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Abstract. Let � be a symmetrizable generalized Kac-Moody algebra and�− the sum
of all its negative root spaces. We obtain a formula for the twining characters of the Lie algebra
homology modules of�− with coefficients in the irreducible highest weight�-moduleL(Λ)

of symmetric, dominant integral highest weightΛ. This formula gives a new (and convincing)
proof of the formula for the twining character ofL(Λ) above.

Introduction. In [FSS] and [FRS], Fuchs, Schweigert,et al. introduced a new type of
character-like quantities, called twining characters, corresponding to a Dynkin diagram auto-
morphism for certain highest weight modules over a symmetrizable (generalized) Kac-Moody
algebrag. Moreover, they gave a formula (see Theorem 2.2.1) for the twining character of an
irreducible highest weightg-moduleL(Λ) of symmetric, dominant integral highest weightΛ.

In this paper, we give a new proof of this result of theirs. In our proof, we use an ex-
tension of Kostant’s homology formula to generalized Kac-Moody algebras in [N2] to obtain
a formula for the twining characters of the Lie algebra homology modulesHj(n−, L(Λ)),
j ≥ 0, of n− with coefficients inL(Λ), wheren− is the sum of all negative root spaces of
g. Then, by an Euler-Poincaré principle, we get the twining character formula forL(Λ) of
symmetric, dominant integral highest weightΛ.

This new proof will give us a satisfactory explanation of why we need the subgroup
W̃ of the Weyl groupW consisting of elements which commute with the Dynkin diagram
automorphism.

This paper is organized as follows. In Section 1, we recall the definition of a generalized
Kac-Moody algebra and fix our notation. Furthermore, we review an extension of Kostant’s
homology formula to generalized Kac-Moody algebras in [N2]. In Section 2, following [FSS]
and [FRS], we review the definition of a twining character and the twining character formula
for L(Λ).

Section 3 is the main part of this paper. There we show a formula for the twining char-
acters of the Lie algebra homology modulesHj(n−, L(Λ)), j ≥ 0, and then give a new proof
of the twining character formula forL(Λ).

1. Preliminaries and notation.

1.1. Generalized Kac-Moody algebras. LetI = {1, 2, . . . , n} be a finite index set,
and letA = (aij )i,j∈I be ann × n real matrix satisfying:
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(C1) eitheraii = 2 oraii ≤ 0 for all i ∈ I ;
(C2) aij ≤ 0 if i �= j ∈ I , andaij ∈ Z for j �= i if aii = 2;
(C3) aij = 0 if and only ifaji = 0 for i, j ∈ I .

Such a matrixA = (aij )i,j∈I is called a generalized GCM (GGCM). In this paper, following
[K], we define a generalized Kac-Moody algebra (GKM algebra)g overC to be the contragre-
dient Lie algebrag(A) associated to a GGCMA = (aij )i,j∈I . Let h be the Cartan subalgebra
andei, fi for i ∈ I the Chevalley generators. Let∆+ ⊂ h∗ := HomC(h, C) be the set of
positive roots,∆− = −∆+ the set of negative roots, andgα the root space ofg corresponding
to a rootα ∈ ∆ = ∆− � ∆+. We set

(1.1.1) n± :=
⊕

α∈∆±
gα , b := h ⊕ n+ .

We denote byΠ = {αi | i ∈ I } the set of simple roots, and byΠ∨ = {hi | i ∈ I } the
set of simple coroots. We setI re := {i ∈ I | aii = 2}, I im := {i ∈ I | aii ≤ 0}, and call
Π re := {αi ∈ Π | i ∈ I re} the set of real simple roots,Π im := {αi ∈ Π | i ∈ I im} the set of
imaginary simple roots. Note thatgαi = Cei , g−αi = Cfi for all i ∈ I .

The Weyl groupW of the GKM algebrag is defined by

(1.1.2) W := 〈ri | i ∈ I re〉 ⊂ GL(h∗) ,

whereri ∈ GL(h∗) for i ∈ I re is the simple reflection ofh∗. The length function of the
Coxeter system(W, {ri | i ∈ I re}) is denoted by

(1.1.3) � : W → Z .

Throughout this paper, we assume that a GGCMA = (aij )i,j∈I is symmetrizable, i.e.,
that there exist a diagonal matrixD = diag(ε1, . . . , εn) with εi > 0 for all i ∈ I and a
symmetric matrixB = (bij )i,j∈I such thatA = DB. Hence there exists a nondegenerate,
symmetric, invariant bilinear form(·|·) on g = g(A). The restriction of this bilinear form
(·|·) to h is again nondegenerate, so that it induces a nondegenerate, symmetric,W -invariant
bilinear form onh∗, which is also denoted by(·|·).

