TWINING CHARACTERS AND KOSTANT'S HOMOLOGY FORMULA

SATOSHI NAITO

(Received April 17, 2001)

Abstract. Let $\mathfrak g$ be a symmetrizable generalized Kac-Moody algebra and $\mathfrak n_-$ the sum of all its negative root spaces. We obtain a formula for the twining characters of the Lie algebra homology modules of $\mathfrak n_-$ with coefficients in the irreducible highest weight $\mathfrak g$ -module $L(\Lambda)$ of symmetric, dominant integral highest weight Λ . This formula gives a new (and convincing) proof of the formula for the twining character of $L(\Lambda)$ above.

Introduction. In [FSS] and [FRS], Fuchs, Schweigert, *et al.* introduced a new type of character-like quantities, called twining characters, corresponding to a Dynkin diagram automorphism for certain highest weight modules over a symmetrizable (generalized) Kac-Moody algebra $\mathfrak g$. Moreover, they gave a formula (see Theorem 2.2.1) for the twining character of an irreducible highest weight $\mathfrak g$ -module $L(\Lambda)$ of symmetric, dominant integral highest weight Λ .

In this paper, we give a new proof of this result of theirs. In our proof, we use an extension of Kostant's homology formula to generalized Kac-Moody algebras in [N2] to obtain a formula for the twining characters of the Lie algebra homology modules $H_j(\mathfrak{n}_-, L(\Lambda))$, $j \geq 0$, of \mathfrak{n}_- with coefficients in $L(\Lambda)$, where \mathfrak{n}_- is the sum of all negative root spaces of \mathfrak{g} . Then, by an Euler-Poincaré principle, we get the twining character formula for $L(\Lambda)$ of symmetric, dominant integral highest weight Λ .

This new proof will give us a satisfactory explanation of why we need the subgroup \tilde{W} of the Weyl group W consisting of elements which commute with the Dynkin diagram automorphism.

This paper is organized as follows. In Section 1, we recall the definition of a generalized Kac-Moody algebra and fix our notation. Furthermore, we review an extension of Kostant's homology formula to generalized Kac-Moody algebras in [N2]. In Section 2, following [FSS] and [FRS], we review the definition of a twining character and the twining character formula for $L(\Lambda)$.

Section 3 is the main part of this paper. There we show a formula for the twining characters of the Lie algebra homology modules $H_j(\mathfrak{n}_-, L(\Lambda))$, $j \ge 0$, and then give a new proof of the twining character formula for $L(\Lambda)$.

1. Preliminaries and notation.

1.1. Generalized Kac-Moody algebras. Let $I = \{1, 2, ..., n\}$ be a finite index set, and let $A = (a_{ij})_{i,j \in I}$ be an $n \times n$ real matrix satisfying:

- (C1) either $a_{ii} = 2$ or $a_{ii} \le 0$ for all $i \in I$;
- (C2) $a_{ij} \leq 0$ if $i \neq j \in I$, and $a_{ij} \in \mathbb{Z}$ for $j \neq i$ if $a_{ii} = 2$;
- (C3) $a_{ij} = 0$ if and only if $a_{ji} = 0$ for $i, j \in I$.

Such a matrix $A=(a_{ij})_{i,j\in I}$ is called a generalized GCM (GGCM). In this paper, following [K], we define a generalized Kac-Moody algebra (GKM algebra) $\mathfrak g$ over C to be the contragredient Lie algebra $\mathfrak g(A)$ associated to a GGCM $A=(a_{ij})_{i,j\in I}$. Let $\mathfrak h$ be the Cartan subalgebra and e_i , f_i for $i\in I$ the Chevalley generators. Let $\Delta_+\subset \mathfrak h^*:=\operatorname{Hom}_C(\mathfrak h,C)$ be the set of positive roots, $\Delta_-=-\Delta_+$ the set of negative roots, and $\mathfrak g_\alpha$ the root space of $\mathfrak g$ corresponding to a root $\alpha\in\Delta=\Delta_-\sqcup\Delta_+$. We set

(1.1.1)
$$\mathfrak{n}_{\pm} := \bigoplus_{\alpha \in \Delta_{\pm}} \mathfrak{g}_{\alpha} , \quad \mathfrak{b} := \mathfrak{h} \oplus \mathfrak{n}_{+} .$$

We denote by $\Pi=\{\alpha_i\mid i\in I\}$ the set of simple roots, and by $\Pi^\vee=\{h_i\mid i\in I\}$ the set of simple coroots. We set $I^{\mathrm{re}}:=\{i\in I\mid a_{ii}=2\},\ I^{\mathrm{im}}:=\{i\in I\mid a_{ii}\leq 0\},\ \text{and call}$ $\Pi^{\mathrm{re}}:=\{\alpha_i\in\Pi\mid i\in I^{\mathrm{re}}\}$ the set of real simple roots, $\Pi^{\mathrm{im}}:=\{\alpha_i\in\Pi\mid i\in I^{\mathrm{im}}\}$ the set of imaginary simple roots. Note that $\mathfrak{g}_{\alpha_i}=Ce_i,\ \mathfrak{g}_{-\alpha_i}=Cf_i$ for all $i\in I$.

The Weyl group W of the GKM algebra \mathfrak{g} is defined by

$$(1.1.2) W := \langle r_i \mid i \in I^{\text{re}} \rangle \subset GL(\mathfrak{h}^*),$$

where $r_i \in GL(\mathfrak{h}^*)$ for $i \in I^{re}$ is the simple reflection of \mathfrak{h}^* . The length function of the Coxeter system $(W, \{r_i \mid i \in I^{re}\})$ is denoted by

$$(1.1.3) \ell: W \to \mathbf{Z}.$$

Throughout this paper, we assume that a GGCM $A=(a_{ij})_{i,j\in I}$ is symmetrizable, i.e., that there exist a diagonal matrix $D=\operatorname{diag}(\varepsilon_1,\ldots,\varepsilon_n)$ with $\varepsilon_i>0$ for all $i\in I$ and a symmetric matrix $B=(b_{ij})_{i,j\in I}$ such that A=DB. Hence there exists a nondegenerate, symmetric, invariant bilinear form $(\cdot|\cdot)$ on $\mathfrak{g}=\mathfrak{g}(A)$. The restriction of this bilinear form $(\cdot|\cdot)$ to \mathfrak{h} is again nondegenerate, so that it induces a nondegenerate, symmetric, W-invariant bilinear form on \mathfrak{h}^* , which is also denoted by $(\cdot|\cdot)$.

1.2. Kostant's homology formula. For $\lambda \in \mathfrak{h}^*$, let

$$(1.2.1) M(\lambda) := U(\mathfrak{g}) \otimes_{U(\mathfrak{h})} C(\lambda)$$

be the Verma module of highest weight λ over \mathfrak{g} , where $U(\mathfrak{a})$ denotes the universal enveloping algebra of a Lie algebra \mathfrak{a} and $C(\lambda)$ is the one-dimensional (irreducible) \mathfrak{h} -module of weight λ on which \mathfrak{n}_+ acts trivially. We then define a \mathfrak{g} -module $L(\lambda)$ to be the unique irreducible quotient of $M(\lambda)$, that is,

(1.2.2)
$$L(\lambda) := M(\lambda)/J(\lambda),$$

where $J(\lambda)$ is the unique maximal proper submodule of $M(\lambda)$.

Let

$$(1.2.3) P_+ := \{ \Lambda \in \mathfrak{h}^* \mid \Lambda(h_i) \ge 0 \text{ for all } i \in I, \text{ and } \Lambda(h_i) \in \mathbf{Z} \text{ if } a_{ii} = 2 \}$$

be the set of dominant integral weights. We denote by $H_j(\mathfrak{n}_-, L(\Lambda))$, $j \geq 0$, the Lie algebra homology modules of \mathfrak{n}_- with coefficients in $L(\Lambda)$ for $\Lambda \in P_+$. Recall from [GL] that, for $j \geq 0$, the $H_j(\mathfrak{n}_-, L(\Lambda))$ is defined to be the j-th homology of the chain complex $\{C_j(\mathfrak{n}_-, L(\Lambda)), d_j\}_{j\geq 0}$ with $C_j(\mathfrak{n}_-, L(\Lambda)) := (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda)$, where $\bigwedge^j \mathfrak{n}_-$ denotes the j-th exterior power of \mathfrak{n}_- . Note that the boundary operator $d_j : C_j(\mathfrak{n}_-, L(\Lambda)) \to C_{j-1}(\mathfrak{n}_-, L(\Lambda))$ commutes with the action of \mathfrak{h} , and hence $H_j(\mathfrak{n}_-, L(\Lambda))$ is an \mathfrak{h} -module in the usual way.

