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Abstract. We give necessary and sufficient conditions for embeddability of CR mani-
folds in terms of transversal group actionsieBe actions do not necessarily preserve the CR
structure but they posses a holomorphic extension.

1. Introduction. A smooth manifoldV/ of real dimension 2+ d is called a Cauchy-
Riemann (CR) manifold if an-dimensional complex subbundi&°M of T°M = CQ TM
is specified that satisfies

HYM nH®'M = {0} and [HY°M, HYOM) c H oM,

whereH%*M = A1OM. We calld the codimension oM and ifd = 1 we say thai/ is of
hypersurface type. The bundieM is given as the real part by

HM =Re(H*°M & HO'M) .

Since we focus on local questions in this paper it can be assumedi/tisatin open neigh-
borhood of the origin 0 ilR%*+¢. Moreover, all differential objects will be assumed to be of
classC® if not otherwise stated.

The Newlander-Nirenberg Theorem [22] states thatffee 0 the bundleH 1M gives
rise to a complex structure avi. We shall make repeated use of this fundamental result.

A CR manifold is locally embeddable (or realizable) if there exists a smooth embedding
1 : M — C"* such that

01 d ad
H> "M C{—, ..., — s
aZl aZn-i—d C
where(-, ... , -)c stands for the complex linear span. N¢IitCR manifolds are embeddable as

was first shown by Nirenberg [23] for 3-dimensional CR manifolds. See also [14] and [21] for
more general examples of non-embeddable CRifolds (e.g., of higher codimension). To
ensure embeddability one musetkfore impose further (gewetric or analytic) conditions

on M. For example, if the CR structure av is real analytic, ther is embeddable, see

[1]. According to a theorem of Kuranishi, etded by Akahori and Webster (see [28] and
references therein), every strictly pseudoconvex hypersurface-type CR manifold of dimension
> 7 is locally realizable.
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It turns out that a geometric condition implying embeddability (which makes no refer-
ence to the Leviform oM) is given by the presence of a transversal group action. Historically,
1-parameter groups of CR actions were first introduced by Tanaka [25]. Baouendi, Rothschild
and Treves in [9] (see also [10]) proved that a CR manifold is embeddable if its CR structure
is invariant under a transverse Lie group action. This result holds true even more generally
for the so-called hypo-analytic strucas[26], see also [13] for related results.

CR manifolds which admit a transkse abelian CR action are calladid. Note, how-
ever, that the class of rigid CR manifolds is very restricted. In general, CR manifolds do not
even allow any non-trivial Lie group action which preserves the real buHde The aim
of this paper is to give sufficient conditions for embeddability in terms of more general group
actions that are not necessarily required tospree the CR structure. We also show that the
presence of such group action is a necessary condition for embeddability.

In Section 2 we introduce the concept of transverse extend@blactions on a CR
manifold. These contain the abelian trarrseeactions in the sense of [9] as a special case.
This notion is inspired by Lempert’s definition of the so-called inner actions for 3-dimensional
strictly pseudoconvex CR manifolds in [19]. There a special clags-aictions is studied and
various (global) embedding results for CR 3-manifolds are obtained. Similar techniques were
used by Bland and Duchamp [6] to investigate deformations of CR structures. We show that
real analytic CR manifolds always admit extendable actions. The main result of this section
is that the existence of an extendable action implies local embeddability.

Section 3 is devoted to CR manifolds of hypersurface type. For these we introduce
the notion ofsemi-extendable action, which is a one-sided version of a lo€ahction. We
show that if a hypersurface type CR manifold admits a semi-extendable action, then it is
locally embeddable as the boundary of a complex manifold. Conversely, it is shown that non-
degenerate hypersurfaces@i+! admit a (local) semi-extendabReaction. This is proved
via a family of stationary disks locally attacht&xthe hypersurface. For strictly pseudoconvex
CR manifolds we obtain a somewhat sharper result.

Part of this paper was written while the second author was staying at Purdue University.
He would like to thank the Mathematics Department for its hospitality and Professor L&szl6
Lempert for numerous discussions on the subject treated in the paper. Part of this research
was supported by Project 20-6137900 of Swiss National Science Foundation.

2. Analytic actions on CR manifolds. Let M be a CR manifold of real dimension
2n + d and ding H%1M = n. Assume we are given a lodRF -action

F:M xV—>M,

whereM’ is a neighborhood 0p € M andV = V,, is an open neighborhood of® RY. To
X € ToR% we assign a vector fiel®d which acts onf € C*°(M, R) by

d .
Xf(p) = 1 of(F(p, exprX)).
=
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Denote€ = {X : X € ToR?}. We will assume that the action is transverse, i.e.

1) HYM ® H}'M & CE, = TM
for eachp € M. Fors € V we denote by
(2) H%Y(s) = F(-,)*(H*'M) € T®M

the pullback ofH%1M by F(.,s), s € V. H%1(s) can be viewed as a poifit/®1(s)] in the
Grassmannian Gr= Gr(TpCM, n) of n-planes inTpCM. Let Gr be the bundle

Gr= U {p} x Grp.
peM
Consider the mapping
3) nw: MxV — G(I)’1
(p,s) — [Hy (s)].
In the following definition we use the fact that Gis a complex manifold (of dimension
n(n + d)).

DEFINITION 1. We say that the actio¢F;) is extendable at p € M if there exists a
neighborhood/ < M of p € M, a neighborhood’ of 0 € C? and a smooth mapping
n:U xV — Grsuch thaﬁ|UX(‘~,mv) = p andji(q, -) : V. — Gi, is holomorphic for each
qelU.

An immediate class of examples of CR manifolds that admit extend&blactions is
that of the so-called rigid CR manifolds in the sense of [9], [10] which admit a CR action, i.e.,
u(p, ) is constant.

To specify the meaning of Definition 1 in local coordinates, observe that for small values
of s € V the bundleHd %1 (s) is close toH%1(0) = H%1M. There exists d-parameter family
of complex bundle morphisms

ws): H%*'M — HY M o C€

such that

(4) HOY(s) ={(Z+ w(Z): Z € H*' M} .