1.2. Kostant’s homology formula. Forλ ∈ h∗, let

(1.2.1) M(λ) := U(g) ⊗U(�) C(λ)

be the Verma module of highest weightλ overg, whereU(a) denotes the universal enveloping
algebra of a Lie algebraa andC(λ) is the one-dimensional (irreducible)h-module of weight
λ on whichn+ acts trivially. We then define ag-moduleL(λ) to be the unique irreducible
quotient ofM(λ), that is,

(1.2.2) L(λ) := M(λ)/J (λ) ,

whereJ (λ) is the unique maximal proper submodule ofM(λ).
Let

(1.2.3) P+ := {Λ ∈ h∗ | Λ(hi) ≥ 0 for all i ∈ I, andΛ(hi) ∈ Z if aii = 2}
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be the set of dominant integral weights. We denote byHj(n−, L(Λ)), j ≥ 0, the Lie al-
gebra homology modules ofn− with coefficients inL(Λ) for Λ ∈ P+. Recall from [GL]
that, for j ≥ 0, theHj(n−, L(Λ)) is defined to be thej -th homology of the chain com-
plex {Cj(n−, L(Λ)), dj }j≥0 with Cj (n−, L(Λ)) := (

∧j n−) ⊗C L(Λ), where
∧j n− de-

notes thej -th exterior power ofn−. Note that the boundary operatordj : Cj (n−, L(Λ)) →
Cj−1(n−, L(Λ)) commutes with the action ofh, and henceHj(n−, L(Λ)) is anh-module in
the usual way.

In order to state an extension of Kostant’s homology formula to GKM algebras, we
introduce some notation. Leti �= j ∈ I im andΛ ∈ P+. Two distinct imaginary simple roots
αi andαj are said to be pairwise perpendicular ifaij = 0 = aji , and an imaginary simple
rootαi is said to be perpendicular toΛ if Λ(hi) = 0. We denote byS(Λ) the set of sums of
distinct, pairwise perpendicular, imaginary simple roots perpendicular toΛ. In addition, for
an elementβ = ∑

i∈I im kiαi ∈ S(Λ), we set ht(β) := ∑
i∈I im ki ∈ Z≥0 (note thatki = 0, 1

for all i ∈ I im by the definition ofS(Λ)). Now we take and fix an elementρ ∈ h∗ (called a
Weyl vector) such thatρ(hi) = (1/2) · aii for all i ∈ I . For(w, β) ∈ W × S(Λ), we set

(1.2.4) (w, β) ◦ Λ := w(Λ + ρ − β) − ρ .

We know from [N2, Propositions 3.2, 3.3, and Theorem 5.3] the following theorem.

THEOREM 1.2.1. Let Λ ∈ P+ and j ∈ Z≥0.
(1) We have the following isomorphism of h-modules:

Hj(n−, L(Λ)) ∼=
⊕

(w,β)∈W×S(Λ)
�(w)+ht(β)=j

C((w, β) ◦ Λ) .

Here the sum above is a direct sum of inequivalent irreducible h-modules, i.e., the weights
(w, β) ◦ Λ for (w, β) ∈ W × S(Λ) with �(w) + ht(β) = j are all distinct.

(2) If we set µ := (w, β) ◦ Λ for (w, β) ∈ W × S(Λ) with �(w) + ht(β) = j , then
the multiplicities of µ (= the dimensions of the µ-weight space) in the h-modules (

∧∗ n−)⊗C

L(Λ) and (
∧j n−) ⊗C L(Λ) are both equal to one.

Here we recall from the proof of [N2, Proposition 3.3] the construction of a nonzero
weight vectorv(w,β) ∈ (

∧j n−) ⊗C L(Λ) of weightµ = (w, β) ◦ Λ in part (2) of Theorem
1.2.1. First, we note thatw(ρ) − ρ = − ∑

α∈∆w
α and that the number of elements of the set

∆w equals�(w), where∆w := {α ∈ ∆+ | w−1(α) ∈ ∆−}. Second, we writeβ in the form
β = ∑m

k=1 αik , wherem = ht(β), αik ∈ Π im, andir �= it for 1 ≤ r �= t ≤ m. Now we take
nonzero root vectorsFk ∈ g−w(αik

) for 1 ≤ k ≤ m, Fα ∈ g−α for α ∈ ∆w, and a nonzero
weight vectorvw(Λ) ∈ L(Λ)w(Λ) of weightw(Λ). Then we set

(1.2.5) v(w,β) := (F1 ∧ · · · ∧ Fm) ∧
( ∧

α∈∆w

Fα

)
⊗ vw(Λ) ∈

( ∧j
n−

)
⊗C L(Λ) .
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We see that the vectorv(w,β) ∈ (
∧j n−) ⊗C L(Λ) is nonzero, and of weightµ = (w, β) ◦ Λ,

since

µ = w(Λ + ρ − β) − ρ

= −w(β) + (w(ρ) − ρ) + w(Λ)

=
m∑

k=1

(−w(αik )) +
∑

α∈∆w

(−α) + w(Λ) .

We deduce from Theorem 1.2.1 that the imagev̄(w,β) of the vectorv(w,β) ∈ (
∧j n−)⊗C

L(Λ) of weightµ by the natural quotient map̄ : (
∧j n−) ⊗C L(Λ) → Hj(n−, L(Λ)) is

nonzero, and hence that theµ-weight space(Hj (n−, L(Λ)))µ of Hj(n−, L(Λ)) is spanned
by the vector̄v(w,β):

(1.2.6) (Hj (n−, L(Λ)))µ = C v̄(w,β) .

2. Twining character formula for L(Λ).

2.1. Twining characters. We recall the definition of the twining character of a certain
highest weight module, following [FRS] and [FSS] (see also [N4]).

