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Abstract.  Let g be a symmetrizable generalized Kac-Moody algebraranthe sum
of all its negative root spaces. We obtain a formula for the twining characters of the Lie algebra
homology modules ofi_ with coefficients in therreducible highest weighi-moduleL(A)
of symmetric, dominant integral highest weight This formula gives a new (and convincing)
proof of the formula for the twining character bf A) above.

Introduction. In [FSS] and [FRS], Fuchs, Schweigestal. introduced a new type of
character-like quantities, called twining chaeas, corresponding to a Dynkin diagram auto-
morphism for certain highest weight modules over a symmetrizable (generalized) Kac-Moody
algebrag. Moreover, they gave a formula (see Them 2.2.1) for the twining character of an
irreducible highest weight-moduleL (A) of symmetric, dominant integral highest weight

In this paper, we give a new proof of this result of theirs. In our proof, we use an ex-
tension of Kostant’s homology formula to generalized Kac-Moody algebras in [N2] to obtain
a formula for the twining characters of the Lie algebra homology modHlgs_, L(A)),

Jj > 0, of n_ with coefficients inL(A), wheren_ is the sum of all negative root spaces of
g. Then, by an Euler-Poincaré principleewet the twining character formula farA) of
symmetric, dominant integral highest weight

This new proof will give us a satisfactory explanation of why we need the subgroup
W of the Weyl groupW consisting of elements which commute with the Dynkin diagram
automorphism.

This paper is organized as follows. In Section 1, we recall the definition of a generalized
Kac-Moody algebra and fix our notation. Furthermore, we review an extension of Kostant’s
homology formula to generalized Kac-Moody algebras in [N2]. In Section 2, following [FSS]
and [FRS], we review the definition of a twining character and the twining character formula
for L(A).

Section 3 is the main part of this paper. There we show a formula for the twining char-
acters of the Lie algebra homology modulés(n_, L(A)), j > 0, and then give a new proof
of the twining character formula fat(A).

1. Preliminariesand notation.

1.1. Generalized Kac-Moody algebras. lUet {1,2,...,n} be a finite index set,
and letA = (a;);, je; be amn x n real matrix satisfying:
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(C1l) eitherq;; =2ora; <0foralli €I,

(C2) a;j <0ifi # jel, anda;j € Zforj #iif a;; = 2,

(C3) a;j =0ifandonlyifa;; =0fori, j e 1I.
Such a matrixA = (a;;);,jez is called a generalized GCM (GGCM). In this paper, following
[K], we define a generalized Kac-Moody algebra (GKM algelgrayerC to be the contragre-
dient Lie algebrg(A) associated to a GGCM = (a;;);,je1. Leth be the Cartan subalgebra
ande;, f; fori € I the Chevalley generators. Lét, C h* := Homc(h, C) be the set of
positive rootsA_ = — A, the set of negative roots, agg the root space af corresponding
toarootlw € A =A_ U Ay, We set

(1.1.1) nei= P gu. bi=bhe&n,.
aEAL
We denote byl = {o; |i € I} the set of simple roots, and WYY = {h; |i € I} the
set of simple coroots. We séf€ := {i € I|a;; = 2}, I'™ := {i € I|a; < 0}, and call
' := {a; € IT]i € I'"} the set of real simple root$]™ := {o; € IT|i € '} the set of
imaginary simple roots. Note thgt, = Ce;, g—o;, = Cf; foralli e I.
The Weyl groupW of the GKM algebray is defined by

(1.1.2) W:=(r|iel® c GL®"),

wherer; € GL(h*) fori € I is the simple reflection off*. The length function of the
Coxeter systentW, {r; | i € I'®}) is denoted by

(1.1.3) W Z.

Throughout this paper, we assume that a GGEM: (a;;);,je; is symmetrizable, i.e.,
that there exist a diagonal matrix = diag(e1,...,&,) Withe; > Oforalli € I and a
symmetric matrixB = (b;;); je; Such thatA = DB. Hence there exists a nondegenerate,
symmetric, invariant bilinear forng-|-) ong = g(A). The restriction of this bilinear form
(-]-) to b is again nondegenerate, so that it induces a nondegenerate, sym#ieimi@riant
bilinear form onh*, which is also denoted by|-).