(These expressions are defined only for smallf we choose a basigs, ... , Z, of HL0M
and denote byy, ... , 6, its dual basis, thep is given by a tensor

(5) n = wikb; ® Wi,

whereWs, ... , Wyyq = Z1,....7Zy, X1, ..., Xg and X; are the vector fields induced by

the generatoré?,» = 0/ds;. We will refer tou as the Beltrami tensor. Let us mention that
the tensop can be viewed as a generalization of the deformation tensor introduced in [6]. A
similar definition, called complex dilatation, for maps between CR manifolds is given in [15]
(see also [2]). Now we see that tR¢-action (F;) is extendable in the sense of Definition

1 if all coefficientsu;; of the Beltrami tensoare real analytic in € R4 and their radii of
convergence have a uniform lower bound in a neighborhogd of
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PrROPOSITION 1. Analytic CR manifolds admit local extendable actions.

PROOF. Let(u,s) = (u1,...,uz, 51, ...,sq4) € R be analytic coordinates aff
in a neighborhood of some point &. In these coordinates we can write a basisidf M
as

_ 0 d
6 Zi=ojj— i1—, i=1...,n,
( ) j Ajk iy +,3,/l 951 J n

where summation convention is used pwepeated indices and the coefficieats, 8;; are
real analytic compbevalued functions ofu, s) € RZ'td As HM is real Zi-dimensional,
we may assume that/dsy, ..., d/ds, are transverse té/ M. The matrix(« i) has rank:

and so we may (by changing the basis) further assume that equations (6) read

(7) Z 0 + 0 +b 0
g — g
/ ou j jk8vk ”as,

j=1,...,n,
where we use the notation = u, 14,k =1,...n.

The localR4-action(F;) will be generated by the vector fieldgdsy, ... , 9/ds;. Let ¥
be the submanifold = {s = 0}, parametrized by the coordinatess R?". We shall prove
the extendability of the actio(¥Fy) at a pointp = (u, 0) on X'. Our first observation is that
the matrix Ima(u, 0) = Im(a i (u, 0)) is invertible. To see this we argue as follows. Since
{Z;, Z,-}jzl,___ .« forms a system of2C-independent vectors, the syst¢ny = (1/2i)(Z; —
Z,'); j=1,... . n}isR-independent i M. Suppose that the realx n matrix Ima(ug, 0)
is notinvertible. Then a suitable linear combination with real coefficightsj =1, ... , n},
of the rows from Imu(uo, 0) will vanish. This means that the vectdr := d;V; can be
expressed a¥ = ¢;(9/0s;) for some real coefficients,i = 1,...,d. On the other hand,
vectorsV;, j =1, ..., n, areR-independent, which implies th&t = 0, V € H,,0M. This
is in contradiction with the transversality ¢f/ds1, ... , 3/ds;} andH M at the pointug, 0),
which shows that I (u, 0)) is invertible.

Directly by the definition of the actiotF) we have

(®) FrZ3(F(p) = —— + ajut, $)~— + by (u, ) —
L = — +tajr(u,s)— i, s)—.
s 270 LP ouj ik vk it sy
Since we considet as fixed, we will for the rest of this proof suppress the dependenge of

and just writea jx (s) = ajk(u, s) etc.
According to (5) the Beltrami tensgr at p with respect to the basis

_ - Bl 0
Z10), ..., Z,0), —, ..., —,
l( ) n( ) Iy 8sd
can be written in the form
~ - d
) w=2j0; ® Z;(0) + vy6; ® Frl

We have to show that the coefficients, v;; depend analytically om. Let X be the bundle
spanned by)/ds1, ... ,0/dsq, mx : T°M — HCM be the projection along, andz%1 :
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HCM — HO91M be the canonical projection #%1). We have
7Y o wx (FFZi(9)) = ¢ij(5)Z;(0) = Wi(s) .
By definition of the Beltrami tensor we have
Wi(s) + (Wi (s)) = F Zi(s) .

Using equations (8) and (9), this reads

9 d 9 9 9 i
F —l—azk(s)—avk + ’l(s)asl Cij (S)<auj +aji( )avk +hji )as,>

0 _ 0 - 0 d
+ Ajk(s)cij (S)(a—uk + akl(o)a—vl + bkm(o)m) + vk (s)cij (S)a—s]{ .

Writing a = (ajx) etc. and comparing coefficients, we get the following system of matrix
equations:

I =c(s) +A(s)c(s),
a(s) = c(s)a(0) + A(s)c(s)a(0),
b(s) = c(s)b(0) + A(s)c(s)D(0) + v(s)c(s) .

From the first and second equations weade}(a(0) —a(0)) = a(s) —a(0). Now we use
the fact that Imz (0) is invertible; hence we conclude thgk) is analytic ins. Fromce(0) = I
we see that(s) is invertible (at least for small values gf and hencé.(s) = ¢~ 1(s) — I is
analytic ins. From the third equation we conclude that alge) is analytic.

One can easily see that the above consideration is independent of the initial point. So we
obtain that for each fixeckg, so) the functionsi (uo, so + s), v(ug, so + s) are real analytic
in s. Moreover, the proof shows that the radii of convergence of the corresponding power
series expansions have a locally(iry, so)-uniform lower bound which gives th&fy) is an
extendable action. O

REMARK. Consider the following exampleZ = {p = 0} C c?,
p(x1+iyL,x2+iy2) = x7 +y7 + x5+ (2 — D? — 1.

M is an analytic hypersurface ?. Therefore it is an analytic CR manifold which admits an
extendabldRr-action according to Biposition 1. We claim tha¥ is not rigid in the sense of

[9], since it does not admit a CR action. Inde@d,does not even admit a transverse action
preserving the real bundig M in a neighborhood of 0. This follows from the fact thai is
acontact bundle away from 0, but the contact property fails at 0. We refer to the next section
for the formal definition of the contact property. An equivalent way to check the non-existence
of a transverse action preservifgV is as follows. Observe that vectorfieldsiw/ together

with their first order commutators span the whole tangent space at ajpa@nd/, p # 0.
However, this property fails exactly at the poinEQV. This clearly contradicts the existence

of a transvers®-action preserving the bundig M.
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We already mentioned in the Introduction that both rigid and analytic CR manifolds are
embeddable ([9], [1]). A generalization of these results is our next statement.

THEOREM 1. If aCRmanifold M hasan extendable local R¢-action, then it islocally
embeddablein C"*+4,

PROOF. Without loss of generality we can assume (see [26] p. 302, or Lemma l.1in [9])

that points ofM are given in local coordinates, s) = (u1, ... ,u2,,51, ... ,54) € R21+d
such that
0
Xj=—, j=1...,d
asj'

induce theR?-action(F;) which is just the usual translation with respect to coordinates
R?. Let ¥ <> M be the submanifol® = {s = 0} which is transverse to the action @f;).