In order to state an extension of Kostant's homology formula to GKM algebras, we introduce some notation. Let $i \neq j \in I^{\mathrm{im}}$ and $\Lambda \in P_+$. Two distinct imaginary simple roots α_i and α_j are said to be pairwise perpendicular if $a_{ij} = 0 = a_{ji}$, and an imaginary simple root α_i is said to be perpendicular to Λ if $\Lambda(h_i) = 0$. We denote by $\mathcal{S}(\Lambda)$ the set of sums of distinct, pairwise perpendicular, imaginary simple roots perpendicular to Λ . In addition, for an element $\beta = \sum_{i \in I^{\mathrm{im}}} k_i \alpha_i \in \mathcal{S}(\Lambda)$, we set $\mathrm{ht}(\beta) := \sum_{i \in I^{\mathrm{im}}} k_i \in \mathbf{Z}_{\geq 0}$ (note that $k_i = 0, 1$ for all $i \in I^{\mathrm{im}}$ by the definition of $\mathcal{S}(\Lambda)$). Now we take and fix an element $\rho \in \mathfrak{h}^*$ (called a Weyl vector) such that $\rho(h_i) = (1/2) \cdot a_{ii}$ for all $i \in I$. For $(w, \beta) \in W \times \mathcal{S}(\Lambda)$, we set

$$(1.2.4) (w, \beta) \circ \Lambda := w(\Lambda + \rho - \beta) - \rho.$$

We know from [N2, Propositions 3.2, 3.3, and Theorem 5.3] the following theorem.

THEOREM 1.2.1. Let $\Lambda \in P_+$ and $j \in \mathbb{Z}_{>0}$.

(1) We have the following isomorphism of h-modules:

$$H_j(\mathfrak{n}_-, L(\Lambda)) \cong \bigoplus_{\substack{(w,\beta) \in W \times S(\Lambda) \\ \ell(w) + \operatorname{ht}(\beta) = j}} C((w,\beta) \circ \Lambda).$$

Here the sum above is a direct sum of inequivalent irreducible \mathfrak{h} -modules, i.e., the weights $(w, \beta) \circ \Lambda$ for $(w, \beta) \in W \times S(\Lambda)$ with $\ell(w) + \operatorname{ht}(\beta) = j$ are all distinct.

(2) If we set $\mu := (w, \beta) \circ \Lambda$ for $(w, \beta) \in W \times S(\Lambda)$ with $\ell(w) + \operatorname{ht}(\beta) = j$, then the multiplicities of μ (= the dimensions of the μ -weight space) in the \mathfrak{h} -modules $(\bigwedge^* \mathfrak{n}_-) \otimes_C L(\Lambda)$ and $(\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda)$ are both equal to one.

Here we recall from the proof of [N2, Proposition 3.3] the construction of a nonzero weight vector $v_{(w,\beta)} \in (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda)$ of weight $\mu = (w,\beta) \circ \Lambda$ in part (2) of Theorem 1.2.1. First, we note that $w(\rho) - \rho = -\sum_{\alpha \in \Delta_w} \alpha$ and that the number of elements of the set Δ_w equals $\ell(w)$, where $\Delta_w := \{\alpha \in \Delta_+ \mid w^{-1}(\alpha) \in \Delta_-\}$. Second, we write β in the form $\beta = \sum_{k=1}^m \alpha_{i_k}$, where $m = \operatorname{ht}(\beta)$, $\alpha_{i_k} \in \Pi^{\operatorname{im}}$, and $i_r \neq i_t$ for $1 \leq r \neq t \leq m$. Now we take nonzero root vectors $F_k \in \mathfrak{g}_{-w(\alpha_{i_k})}$ for $1 \leq k \leq m$, $F_\alpha \in \mathfrak{g}_{-\alpha}$ for $\alpha \in \Delta_w$, and a nonzero weight vector $v_{w(\Lambda)} \in L(\Lambda)_{w(\Lambda)}$ of weight $w(\Lambda)$. Then we set

$$(1.2.5) v_{(w,\beta)} := (F_1 \wedge \cdots \wedge F_m) \wedge \left(\bigwedge_{\alpha \in \Delta_w} F_\alpha \right) \otimes v_{w(\Lambda)} \in \left(\bigwedge^j \mathfrak{n}_- \right) \otimes_{\mathcal{C}} L(\Lambda).$$

We see that the vector $v_{(w,\beta)} \in (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda)$ is nonzero, and of weight $\mu = (w,\beta) \circ \Lambda$, since

$$\begin{split} \mu &= w(\Lambda + \rho - \beta) - \rho \\ &= -w(\beta) + (w(\rho) - \rho) + w(\Lambda) \\ &= \sum_{k=1}^m (-w(\alpha_{i_k})) + \sum_{\alpha \in \Delta_w} (-\alpha) + w(\Lambda) \,. \end{split}$$

We deduce from Theorem 1.2.1 that the image $\bar{v}_{(w,\beta)}$ of the vector $v_{(w,\beta)} \in (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda)$ of weight μ by the natural quotient map $\bar{z}: (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda) \to H_j(\mathfrak{n}_-, L(\Lambda))$ is nonzero, and hence that the μ -weight space $(H_j(\mathfrak{n}_-, L(\Lambda)))_{\mu}$ of $H_j(\mathfrak{n}_-, L(\Lambda))$ is spanned by the vector $\bar{v}_{(w,\beta)}$:

$$(1.2.6) (Hi(\mathfrak{n}_{-}, L(\Lambda)))_{\mu} = C \bar{v}_{(w,\beta)}.$$

2. Twining character formula for $L(\Lambda)$.

2.1. Twining characters. We recall the definition of the twining character of a certain highest weight module, following [FRS] and [FSS] (see also [N4]).

Let $A=(a_{ij})_{i,j\in I}$ be a symmetrizable GGCM indexed by a finite set I. A bijection $\omega:I\to I$ such that

(2.1.1)
$$a_{\omega(i),\omega(j)} = a_{ij}$$
 for all $i, j \in I$

is called a (Dynkin) diagram automorphism, since such an ω induces an automorphism of the Dynkin diagram of the GGCM $A=(a_{ij})_{i,j\in I}$ as a graph. Let N be the order of $\omega:I\to I$, and N_i the number of elements of the ω -orbit of $i\in I$ in I. We may (and will henceforth) assume that $\varepsilon_{\omega(i)}=\varepsilon_i$ for all $i\in I$ in the decomposition A=DB with $D=\mathrm{diag}(\varepsilon_1,\ldots,\varepsilon_n)$ (see [N4, §3.1]).

The diagram automorphism $\omega: I \to I$ can be extended (cf. [FSS, §3.2] and [K, §2.2]) to an automorphism ω of order N of the GKM algebra $\mathfrak{g} = \mathfrak{g}(A)$ associated to the GGCM $A = (a_{ij})_{i,j \in I}$ so that

$$(2.1.2) \begin{cases} \omega(e_i) := e_{\omega(i)} & \text{for } i \in I, \\ \omega(f_i) := f_{\omega(i)} & \text{for } i \in I, \\ \omega(h_i) := h_{\omega(i)} & \text{for } i \in I, \\ \omega(\mathfrak{h}) := \mathfrak{h}, \\ (\omega(x)|\omega(y)) = (x|y) & \text{for } x, y \in \mathfrak{g}. \end{cases}$$

Notice that the $\omega: \mathfrak{g} \to \mathfrak{g}$ extends to a unique algebra automorphism $\omega: U(\mathfrak{g}) \to U(\mathfrak{g})$ by

$$\omega(x_1 \cdots x_k) = \omega(x_1) \cdots \omega(x_k)$$
 for $x_1, \dots, x_k \in \mathfrak{g}$.