1.2. Kostant's homology formula. Fare bh*, let
(123 M) == U(9) Qub) CA)

be the Verma module of highest weightverg, whereU (a) denotes the universal enveloping
algebra of a Lie algebraandC(2) is the one-dimensional (irreduciblgimodule of weight

A on whichn acts trivially. We then define gmoduleL (1) to be the unique irreducible
quotient ofM (1), that is,

(1.2.2) L) = MO /I,

whereJ (1) is the unique maximal proper submoduledsfhr).
Let

(1.2.3 P, :={Aebh™| A(h;) = 0foralli € I, andA(h;) € Zif a;; = 2}
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be the set of dominant integral weights. We denoteHyyn_, L(A)), j > 0, the Lie al-
gebra homology modules of with coefficients inL(A) for A € P;. Recall from [GL]
that, for j > 0, the H;(n_, L(A)) is defined to be thg-th homology of the chain com-
plex {C;(n_, L(A)), d;} j=0 with C;(n_, L(A)) := (A’ n_) ®c L(A), where A\’ n_ de-
notes thej-th exterior power ohi_. Note that the boundary operaidy : C;(n_, L(A)) —
Cj_1(n_, L(A)) commutes with the action &f, and henced;(n_, L(A)) is anh-module in
the usual way.

In order to state an extension of Kostant’s homology formula to GKM algebras, we
introduce some notation. Lét£ j € I'™ andA e P,.. Two distinct imaginary simple roots
«; anda; are said to be pairwise perpendiculaiif = 0 = aj;, and an imaginary simple
roote; is said to be perpendicular tb if A(h;) = 0. We denote bys(A) the set of sums of
distinct, pairwise perpendicular, igimary simple roots perpendicular 0. In addition, for
anelemeng = ), ;imkia; € S(A), we set ) := ), ;im ki € Z>o (note thatk; = 0, 1
foralli € I'™ by the definition 0fS(A)). Now we take and fix an elemepte h* (called a
Weyl vector) such that (h;) = (1/2) - a;; foralli € I. For(w, 8) € W x S(A), we set

(1.2.9 (w,B)oA:=w(A+p—8)—0p.

We know from [N2, Propositions 3.2, 3.3, and Theorem 5.3] the following theorem.

THEOREM 1.2.1. Let A e Py andj € Z>o.
(1) W& have the following isomor phism of h-modules:

Him_,L(A)= @ Clw,poa).

(w,B)eWxS(A)
t(w)+ht(B)=j

Here the sum above is a direct sum of inequivalent irreducible h-modules, i.e., the weights
(w, B) o A for (w, B) € W x §(A) with £(w) + ht(8) = j areall distinct.

(2) Ifwesetu:= (w,B)o Afor (w, ) € W x S(A) with £(w) + ht(8) = j, then
the multiplicities of w (= the dimensions of the 1.-weight space) in the h-modules (/\* n_) ®c
L(A) and (A’ n_) ®c L(A) are both equal to one.

Here we recall from the proof of [N2, Proposition 3.3] the construction of a nonzero
weight vectorv,, g) € (/\-’ n_) ®c L(A) of weightu = (w, B) o A in part (2) of Theorem
1.2.1. First, we note that(p) — p = — >, », @ and that the number of elements of the set
A, equalst(w), whereA,, = {a € A, |w(a) € A_}. Second, we writes in the form
B =1 ,ai, Wherem = ht(B), o, € I, andi, # i, forl <r #t < m. Now we take
nonzero root vectorg; < I—w(a;,) forl<k <m, Fy, € g, fora € A, and a nonzero
weight vectorv,,(1) € L(A)y(a) Of weightw(A). Then we set

(1.25) vy = (FLA A Fp) A ( A Fa> ® Vu(a) € </\’ n) ®c L(A).

aEAy
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We see that the vectey,, g) € (/\j n_) ®c L(A) is nonzero, and of weight = (w, 8) o A,
since

p=wA+p—p —p
=—w(B) + (w(p) — p) + w(A)