Let A = (aij )i,j∈I be a symmetrizable GGCM indexed by a finite setI . A bijection
ω : I → I such that

(2.1.1) aω(i),ω(j) = aij for all i, j ∈ I

is called a (Dynkin) diagram automorphism, since such anω induces an automorphism of the
Dynkin diagram of the GGCMA = (aij )i,j∈I as a graph. LetN be the order ofω : I → I ,
andNi the number of elements of theω-orbit of i ∈ I in I . We may (and will henceforth)
assume thatεω(i) = εi for all i ∈ I in the decompositionA = DB with D = diag(ε1, . . . , εn)

(see [N4, §3.1]).
The diagram automorphismω : I → I can be extended (cf. [FSS, §3.2] and [K, §2.2])

to an automorphismω of orderN of the GKM algebrag = g(A) associated to the GGCM
A = (aij )i,j∈I so that

(2.1.2)




ω(ei) := eω(i) for i ∈ I ,

ω(fi) := fω(i) for i ∈ I ,

ω(hi) := hω(i) for i ∈ I ,

ω(h) := h ,

(ω(x)|ω(y)) = (x|y) for x, y ∈ g .

Notice that theω : g → g extends to a unique algebra automorphismω : U(g) → U(g) by

ω(x1 · · · xk) = ω(x1) · · · ω(xk) for x1, . . . , xk ∈ g.

We call these two automorphismsω also diagram automorphisms by abuse of notation.
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The restriction of the diagram automorphismω : g → g to the Cartan subalgebrah
induces a transposed mapω∗ : h∗ → h∗ by

(2.1.3) ω∗(λ)(h) := λ(ω(h)) for λ ∈ h∗, h ∈ h .

We set

(2.1.4) (h∗)0 := {λ ∈ h∗ | ω∗(λ) = λ} ,

and call an element of(h∗)0 a symmetric weight. Note that we may (and will henceforth)
assume that the Weyl vectorρ is a symmetric weight, i.e.,

(2.1.5) ω∗(ρ) = ρ .

Let λ ∈ (h∗)0 be a symmetric weight, and letV (λ) be either the Verma moduleM(λ) or
the irreducible highest weight moduleL(λ) of highest weightλ. Then there exists a unique
linear automorphismτω : V (λ) → V (λ) such that

(2.1.6) τω(xv) = ω−1(x)τω(v) for x ∈ g, v ∈ V (λ) ,

and

(2.1.7) τω(v) = v for v ∈ V (λ)λ ,

whereV (λ)λ is the (one-dimensional) highest weight space ofV (λ).

REMARK 2.1.1. BecauseM(λ) = U(g) ⊗U(�) C(λ) by definition, we can take the
linear automorphismω−1⊗id : U(g)⊗U(�)C(λ) → U(g)⊗U(�)C(λ) for τω : M(λ) → M(λ)

above. Moreover, since this mapω−1 ⊗ id : M(λ) → M(λ) stabilizes the unique maximal
proper submoduleJ (λ) of M(λ), we can take forτω : L(λ) → L(λ) above the linear map
M(λ)/J (λ) → M(λ)/J (λ) induced fromω−1 ⊗ id : M(λ) → M(λ).

REMARK 2.1.2. LetV be anh-module admitting a weight space decomposition

V =
⊕
χ∈�∗

Vχ

with finite-dimensional weight spacesVχ , and letf : V → V be a linear map such that
f (hv) = ω−1(h)f (v) for h ∈ h, v ∈ V . Then it follows that

f (Vχ) ⊂ Vω∗(χ)

for all χ ∈ h∗. Thus, we define a formal sum:

TrV f exp :=
∑

χ∈(�∗)0

Tr(f |Vχ ) e(χ) ,

where Tr(f |Vχ ) for χ ∈ (h∗)0 denotes the trace of the restriction off to theχ-weight space
Vχ of V .
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Let λ ∈ (h∗)0 be a symmetric weight. The twining character chω(V (λ)) of V (λ)

(= M(λ),L(λ)) is then defined to be the formal sum

(2.1.8) chω(V (λ)) := TrV (λ) τω exp=
∑

χ∈(�∗)0

Tr(τω|V (λ)χ ) e(χ) .

2.2. Twining character formula forL(Λ). We review the twining character formula
for L(Λ) of symmetric, dominant integral highest weightΛ, which is the main result of [FSS]
and [FRS].

We choose a set of representativesÎ of theω-orbits inI , and then introduce the following
subset ofÎ :

(2.2.1) Ĭ :=
{
i ∈ Î

∣∣∣∣
Ni−1∑
k=0

ai,ωk(i) = 1, 2

}
.

We define the following subgroup of the Weyl groupW :

(2.2.2) W̃ := {w ∈ W | ω∗w = wω∗} .

We know from [FRS, Proposition 3.3] that the groupW̃ is a Coxeter group with the canonical
generator system{wi | i ∈ Ĭ }, where fori ∈ Ĭ ,

(2.2.3) wi :=




Ni/2−1∏
k=0

(rωk(i) rωk+Ni /2(i) rωk(i)) if
Ni−1∑
k=0

ai,ωk(i) = 1 ,

Ni−1∏
k=0

rωk(i) if
Ni−1∑
k=0

ai,ωk(i) = 2 .