Choosing smooth sectio#g (), . .. , Z,(u) of H*1M|x, we obtain by (5) at each point
(u,0) € X a Beltrami tensoy(u, s) expressed with respect to the ba&igu), ... , Z,(u),
X1,...,Xq. As the action(F;) is extendable, each coefficient;(u, s) of the Beltrami
tensor has an extensign; (v, z), z; = s; +it;, i =1,...,d, which is holomorphic fot in
some neighborhood of 0 i6¢. (To simplify the notation we will always writ€? where we
actually mean an open neighborhood of @ifh.)

Next we define vector field#; on the manifoldV = X x C?¢ by

(10) Wiu, 2) = Zi(u) + p(u, 2)(Ziw)) .

We understand the vectog (1) and u(u, z)(Z; (1)) from the right side of (10) as being
transported to the point:, z) € N.

Let us observe that for Im= ¢ = 0, by the definition of the Beltrami tensor, it follows
that the vectordV; (u, s) form a basis ofH(Ou’!lS)M. SinceM is a CR manifold, the bundle

HO1M satisfies the integrability conditior %10, H%1M] € HO1M. It follows that there
are smooth functiong"', k,1,m = 1, ..., n, such that

(11) (Wi (i, ), Wi, )] = ¢ (e, ) Wi (u, ) -

Next we show that the functiomg” have holomorphic extensions to ki# 0 such that
(11) holds also for Im # 0. Let

2n+2
(-xls"' 7x2n+2d) =(l't:l.s"' 7M2n1s17"' ,Sd,t]_,... 1td) € Rn+ d
be real coordinates aN. Let us rewrite the vectors from (10) as
_ 9 )
Witu,z) =a;ju,20)—, i=1...,n,
’ ax]'

where the coefficients;; are holomorphic irc € c? and a;j = 0 for the indicesj =
2n+d+1,...,2n+ 2d.
Let

Uu,z) = [Wnu,2), Wiu, 2)]
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and write

_ 0

U(u,z) =bj(u, Z)Ej .
Since the derivativeda;; (u, z)/dx, are holomorphic in, it follows that also the coefficients
b; are holomorphic functions inandb; =0, j =2n+d+1, ..., 2n+2d. By the previous
consideration we know that far= s € R¢ we have

Uu,s) =cju,s)W;(u,s).
Writing A = (a;j), b = (b1, ... , banyq) ande = (cy, . .. , ¢,), We Obtain the matrix equation
b=cA.

As the vectordV; areC-independent, there exists an invertible n submatrixA; of A, and
submatrixb; of b such thath; = cA1, from which we obtainc = blAil as the required
holomorphic extensior(u, z). We also obtain immediately the extension of (11). This is
seen as follows: The coefficients of the vector field

Uu,z) —cju,2)W;u,z)

are holomorphic i and vanish on Imp = 0. But then they must vanish for &l Conse-
qguently, (11) holds on the whol€.

We define onN = X x C¢ the vector fieldsV;, = 0/0z;, i = 1,...,d. Clearly,
[Vi,Vi]=0and

_ 0 _
[Vi, Wil = 8_2»“(’4’ 2)(Zr(w)) =0,

since the coefficients oft are holomorphic inz. It follows that the bundleN' =
(W1, ..., Wy, V1,..., Vy)c satisfies the integrability condition

IV, N]TCN.
Moreover, it is easy to check thAf N A/ = {0}. It follows from the Newlander-Nirenberg

Theorem thatV" gives rise to a complex structure on the maniftidand thatM = ¥ x R¢
is CR embedded iwv. O

3. CR manifolds of hypersurface type. In this section we focus on hypersurface-
type CR manifolds = M2'*+1, Let us recall some notation that will be used throughout this
section.

The Levi form of M (see [7], p. 156) is given by

L£: HYM -~ TM/HM
L(Z) =n((1/2)[Z, Z)),

wherer is the projectiont : TM — TM/HM. Choosing a Hermitian structure @i M
such thatd M is normal toH%1M, we can view. as a Hermitian quadratic formV is
called non-degenerate 4 is a non-degenerate form and strongly pseudoconveX4f) is
non-zero forZ # 0. If M is non-degenerate, the bundieM = Re(H-°M & HOIM) is a
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contact distribution o/, i.e., there exists a 1-forima on M such thatd M = kera andw is
non-degenerate in the sense that

anda #0.

For hypersurface-type CR manifolds we will caey semi-extendable actions rather than
extendable actions. To be more precise{lgt s € R} be a locaR-action that is transverse,
i.e., the vector fieldd F;/ds)|s—0 is transverse to the contact fieM. (For the sake of
simplicity we writeR meaning a neighborhood of 0 R) As in Definition 1 we can define
the mapping

w:MxR— Gr.

Letfore > 0
B.={lz] <e;Imz <0} CC

be the half disk in the lower half-plane @. We say that the actionp, on M is a semi-
extendable action in a neighborhobtdof some pointp € M if there exists are > 0 such
that the mapping

w:U X (—e,8) —> Gr

extends to a smooth map 6hx B that is holomorphic o, for each fixed; € U. This def-

inition is inspired by Lempert’s definition of innét-actions on 3-dimensional CR manifolds
(see [19], [2]). Clearly, any extendable action in the sense of Definition 1 is a semi-extendable
action. The proof of Theorem 1 can easily be modified to a proof of

THEOREM 2. If a hypersurface-type CR manifold M admits a local semi-extendable
R-action, then it islocally realizable as the boundary of a complex manifold.

In the above stateme is not necessarily required to be non-degenerate. In the case of
hypersurface type CR manifolds that are pseudoconvex we have a more exact statement. We
first have to introduce the notion of positivity of an action. létbe strictly pseudoconvex
and(Fy) be a transverse locBaction inducing the vector fielfl = (d Fy/ds)|s—o on M. We
call the actiorpositiveif for Z € H1-9M we have

(12) %[z, Zl=c¢(Z)S mod HM
l

forc(Z) > 0.