=Y (—w@)) + Y (—a) +w(A).
k=1

aEAy

We deduce from Theorem 1.2.1 that the imaggg, of the vecton,, g) € (/\-’ n_)®c
L(A) of weight . by the natural quotient map : (/\-’ n_) ®@c L(A) - Hj(n_,L(A)) is
nonzero, and hence that tpeweight spac&H;(n_, L(A))), of H;(n_, L(A)) is spanned
by the vectotiy, g):

(1.2.6) (Hj(m—, L(A))p = Cogw,p) -

2. Twining character formulafor L(A).

2.1. Twining characters. We recall the definition of the twining character of a certain
highest weight module, following [FRS] and [FSS] (see also [N4]).

Let A = (a;j)i jer be a symmetrizable GGCM indexed by a finite $etA bijection
o : I — I such that

(2.1.1) Awi)w() =aij forall i, jel

is called a (Dynkin) diagram automorphism, since suchvamduces an automorphism of the
Dynkin diagram of the GGCMA = (a;;);,jer as a graph. Ledv be the order oo : I — 1,
and N; the number of elements of the-orbit of i € 7 in I. We may (and will henceforth)
assume that,, ;) = ¢; foralli € I inthe decompositiod = DB with D = diag(ey, . . . , &,)
(see [N4, 83.1]).

The diagram automorphism : I — [ can be extended (cf. [FSS, §3.2] and [K, §2.2])
to an automorphism of order N of the GKM algebrag = g(A) associated to the GGCM
A = (a;})i, jer SO that

w(ej) == ey foriel,
o(fi) == fou foriel,

(2.1.2) w(h;) = hy() foriel,
w()=bh,

(@@ |w() =(xly) forx,yeg.
Notice that they : g — g extends to a unique algebra automorphismU (g) — U (g) by
wx1-xp) =w(xy) - -olxg) for x1,...,x¢ €g.

We call these two automorphismsalso diagram automorphisms by abuse of notation.
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The restriction of the diagram automorphism: g — g to the Cartan subalgebta
induces a transposed map : h* — bh* by

(2.1.3) o W) (h) == Mw(h)) for A eb* heb.
We set
(2.1.4) 6% := (1 € h* |0* (1) = A},

and call an element ofy*)° a symmetric weight. Note that we may (and will henceforth)
assume that the Weyl vectpris a symmetric weight, i.e.,

(2.1.5) *(p) =p.

Let 2 € (h*)° be a symmetric weight, and I&(1) be either the Verma module (1) or
the irreducible highest weight modulg’) of highest weight.. Then there exists a unique
linear automorphism,, : V(1) — V(1) such that

(2.1.6) To(xv) = 0 2 (x)1,(v) for xeg, ve V),
and
2.1.7) ,(v) =v for ve V(L),,

whereV (1), is the (one-dimensional) highest weight spac& ¢f).

REMARK 2.1.1. Becaus#/ (1) = U(g) ®y ) C(A) by definition, we can take the
linear automorphism—1®id : U(9)®u ) CA) = U@ @y, CA) forz, : M(A) — M(1)
above. Moreover, since this map! @ id : M(L) — M (1) stabilizes the unique maximal
proper submoduld (1) of M (1), we can take fot,, : L(1) — L(x) above the linear map
M) /J (W) — M()/J () induced fromwt @id : M(A) — M(L).

REMARK 2.1.2. LetV be anh-module admitting a weight space decomposition
V=@ v,
x€b*

with finite-dimensional weight spacésg,, and letf : V — V be a linear map such that
f(hv) = w0 1(h) f(v) forh € b, v € V. Then it follows that

F V) C Verxy

for all x € h*. Thus, we define a formal sum:

Try fexpi= Y Tr(flv,)e(x).

xe(h)P

where T( f1y,) for x € (h*)? denotes the trace of the restriction pto the x-weight space
V, of V.
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Let A € (h*)° be a symmetric weight. The twining character”¢t (1)) of V(1)
(= M (L), L())) is then defined to be the formal sum

(2.1.8) ch®(V(h)) = Tryo) T €Xp= Z Tr(rwlv(,\)x) e(x).
x€(h*)0

2.2. Twining character formula fat(A). We review the twining character formula
for L(A) of symmetric, dominant integral highest weightwhich is the main result of [FSS]
and [FRS].