We call these two automorphisms ω also diagram automorphisms by abuse of notation.

The restriction of the diagram automorphism $\omega: \mathfrak{g} \to \mathfrak{g}$ to the Cartan subalgebra \mathfrak{h} induces a transposed map $\omega^*: \mathfrak{h}^* \to \mathfrak{h}^*$ by

(2.1.3)
$$\omega^*(\lambda)(h) := \lambda(\omega(h)) \quad \text{for } \lambda \in \mathfrak{h}^*, \ h \in \mathfrak{h}.$$

We set

$$(2.1.4) \qquad (\mathfrak{h}^*)^0 := \{\lambda \in \mathfrak{h}^* \mid \omega^*(\lambda) = \lambda\},\,$$

and call an element of $(\mathfrak{h}^*)^0$ a symmetric weight. Note that we may (and will henceforth) assume that the Weyl vector ρ is a symmetric weight, i.e.,

$$(2.1.5) \omega^*(\rho) = \rho.$$

Let $\lambda \in (\mathfrak{h}^*)^0$ be a symmetric weight, and let $V(\lambda)$ be either the Verma module $M(\lambda)$ or the irreducible highest weight module $L(\lambda)$ of highest weight λ . Then there exists a unique linear automorphism $\tau_{\omega}: V(\lambda) \to V(\lambda)$ such that

(2.1.6)
$$\tau_{\omega}(xv) = \omega^{-1}(x)\tau_{\omega}(v) \quad \text{for } x \in \mathfrak{g}, \ v \in V(\lambda),$$

and

(2.1.7)
$$\tau_{\omega}(v) = v \quad \text{for } v \in V(\lambda)_{\lambda},$$

where $V(\lambda)_{\lambda}$ is the (one-dimensional) highest weight space of $V(\lambda)$.

REMARK 2.1.1. Because $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C(\lambda)$ by definition, we can take the linear automorphism $\omega^{-1} \otimes \mathrm{id} : U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C(\lambda) \to U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} C(\lambda)$ for $\tau_\omega : M(\lambda) \to M(\lambda)$ above. Moreover, since this map $\omega^{-1} \otimes \mathrm{id} : M(\lambda) \to M(\lambda)$ stabilizes the unique maximal proper submodule $J(\lambda)$ of $M(\lambda)$, we can take for $\tau_\omega : L(\lambda) \to L(\lambda)$ above the linear map $M(\lambda)/J(\lambda) \to M(\lambda)/J(\lambda)$ induced from $\omega^{-1} \otimes \mathrm{id} : M(\lambda) \to M(\lambda)$.

REMARK 2.1.2. Let V be an \mathfrak{h} -module admitting a weight space decomposition

$$V = \bigoplus_{\chi \in \mathfrak{h}^*} V_{\chi}$$

with finite-dimensional weight spaces V_{χ} , and let $f:V\to V$ be a linear map such that $f(hv)=\omega^{-1}(h)f(v)$ for $h\in\mathfrak{h},\ v\in V$. Then it follows that

$$f(V_{\chi}) \subset V_{\omega^*(\chi)}$$

for all $\chi \in \mathfrak{h}^*$. Thus, we define a formal sum:

$$\operatorname{Tr}_V f \exp := \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{Tr}(f|_{V_\chi}) e(\chi),$$

where $\text{Tr}(f|_{V_{\chi}})$ for $\chi \in (\mathfrak{h}^*)^0$ denotes the trace of the restriction of f to the χ -weight space V_{χ} of V.

Let $\lambda \in (\mathfrak{h}^*)^0$ be a symmetric weight. The twining character $\mathrm{ch}^\omega(V(\lambda))$ of $V(\lambda)$ $(= M(\lambda), L(\lambda))$ is then defined to be the formal sum

(2.1.8)
$$\operatorname{ch}^{\omega}(V(\lambda)) := \operatorname{Tr}_{V(\lambda)} \tau_{\omega} \exp = \sum_{\chi \in (\mathfrak{h}^*)^0} \operatorname{Tr}(\tau_{\omega}|_{V(\lambda)_{\chi}}) e(\chi).$$

2.2. Twining character formula for $L(\Lambda)$. We review the twining character formula for $L(\Lambda)$ of symmetric, dominant integral highest weight Λ , which is the main result of [FSS] and [FRS].

We choose a set of representatives \hat{I} of the ω -orbits in I, and then introduce the following subset of \hat{I} :

(2.2.1)
$$\check{I} := \left\{ i \in \hat{I} \mid \sum_{k=0}^{N_i - 1} a_{i,\omega^k(i)} = 1, \ 2 \right\}.$$

We define the following subgroup of the Weyl group W:

(2.2.2)
$$\tilde{W} := \{ w \in W \mid \omega^* w = w \omega^* \}.$$

We know from [FRS, Proposition 3.3] that the group \tilde{W} is a Coxeter group with the canonical generator system $\{w_i \mid i \in \check{I}\}$, where for $i \in \check{I}$,

$$(2.2.3) w_i := \begin{cases} \prod_{k=0}^{N_i/2-1} (r_{\omega^k(i)} \, r_{\omega^{k+N_i/2}(i)} \, r_{\omega^k(i)}) & \text{if } \sum_{k=0}^{N_i-1} a_{i,\omega^k(i)} = 1 \,, \\ \prod_{k=0}^{N_i-1} r_{\omega^k(i)} & \text{if } \sum_{k=0}^{N_i-1} a_{i,\omega^k(i)} = 2 \,. \end{cases}$$

Here we note that if $\sum_{k=0}^{N_i-1} a_{i,\omega^k(i)} = 1$, then N_i is an even integer. We denote the length function of the Coxeter system $(\tilde{W}, \{w_i \mid i \in \check{I}\})$ by

$$\hat{\ell}: \tilde{W} \to \mathbf{Z}.$$

We also recall from [FRS, Equation (1) on page 529] that for a symmetric weight $\lambda \in (\mathfrak{h}^*)^0$ and $i \in \check{I}$,

(2.2.5)
$$w_i(\lambda) = \lambda - \frac{2s_i(\lambda|\alpha_i)}{(\alpha_i|\alpha_i)} \sum_{k=0}^{N_i-1} \alpha_{\omega^k(i)},$$

where $s_i := 2/\sum_{k=0}^{N_i-1} a_{i,\omega^k(i)}$. If $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ is a symmetric, dominant integral weight, then each element $\beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^*)^0$ can be written in the form $\beta = \sum_{i \in \hat{I}} k_i \beta_i$, where $\beta_i := \sum_{k=0}^{N_i-1} \alpha_{\omega^k(i)} \in (\mathfrak{h}^*)^0$ and $k_i = 0$, 1 for $i \in \hat{I}$. For such a $\beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^*)^0$, we set

(2.2.6)
$$\widehat{\operatorname{ht}}(\beta) := \sum_{i \in \widehat{I}} k_i.$$

Let $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ be a symmetric, dominant integral weight. We know from [FRS, Proposition 3.5] that for every $w \in \tilde{W}$,

$$(2.2.7) w(\operatorname{ch}^{\omega}(L(\Lambda))) = \operatorname{ch}^{\omega}(L(\Lambda)),$$

since the \mathfrak{g} -module $L(\Lambda)$ is integrable. Moreover, we have

THEOREM 2.2.1 ([FRS, Theorem 3.1]). Let $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ be a symmetric, dominant integral weight. Then