THEOREM 3. If M isstrictly pseudoconvex and admits a positive and semi-extendable

local R-action, then M can be locally realized as a strictly pseudoconvex hypersurface in
Cn+1_

In view of the embedding results due to Kuranishi, Akahori and Webster [28], mentioned
in the Introduction, the above Theorem is significant mainlysfee 1 andrn = 2. In higher
dimensions pseudoconvexity alone impliesteddability. We will, however, apply Theorem
3 to prove that (independently of the dimension) embeddability as a strictly pseudoconvex
hypersurface is equivalent to the presence of a semi-extendable action (see Theorem 4 below).
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PROOF OFTHEOREM 3. As in the proof of Theorem 1, we can consider local coordi-
nates inM and the extensioN = X x C with coordinatesu, z). Writing z = s +ir € C, the
submanifoldX of M is given byX = {s = 0}. The vector field of the action i$ = (3/3s)|u
and the vector field§ andW; spanningl’'®1N are given byv = 9/9z and

Wiu,2) = Zi(w) + p(u,2)(Zi(w)), i=1,...,n,

where the Beltrami tensqt is holomorphic inz € H™ = {z € C;Imz < 0}. (Again, all
expressions in this proof are to be read locally.)
Denote byW the bundle spanned by, ... , W,. Using the same reasoning as in the

proof of Theorem 1, one can use the semi-extendability of the dRrantion to show that
W @ CV defines a complex structure off = X x H™.

We next show thad is pseudoconvex as seen fravit. Pick a pointp € ¥ — M. We
are going to construct a smooth functiprlefined in a neighborhood gfin N that is strictly
plurisubharmonic oV —. We first need some preparations.

Recall that the Beltrami tensor atwith respect to the basigs, . .. , Z, can be written
in the form

w= )»,'jé,’ ®Zj+ V0 ®S.
Sincew(u,0) = 0 we haveW;|x = Z;. The coefficients; are holomorphic functions in
z € H7, and we denote

d
(13) Kk = max _Ui(O)I .
1<i<n | 0%
Next, let| - || be the Hermitian metric obV(p) such thatWi(p), ..., W,(p) form an or-

thonormal basis. By the positivity of the group action we know that¥oe YV we have
%[W, W1, = c(W)S(p) mod We W

for some numbes(W) > 0. Letc; > 0 be a real number such that

(14) c(W) = ca| W2

Finally, we setd = n«c; . We defineo by

(15) o(u,2) = put, ... un, s +it) = At> +1.

Clearly, we haveM = {p = 0} anddp|y # 0. We show next thap is strictly plurisubhar-
monic atp (and hence on some neighborhood\vn). This means that for sections, Y» of
T%1N the Hermitian formddp (Y1, Y>) is positive definite ap. We will make repeated use
of the formula

(16) 3dp (Y1, Y2) = Y1(Y2p) — dp([Y1, Y2) ,

which is easily verified (cf. Proposition 5.2 in [19]).
We have to show thatdp (Y, Y) > O for a non-zero local sectiori € T1ON. Without
loss of generality we may assume thais of the form

Y=W+bV,
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whereW =Y a; W; € W and the coefficients;, b are constant. We have
B0p(Y,Y) = ddp(W, W) + |b|?09p(V, V)

(17) +2Reddp(bV, W) = (i) + (i) + (ii) .
The term (ii) is easily calculated. Putting = Y2 = V in formula (16), we get
_ _ _ 1 92
(18) 3p(V,V)=VVp=—>——(Az -2 +iz—2) = A.

20707
To calculate the term (i) in (17) writ¢/ = Wy — i J W1, whereWy, J W1 are real vector
fields andJ is the complex tensor iV @ W. Since[W, W] = 2i[W1, J W1], the positivity
of theR-action implies that
(Wi, JW1] = c(W)S mod Wa W.
We have (at the point)
i

- 1 i i 0

Note thatW andW are tangent to the level sgis= constant. Using formula (16), we arrive
at

3dp(W, W) = —38p([W, W])
= —0p(2i[W1, JW1]) = =2ic(W)dp(S) = c(W).
By (14) we get the estimate
(19) Bap(W. W) =1y laif.
It remains to estimate the term (iii) in (17). Observe that
- 9 - _
[V, W], = (8—u>(W) =4S mod W WV,
Z
whereg = > a;(dv;/9z)(0). PuttingY1 = V andY> = W in (16), we get
- - - - - i
adp(V, W) = —=0p(V,W]) = —Bap(S) = —§ﬂ~
From this and the definition af (see (13)) we obtain the estimate
- - K
(20) 193p(bV. W)l < S1b1 Y lail.
Inserting (18), (19) and (20) in (17), we obtain
00p(Y, ¥) = 1) _lail* + AbI> = «lbl ) lail
=c1)_lail>+n@?/c)lb” —klbl Y la;]
= e D (a2 + W¥/DIbI — (c/eplaillbD) -

Itis easy to see that the last expression is strictly positivé fer 0.
We have shown tha¥ is a strictly pseudoconvex piece of the boundary of the complex
manifold N ~. By atheorem of Catlin [11] it is possible to locally extend the complex structure
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to N = ¥ x C. In this way we obtain a local embeddingfin C"**. This proves Theorem
3. O

The rest of this section is devoted to proving a partial converse to Theorem 3. We have

THEOREM 4. Let M = M?%*+1 be an embedded hypersurface in C"**, which is non-
degenerate at thepoint p € M. Then M admitsa semi-extendable R-action in a neighborhood
of p.

A major component in the proof of this theorem is the following proposition. To formu-
late the statement let us recall that a (ré&jlimensional submanifol of complexN-space
C is called totally real at a point € S if

T7,CN =T,S® JT,S,

whereJ is the complex structure @f.
Denote byA the unit disk inC and byy the subarde’s; s € (—/2, 7/2)} of d A.

PROPOSITION 2. Let S — C¥ be a smooth manifold, totally real at p € S, and let
X € T,S. Then there exists a smooth family F,, r e U € RVN~1, of maps F, : A — CV,
analyticin A, such that

1. Fo(1l) = p and (d/ds)|s—oFo(e’) = AX for some i > 0;
2. thefamily of curves {F,(y), r € U} smoothly foliates a neighborhood of p in S.

PrROOF The proof is done in two steps. In the first step we establish the existence of
the disc family required in the statement in a smoothness ¢t&§sfor a fixedk € N and
0 < a < 1. The second step is a bootstrapping arguement yield®gegularity of foliation.

STEP1: EXISTENCE. This step is based on a Bishop-type argument. For an intro-
duction to the Bishop equation and related machinery we refer to [7]. Our proof is modeled
after that of Pinchuk in [24].