Here we note that if
∑Ni−1

k=0 ai,ωk(i) = 1, thenNi is an even integer. We denote the length

function of the Coxeter system(W̃ , {wi | i ∈ Ĭ }) by

(2.2.4) �̂ : W̃ → Z .

We also recall from [FRS, Equation (1) on page 529] that for a symmetric weightλ ∈ (h∗)0

andi ∈ Ĭ ,

(2.2.5) wi(λ) = λ − 2si(λ|αi)

(αi |αi)

Ni−1∑
k=0

αωk(i) ,

wheresi := 2/
∑Ni−1

k=0 ai,ωk(i).
If Λ ∈ P+ ∩ (h∗)0 is a symmetric, dominant integral weight, then each elementβ ∈

S(Λ) ∩ (h∗)0 can be written in the formβ = ∑
i∈Î

kiβi , whereβi := ∑Ni−1
k=0 αωk(i) ∈ (h∗)0

andki = 0, 1 for i ∈ Î . For such aβ ∈ S(Λ) ∩ (h∗)0, we set

(2.2.6) ĥt(β) :=
∑
i∈Î

ki .
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Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight. We know from [FRS,
Proposition 3.5] that for everyw ∈ W̃ ,

(2.2.7) w(chω(L(Λ))) = chω(L(Λ)) ,

since theg-moduleL(Λ) is integrable. Moreover, we have

THEOREM 2.2.1 ([FRS, Theorem 3.1]).Let Λ ∈ P+∩(h∗)0 be a symmetric, dominant
integral weight. Then

chω(L(Λ)) =

∑
w∈W̃

β∈S(Λ)∩(�∗)0

(−1)�̂(w)+ĥt(β) e((w, β) ◦ Λ)

∑
w∈W̃

β∈S(0)∩(�∗)0

(−1)�̂(w)+ĥt(β) e((w, β) ◦ 0)
.

3. Twining character formula for Hj(n−, L(Λ)).

3.1. Some lemmas. Since the inverseω−1 : g → g of the diagram automorphism
ω : g → g stabilizesn−, i.e.,ω−1(n−) = n−, it induces an algebra automorphism∧∗

ω−1 :
∧∗

n− →
∧∗

n−

of the exterior algebra
∧∗ n− of n−. The restriction of the

∧∗
ω−1 : ∧∗ n− → ∧∗ n− to

each homogeneous subspace
∧j n− for j ≥ 0 is denoted by∧j

ω−1 :
∧j

n− →
∧j

n− .

Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight, and letτω : L(Λ) →
L(Λ) be the linear automorphism in Section 2.1. We define a linear automorphism

(3.1.1) Φ :=
( ∧∗

ω−1
)

⊗ τω :
( ∧∗

n−
)

⊗C L(Λ) →
( ∧∗

n−
)

⊗C L(Λ) ,

and forj ≥ 0, we define a linear automorphism

(3.1.2) Φj :=
( ∧j

ω−1
)

⊗ τω :
( ∧j

n−
)

⊗C L(Λ) →
( ∧j

n−
)

⊗C L(Λ) .

REMARK 3.1.1. Letj ≥ 0. It is easily seen that

Φj(hv) = ω−1(h)Φj (v)

for h ∈ h andv ∈ (
∧j n−)⊗C L(Λ). It also follows that forh ∈ h andv ∈ (

∧∗ n−)⊗C L(Λ),

Φ(hv) = ω−1(h)Φ(v) .

The follwing lemma immediately follows from the definitions ofdj andΦj , j ≥ 0.
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LEMMA 3.1.2. We have the following commutative diagram for each j ≥ 0:

(
∧j n−) ⊗C L(Λ)

Φj−−→ (
∧j n−) ⊗C L(Λ)

dj

� �dj

(
∧j−1 n−) ⊗C L(Λ) −−−→

Φj−1

(
∧j−1 n−) ⊗C L(Λ) ,

where dj : (
∧j n−) ⊗C L(Λ) → (

∧j−1 n−) ⊗C L(Λ) is the boundary operator in Section
1.2.

By Lemma 3.1.2, the linear automorphismΦj : (
∧j n−)⊗C L(Λ) → (

∧j n−)⊗C L(Λ)

induces in the usual way a linear automorphism

(3.1.3) Φ̄j : Hj(n−, L(Λ)) → Hj(n−, L(Λ))

for j ≥ 0. Notice that forj ≥ 0 andh ∈ h, v ∈ Hj(n−, L(Λ)),

(3.1.4) Φ̄j (hv) = ω−1(h)Φ̄j (v)

by Remark 3.1.1.
Now we state an easy but useful lemma, which will be often used later. LetV andV ′ be

h-modules which decompose into a direct sum of finite-dimensional weight spaces:

V =
⊕
χ∈�∗

Vχ and V ′ =
⊕
χ∈�∗

V ′
χ .

We further assume that there exist linear automorphismsτω : V → V andτ ′
ω : V ′ → V ′ such

that forh ∈ h,

τω(hv) = ω−1(h)τω(v) for v ∈ V, and τ ′
ω(hv) = ω−1(h)τ ′

ω(v) for v ∈ V ′ .

