1
1<j<r+l’

If a monomialZ*&* in the expansion 0B, , is regular, then we must have
{|xg(1)| > ho@| > > Aoyl > 0,
eyl > ne@l > - > lueqnl =0
for some permutations € S, andt € Sy. In particular, we have
Aoyl =r+1'+1—i,
el =1 —j.
However we can see easily that the exponerdf the power ofZ; in B, ,,» must satisfy

(11.4.1)

{—l/+r—i+1§k[§r+l'—i+l if i <r,

—'<x<l if r<i.

This shows that

(11.4.2) oy =r=l+r>re=ta=U+r—1>- >k =rA=1,
and that

(11.4.3) Mol =1'—i QA=<i=<l).

In particular, we have = y(p) forsomey € W(Cy). Here we regard (C;/) as the subgroup
of W = W(C, ) which acts trivially on the first entries. Note that

[] & —a V%) = &} + (lower terms inz)
1<i<l’
and

1<i<l’
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for 1 < j <r. Therefore we have

Al =DETDE Y sgrw)sgrw)ww'(B,)
weWw
w'eW’

where

Br,= [l @E-a [ @-qaYE)

1<i<l’ 1<i<l’
r+l<j<r+i ri<j<r+l’
r
~1/2.-1 -1 o —j+1
X l_[ (1—q "% = )H“j :
1<i<l’ j=1
r+l<j<r+l’

But then the equalities
SgNy) = Dapr1(E)"H D sgnw)w(5Y Pz+ar+)
weW(C, )

=Daa(@)7F ) sgrw)w(&P2+0)
weW(Cy)

(11.4.4)

fory € W(Cy) € W(C,4y) imply the following lemma.

LEMMA 11.5. Thesum A;rm, isconstant in = and is independent of r. In particular,

t t
Ar,m’ = AO,m“
11.6. THE cAser = 0. Now we shall study
A=Al =Duwu@7D,E™ Y sgnw)sgnwyww' (Bow)
weW (Cy)
w'eW(Dy)
where
Bow = [] (@i —a %) [] G-q"?E)
1<i<l’ 1<i<l’
(11.6.1) 1<j<i i<j<l’
12,11
x [T a-a Y%7,
1<i,j<l’

Recall that the inequalitigg,;| < ! and|u ;| < I’ hold if the monomialZ*&# appears in the
expansion ofBg ;.

Suppose that a monomial*&# with ; = I’ for somei = ig appears in the expansion
of By . Note that

[T @&i—a"%0) [] Go—a?8) =c & + (lowerterms ing;,)

1<j<io io<j=<I'
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for some non-zero constantand

l_[ 1- qfl/zé-*lEjfl) =1+ é,-;l - (a polynomial ingl.gl) .

o
1<j=r

Therefore, for anyj, only the product
[] @Ei-a" [] &-qa%5)

Jj<k<l' 1<k<j
k#ig k#ig

contributes to the poweE;\’ in *&*. This implies that 0< A; < I’ for any j, and hence
E*&M is not regular. Similarly, we can see thatg* appearing inBg , is not regular if
w; = —I’ for somei.

Thus we see thafu;| < I’ for anyi if the monomialZ*£# that appears iBo ' IS
regular. This and (11.4.1) show that= u(p’) for someu € W(D;). Therefore, as in 11.5,
we have:

LEMMA 11.7. ThesumAgm, IS a constant.

11.8. THE EVALUATION OF THE CONSTANT. To evaluate the constadt = Ag '
we specializé =, £) to (5, ), whereZ;, = ¢/ *t1/2and§; = ¢''~' (1 < i,k <I’). Namely,
ae Z b;r)_’l,(wé’, w'E)
werricy diwEd )
w'eW(Dy)

Note thatd(w Z)d’ (w'€) # 0 for anyw € W(Cy), w' € W(Dy).
Now, to everyw € W(Cy), w’ € W(Dy), we shall assign permutatioast € Sy and
&i, s;. = £1 with ]_[s;. = 1 in the following way:

7 — (5° ol le _ (81 v
wa = (uo(l)’ cee ua(l/)) ) w ‘i: - (?’:‘[(l)’ cee ér(l/)) .

LEMMA 11.9. Iftheproductb! (w&, w'é)#0, thenw = w' =1.

PROOF  To show the lemma, we first rewrih% o WE wE)as

bg’m/(u}é’,w’g)z 1_[ (1_qa(i,j)) 1_[ (1_ql3(i,j)) l_[ (1_qy(i,j))’

1=j=i<l l<i<j<l 1<i,j<l

where we put
ali, j) = €j <l’—6(j)+—)+8§(l/—t(i)),

) —ei(l' = (D),



62 S. KATO, A. MURASE AND T. SUGANO
and
.o 1 , ) 1 o .
v, j)=—5-¢ <1 —U(])+§) — e/l — ().

If bg,m/(w&;, w'E) # 0, we must have
ali, ) £0(L<j<i<l), B, j)#0L<i<j<Il), yG,j)#001<ij<l).
Defineis, ... iy andji ..., jy by

i) =0'-5+1 1<s<l)
and

o(jn=0I—-t+1 L=<t<l)

so thatl’ — 7(iy) = s —1and!’ — o(j;) =t — 1. Then we can deduce Lemma 11.9 easily
from the following lemma, since the conditions (11.10.1) and (11.10.2) given below occur
only whenw = w’ = 1. Actually, we havesl/.1 = 1from[]e; = 1. (Note thatw’ € W(Dy).)

LEMMA 11.10. If the product bg)m,(wé', w'€) # 0, then the following hold:

(11.10.1) 1> j1>i2>j2> - >iy>jy,
(11.10.2) g, ==& =¢=--=¢j, =1.

i2 iy
The proof of this lemma is as follows. Singiy, j1) = —1/2 — ¢;,(1/2) # 0, we
havee; = 1. ThenB(i1, j1) = —1/2+ ¢;,(1/2) = 0 implies thatj; < i;. Next consider
y(i2, j1) = —1/2—1/2 — ¢,. The assumption (i2, j1) # 0 shows that;, = 1, which in
turn implies that, < ji, sincea(iz, j1) = —1/2—¢;,(1/2) + 8:/'2 = 0. In this way, we have

iz j1>i2zj2> - >iyzjr

and
==, ey = =e, =1
by induction. Details are left to the readers. O
As for the value oA = Ag o = A;rm,, Lemma 11.9 and the direct calculation show that
€. &) =
0,m'*>> = —2i
A=22"_ _ —1-¢H[[a-¢%.
d'(&)d T @) e lla-

i=1
Therefore we have proved Theorem 11.1, and hence Theorem 10.8, and have completed the
proof of Theorem 10.9. O
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