Let us assume that = 0. SincesS is totally real at Oc S, it can locally be represented
after a biholomorphic change of variables in the form

S={z=x+1iy;, y=nh(x)},

whereh : RY — R is a smooth function witth (0) = 0 andd/(0) = 0.
Letk € N,0 < a < 1. For a functiont € C*%(3A, RY) we shall consider the Hilbert
transform defined by

ol [ (e
(21) reo =i [ (FE )0

Note that the Hilbert transfori : C**(3A, RY) — %34, RY) is a bounded linear map
and(x 4+ i Tx)(¢) is the restriction té A of a holomorphic map from into CV.

We make use of the implicit function theorem for Banach spfc@(d A, RY). Consider
a fixed smooth function : A — R with the properties|,, = 0 andu|ya—; < 0. We set up
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the following “ansatz" for the implicit function theorem:

@: RV xRN x ck@A,RY) - cke@A,RY),

(22) D, t,x)y=x+T(hox+tu)—c.

(Heretu = (r1u, ... ,tyu).) Sinceh is C*, it is clear that® is smooth.
Clearly, we havep (0, 0, 0) = 0. Using the fact tha@h(0) = 0, we find that
Vi@(0,0,0X =X+TUAh(O0)X)=X.
We hence find a family of functions(c, 1) in C*% (34, RV) satisfying
(23) @(c,t,x(c, 1)) =0.
We setf(c,1)(¢) = x(c, 1)) +i(hox(c,t)(¢) + tu(¢)). Since
T(mf(c,t)) = —Ref(c,t) +c,

the functionf (c, r) can be extended tg(c, r) : A — C¥ of classC*¢, which is holomor-
phic in A. Moreover, forz € y we haveu(¢) =0,

Imf(c, () = h(Ref(c,1)(1)),

and hencef(c, t)(y) C S.

The disc family(F,), satisfying Conditions 1 and 2 from the statement will be a sub-
family of (f(c, 1))(,. The remaining part of the first step is devoted to the selection of this
subfamily.

Let us introduce the mapping : RY x R — RY x RN by

[ Gile, )\ _ [ x(c,t)(e™)
(24) Gle, 1) = (Gz(c, t)) = ((d/ds)x(c, t)(e"S))

s=0-.

We shall prove that is a local diffeomorphism in a neighborhood of the poit0) €
RY x RM. To do that we have to show th&G (0, 0) is invertible.
Let us first calculate the matricék G1(0, 0) andD.G2(0, 0). From (23) it follows that

(25) 0=x(c,t)(€*) + T (h(x(c, 1) + tu) () —c.
Differentiating (25) with respect to and settingc, ) = (0, 0), we obtain
0= D.x(0,0)(e") + T (dh(x(0, 0)) Dcx(0, 0))(e*) — I.
Sincex (0, 0) = 0 anddh(0) = 0, it follows thatD.x (0, 0)(¢'*) = I, which implies that
(26) D.G1(0,00=1 and D.G2(0,0)=0.

In the next step we prove th@t, G2(0, 0) is invertible. We differentiate now (25) with
respect ta and set agailic, t) = (0, 0). We then obtain

D;x(0,0)(e"™) = T(Tu)(e"™),
which implies thatD; G2(0, 0) = (d/ds)|,_o T (1u)(e').
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Using the factthak|,, = O, the derivativéd/ds) ls—oT u(e'*) can be explicitly calculated
by formula (21). The result of the calculation gives

d . 1 3r/2 i
27) L TuE) = —/ UGN
ds | g 21 Jz2 cOsH® —1

Asu =0ony andu <0ondA — y, we get that (27) is positive. Hence

Tul)(e™)
s=0
is invertible, which together with (26) implies that is a local diffeomorphism at0, 0) €
RY x RV,

Let X € ToS = RY x {0} ~ RM. By choosing: > 0 small enough, we conclude that
there existgco, 10) in a neighborhood of0, 0) such thaiG (cg, 19) = (0, A X).

Let H be the hyperplane iR" orthogonal taX and denote by

d
DIG2(07 O) = %

H' = D Yx(co. 10)(1)(H).

Consider a linear mapping : R¥ =1 — R with the property tha# (R¥=1) = H’. We claim
that for a sufficiently small neighborhodd of 0 € R¥~ the disc family(F}),cy given by

F.(z) = f(co+ Ar,t0)(z), relU, ze A,

satisfies Conditions 1 and 2 from the statement (ex€&ptregularity).
Indeed, we can see immediately that Citiod 1 is satisfied. To check Condition 2,
consider for smalt > 0 the mapping

H:Ux (—¢,6) > RY, H(r,s)=x(co+ Ar, tg) (") .
It follows that

DH(0,0) = ( Dex(co, 10) (1) A > |

AX

By the definition ofA we see that the matrik H (0, 0) is invertible and Condition 2 follows

now easily by another application of the inverse function theorem. This concludes the first
step in the proof of Proposition 2.

In conclusion we obtain the existence of the disc family required in the statement in the
regularity clas%% (3 A, RY) for arbitrary, butfixed k € N. This is not enough to claid™
regularity, since it could happen that the paremeter space for our disc family depenasan
it shrinks to a point ik — oco. We deal with this difficulty in the following

STEP 2: REGULARITY. In this step we increase the regularity of the foliation ob-
tained in the first step by a bootstrapping argument. We start with some preparations. We
shall use the Holder space€%“(dA, RY) obtained by changing the norm &34, RY)
to the norm that depends on the parameterd > 0 according to the formula

Ix 1k, := max {e/ (lxPllo + xD|o)},
0<j<k
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wherex ) is the j-th derivative oft,

. . . 0)) —xW
”x(])”O — Sup ”xj (§)|| and ”x(j)”a — Sup ”x (é‘l) X ({:2)” )
cedn O£ [£1 — &2l

Let us recall that according to Privalov’s theorem (see, eg., [8]) the Hilbert transform
T:C%0BA,RY) - c%*@GA,RY)
is a bounded linear operator such that
ITullo+ ITulle < C(lullo+ llulle) for ue C®¥@A,RY).