Then the linear automorphism

τω ⊗ τ ′
ω : V ⊗C V ′ → V ⊗C V ′

obviously satisfies

(τω ⊗ τ ′
ω)(hv) = ω−1(h)(τω ⊗ τ ′

ω)(v)

for h ∈ h andv ∈ V ⊗C V ′. We can easily show

LEMMA 3.1.3. In the notation above, we have

TrV⊗V ′ (τω ⊗ τ ′
ω) exp= (TrV τω exp) · (TrV ′ τ ′

ω exp) .

3.2. Main result. We define the twining character chω(Hj(n−, L(Λ))) of the Lie al-
gebra homology moduleHj(n−, L(Λ)) for eachj ≥ 0 by

(3.2.1) chω(Hj (n−, L(Λ))) := TrHj (�−,L(Λ)) Φ̄j exp,

whereΦ̄j : Hj(n−, L(Λ)) → Hj(n−, L(Λ)) is as in Section 3.1.
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PROPOSITION3.2.1. Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight,
and let j ≥ 0. Then

chω(Hj (n−, L(Λ))) =
∑
w∈W̃

β∈S(Λ)∩(�∗)0

�(w)+ht(β)=j

c(w,β) e((w, β) ◦ Λ) ,

where the scalar c(w,β) ∈ C is defined by

c(w,β) := Tr(Φ̄j |(Hj (�−,L(Λ)))(w,β)◦Λ
) .

PROOF. Let w ∈ W andβ ∈ S(Λ) with �(w) + ht(β) = j . Setµ := (w, β) ◦ Λ. Let
us show thatω∗(µ) = µ if and only if w ∈ W̃ andβ ∈ (h∗)0. Becauseω∗ri (ω∗)−1 = rω−1(i)

for i ∈ I re, we see thatω∗w(ω∗)−1 ∈ W . If we setw′ := ω∗w(ω∗)−1 ∈ W , then we have

ω∗(µ) = ω∗(w(Λ + ρ − β) − ρ)

= ω∗(w(Λ + ρ − β)) − ω∗(ρ)

= ω∗w(Λ + ρ − β) − ρ

= w′ω∗(Λ + ρ − β) − ρ

= w′(ω∗(Λ + ρ − β)) − ρ

= w′(Λ + ρ − ω∗(β)) − ρ ,

sinceω∗(Λ) = Λ andω∗(ρ) = ρ. Now assume thatω∗(µ) = µ, i.e., thatw′(Λ + ρ −
ω∗(β)) = w(Λ+ρ −β). Then, since(Λ+ρ −β)(hi) ≥ 1 and(Λ+ρ −ω∗(β))(hi) ≥ 1 for
all i ∈ I re, we deduce thatΛ+ρ−ω∗(β) = Λ+ρ−β (i.e.,ω∗(β) = β) and thatw′ = w (i.e.,
ω∗w(ω∗)−1 = w) by the proof of [K, Proposition 3.12 a) and b)]. Conversely,ω∗w(ω∗)−1 =
w andω∗(β) = β immediately imply thatω∗(µ) = µ. Therefore, the proposition follows
directly from Theorem 1.2.1 and the definition (3.2.1) of chω(Hj(n−, L(Λ))). �

We see from the comments just below Theorem 1.2.1 that forw ∈ W̃ andβ ∈ S(Λ) ∩
(h∗)0 with �(w) + ht(β) = j ,

c(w,β) = Tr(Φ̄j |(Hj (�−,L(Λ)))(w,β)◦Λ
)

= Tr(Φ̄j |C v̄(w,β)
)

= Tr(Φj |C v(w,β)
)

= Tr
(
Φj |((∧j �−)⊗CL(Λ))(w,β)◦Λ

)
.

(3.2.2)

To determine the scalarc(w,β) ∈ C, we define the twining character chω((
∧∗ n−) ⊗C

L(Λ)) of (
∧∗ n−) ⊗C L(Λ) by

(3.2.3) chω

(( ∧∗
n−

)
⊗C L(Λ)

)
:= Tr(

∧∗ �−)⊗CL(Λ) Φ exp,

whereΦ = (
∧∗

ω−1) ⊗ τω is as in Section 3.1. The following is our key proposition.
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PROPOSITION 3.2.2. Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight.
For every w ∈ W̃ , we have

w

(
e(ρ)·chω

((∧∗
n−

)
⊗CL(Λ)

))
= (−1)�(w)−�̂(w)

(
e(ρ)·chω

(( ∧∗
n−

)
⊗CL(Λ)

))
.

PROOF. It follows from Lemma 3.1.3 that

(3.2.4) chω

(( ∧∗
n−

)
⊗C L(Λ)

)
= chω

( ∧∗
n−

)
· chω(L(Λ)) ,

where

(3.2.5) chω

(∧∗
n−

)
:= Tr∧∗ �− ω−1 exp.

Furthermore, we know from (2.2.7) that forw ∈ W̃ ,

w(chω(L(Λ))) = chω(L(Λ)) .

Hence we may assume thatΛ = 0.