Then
$$\sum_{\substack{w \in \tilde{W} \\ \text{ch}^{\omega}(L(\Lambda))}} (-1)^{\hat{\ell}(w) + \widehat{\text{ht}}(\beta)} e((w, \beta) \circ \Lambda)$$

$$\text{ch}^{\omega}(L(\Lambda)) = \frac{\sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(0) \cap (\mathfrak{h}^*)^0}} (-1)^{\hat{\ell}(w) + \widehat{\text{ht}}(\beta)} e((w, \beta) \circ 0)}{\sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(0) \cap (\mathfrak{h}^*)^0}} (-1)^{\hat{\ell}(w) + \widehat{\text{ht}}(\beta)} e((w, \beta) \circ 0)}.$$

3. Twining character formula for $H_i(\mathfrak{n}_-, L(\Lambda))$.

3.1. Some lemmas. Since the inverse $\omega^{-1}: \mathfrak{g} \to \mathfrak{g}$ of the diagram automorphism $\omega: \mathfrak{g} \to \mathfrak{g}$ stabilizes \mathfrak{n}_- , i.e., $\omega^{-1}(\mathfrak{n}_-) = \mathfrak{n}_-$, it induces an algebra automorphism

$$\bigwedge^* \omega^{-1} : \bigwedge^* \mathfrak{n}_- \to \bigwedge^* \mathfrak{n}_-$$

of the exterior algebra $\bigwedge^* \mathfrak{n}_-$ of \mathfrak{n}_- . The restriction of the $\bigwedge^* \omega^{-1} : \bigwedge^* \mathfrak{n}_- \to \bigwedge^* \mathfrak{n}_-$ to each homogeneous subspace $\bigwedge^j \mathfrak{n}_-$ for $j \geq 0$ is denoted by

$$\bigwedge^{j} \omega^{-1} : \bigwedge^{j} \mathfrak{n}_{-} \to \bigwedge^{j} \mathfrak{n}_{-} .$$

Let $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ be a symmetric, dominant integral weight, and let $\tau_\omega : L(\Lambda) \to L(\Lambda)$ be the linear automorphism in Section 2.1. We define a linear automorphism

$$(3.1.1) \Phi := \left(\bigwedge^* \omega^{-1}\right) \otimes \tau_\omega : \left(\bigwedge^* \mathfrak{n}_-\right) \otimes_C L(\Lambda) \to \left(\bigwedge^* \mathfrak{n}_-\right) \otimes_C L(\Lambda) ,$$

and for $j \ge 0$, we define a linear automorphism

$$(3.1.2) \Phi_j := \left(\bigwedge^j \omega^{-1}\right) \otimes \tau_\omega : \left(\bigwedge^j \mathfrak{n}_-\right) \otimes_{\mathcal{C}} L(\Lambda) \to \left(\bigwedge^j \mathfrak{n}_-\right) \otimes_{\mathcal{C}} L(\Lambda).$$

REMARK 3.1.1. Let $j \ge 0$. It is easily seen that

$$\Phi_i(hv) = \omega^{-1}(h)\Phi_i(v)$$

for $h \in \mathfrak{h}$ and $v \in (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda)$. It also follows that for $h \in \mathfrak{h}$ and $v \in (\bigwedge^* \mathfrak{n}_-) \otimes_C L(\Lambda)$,

$$\Phi(hv) = \omega^{-1}(h)\Phi(v).$$

The following lemma immediately follows from the definitions of d_j and Φ_j , $j \ge 0$.

LEMMA 3.1.2. We have the following commutative diagram for each $j \ge 0$:

$$(\bigwedge^{j} \mathfrak{n}_{-}) \otimes_{C} L(\Lambda) \xrightarrow{\Phi_{j}} (\bigwedge^{j} \mathfrak{n}_{-}) \otimes_{C} L(\Lambda)$$

$$\downarrow^{d_{j}} \qquad \qquad \downarrow^{d_{j}}$$

$$(\bigwedge^{j-1} \mathfrak{n}_{-}) \otimes_{C} L(\Lambda) \xrightarrow{\Phi_{j-1}} (\bigwedge^{j-1} \mathfrak{n}_{-}) \otimes_{C} L(\Lambda),$$

where $d_j: (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda) \to (\bigwedge^{j-1} \mathfrak{n}_-) \otimes_C L(\Lambda)$ is the boundary operator in Section 1.2.

By Lemma 3.1.2, the linear automorphism $\Phi_j: (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda) \to (\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda)$ induces in the usual way a linear automorphism

$$(3.1.3) \bar{\Phi}_j: H_j(\mathfrak{n}_-, L(\Lambda)) \to H_j(\mathfrak{n}_-, L(\Lambda))$$

for $j \ge 0$. Notice that for $j \ge 0$ and $h \in \mathfrak{h}$, $v \in H_j(\mathfrak{n}_-, L(\Lambda))$,

(3.1.4)
$$\bar{\Phi}_{i}(hv) = \omega^{-1}(h)\bar{\Phi}_{i}(v)$$

by Remark 3.1.1.

Now we state an easy but useful lemma, which will be often used later. Let V and V' be \mathfrak{h} -modules which decompose into a direct sum of finite-dimensional weight spaces:

$$V = \bigoplus_{\chi \in \mathfrak{h}^*} V_{\chi} \quad \text{ and } \quad V' = \bigoplus_{\chi \in \mathfrak{h}^*} V_{\chi}'.$$

We further assume that there exist linear automorphisms $\tau_{\omega}: V \to V$ and $\tau'_{\omega}: V' \to V'$ such that for $h \in \mathfrak{h}$,

$$\tau_{\omega}(hv) = \omega^{-1}(h)\tau_{\omega}(v) \ \text{ for } v \in V, \ \text{ and } \quad \tau_{\omega}'(hv) = \omega^{-1}(h)\tau_{\omega}'(v) \ \text{ for } v \in V'.$$

Then the linear automorphism

$$\tau_{\omega} \otimes \tau'_{\omega} : V \otimes_{\mathbf{C}} V' \to V \otimes_{\mathbf{C}} V'$$

obviously satisfies

$$(\tau_{\omega} \otimes \tau'_{\omega})(hv) = \omega^{-1}(h)(\tau_{\omega} \otimes \tau'_{\omega})(v)$$

for $h \in \mathfrak{h}$ and $v \in V \otimes_C V'$. We can easily show

LEMMA 3.1.3. In the notation above, we have

$$\operatorname{Tr}_{V \otimes V'} (\tau_{\omega} \otimes \tau'_{\omega}) \exp = (\operatorname{Tr}_{V} \tau_{\omega} \exp) \cdot (\operatorname{Tr}_{V'} \tau'_{\omega} \exp).$$

3.2. Main result. We define the twining character $\operatorname{ch}^{\omega}(H_j(\mathfrak{n}_-, L(\Lambda)))$ of the Lie algebra homology module $H_j(\mathfrak{n}_-, L(\Lambda))$ for each $j \geq 0$ by

(3.2.1)
$$\operatorname{ch}^{\omega}(H_{i}(\mathfrak{n}_{-}, L(\Lambda))) := \operatorname{Tr}_{H_{i}(\mathfrak{n}_{-}, L(\Lambda))} \bar{\Phi}_{i} \exp,$$

where $\bar{\Phi}_j: H_j(\mathfrak{n}_-, L(\Lambda)) \to H_j(\mathfrak{n}_-, L(\Lambda))$ is as in Section 3.1.