We choose a set of representati\ferf thew-orbits in7, and then introduce the following
subset off:

Ni—-1

i =1, 2} .
k=0

We define the following subgroup of the Weyl grouég

(2.2.1) [ = {i el

(2.2.2) W={weW|ow=uwo*}.
We know from [FRS, Proposition 3.3] that the gropis a Coxeter group with the canonical
generator systerfw; | i € I}, where fori € I,

Ni/2—1

N;i—1
1_[ (I’wk(i) rwk+Ni/2(i) rwk(i)) if Z ai’wk(i) =1 ,
k=0 k=0

N;i—1 N;i—1
1_[ rwk(i) |f Z ai’wk(i) = 2
k=0 k=0

Here we note that ifZ,ﬁ’;gl a; oy = 1, thenN; is an even integer. We denote the length
function of the Coxeter systetW, {w; |i € I}) by

(2.2.3 w; 1=

(2.2.4) LW —2Z.

We also recall from [FRS, Equation (1) on page 529] that for a symmetric wiigh¢h*)°
andi € 1,

Ni—1
2s; (M) ‘x
(2.2.5) wi) =A== )
(aila;) ,(2:;] a2

wheres; := 2/ Z,&Blai,wk(i).

If A e Py N (h*)°is a symmetric, dominant integral weight, then each elergeat
S(A) N (h*)° can be written in the forng = > ici kiBi, wherep; := Z,](V;Bl Uk (i) € (h*)°
andk; = 0, 1fori e 1. For such B € S(A) N (H")0, we set

(2.2.6) ht(g) := > ki

ief
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Let A € Py N (5*)° be a symmetric, dominant integral weight. We know from [FRS,
Proposition 3.5] that for every € W,

(2.2.7) w(ch?(L(A))) = ch’(L(A)),
since thgg-moduleL (A) is integrable. Moreover, we have

THEOREM 2.2.1 ([FRS, Theorem 3.1]).Let A € P,.N(h*)° beasymmetric, dominant
integral weight. Then

S () gy o A)

weW

BeS(AN(H")°
> (=D o((w, B) 0 0)

weW
BeSONHH°

ch?(L(A)) =

3. Twining character formulafor H;(n_, L(A)).

3.1. Some lemmas. Since the invetse! : g — g of the diagram automorphism
w:g— gstabilizem_,i.e.,01(n_) = n_, itinduces an algebra automorphism

/\* ot /\* n_ — /\* n_
of the exterior algebrg\" n_ of n_. The restriction of the/\* ot Afn. - Afn_to
each homogeneous subspgcén_ for j > 0 is denoted by

/\]afl:/\]n_ — /\jn_.
Let A € Py N (h*)9 be a symmetric, dominant integral weight, anddgt: L(A) —
L(A) be the linear automorphism in Section 2.1. We define a linear automorphism

(311 = (/\*w—l) ® 1y </\ n_> ®c L(A) — </\ n_> ®c L(A),

and forj > 0, we define a linear automorphism

(312 @, := </\’ a)l) R : </\’ n) ®c L(A) — (/\’ n) ®c L(A).
REMARK 3.1.1. Letj > 0. Itis easily seen that
®;(hv) = 0 1 (W), (v)
forh e handv € (/\j n_)®cL(A). Italso follows that forr € h andv € (A" n-)RcL(A),

D (hv) = 0 L)@ (v).

The follwing lemma immediately follows from the definitionsaéf and®;, j > 0.
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LEMMA 3.1.2. We have the following commutative diagram for each j > O:

j

N0 ®c L) s (A o) ®c L(A)

d,i ldj

(Nt ®c L(4) — (N 'y ®c L),

Pj-1

whered; : (A\/n_) ®c L(A) - (A’ n_) ®c L(A) is the boundary operator in Section
1.2.