Leta : A — My (R) be a matrix valued’*¢ function and consider the linear operator
v — Zv, Zv = T (av). Using Privalov’s theorem it follows that

Z:Cck@A,RY) — cke@a,RY)

is a bounded operator; moreové? |« < 1if |la|.« IS sSmall enough. If we work in the
weighted spaces’#(3A, RY), we have a better statement as formulated in the following

CLAIM. Thereexistsaconstant § > 0 such that if
2llallo+ llalle < 8,
then for £ € N we can choose ¢ = ¢(k, a) > 0 such that
Z:Ccke@A,RY) - Cc** A, RY)
becomes a contraction.
Indeed, using Privalov’'s theorem, write
1Zvllkae = Maxel ([(Tav) o+ [(Tav)?lq)
(28) = maxe/ (IIT(@v) o + |7 (@v) o)
= ¢ maxe/ ([[@)Vllo + 1)V lla) -
<j<

Without loss of generality we can assume that= 1. Using the product formula for
higher derivatives

J .
) — YAWOMIE))
(av) ; <i)a v ,
we can estimate the first part on the far right hand side of (28) as

J .
MMMMMm_nmmwwwmb+a(§:Q)wmm)w1wwf”m

i=1
(lallo + & - C1(k, @) - vk,

A

(29)

IA

forall j <«k.
To estimate the second part on the far right hand side of (28), we use that fore C*
we have

llua - uzlle < lluallo- luzlle + lluzllo - lulle -
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Then it follows that

i .
led (av) D)y =& Z({>a<i>v(ji>
l

i'=0
J .
. J . P . .
= 8’Z<i)(||a<’>||o||v<f o+ lla®lallv¥lo)
i=0

= (llallo + llalle + € - C2(k, a)llvllk,a.e -
By a combination of (28), (29) and (30) the choices of
1 1
§:=— and ¢:=
2C 2C(Cy(k, a) + Ca(k, a))
finish the proof of the claim.
Let us now fix a value ok > 2 and consider the family

F:U— Cck*@a,RY), UcCRNL,

o

(30)

of discs obtained in the first peof the proof. Recall that for € U the discF, = x, comes
from the implicit function theorem related to the equation (22). We can write this equation as
¥ (r,x) = 0, where

(31) Y(r,x)=x+T(hox+tou) — (co+ Ar)
with A : R¥~1 — R?" afixed linear mapping and: A — R" a given smooth function.

Let us fix a value: € U and consider the associated disce C*%(34, RV). To prove
thatx’ e C*%(94, RY) we argue as follows. We differentiate (31) and obtain

x. 4+ T(dhox,-x.) = —toTu’.
In other wordsp = x| satisfies the equation
(32) I+ Z)yw =—toTu',
whereZv := T(dh o x, - v). The operatod + Z is invertible inC** @A, RY) if Z is a
contraction. Applying the above claim this follows provided
2|ldh o x,|lo+ ldh o x,|le < 8.

Because/n(0) = 0 it follows that||dh o x, || is small as long apx; ||o is small. Furthermore,
observe that

ldh o xrlla < 227%1d%h o xrll0 - lIx}llo-
By the continuity ofr — x, € C%* we see that bottjx, | o and [lx/llo can be made
sufficiently small ifr € U’, whereU’ C U is a fixed parameter neighborhood.
Sincer - Tu' € C*, the invertibility of I + Z yields that
X =—I+2) Y wTu') e cCH*@a,RY),

and sax, € Ck+1.«_ |terating this reasoning, we obtain thate C> for r € U’. This proves
the smoothness of each individual disc
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Smoothness of the foliation (i.e., dependence on the paramete/’) follows by the
regularity of the implicit functionr — x, that is inherited from the smoothness of the mapping
U x Ch*@aaA, RY) — ck2@A, RY) for arbitraryk € N. This concludes the proof of
the proposition. m]

PROOF OFTHEOREM 4. Using Proposition 2, we will first construct a family of “sta-
tionary" disks attached t&f along the half-circle,. To do that we shall realiz¥ as a totally
real submanifold in a higher dimensional complex space (cf. [3], [4]) as follows.

For a point; € M < C"*! let H,M be the maximal complex subspacelof/. Then
H.M is a subspace o&”"** of complex dimensiom and can hence be viewed as a point
[H M] in the projective spacE€P”. Consider the map

v: M—C'tlxcpn
z = (z, [HM]) .

We setC = C"*1 x CP" andS = (M) C C. Furthermore, denote by the projection
7:C—cCcrtt

to the first factor of.

According to a result of Webster [27] it follows th&is a totally real manifold i€ if M
is a strictly pseudoconvex hypersurfacedifit!. The following proposition is a more general
version of this statement.

PROPOSITION 3. Let M — C"*! beasmooth hypersurface. Then M isnon-degenerate
at p e Mifandonlyif Sistotallyreal at (p, [H,M]) € S.

PROOF. Let us first observe that the statement is biholomorphically invariant. There-
fore, by making an appropriate biholomorphic change of variables, we can assume (cf. [7],
p. 208) that

M={z=(x+iy,w) e CxC"; y=nh(x,w)},
whereh : R x C" — R is a smooth function with the following Taylor expansion at the
origin:
(33) h(xr,w) = qrlwk>+0@), qeR k=1....n.

M is non-degenerate at O if and onlywif # O fork =1, ..., n. We shall show that this
condition is also equivalent with being totally real at the poin©, [ HoM]).

To obtain a local parametrization ¢fin a neighborhood of0, [ HoM]) consider the
defining functionp : c"l 5 Rof M given byp(z) = y — h(x,w). ThenM = {z €
C"*1: p(z) = 0} and forz € M the complex tangent spaég M is given by

H,M ={X € C"; 9p(z) - X = 0}.

In the above expressidip (z) denotes the vector

dp  9p ap 1
i) = £, 2 e Crti,
P <8u Jwq dwy,
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whereu = x + iy, and A - B denotes the complex multiplication of two vectots =
(Alv LN An+l)1 B = (Blv ceey Bn+l)1 A-B= ZA]B]

From (33) we see that in a neighborhagcf 0 € C"* we have

0p(z) = (=i /2, qaw1, ... , gnwn) + O(2).
This implies that for; € U the point{H,M] € CP" is represented by the vector
[0p(z)] = (—2iqa1, ..., —2ig,,) + O(2) € C".
From this we obtain the following local parametrizationSof
S ={p(x,w); (x,w) e VS RxC"},
whereV is a neighborhood of @ R x C", and¢ : V — C?**1is a smooth function which
has the following expansion:
o(x,w) = (x +ih(x,w), w1, ..., w,, —2q1W1, ..., —2ig,w,) + O(2).
Using this parametrization, we obtain that the tangent spaSeabf0, [ HoM]) is given by
To,[HoMm)S = spary{V; € C2n+l; j=1...,2n+1},

where the vector¥; are the (real) partial derivatives ¢f

Let us explicitly compute the vectois as follows:

9
v1=8—¢(o,0)=(1,o,... ,0) e C¥HL,
X

Denoting bywy = xx + iy, k = 1,...n, we have

)
V1+k:—8¢(0,O)=(O,...,0,1,0,...,0,—2iqk,0,...,0)eC2"+1,
Xk

3
V1+,1+k=a—i(0,0)=(0,...,O,i,O,...,0,—2qk,0,...,0)eC2"+1.

Using these expressions, it is straightforward to check that the complex sgah;of =
1,...,2n+1} isthe wholeC%*1ifand only ifg; # Oforallk = 1, ..., n. This concludes
the proof of the proposition. O

Proposition 3 makes it possible to apply Proposition 2 to prove the Theorem.