PROPOSITION 3.2.1. Let $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ be a symmetric, dominant integral weight, and let $j \geq 0$. Then

$$\operatorname{ch}^{\omega}(H_{j}(\mathfrak{n}_{-},L(\Lambda))) = \sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^{*})^{0} \\ \ell(w) + \operatorname{ht}(\beta) = j}} c_{(w,\beta)} \, e((w,\beta) \circ \Lambda) \,,$$

where the scalar $c_{(w,\beta)} \in C$ is defined by

$$c_{(w,\beta)} := \operatorname{Tr}(\bar{\Phi}_j|_{(H_j(\mathfrak{n}_-,L(\Lambda)))_{(w,\beta)\circ\Lambda}}).$$

PROOF. Let $w \in W$ and $\beta \in \mathcal{S}(\Lambda)$ with $\ell(w) + \operatorname{ht}(\beta) = j$. Set $\mu := (w, \beta) \circ \Lambda$. Let us show that $\omega^*(\mu) = \mu$ if and only if $w \in \tilde{W}$ and $\beta \in (\mathfrak{h}^*)^0$. Because $\omega^* r_i(\omega^*)^{-1} = r_{\omega^{-1}(i)}$ for $i \in I^{\mathrm{re}}$, we see that $\omega^* w(\omega^*)^{-1} \in W$. If we set $w' := \omega^* w(\omega^*)^{-1} \in W$, then we have

$$\omega^*(\mu) = \omega^*(w(\Lambda + \rho - \beta) - \rho)$$

$$= \omega^*(w(\Lambda + \rho - \beta)) - \omega^*(\rho)$$

$$= \omega^*w(\Lambda + \rho - \beta) - \rho$$

$$= w'\omega^*(\Lambda + \rho - \beta) - \rho$$

$$= w'(\omega^*(\Lambda + \rho - \beta)) - \rho$$

$$= w'(\Lambda + \rho - \omega^*(\beta)) - \rho.$$

since $\omega^*(\Lambda) = \Lambda$ and $\omega^*(\rho) = \rho$. Now assume that $\omega^*(\mu) = \mu$, i.e., that $w'(\Lambda + \rho - \omega^*(\beta)) = w(\Lambda + \rho - \beta)$. Then, since $(\Lambda + \rho - \beta)(h_i) \ge 1$ and $(\Lambda + \rho - \omega^*(\beta))(h_i) \ge 1$ for all $i \in I^{\text{re}}$, we deduce that $\Lambda + \rho - \omega^*(\beta) = \Lambda + \rho - \beta$ (i.e., $\omega^*(\beta) = \beta$) and that w' = w (i.e., $\omega^*w(\omega^*)^{-1} = w$) by the proof of [K, Proposition 3.12 a) and b)]. Conversely, $\omega^*w(\omega^*)^{-1} = w$ and $\omega^*(\beta) = \beta$ immediately imply that $\omega^*(\mu) = \mu$. Therefore, the proposition follows directly from Theorem 1.2.1 and the definition (3.2.1) of $\text{ch}^{\omega}(H_i(\mathfrak{n}_-, L(\Lambda)))$.

We see from the comments just below Theorem 1.2.1 that for $w \in \tilde{W}$ and $\beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^*)^0$ with $\ell(w) + \operatorname{ht}(\beta) = j$,

$$c_{(w,\beta)} = \operatorname{Tr}(\bar{\Phi}_{j}|_{(H_{j}(\mathfrak{n}_{-},L(\Lambda)))_{(w,\beta)\circ\Lambda}})$$

$$= \operatorname{Tr}(\bar{\Phi}_{j}|_{C\bar{v}_{(w,\beta)}})$$

$$= \operatorname{Tr}(\Phi_{j}|_{Cv_{(w,\beta)}})$$

$$= \operatorname{Tr}(\Phi_{j}|_{((\bigwedge^{j}\mathfrak{n}_{-})\otimes_{C}L(\Lambda))_{(w,\beta)\circ\Lambda}}).$$

To determine the scalar $c_{(w,\beta)} \in C$, we define the twining character $\operatorname{ch}^{\omega}((\bigwedge^* \mathfrak{n}_-) \otimes_C L(\Lambda))$ of $(\bigwedge^* \mathfrak{n}_-) \otimes_C L(\Lambda)$ by

$$(3.2.3) \qquad \qquad \mathrm{ch}^{\omega}\bigg(\bigg(\bigwedge^*\mathfrak{n}_-\bigg)\otimes_{C}L(\varLambda)\bigg) := \mathrm{Tr}_{(\bigwedge^*\mathfrak{n}_-)\otimes_{C}L(\varLambda)}\,\varPhi\,\,\exp\,,$$

where $\Phi = (\bigwedge^* \omega^{-1}) \otimes \tau_{\omega}$ is as in Section 3.1. The following is our key proposition.

PROPOSITION 3.2.2. Let $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ be a symmetric, dominant integral weight. For every $w \in \tilde{W}$, we have

$$w\bigg(e(\rho)\cdot \mathrm{ch}^{\omega}\bigg(\bigg(\bigwedge^*\mathfrak{n}_-\bigg)\otimes_C L(\varLambda)\bigg)\bigg)=(-1)^{\ell(w)-\hat{\ell}(w)}\bigg(e(\rho)\cdot \mathrm{ch}^{\omega}\bigg(\bigg(\bigwedge^*\mathfrak{n}_-\bigg)\otimes_C L(\varLambda)\bigg)\bigg)\,.$$

PROOF. It follows from Lemma 3.1.3 that

$$(3.2.4) ch^{\omega}\bigg(\bigg(\bigwedge^*\mathfrak{n}_-\bigg)\otimes_{\mathcal{C}}L(\Lambda)\bigg) = ch^{\omega}\bigg(\bigwedge^*\mathfrak{n}_-\bigg)\cdot ch^{\omega}(L(\Lambda))\,,$$

where

(3.2.5)
$$\operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}_{-}\right) := \operatorname{Tr}_{\bigwedge^{*}\mathfrak{n}_{-}}\omega^{-1}\exp.$$

Furthermore, we know from (2.2.7) that for $w \in \tilde{W}$,

$$w(\operatorname{ch}^{\omega}(L(\Lambda))) = \operatorname{ch}^{\omega}(L(\Lambda))$$
.

Hence we may assume that $\Lambda = 0$.

It is well-known that $(-1)^{\ell(ww')} = (-1)^{\ell(w)}(-1)^{\ell(w')}$ for $w, w' \in W$, and $(-1)^{\hat{\ell}(ww')} = (-1)^{\hat{\ell}(w)}(-1)^{\hat{\ell}(w')}$ for $w, w' \in \tilde{W}$. Thus, we may assume that $\hat{\ell}(w) = 1$, i.e., $w = w_i$ for some $i \in \check{I}$.

We set

(3.2.6)
$$\Delta_i := \Delta_+ \cap \left(\sum_{k=0}^{N_i-1} \mathbf{Z} \alpha_{\omega^k(i)}\right), \quad \Delta(i) := \Delta_+ \setminus \Delta_i,$$

and correspondingly

(3.2.7)
$$\mathfrak{n}_i := \bigoplus_{\alpha \in \Delta_i} \mathfrak{g}_{-\alpha} \,, \quad \mathfrak{n}(i) := \bigoplus_{\alpha \in \Delta(i)} \mathfrak{g}_{-\alpha} \,.$$

When $\sum_{k=0}^{N_i-1} a_{i,\omega^k(i)} = 2$, we have

$$\Delta_i = \{\alpha_{\omega^k(i)}\}_{k=0}^{N_i - 1}$$
.

We call this case "Case (a)". When $\sum_{k=0}^{N_i-1} a_{i,\omega^k(i)} = 1$, we have

$$\Delta_i = \{\alpha_{\omega^k(i)}\}_{k=0}^{N_i-1} \sqcup \{\alpha_{\omega^k(i)} + \alpha_{\omega^{(N_i/2)+k}(i)}\}_{k=0}^{N_i/2-1}.$$

We call this case "Case (b)". Since $\mathfrak{n}_- = \mathfrak{n}_i \oplus \mathfrak{n}(i)$, we have an isomorphism of \mathfrak{h} -modules:

$$\bigwedge^* \mathfrak{n}_- \cong \left(\bigwedge^* \mathfrak{n}_i\right) \otimes_C \left(\bigwedge^* \mathfrak{n}(i)\right).$$

Here we note that $\omega^*(\Delta_i) = \Delta_i$ and $\omega^*(\Delta(i)) = \Delta(i)$. Then, since $\omega^{-1}(\mathfrak{g}_{\alpha}) = \mathfrak{g}_{\omega^*(\alpha)}$ for $\alpha \in \Delta$, we get that

$$\left(\bigwedge^* \omega^{-1}\right) \left(\bigwedge^* \mathfrak{n}_i\right) = \bigwedge^* \mathfrak{n}_i ,$$

$$\left(\bigwedge^*\omega^{-1}\right)\left(\bigwedge^*\mathfrak{n}(i)\right)=\bigwedge^*\mathfrak{n}(i)\,.$$