By Lemma 3.1.2, the linear automorphighn : (A’ n_)®cL(A) — (A/ n_)®cL(A)
induces in the usual way a linear automorphism

(3.1.3) @ : Hi(n_, L(A)) — Hj(n_, L(A))
for j > 0. Notice that forj > O andh € h, v € H;(n_, L(A)),
(3.1.4) ®;(hv) = 0 *(W)P, (v)

by Remark 3.1.1.
Now we state an easy but useful lemma, which will be often used late¥ lagid V'’ be
h-modules which decompose into a direct sum of finite-dimensional weight spaces:

v=E v, and v'= P,
xeb* xeb*

We further assume that thereigt linear automorphisms, : V. — V andt), : V' — V' such
that forh € b,

7, (hv) = 0 ()1, (v) forv eV, and 7, (hv) = 0 X(h)t) (v) forve V',
Then the linear automorphism
,®17,:VQcV = VecV
obviously satisfies
(To ® 1) (hv) = 0~ (W) (7w ® 7,) (V)
forh € handv € V ®c V’. We can easily show
LEMMA 3.1.3. Inthe notation above, we have
Trygy (tw @ 7,) exp= (Try 7, exp - (Try, 7, exp) .

3.2. Mainresult. We define the twining charactet’ ¢H;(n_, L(A))) of the Lie al-
gebra homology modul#;(n_, L(A)) for eachj > 0 by

(3.2.1) ch’(Hj(n_, L(A))) := Trp;n_,L(a)) Pj EXP,

where®; : Hj(n_, L(A)) — Hj(n_, L(A)) is as in Section 3.1.
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PROPOSITION3.2.1. Let A € Py N (h*)° bea symmetric, dominant integral weight,
andlet j > 0. Then

ch’(Hj(n—, L(A))) = Z Cw,p)e((w, ) o A),

weW
BeS(AN(H*)°
L(w)+ht(B)=j

where the scalar ¢, g) € C isdefined by
Cwp) = THP | (H (LA pron)

PROOF. Letw € W andg € S(A) with £(w) + ht(8) = j. Setu := (w, B) o A. Let
us show that* (1) = nifand only if w € W andg € (h*)0. Becausev*r; (w*) "1 = Tw-13)
fori e I'¢, we see thab*w(w*) "1 € W. If we setw’ := w*w(w*)~1 € W, then we have

w*(n) = 0" (WA +p—B)—p)

=" (w(A+p - B)) —o*(p)

=o'wA+p—B)—0p

=wo* (A+p—-p)—p

=w' (@ (A+p—B)—p

=w'(A+p—*(B)—p,
sincew*(A) = A andw*(p) = p. Now assume thab*(u) = u, i.e., thatw'(A + p —
0*(B)) = w(A+p—p). Then, sincéA + p —B)(h;) > Land(A + p — o™ (B))(h;) > 1 for
alli € 1", we deduce thati + p —w*(8) = A+p—pB (i.e.,0*(8) = B) and thatw’ = w (i.e.,
w*w(w*)~1 = w) by the proof of [K, Proposition 3.12 a) and b)]. Conversel{w (v*) "1 =

w andw*(B) = B immediately imply thatw*(u) = u. Therefore, the proposition follows
directly from Theorem 1.2.1 and the definition (3.2.1) of ¢H;(n_, L(A))). O

We see from the comments just below Theorem 1.2.1 thabfer W andg € S(A) N
(6")° with £(w) + ht(B) = j,
cu,p) = TPl (H; (- LA pron)
=Tr(®}ICi,,)
(3.2.2) S ten
=TrH(®jlcvu.4)

= TH@J N )@l wpen)

To determine the scalaf,, g) € C, we define the twining character ®{/\* n_) ®c
L(A)) of (A" n-) ®c L(A) by

(323) CHD(( /\* n_) ®C L(A)) = TI‘(/\* n_)®cL(A) D eXp,

where® = (A\*w™1) ® 1, is as in Section 3.1. The following is our key proposition.
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PROPOSITION 3.2.2. Let A € P, N (h*)° be a symmetric, dominant integral weight.
For every w € W, we have

w(e(p)-df“(( N n—>®cL(A))) = (-t (e(p)@h‘“(( N n_)®cL(A)>) :

ProoFk It follows from Lemma 3.1.3 that

(3.2.4) Ch“’((/\>k n) Qc L(A)) = Ch“’(/\* n) -ch’(L(A)),

where
(3.2.5) ch” < /\* n_) =Trpen @ texp.