Letp € M andP = (p) € S. Choose a vectof € T,M transverse td?, M and
let X = y.& € TpS. According to Proposition 2 we can find a family;, »r € U C R?",
of mapsG, : A — C, analytic inA, such thatGo(1l) = P, (d/ds)|s—0Go(e’*) = X and
G,(y), r € R, smoothly foliates a neighborhood Bfin .

Let

fr=moG,: A— C"1,

Sincef(y), r € U € R?, foliates a neighborhood gf in M, for each poinyg € M (close
to p) we can find a unique(g) € R%* andgz, € y € dA such thatf, ,)(¢,) = q. We set

fq(é‘):fr(q)({q{)s CGA-
Itis clear thatf?(1) = g andifq’ = f4(¢') for somez’ € 9 A then f4'(¢) = f9(¢'¢).
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In this way we obtain a smooth family
F:MxA—C"h  F(q.0)=f1Q),

of immersed diskg'? analytic inA.

Clearly, Fy(q) = f9(¢*) for smalls € R defines a locaR-action (Fy) on M. Since
(d/ds)|s=oFs(p) = &, itis transverse t@&f M. We have to show thdfFy) is a semi-extendable
action. The holomorphicity of the mappirg. : A — C given by

G (&) = (fr (&), [HfyM])

for ¢ € dA close to 1 plays a crucial role in this respect. We use first the holomorphicity of the
second coordinate af, to construct for each dis¢? ann-dimensional complex subbundle
E, of (f9)*C"*1 as follows.

Setf = f4 to simplify notation and recall that is the projection of a map

G=(f/):A—>C=C"lxcp",
which is holomorphic inA. Using homogeneous coordinates @®", write
f=1A:fai.: fual.
We have (see Proposition 3) that foe y,
HyoyM ={X e C"™Y f(¢)- X =0}.

Leto (z) be the 1-form orT}’ép”“ given by

0(2) = A@AZTI+ - + far1(2)dZnat.

Theno is holomorphic for; € A and nonvanishing at least ferclose to 1. By pulling back
with 7, we get the 1-formf*o on f*T791C"+1,

For values of; close to 1 let us denote b, (z) the kernel off*o (z) in f*T%Cm+L,
Since we have the natural inclusion jif701C"*1  f*7CC"*1 we view E(z) as amn-
dimensional complex subbundle ¢t 7CC"*! that is holomorphic in; € A. Moreover, for
¢ € y we have

Eg(§) = (f) HYj M.

To complete the proof we have to show that pull-back off#fet M bundle by the action

Fy, given by

[HP MO = FE @) (Hp (M)
in a small neighborhood of 1, has a holomorphic extension to the inside dhstead of
pulling backH 1M by the action ofF; we will construct a frame of holomorphic sections of
f*TCM and represent the sectionBj (z) in this frame. This is achieved by pushing forward
a fixed frame with the actioh, as follows.

Pick a vectory € TqCM, Y = Y1 +iY>, where bothr; andY» are tangent taZ. Choose
curvesy; : (—e, &) - M suchthat;(0) =¢q, 7:;(0) =Y; (i =1, 2). Let

d
Yig)y=— "0
=0

dt

t
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andY (¢) = Y1(¢)+iY2(¢) for¢ € A. Itis clear by the definition that(¢) is holomorphic in
¢ € A and we can view it as a section of7)*TCC"*. (Note that here the holomorphicity
of the first component of7, was used in an essential way.)
Choose now a basigs, ... , Z, of H>'M andX € T,M transverse toH,M. Let
Z:(¢), Zi(¢) andX (¢) be the holomorphic sections obtained in the way described above.
Consider a frame of holomorphic sectiopg¢) of E,(¢) such that

(Mm@, ..., nD)c=Eq) = (f)*"H;M .
For¢ € A close to 1 the sectiom (¢) is a linear combination o, (¢), Z;(¢) andX (¢). We
can write
(@) = ari(§)Zi () + bk (D) Zi(§) + ek (0) X Q)
where the coefficients;, by;, ¢, are holomorphicig for ¢ € A closeto 1. Thisis equivalent
to say that the pull-back ofi (¢) under the actiorF; can be written:

(Fo)*me(©) = ai (0) Zi + bii () Zi + k()X € Ty M

for ¢ = ¢’ close to 1. The actionF;) is semi-extendable if we show that the coefficients of
the Beltrami tensop. have a holomorphic extension. This follows from the holomorphicity
of the coefficientsy;, by;, cx in the same way as in the proof of Proposition 1.

By definition this amounts to showing that the circle bundle locally given by

[HONO = Ff (@) ([Hp (M)

has a holomorphic extension to the insidedoin a small neighborhood of 1. To show this we
use the holomorphicity of the mappiidg. : A — C given by

G (¢) = (fr (), [Hf)M])

for ¢ € 94 close to 1. Sincé/ is an embedded hypersurfacedfi*, we have the canonical
identificationH, M ~ H,?’lM. Combining these two facts we conclude that

Eq(¢) = [Hp'(, M
has a holomorphic extension to the insidefoin a small neighborhood of 1.

To show thatF;‘ (9)E4(¢) has a holomorphic extension we can work in local coordinates
following the idea in the proof of Theorem 1. O

Let us assume in the statement of Theorem 4 that the hypersuffasestrongly pseu-
doconvex. Combining Theorems 3 and 4, we obtain the following

COROLLARY 1. A strongly pseudoconvex CR manifold of hypersurface type is locally
embeddable if and only if admits a local semi-extendable action.