Therefore, we can apply Lemma 3.1.3 to the \mathfrak{h} -module $\bigwedge^* \mathfrak{n}_- \cong (\bigwedge^* \mathfrak{n}_i) \otimes_C (\bigwedge^* \mathfrak{n}(i))$ to obtain that

(3.2.8)
$$\operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}_{-}\right) = \operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}_{i}\right) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}(i)\right),$$

where $\operatorname{ch}^{\omega}(\bigwedge^* \mathfrak{n}_i)$ and $\operatorname{ch}^{\omega}(\bigwedge^* \mathfrak{n}(i))$ are defined by

(3.2.9)
$$\operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}_{i}\right) := \operatorname{Tr}_{\bigwedge^{*}\mathfrak{n}_{i}}\bigwedge^{*}\omega^{-1}\exp,$$

(3.2.10)
$$\operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}(i)\right) := \operatorname{Tr}_{\bigwedge^{*}\mathfrak{n}(i)}\bigwedge^{*}\omega^{-1}\exp.$$

STEP 1. First, we show that

$$(3.2.11) w_i \bigg(e(\rho) \cdot \operatorname{ch}^{\omega} \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \bigg) = (-1)^{\ell(w_i) - \hat{\ell}(w_i)} \bigg(e(\rho) \cdot \operatorname{ch}^{\omega} \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \bigg) \, .$$

To show this, as an ordered basis of \mathfrak{n}_i we take $\{f_{\omega^k(i)}\}_{k=0}^{N_i-1}$ in Case (a), and $\{f_{\omega^k(i)}\}_{k=0}^{N_i-1} \sqcup \{\dot{f}_{\omega^k(i)}\}_{k=0}^{N_i/2-1}$ with $\dot{f}_{\omega^k(i)} := [f_{\omega^k(i)}, f_{\omega^{(N_i/2)+k}(i)}]$ for $0 \le k \le (N_i/2) - 1$ in Case (b). Case (a): We can easily deduce that the only basis vectors of $\bigwedge^* \mathfrak{n}_i$ which make a contribution to the trace of $\bigwedge^* \omega^{-1}$ are the following two vectors:

$$1 \in \bigwedge\nolimits^0 \mathfrak{n}_i = \mathbf{C} \quad \text{and} \quad f_i \wedge f_{\omega(i)} \wedge \dots \wedge f_{\omega^{N_i-1}(i)} \,.$$

Hence we immediately obtain that

(3.2.12)
$$\operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}_{i}\right) = 1 + (-1)^{N_{i}-1}e(-\beta_{i}),$$

where $\beta_i = \sum_{k=0}^{N_i-1} \alpha_{\omega^k(i)}$. Now we use Equation (2.2.5) to see that $w_i(\rho) = \rho - \beta_i$. So we have

$$\begin{split} w_i \bigg(e(\rho) \cdot \operatorname{ch}^\omega \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \bigg) &= w_i (e(\rho) \cdot (1 + (-1)^{N_i - 1} e(-\beta_i))) \\ &= e(\rho - \beta_i) \cdot (1 + (-1)^{N_i - 1} e(\beta_i)) \\ &= (-1)^{N_i - 1} e(\rho) \cdot (1 + (-1)^{N_i - 1} e(-\beta_i)) \\ &= (-1)^{N_i - 1} e(\rho) \cdot \operatorname{ch}^\omega \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \\ &= (-1)^{\ell(w_i) - \hat{\ell}(w_i)} \bigg(e(\rho) \cdot \operatorname{ch}^\omega \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \bigg) \,, \end{split}$$

since it is seen from the form (2.2.3) of w_i that $w_i(\beta_i) = -\beta_i$ and $\ell(w_i) = N_i$.

Case (b): We can easily deduce that the only basis vectors of $\bigwedge^* \mathfrak{n}_i$ which make a contribution to the trace of $\bigwedge^* \omega^{-1}$ are the following four vectors:

$$1 \in \bigwedge^{0} \mathfrak{n}_{i} = C, \ f_{i} \wedge f_{\omega(i)} \wedge \cdots \wedge f_{\omega^{N_{i}-1}(i)}, \ \dot{f}_{i} \wedge \dot{f}_{\omega(i)} \wedge \cdots \wedge \dot{f}_{\omega^{(N_{i}/2)-1}(i)},$$

and

$$f_i \wedge \cdots \wedge f_{\omega^{N_i-1}(i)} \wedge \dot{f_i} \wedge \cdots \wedge \dot{f_{\omega^{(N_i/2)-1}(i)}}$$
.

Hence we immediately obtain that

(3.2.13)
$$\operatorname{ch}^{\omega}\left(\bigwedge^{*}\mathfrak{n}_{i}\right) = (1 + (-1)^{N_{i}-1}e(-\beta_{i}))(1 + (-1)(-1)^{(N_{i}/2)-1}e(-\beta_{i}))$$
$$= (1 + (-1)^{N_{i}-1}e(-\beta_{i}))(1 + (-1)^{N_{i}/2}e(-\beta_{i})),$$

where $\beta_i = \sum_{k=0}^{N_i-1} \alpha_{\omega^k(i)}$. Now we use Equation (2.2.5) to see that $w_i(\rho) = \rho - 2\beta_i$. So we have

$$\begin{split} w_i \bigg(e(\rho) \cdot \operatorname{ch}^\omega \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \bigg) \\ &= w_i (e(\rho) \cdot (1 + (-1)^{N_i - 1} e(-\beta_i)) (1 + (-1)^{N_i / 2} e(-\beta_i))) \\ &= e(\rho - 2\beta_i) \cdot (1 + (-1)^{N_i - 1} e(\beta_i)) (1 + (-1)^{N_i / 2} e(\beta_i)) \\ &= e(\rho) \cdot (-1)^{(3/2)N_i - 1} (1 + (-1)^{N_i - 1} e(-\beta_i)) (1 + (-1)^{N_i / 2} e(-\beta_i)) \\ &= (-1)^{(3/2)N_i - 1} e(\rho) \cdot \operatorname{ch}^\omega \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \\ &= (-1)^{\ell(w_i) - \hat{\ell}(w_i)} \bigg(e(\rho) \cdot \operatorname{ch}^\omega \bigg(\bigwedge^* \mathfrak{n}_i \bigg) \bigg), \end{split}$$

since it is seen from the form (2.2.3) of w_i that $w_i(\beta_i) = -\beta_i$ and $\ell(w_i) = 3 \cdot (N_i/2) = (3/2)N_i$.

STEP 2. Second, we show that

(3.2.14)
$$w_i \left(\operatorname{ch}^{\omega} \left(\bigwedge^* \mathfrak{n}(i) \right) \right) = \operatorname{ch}^{\omega} \left(\bigwedge^* \mathfrak{n}(i) \right),$$

which completes the proof of the proposition. Notice that $a_{\omega^k(i),\omega^k(i)}=2$ for all $0\leq k\leq N_i-1$, since $i\in \check{I}$ implies $\sum_{k=0}^{N_i-1}a_{i,\omega^k(i)}>0$ by definition. Hence, the operators ad $e_{\omega^k(i)}$ and ad $f_{\omega^k(i)}$ are locally nilpotent on $\mathfrak g$ for all $0\leq k\leq N_i-1$. We define linear automorphisms of $\mathfrak g$ by

(3.2.15)
$$x_k^{\text{ad}} := (\exp(\operatorname{ad} f_{\omega^k(i)}))(\exp(-\operatorname{ad} e_{\omega^k(i)}))(\exp(\operatorname{ad} f_{\omega^k(i)}))$$

for $0 \le k \le N_i - 1$, and then by

(3.2.16)
$$X_i^{\text{ad}} := \begin{cases} \prod_{k=0}^{N_i - 1} x_k^{\text{ad}} & \text{in Case (a),} \\ \prod_{k=0}^{N_i / 2 - 1} (x_k^{\text{ad}} x_{(N_i / 2) + k}^{\text{ad}} x_k^{\text{ad}}) & \text{in Case (b).} \end{cases}$$