Furthermore, we know from (2.2.7) that fare W,
w(ch”(L(A))) = ch’(L(A)).
Hence we may assume that= 0. A
Itis well-known that(—1)¢@®") = (—1)¢@) (—1)¢@) for w, w’ € W, and(—1)¢@¥) =

(—1)f@ (— 1)@ for w, w' e W. Thus, we may assume théw) = 1, i.e.,w = w; for
somei € 1.

We set
N;—1
(3.2.6) A=Al N < Z Zawk(,.)> . AG) = AL\ A,
k=0

and correspondingly

(3.2.7) n; = @ g-a, n@):= @ O—o-

a€A; acA(i)
WhenY "ot a; ¢ ;) = 2, we have
Ai = (@i )ito -
We call this case “Case (a)". Whéf, " a; ., = 1, we have
A = {awk(i)},]:];?)l U {ok iy + aw(zv,/z)%(i)},]j;/o%l

We call this case “Case (b)". Sinae = n; & n(i), we have an isomorphism gfmodules:
/\* n_= </\* n,~> ®c (/\* n(i)) .

Here we note thab*(A;) = A; andw*(A(i)) = A(i). Then, sinceo 1(gy) = gor () for

a € A, we get that
(N )(Nw) -
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</\* w—l)(/\*n(i)) =\ n.
Therefore, we can apply Lemma 3.1.3 to henodule A*n_ = (A* ;) ®c (A" n()) to
obtain that

(3.2.8) ch“’(/\* n_> = ch‘“(/\* n,~> : crf“(/\*n(i)> ,

where c (/\* n;) and c¥(/\* n(i)) are defined by

(3.2.9) crf"(/\>k n,») =T\, /\>k o Lexp,

(3.2.10) crf"( N n(i)) =T /\ @ texp,

STtep 1. First, we show that

(3.2.11) w; (e(,o) . ch“’(/\* n,-)) - (—1)€<"’f>"(wf'>(e(p) . CH“(/\*ni)) .

To show this, as an ordered basisnpfwe take{fwk(,-)},]{v;ol in Case (a), an({lfwk(,»)},iiglu
. fi 2 . N .
Uk il - With Foi ) = [y fuiaiegy] Tor 0 < k < (N;/2) — 1in Case (b).
Case (a): We can easily deduce that the only basis vector4 bfi; which make a contri-
bution to the trace of\* v~ are the following two vectors:

0
16/\ n;, =C and ﬁ/\fw(i)/\"’/\waifl(i)'

Hence we immediately obtain that
3212 ch‘“(/\* n,-> =1+ (DN e(-p),

whereg; = le{véal()lwk(i). Now we use Equation (2.2.5) to see thatp) = p — ;. So we
have

w; (e(p) : Cff"(/\>k ﬂi)) = wi(e(p) - 1+ (=DM te(=p)))

=e(p—Bi) - L+ (DN Le(B))
= (=D e(p) - A+ (DN e )

= (=" e(p) - crf“( A m)
= (—D“wﬂé(“’f)(e(p) 'ch‘”< N n;-)) :

since it is seen from the form (2.2.3) of thatw; (8;) = —B; andé(w;) = N;.
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Case (b): We can easily deduce that the only basis vectorg dfi; which make a contri-
bution to the trace of\* v~ are the following four vectors:

0 C .
Le A ni=C finfowy A A foticigy i A foiy A A Fymimigy
and
Ji N N fimty N Ji A A fw(N,-/2>—1(i) .

Hence we immediately obtain that

H * =@ _1Nifl —B)N(d _1 _1(N,‘/2)7l g,
(3.2.13) (/\”) QA+ =D e(=A+ (-D(=D e(—pBi))