Moreover, under the assumption of strong pseudoconvexity we can even obtain a stronger
conclusion than Theorem 4. Call &action(Fy) on M contact if it preserves the contact
bundleH M, i.e.,

F'HM = HM, seR.
We then have
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PROPOSITION 4. Let M = M1 be an embedded hypersurface in C"**, which is
strongly pseudoconvex at thepoint p € M. Then M admitsa (local ) positive, semi-extendable
contact R-action in a neighborhood of p.

PROOF. The additional conclusion we have to prove here is the contact property of the
action. This property does not seem to follow from the proof of Theorem 4. Instead of using
the proof of Theorem 4 we sketch anotherwamgnt which is based on a combination of
results from [6], [17], [18].

AssumeM is a piece of a pseudoconvex hypersurfac€ii!. By a suitable biholo-
morphic change of coordinates we may assume that lodaliy a piece of the bounda®/D
of a strictly convex domaimD in C"*. Fix a point 0 in the interior oD. Let us denote by
B the unit ball inC"**. By the strict convexity of> (cf. [17], [18]) there exists a mapping
F : B — D, F(0) = 0, which is called a circular representation/of It is shown in [19] for
n = 1andin [6] in general that the circular representatio®afith base point O gives rise to
an innerst-action ond D in the sense of [6]. Using the circular representatignve can push
forward the standard circle action (induced by the Hopf fibration) f®to D. By using the
properties of the circular representatién([18], [6]), one easily checks that we obtain this
way a semi-extendable and positive contact actiovog 9 D.

The converse of the above statement is contained in Theorem 3. |

REFERENCES

[1] A. ANDREOTTI AND C. D. HiLL, Complex characteristic coordinatand the tangential Cauchy-Riemann
equations, Ann. Scuola Norm. Sup. Pisa 26 (1972), 299-324.

[2] K. ASTALA, Z. BALOGH AND H. M. REIMANN, Lempert mappings and holomorphic motionsG¥,
Astérisque 261 (2000), 1-12.

[3] Z. M. BALOGH AND C. LEUENBERGER Higher-dimensional Riemann maps, Internat. J. Math. 9 (1998),
421-442.

[4] Z. M. BALOGH AND C. LEUENBERGER Quasiconformal contactomorphisms and polynomial hulls with
convex fibers, Canad. J. Math. 51 (1999), 915-935.

[5] J.BLAND, Contact geometry and CR structures$h Acta Math. 172 (1994), 1-49.

[6] J.BLAND AND T. DucHAMP, Moduli for pointed convex domains, Invent. Math. 104 (1991), 61-112.

[7] A. BoGGEss CR manifolds and the tangential Cauchy-Riemann complex, Stud. Adv. Math., CRC Press,
Boca Raton, FL, 1991.

[8] M. S. BAOUENDI, P. BBENFELT AND L. ROTHSHILD, Real submanifolds in complex space and their map-
pings, Princeton University Press, Princeton, NJ, 1999.

[9] M. S.BAOUENDI, L. P. ROTHSCHILD AND F. TREVES, CR structures with group action and extendability of
CR functions, Invent. Math. 82 (1985), 359-396.

[10] M. S. BAOUENDI AND L. P. ROTHSCHILD, Transversal Lie group actions on abstract CR manifolds, Math.
Ann. 287 (1990), 19-33.

[11] D. CaTLIN, Sufficient Conditions for the Extension of CR Structures, J. Geom. Anal. 4 (1994), 467-538.

[12] E. M. CirRcA, Regularity of boundaries of analytic sets, Math. USSR Sh. 45 (1983), 291-336.

[13] C. D. HiLL AND C. M. NACINOVICH, Solvable Lie algebras and the embedding of CR manifolds, Boll.
Unione Mat. Ital. B Artic. Ric. Mat. (8) 2 (1999), 121-126.

[14] H.JacoBowiTz AND F. TREVES Non-realizable CR structures, Invent. Math. 66 (1982), 231-249.



[15]
[16]
[17]
(18]
[29]
[20]
[21]

[22]

(23]
[24]

[25]
[26]
[27]

[28]

TRANSVERSAL GROUP ACTIONS ON CR MANIFOLDS 527

A. KORANYI AND H. M. REIMANN, Quasiconformal mappings on CR manifolds, Complex geometry and
analysis (Pisa, 1988), 59-75, Lecture Notes in Math. 1422, Springer, Berlin, 1990.

S. G. KRANTZ, Function theory of several complex variables, Second edition, Wadsworth-Brooks/Cole Math.
Ser., Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992.

L. LEMPERT, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math.
France 109 (1981), 427-474.

L. LemMPERT, Holomorphic invariants, normal forms, and the moduli space of convex domains, Ann. of Math.
(2) 128 (1988), 43-78.

L. LEMPERT, On three-dimensional Cauchy-Riemann ifads, J. Amer. Math. Soc. 5 (1992), 923-969.

C. LEUENBERGER Lempert invariants and Riemann maps, Ph. D. thesis, University of Berne, 1997.

A. MEzIANI, Perturbation of a class of CR structures oflitnension larger than one, J. Funct. Anal. 116
(1993), 225-244.

A. NEWLANDER AND L. NIRENBERG, Complex analytic coordinates in almost complex manifolds, Ann. of
Math. 65 (1957), 391-404.

L. NIRENBERG, On a question of Hans Lewy, Russian Math. Surveys 29 (1974), 251-262.

S. I. ANCHUK, A boundary uniqueness theorem for holomorphiudtions of several complex variables, Mat.
Zametki 15 (1974), 205-212.

N. TANAKA , On the pseudoconformal geometry of hypersurfaces of the spaceoaiplex variables, J. Math.
Soc. Japan 14 (1962), 397-429.

F. TREVES Hypo-Analytic Structures: Local theory, Prieton Math. Ser. 40, Princeton University Press,
Princeton, NJ, 1992.

S. M. WEBSTER On the reflection principle in several coraglvariables, Proc. Amer. Math. Soc. 71 (1978),
26-29.

S. M. WEBSTER On the proof of Kuranishi’s embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire
6 (1989), 183-207.

UNIVERSITAT BERN ECOLE D'INGENIEURS ET
MATHEMATISCHES INSTITUT D' ARCHITECTES DEFRIBOURG
SIDLERSTRASSES BD. DE PEROLLES80

3012 BeRN 1705 FRIBOURG

SCHWEIZ SUISSE

E-mail address: zoltan.balogh@math-stat.unibe.ch ~ E-mail address: christoph.leuenberger@eif.ch