By [K, Lemma 3.8] we see that $X_i^{\mathrm{ad}}(\mathfrak{g}_\alpha) = \mathfrak{g}_{w_i(\alpha)}$ for $\alpha \in \Delta$. Moreover, we immediately see that

(3.2.17)
$$\omega^{-1}(X_i^{\text{ad}}(v)) = (\omega^{-1}X_i^{\text{ad}})(\omega^{-1}(v))$$

for $v \in \mathfrak{g}$, where the linear automorphism $\omega^{-1}X_i^{\mathrm{ad}}$ of \mathfrak{g} is defined by

(3.2.18)
$$\omega^{-1} X_i^{\text{ad}} := \begin{cases} \prod_{k=0}^{N_i - 1} x_{k-1}^{\text{ad}} & \text{in Case (a),} \\ \prod_{k=0}^{N_i / 2 - 1} x_{k-1}^{\text{ad}} x_{(N_i / 2) + k - 1}^{\text{ad}} x_{k-1}^{\text{ad}} & \text{in Case (b),} \end{cases}$$

with $x_{-1}^{\mathrm{ad}} := x_{N_i-1}^{\mathrm{ad}}$. We see easily that $\omega^{-1} X_i^{\mathrm{ad}} = X_i^{\mathrm{ad}}$, since, in Case (b),

$$x_{-1}^{\text{ad}} x_{(N_i/2)-1}^{\text{ad}} x_{-1}^{\text{ad}} = x_{N_i-1}^{\text{ad}} x_{(N_i/2)-1}^{\text{ad}} x_{N_i-1}^{\text{ad}}$$
$$= x_{(N_i/2)-1}^{\text{ad}} x_{N_i-1}^{\text{ad}} x_{(N_i/2)-1}^{\text{ad}}$$

(see, for example, [KP]). Thus we get the commutative diagram for $\alpha \in \Delta_+$:

$$\mathfrak{g}_{-\alpha} \xrightarrow{X_i^{\mathrm{ad}}} \mathfrak{g}_{-w_i(\alpha)}$$

$$\omega^{-1} \downarrow \qquad \qquad \downarrow \omega^{-1}$$

$$\mathfrak{g}_{-\omega^*(\alpha)} \xrightarrow{X_i^{\mathrm{ad}}} \mathfrak{g}_{-\omega^*w_i(\alpha)},$$

where $\omega^* w_i(\alpha) = w_i \omega^*(\alpha)$.

Because we see from Equation (2.2.5) that $w_i(\Delta(i)) = \Delta(i)$, we deduce that

$$(3.2.20) X_i^{\operatorname{ad}}(\mathfrak{n}(i)) = \mathfrak{n}(i).$$

By extending the linear automorphism $X_i^{\text{ad}}: \mathfrak{g} \to \mathfrak{g}$ to the linear automorphism

$$\bigwedge^* X_i^{\mathrm{ad}} : \bigwedge^* \mathfrak{g} \to \bigwedge^* \mathfrak{g}$$

in the usual way, we finally obtain the following commutative diagram from (3.2.19) and (3.2.20):

Let $\chi \in (\mathfrak{h}^*)^0$ be a symmetric weight. Since $\omega^* w_i(\chi) = w_i \omega^*(\chi) = w_i(\chi)$, the following diagram commutes:

$$(\bigwedge^* \mathfrak{n}(i))_{\chi} \xrightarrow{\bigwedge^* X_i^{\text{ad}}} (\bigwedge^* \mathfrak{n}(i))_{w_i(\chi)}$$

$$(3.2.22) \qquad \bigwedge^* \omega^{-1} \downarrow \qquad \qquad \downarrow \bigwedge^* \omega^{-1}$$

$$(\bigwedge^* \mathfrak{n}(i))_{\chi} \xrightarrow{\bigwedge^* X_i^{\text{ad}}} (\bigwedge^* \mathfrak{n}(i))_{w_i(\chi)}.$$

It follows from this commutative diagram that for $\chi \in (\mathfrak{h}^*)^0$,

$$(3.2.23) \operatorname{Tr}\left(\left(\bigwedge^* \omega^{-1}\right) \middle|_{\left(\bigwedge^* \mathfrak{n}(i)\right)_{\chi}}\right) = \operatorname{Tr}\left(\left(\bigwedge^* \omega^{-1}\right) \middle|_{\left(\bigwedge^* \mathfrak{n}(i)\right)_{w_i(\chi)}}\right).$$

Therefore, we conclude that

$$w_i\bigg(\mathrm{ch}^\omega\bigg(\bigwedge^*\mathfrak{n}(i)\bigg)\bigg)=\mathrm{ch}^\omega\bigg(\bigwedge^*\mathfrak{n}(i)\bigg)\,.$$

This proves the proposition.

COROLLARY 3.2.3. Let $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ be a symmetric, dominant integral weight, and let $w \in \tilde{W}$ and $\beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^*)^0$. Then

$$c_{(w,\beta)} = (-1)^{\ell(w) - \hat{\ell}(w)} \cdot (-1)^{\operatorname{ht}(\beta) - \widehat{\operatorname{ht}}(\beta)}.$$

PROOF. First, we show that

(3.2.24)
$$\operatorname{Tr}(\Phi|_{((\bigwedge^* \mathfrak{n}_-) \otimes_C L(\Lambda))_{\Lambda-\beta}}) = (-1)^{\operatorname{ht}(\beta) - \widehat{\operatorname{ht}}(\beta)}.$$

The element $\beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^*)^0$ can be written in the form $\beta = \sum_{k=1}^l \beta_{i_k}$, where $\beta_{i_k} = \sum_{r=0}^{N_{i_k}-1} \alpha_{\omega^r(i_k)}$ for $1 \leq k \leq l$. Then obviously $\widehat{\operatorname{ht}}(\beta) = l$ and $\operatorname{ht}(\beta) = \sum_{k=1}^l N_{i_k}$. Recall from (1.2.5) that we have

(3.2.25)
$$\left(\left(\bigwedge^* \mathfrak{n}_-\right) \otimes_C L(\Lambda)\right)_{\Lambda - \beta} = C \, v_{(1,\beta)} \,,$$

where $v_{(1,\beta)} = \hat{f}_{i_1} \wedge \hat{f}_{i_2} \wedge \cdots \wedge \hat{f}_{i_l} \otimes v_A$ with $\hat{f}_{i_k} := f_{i_k} \wedge f_{\omega(i_k)} \wedge \cdots \wedge f_{\omega^{N_{i_k}-1}(i_k)}$ for $1 \le k \le l$. Then it follows that

(3.2.26)
$$\Phi(v_{(1,\beta)}) = \left(\bigwedge^* \omega^{-1}\right) (\hat{f}_{i_1} \wedge \dots \wedge \hat{f}_{i_l}) \otimes v_{\Lambda} \\
= \left(\bigwedge^* \omega^{-1}\right) (\hat{f}_{i_1}) \wedge \dots \wedge \left(\bigwedge^* \omega^{-1}\right) (\hat{f}_{i_l}) \otimes v_{\Lambda}.$$

Because for each $1 \le k \le l$,

$$\left(\bigwedge^* \omega^{-1}\right)(\hat{f}_{i_k}) = (-1)^{N_{i_k}-1} \hat{f}_{i_k},$$

we deduce that

$$\Phi(v_{(1,\beta)}) = (-1)^{(\sum_{k=1}^{l} N_{i_k}) - l} v_{(1,\beta)} = (-1)^{\operatorname{ht}(\beta) - \widehat{\operatorname{ht}}(\beta)} v_{(1,\beta)}.$$

Thus we have shown that

$$\operatorname{Tr}(\Phi|_{((\bigwedge^*\mathfrak{n}_-)\otimes_{\mathcal{C}}L(\varLambda))_{\varLambda-\beta}}) = (-1)^{\operatorname{ht}(\beta)-\widehat{\operatorname{ht}}(\beta)}.$$