It is well-known that(−1)�(ww′) = (−1)�(w)(−1)�(w
′) for w,w′ ∈ W , and(−1)�̂(ww′) =

(−1)�̂(w)(−1)�̂(w
′) for w,w′ ∈ W̃ . Thus, we may assume that�̂(w) = 1, i.e.,w = wi for

somei ∈ Ĭ .
We set

(3.2.6) ∆i := ∆+ ∩
( Ni−1∑

k=0

Z αωk(i)

)
, ∆(i) := ∆+ \ ∆i ,

and correspondingly

(3.2.7) ni :=
⊕
α∈∆i

g−α , n(i) :=
⊕

α∈∆(i)

g−α .

When
∑Ni−1

k=0 ai,ωk(i) = 2, we have

∆i = {αωk(i)}Ni−1
k=0 .

We call this case “Case (a)". When
∑Ni−1

k=0 ai,ωk(i) = 1, we have

∆i = {αωk(i)}Ni−1
k=0 � {αωk(i) + αω(Ni /2)+k(i)}Ni/2−1

k=0 .

We call this case “Case (b)". Sincen− = ni ⊕ n(i), we have an isomorphism ofh-modules:∧∗
n− ∼=

( ∧∗
ni

)
⊗C

( ∧∗
n(i)

)
.

Here we note thatω∗(∆i) = ∆i andω∗(∆(i)) = ∆(i). Then, sinceω−1(gα) = gω∗(α) for
α ∈ ∆, we get that ( ∧∗

ω−1
)( ∧∗

ni

)
=

∧∗
ni ,
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ω−1

)( ∧∗
n(i)

)
=

∧∗
n(i) .

Therefore, we can apply Lemma 3.1.3 to theh-module
∧∗ n− ∼= (

∧∗ ni ) ⊗C (
∧∗ n(i)) to

obtain that

(3.2.8) chω

( ∧∗
n−

)
= chω

( ∧∗
ni

)
· chω

( ∧∗
n(i)

)
,

where chω(
∧∗ ni ) and chω(

∧∗ n(i)) are defined by

(3.2.9) chω

( ∧∗
ni

)
:= Tr∧∗ �i

∧∗
ω−1 exp,

(3.2.10) chω

( ∧∗
n(i)

)
:= Tr∧∗ �(i)

∧∗
ω−1 exp.

STEP 1. First, we show that

(3.2.11) wi

(
e(ρ) · chω

( ∧∗
ni

))
= (−1)�(wi)−�̂(wi )

(
e(ρ) · chω

( ∧∗
ni

))
.

To show this, as an ordered basis ofni we take{fωk(i)}Ni−1
k=0 in Case (a), and{fωk(i)}Ni−1

k=0 �
{ḟωk(i)}Ni/2−1

k=0 with ḟωk (i) := [fωk(i), fω(Ni /2)+k(i)] for 0 ≤ k ≤ (Ni/2) − 1 in Case (b).
Case (a): We can easily deduce that the only basis vectors of

∧∗ ni which make a contri-
bution to the trace of

∧∗
ω−1 are the following two vectors:

1 ∈
∧0

ni = C and fi ∧ fω(i) ∧ · · · ∧ fωNi −1(i) .

Hence we immediately obtain that

(3.2.12) chω

( ∧∗
ni

)
= 1 + (−1)Ni−1e(−βi) ,

whereβi = ∑Ni−1
k=0 αωk(i). Now we use Equation (2.2.5) to see thatwi(ρ) = ρ − βi . So we

have

wi

(
e(ρ) · chω

( ∧∗
ni

))
= wi(e(ρ) · (1 + (−1)Ni−1e(−βi)))

= e(ρ − βi) · (1 + (−1)Ni−1e(βi))

= (−1)Ni−1e(ρ) · (1 + (−1)Ni−1e(−βi))

= (−1)Ni−1e(ρ) · chω

( ∧∗
ni

)

= (−1)�(wi)−�̂(wi )

(
e(ρ) · chω

( ∧∗
ni

))
,

since it is seen from the form (2.2.3) ofwi thatwi(βi) = −βi and�(wi) = Ni .
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Case (b): We can easily deduce that the only basis vectors of
∧∗ ni which make a contri-

bution to the trace of
∧∗

ω−1 are the following four vectors:

1 ∈
∧0

ni = C, fi ∧ fω(i) ∧ · · · ∧ fωNi −1(i), ḟi ∧ ḟω(i) ∧ · · · ∧ ḟω(Ni /2)−1(i) ,

and

fi ∧ · · · ∧ fωNi −1(i) ∧ ḟi ∧ · · · ∧ ḟω(Ni /2)−1(i) .