= L+ (DN Lo (=)@ + (=DM 2e(—8))

whereg; = Z,]Lglawk - Now we use Equation (2.2.5) to see thatp) = p — 28;. So we

have
w; (6(,0) ‘ Chw(/\* m))

=w;(e(p) - L+ (DY Le(=B )AL+ (=N /%e(—B1)))
=e(p—26) - L+ (=DNLe(B)) (A + (=D Ni/%e(B))
=e(p) - (=)EN=L1 4 (—)N~Le(— )X+ (—DN/%e(— 1))

= (DN e (p) - ch“’< N n,»)

= (~D! 0=t (e(p) : ch“’( /\*m)) :

since it is seen from the form (2.2.3) of; thatw;(8;) = —B; andé(w;) = 3 - (N;/2) =
(3/2)N;.
STEP 2. Second, we show that

(3.2.14) w; (ch“’( N n(i))) = cﬁ“( /\*n(z‘)) ,

which completes the proof of the proposition. Notice that;, ,«;, = 2 forall 0 < k <

N; — 1, sincei € [ impliesz,](\’;(_)1 a; ) > 0 by definition. Hence, the operatorseg,;,
and adf,;, are locally nilpotent o for all 0 < k£ < N; —1. We define linear automorphisms
of g by

(32 15) X]?d = (exﬂadfwk (i)))(exﬂ—adewk ([)))(exﬂadfwk (l)))
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forO0 <k < N; — 1, and then by

N;i—1
1_[ x in Case (a)
(3.2.16) x2d.= L
N;/2—-1
[T @23 222 in Case (b)
k=0

By [K, Lemma 3.8] we see thdf?d(ga) = gu; () fOr @ € A. Moreover, we immediately see
that

(3.2.17) o (X)) = (01X (0 ()

for v € g, where the linear (:1utomorphistier1Xfld of g is defined by

N1
[T in Case (a)
(3.2.18) o 1xad.= | =0
Nij2-1
[T R 201 80D in Case (b)
k=0

with x29 := x37_;. We see easily that 1 X2? = X29, since, in Case (b),

ad _.ad ad _ _ad ad ad
X_1X(N;/2)-1*-1 = XN;—1X(N;/2) -1 N; -1

d d d
= x(aNi/z)*lx]?/i*l x(aN,‘/Z)fl
(see, for example, [KP]). Thus we get the commutative diagram ferA

xad
J—a I J—w;(a)

(3.2. 19) w_ll lw_l

J—w*(@) — f—ov*w;(@) >
ad

i

whereow*w; (¢) = w; 0™ ().
Because we see from Equation (2.2.5) thatA(i)) = A(i), we deduce that

(3.2.20) X3%n(i)) = n().

By extending the linear automorphis](fj’1d : g — g tothe linear automorphism

/\*X[ad:/\*g_) /\*g
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in the usual way, we finally obtain the following commutative diagram from (3.2.19) and
(3.2.20):

* yad

Aniy 225 A a)
(3.2.21) A* w*ll l/\* o™t
A i) —— A*n().

* yad
N X;

Let x € (h*)? be a symmetric weight. Sinee*w;(x) = w;o*(x) = w;(x), the following
diagram commutes:

* _ad
(A n@), 225 (AwD),,

(3.2.22) A w—ll lA* ot
(A" n(i))x /\*—> (A’ n(i))wi(x) :

ad
X;

It follows from this commutative diagram that fgre (h*)°,

% _ k _
(3.2.23) Tr<</\ ® l) ‘(/\*nm)) = Tr<</\ ® 1) ‘ A" n(,.))wl_(x)).

Therefore, we conclude that

w; <crf"(/\* n(i))) - cW(/\* n(i)) .

This proves the proposition. O

COROLLARY 3.2.3. Let A € P, N (h*)° be a symmetric, dominant integral weight,
andletw € W and 8 € S(A) N (5*)°. Then

Cw,p) = (_1)€(w)—£(w) . (_1)ht(ﬁ)_ht(/3) .