Now we set $j := \ell(w) + \text{ht}(\beta)$. Then the scalar

(3.2.27)
$$c_{(w,\beta)} = \operatorname{Tr}(\Phi_j|_{((\bigwedge^j \mathfrak{n}_-) \otimes_C L(\Lambda))_{(w,\beta) \circ \Lambda})}$$
$$= \operatorname{Tr}(\Phi|_{((\bigwedge^* \mathfrak{n}_-) \otimes_C L(\Lambda))_{(w,\beta) \circ \Lambda})})$$

is the coefficient of $e(w(\Lambda+\rho-\beta))$ in $e(\rho)\cdot \operatorname{ch}^\omega((\bigwedge^*\mathfrak n_-)\otimes_C L(\Lambda))$, which is, by Proposition 3.2.2, equal to the coefficient of $e(\Lambda-\beta)$ in $\operatorname{ch}^\omega((\bigwedge^*\mathfrak n_-)\otimes_C L(\Lambda))$ multiplied by $(-1)^{\ell(w)-\hat\ell(w)}$. But the coefficient of $e(\Lambda-\beta)$ in $\operatorname{ch}^\omega((\bigwedge^*\mathfrak n_-)\otimes_C L(\Lambda))$ is by definition $\operatorname{Tr}(\Phi|_{((\bigwedge^*\mathfrak n_-)\otimes_C L(\Lambda))_{\Lambda-\beta}})$. Thus, we obtain from (3.2.24) just proved that

$$c_{(w,\beta)} = (-1)^{\ell(w) - \hat{\ell}(w)} \cdot (-1)^{\operatorname{ht}(\beta) - \widehat{\operatorname{ht}}(\beta)},$$

as desired. This completes the proof.

Combining Proposition 3.2.1 with Corollary 3.2.3, we obtain our main result.

THEOREM 3.2.4. Let $\Lambda \in P_+ \cap (\mathfrak{h}^*)^0$ be a symmetric, dominant integral weight, and let $j \geq 0$. Then

$$\operatorname{ch}^{\omega}(H_{j}(\mathfrak{n}_{-},L(\Lambda))) = \sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^{*})^{0} \\ \ell(w) + \operatorname{ht}(\beta) = j}} (-1)^{-(\ell(w) + \operatorname{ht}(\beta))} \cdot (-1)^{\hat{\ell}(w) + \widehat{\operatorname{ht}}(\beta)} e((w,\beta) \circ \Lambda)$$

$$= \sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^{*})^{0} \\ \ell(w) + \operatorname{ht}(\beta) = j}} (-1)^{\hat{\ell}(w) + \widehat{\operatorname{ht}}(\beta) - j} e((w,\beta) \circ \Lambda).$$

3.3. Application. As an application of Theorem 3.2.4, we give a new proof of the twining character formula (Theorem 2.2.1) for $L(\Lambda)$ of symmetric, dominant integral highest weight Λ .

By virtue of Lemma 3.1.2, we can apply an Euler-Poincaré principle to deduce that

$$(3.3.1) \qquad \sum_{j\geq 0} (-1)^j \operatorname{ch}^{\omega}(H_j(\mathfrak{n}_-, L(\Lambda))) = \sum_{j\geq 0} (-1)^j \operatorname{ch}^{\omega}\left(\left(\bigwedge^j \mathfrak{n}_-\right) \otimes_C L(\Lambda)\right).$$

Also, by Lemma 3.1.2, we have for each $j \ge 0$,

(3.3.2)
$$\operatorname{ch}^{\omega}\left(\left(\bigwedge^{j}\mathfrak{n}_{-}\right)\otimes_{C}L(\Lambda)\right) = \operatorname{ch}^{\omega}\left(\bigwedge^{j}\mathfrak{n}_{-}\right)\cdot\operatorname{ch}^{\omega}(L(\Lambda)).$$

Hence we get

$$\begin{split} \sum_{j \geq 0} \left(-1 \right)^{j} \operatorname{ch}^{\omega} \left(\left(\bigwedge^{j} \mathfrak{n}_{-} \right) \otimes_{C} L(\Lambda) \right) \\ &= \sum_{j \geq 0} \left(-1 \right)^{j} \operatorname{ch}^{\omega} \left(\bigwedge^{j} \mathfrak{n}_{-} \right) \cdot \operatorname{ch}^{\omega} (L(\Lambda)) \\ &= \operatorname{ch}^{\omega} (L(\Lambda)) \cdot \left(\sum_{j \geq 0} \left(-1 \right)^{j} \operatorname{ch}^{\omega} \left(\bigwedge^{j} \mathfrak{n}_{-} \right) \right) \\ &= \operatorname{ch}^{\omega} (L(\Lambda)) \cdot \left(\sum_{j \geq 0} \left(-1 \right)^{j} \operatorname{ch}^{\omega} \left(\left(\bigwedge^{j} \mathfrak{n}_{-} \right) \otimes_{C} L(0) \right) \right) \\ &= \operatorname{ch}^{\omega} (L(\Lambda)) \cdot \left(\sum_{j \geq 0} \left(-1 \right)^{j} \operatorname{ch}^{\omega} (H_{j}(\mathfrak{n}_{-}, L(0))) \right), \end{split}$$

since L(0) = C and $\operatorname{ch}^{\omega}(L(0)) = e(0) = 1$. Here, in the last equality above, we have used an Euler-Poincaré principle again.

On the other hand, we obtain from Theorem 3.2.4 that

$$(3.3.3) \qquad \sum_{j\geq 0} (-1)^j \operatorname{ch}^{\omega}(H_j(\mathfrak{n}_-, L(\Lambda))) = \sum_{\substack{w\in \tilde{W}\\\beta\in S(\Lambda)\cap (\mathfrak{h}^*)^0}} (-1)^{\hat{\ell}(w)+\widehat{\operatorname{ht}}(\beta)} e((w,\beta)\circ \Lambda).$$

Putting all the above together, we conclude that

$$\sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap (\mathfrak{h}^*)^0}} (-1)^{\hat{\ell}(w) + \widehat{\operatorname{ht}}(\beta)} \, e((w,\beta) \circ \Lambda)$$

$$= \mathrm{ch}^{\omega}(L(\Lambda)) \cdot \left(\sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(0) \cap (\mathfrak{h}^*)^0}} (-1)^{\hat{\ell}(w) + \widehat{\mathrm{ht}}(\beta)} \, e((w,\beta) \circ 0) \right).$$

Thus, we have given a new proof of Theorem 2.2.1.

REFERENCES

- [B] R. E. BORCHERDS, Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501–512.
- [FRS] J. FUCHS, U. RAY AND C. SCHWEIGERT, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997), 518–540.
- [FSS] J. FUCHS, B. SCHELLEKENS AND C. SCHWEIGERT, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), 39–97.
- [GL] H. GARLAND AND J. LEPOWSKY, Lie algebra homology and the Macdonald-Kac formulas, Invent. Math. 34 (1976), 37–76.
- [K] V. G. KAC, Infinite Dimensional Lie Algebras (3rd edition), Cambridge Univ. Press, Cambridge, 1990.
- [KP] V. G. KAC AND D. H. PETERSON, Defining relations of certain infinite-dimensional groups, Astérisque Numéro Hors Série (1985), 165–208.
- [KK] S.-J. KANG AND J.-H. KWON, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, Proc. London Math. Soc. 81 (2000), 675–724.
- [N1] S. NAITO, Kostant's formula for a certain class of generalized Kac-Moody algebras, Tôhoku Math. J. 44 (1992), 567–580.
- [N2] S. NAITO, The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. I—The existence of the resolution—, Publ. Res. Inst. Math. Sci. 29 (1993), 709–730.
- [N3] S. NAITO, The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. II—An explicit construction of the resolution, J. Algebra 167 (1994), 778–802.
- [N4] S. NAITO, Twining character formula of Kac-Wakimoto type for affine Lie algebras, Represent. Theory 6 (2002), 70–100.

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305–8571

JAPAN

 $\hbox{\it E-mail address:} \ naito@math.tsukuba.ac.jp$