Hence we immediately obtain that

chω

( ∧∗
ni

)
= (1 + (−1)Ni−1e(−βi))(1 + (−1)(−1)(Ni/2)−1e(−βi))

= (1 + (−1)Ni−1e(−βi))(1 + (−1)Ni/2e(−βi)) ,

(3.2.13)

whereβi = ∑Ni−1
k=0 αωk(i). Now we use Equation (2.2.5) to see thatwi(ρ) = ρ − 2βi . So we

have

wi

(
e(ρ) · chω

( ∧∗
ni

))
= wi(e(ρ) · (1 + (−1)Ni−1e(−βi))(1 + (−1)Ni/2e(−βi)))

= e(ρ − 2βi) · (1 + (−1)Ni−1e(βi))(1 + (−1)Ni/2e(βi))

= e(ρ) · (−1)(3/2)Ni−1(1 + (−1)Ni−1e(−βi))(1 + (−1)Ni/2e(−βi))

= (−1)(3/2)Ni−1e(ρ) · chω

( ∧∗
ni

)

= (−1)�(wi)−�̂(wi)

(
e(ρ) · chω

( ∧∗
ni

))
,

since it is seen from the form (2.2.3) ofwi that wi(βi) = −βi and�(wi) = 3 · (Ni/2) =
(3/2)Ni .

STEP 2. Second, we show that

(3.2.14) wi

(
chω

( ∧∗
n(i)

))
= chω

( ∧∗
n(i)

)
,

which completes the proof of the proposition. Notice thataωk(i),ωk(i) = 2 for all 0 ≤ k ≤
Ni − 1, sincei ∈ Ĭ implies

∑Ni−1
k=0 ai,ωk(i) > 0 by definition. Hence, the operators adeωk(i)

and adfωk(i) are locally nilpotent ong for all 0 ≤ k ≤ Ni−1. We define linear automorphisms
of g by

(3.2.15) xad
k := (exp(adfωk(i)))(exp(−adeωk(i)))(exp(adfωk(i)))
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for 0 ≤ k ≤ Ni − 1, and then by

(3.2.16) Xad
i :=




Ni−1∏
k=0

xad
k in Case (a),

Ni/2−1∏
k=0

(xad
k xad

(Ni/2)+k xad
k ) in Case (b).

By [K, Lemma 3.8] we see thatXad
i (gα) = gwi(α) for α ∈ ∆. Moreover, we immediately see

that

(3.2.17) ω−1(Xad
i (v)) = (ω−1Xad

i )(ω−1(v))

for v ∈ g, where the linear automorphismω−1Xad
i of g is defined by

(3.2.18) ω−1Xad
i :=




Ni−1∏
k=0

xad
k−1 in Case (a),

Ni/2−1∏
k=0

(xad
k−1 xad

(Ni/2)+k−1 xad
k−1) in Case (b),

with xad−1 := xad
Ni−1. We see easily thatω−1Xad

i = Xad
i , since, in Case (b),

xad
−1 xad

(Ni/2)−1 xad
−1 = xad

Ni−1 xad
(Ni/2)−1 xad

Ni−1

= xad
(Ni/2)−1 xad

Ni−1 xad
(Ni/2)−1

(see, for example, [KP]). Thus we get the commutative diagram forα ∈ ∆+:

(3.2.19)

g−α

Xad
i−−→ g−wi(α)

ω−1

� �ω−1

g−ω∗(α) −−→
Xad

i

g−ω∗wi(α) ,

whereω∗wi(α) = wiω
∗(α).

Because we see from Equation (2.2.5) thatwi(∆(i)) = ∆(i), we deduce that

(3.2.20) Xad
i (n(i)) = n(i) .

By extending the linear automorphismXad
i : g → g to the linear automorphism

∧∗
Xad

i :
∧∗

g →
∧∗

g
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in the usual way, we finally obtain the following commutative diagram from (3.2.19) and
(3.2.20):

(3.2.21)

∧∗ n(i)

∧∗ Xad
i−−−−→ ∧∗ n(i)

∧∗
ω−1

� �∧∗
ω−1∧∗ n(i) −−−−→∧∗ Xad

i

∧∗ n(i) .

Let χ ∈ (h∗)0 be a symmetric weight. Sinceω∗wi(χ) = wiω
∗(χ) = wi(χ), the following

diagram commutes:

(3.2.22)

(∧∗ n(i)
)
χ

∧∗ Xad
i−−−−→ ( ∧∗ n(i)

)
wi(χ)∧∗

ω−1

� �∧∗
ω−1(∧∗ n(i)

)
χ

−−−−→∧∗ Xad
i

(∧∗ n(i)
)
wi(χ)

.

It follows from this commutative diagram that forχ ∈ (h∗)0,

(3.2.23) Tr

((∧∗
ω−1

) ∣∣∣∣ (
∧∗ �(i))χ

)
= Tr

(( ∧∗
ω−1

) ∣∣∣∣ (
∧∗ �(i))wi(χ)

)
.

Therefore, we conclude that

wi

(
chω

( ∧∗
n(i)

))
= chω

(∧∗
n(i)

)
.

This proves the proposition. �

COROLLARY 3.2.3. Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight,
and let w ∈ W̃ and β ∈ S(Λ) ∩ (h∗)0. Then

c(w,β) = (−1)�(w)−�̂(w) · (−1)ht(β)−ĥt(β) .

PROOF. First, we show that

(3.2.24) Tr(Φ|((∧∗ �−)⊗CL(Λ))Λ−β
) = (−1)ht(β)−ĥt(β) .