PROOFE First, we show that
(3.2.29) Tr(q)|((/\* ﬂf)®cL(A))A_ﬁ) — (_1)ht(/3)—ht(ﬁ) _

The elfmentﬁ e S(A) N (h*)° can be written in the forng = ch:lﬂ,-k, whereg;, =
Ziv;ko_ ®ur (ip) for 1 < k < 1. Then obvioushht(g) = 7 and htg) = Y__, N;,. Recall from

(1.2.5) that we have

(3.2.25) ((/\ n_) ®c L(A)) =Coap,
A-p
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wherev gy = fiy A fi, Ao A fiy @ va With fi, i= fir A fuun A A £, -1, for
1<k <I. Thenitfollows that

P (v,p) = </\* wl> (fu A A fi) ®va

= </\*wl>(fi1)/\"'/\ </\*wl>(fiz)®UA.

Because foreach & k < [,

</\* ‘“l> (fi) = DML

(3.2.26)

we deduce that
) Yy it
D (v p) = (_1)(Zk:l Niy)—l Vg = (_1)ht(/3) ht(8) VL) -
Thus we have shown that

ht(8)—ht
TH(@l(A*noy@eL(anay) = (FDTOTNE.

Now we setj := ¢(w) + ht(8). Then the scalar

(3.2.27) Cw,p) = THP; |((/\f n_>®cL(A>><w,moA))

= Tr( @I (A" no)@cLA) o)
is the coefficient ob(w(A + p — B)) in e(p) - ch’((A\* n-) ®c L(A)), which is, by Propo-
sition 3.2.2, equal to the coefficient efA — B) in ch’((A* n-) ®c L(A)) multiplied by
(—1)t—iw) Byt the coefficient ok (A — ) in ch?((A\* n_) ®c L(A)) is by definition
Tr (@ p* n)®CL(A) 4_p)- Thus, we obtain from (3.2.24) just proved that

Cp) = (DM@ () -Rip)

as desired. This completes the proof. O
Combining Proposition 3.2.1 with Corollary 3.2.3, we obtain our main result.

THEOREM 3.2.4. Let A € PN (h*)° beasymmetric, dominant integral weight, and
let j > 0. Then

CH(Hj(no, L)) = Y (=1 e yfih) o, g) o )
weW
BeS(AN(H")°
e(w)+ht(B)=j
_ Z (_1)5(w)+ﬁt(ﬂ)fje((w”3)oA).

weW
BeSMN(H*)°
L(w)+ht(g)=j

3.3. Application. As an application of Theorem 3.2.4, we give a new proof of the
twining character formula (Theorem 2.2.1) fo¢A) of symmetric, dominant integral highest
weight A.
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By virtue of Lemma 3.1.2, we can apply an Euler-Poincaré principle to deduce that

(3.3.1) Z (=1)/ ch’(H;(n—, L(A))) = Z (-1)/ ch‘"((/\j n_) ®c L(A)) .

j=0 Jj=0
Also, by Lemma 3.1.2, we have for eagh- O,

(3.3.2) crﬂ’((/\j n_> ®c L(A)) = crf*)(/\j n_> -ch’(L(A)).

Hence we get

Z (—1)/ Ch“’((/\j n) ®c L(A)>
j=0
=> (-1 crf"(/\j n> -ch’(L(A))

j=0
= ch”(L(A)) - (Z (-1)/ crf“(/\j n))
j=0
= ch”(L(A)) - (Z (-1)/ crf“((/\j n_> ®c L(O)))
j=0
= ch’(L(A)) - (Z (—1)/ ot (H;(n_, L(0>)>) :
j=0

sinceL(0) = Cand cl¥(L(0)) = ¢(0) = 1. Here, in the last equality above, we have used an
Euler-Poincaré principle again.
On the other hand, we obtain from Theorem 3.2.4 that

333 Y DictH e L) = Y DD e, p)oa).

j=0 weW
BeS(NH*)°

Putting all the above together, we conclude that
S () HD (w, B) o A)

weW

BeS(ANH*)°

= ch’(L(A)) - ( > (—1)é(w>+ﬁt(ﬁ>e((w,/3)00)) :

weWw
BeSONHH°

Thus, we have given a new proof of Theorem 2.2.1.
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