The elementβ ∈ S(Λ) ∩ (h∗)0 can be written in the formβ = ∑l
k=1 βik , whereβik =∑Nik

−1
r=0 αωr (ik) for 1 ≤ k ≤ l. Then obviouslŷht(β) = l and ht(β) = ∑l

k=1 Nik . Recall from
(1.2.5) that we have

(3.2.25)

(( ∧∗
n−

)
⊗C L(Λ)

)
Λ−β

= C v(1,β) ,
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wherev(1,β) = f̂i1 ∧ f̂i2 ∧ · · · ∧ f̂il ⊗ vΛ with f̂ik := fik ∧ fω(ik) ∧ · · · ∧ f
ω

Nik
−1

(ik)
for

1 ≤ k ≤ l. Then it follows that

Φ(v(1,β)) =
( ∧∗

ω−1
)

(f̂i1 ∧ · · · ∧ f̂il ) ⊗ vΛ

=
( ∧∗

ω−1
)

(f̂i1) ∧ · · · ∧
( ∧∗

ω−1
)

(f̂il ) ⊗ vΛ .

(3.2.26)

Because for each 1≤ k ≤ l, ( ∧∗
ω−1

)
(f̂ik ) = (−1)Nik

−1f̂ik ,

we deduce that

Φ(v(1,β)) = (−1)(
∑l

k=1 Nik
)−l v(1,β) = (−1)ht(β)−ĥt(β) v(1,β) .

Thus we have shown that

Tr(Φ|((∧∗ �−)⊗CL(Λ))Λ−β
) = (−1)ht(β)−ĥt(β).

Now we setj := �(w) + ht(β). Then the scalar

c(w,β) = Tr(Φj |((∧j �−)⊗CL(Λ))(w,β)◦Λ)
)

= Tr(Φ|((∧∗ �−)⊗CL(Λ))(w,β)◦Λ)
)

(3.2.27)

is the coefficient ofe(w(Λ + ρ − β)) in e(ρ) · chω((
∧∗ n−) ⊗C L(Λ)), which is, by Propo-

sition 3.2.2, equal to the coefficient ofe(Λ − β) in chω((
∧∗ n−) ⊗C L(Λ)) multiplied by

(−1)�(w)−�̂(w). But the coefficient ofe(Λ − β) in chω((
∧∗ n−) ⊗C L(Λ)) is by definition

Tr(Φ|((∧∗ �−)⊗CL(Λ))Λ−β
). Thus, we obtain from (3.2.24) just proved that

c(w,β) = (−1)�(w)−�̂(w) · (−1)ht(β)−ĥt(β) ,

as desired. This completes the proof. �

Combining Proposition 3.2.1 with Corollary 3.2.3, we obtain our main result.

THEOREM 3.2.4. Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight, and
let j ≥ 0. Then

chω(Hj (n−, L(Λ))) =
∑
w∈W̃

β∈S(Λ)∩(�∗)0

�(w)+ht(β)=j

(−1)−(�(w)+ht(β)) · (−1)�̂(w)+ĥt(β) e((w, β) ◦ Λ)

=
∑
w∈W̃

β∈S(Λ)∩(�∗)0

�(w)+ht(β)=j

(−1)�̂(w)+ĥt(β)−j e((w, β) ◦ Λ) .

3.3. Application. As an application of Theorem 3.2.4, we give a new proof of the
twining character formula (Theorem 2.2.1) forL(Λ) of symmetric, dominant integral highest
weightΛ.
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By virtue of Lemma 3.1.2, we can apply an Euler-Poincaré principle to deduce that

(3.3.1)
∑
j≥0

(−1)j chω(Hj (n−, L(Λ))) =
∑
j≥0

(−1)j chω

(( ∧j
n−

)
⊗C L(Λ)

)
.

Also, by Lemma 3.1.2, we have for eachj ≥ 0,

(3.3.2) chω

(( ∧j
n−

)
⊗C L(Λ)

)
= chω

( ∧j
n−

)
· chω(L(Λ)) .

Hence we get∑
j≥0

(−1)j chω

(( ∧j
n−

)
⊗C L(Λ)

)

=
∑
j≥0

(−1)j chω

( ∧j
n−

)
· chω(L(Λ))

= chω(L(Λ)) ·
( ∑

j≥0

(−1)j chω

( ∧j
n−

))

= chω(L(Λ)) ·
( ∑

j≥0

(−1)j chω

(( ∧j
n−

)
⊗C L(0)

))

= chω(L(Λ)) ·
( ∑

j≥0

(−1)j chω(Hj (n−, L(0)))

)
,

sinceL(0) = C and chω(L(0)) = e(0) = 1. Here, in the last equality above, we have used an
Euler-Poincaré principle again.

On the other hand, we obtain from Theorem 3.2.4 that

(3.3.3)
∑
j≥0

(−1)j chω(Hj(n−, L(Λ))) =
∑
w∈W̃

β∈S(Λ)∩(�∗)0

(−1)�̂(w)+ĥt(β) e((w, β) ◦ Λ) .

Putting all the above together, we conclude that∑
w∈W̃

β∈S(Λ)∩(�∗)0

(−1)�̂(w)+ĥt(β) e((w, β) ◦ Λ)

= chω(L(Λ)) ·

 ∑

w∈W̃
β∈S(0)∩(�∗)0

(−1)�̂(w)+ĥt(β) e((w, β) ◦ 0)


 .

Thus, we have given a new proof of Theorem 2.2.1.
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