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EQUIVALENT CONDITIONS OF A HARDY-TYPE INTEGRAL
INEQUALITY RELATED TO THE EXTENDED RIEMANN
ZETA FUNCTION

MICHAEL TH. RASSIAS'* and BICHENG YANG?

Communicated by M. Krnié

ABSTRACT. By the use of techniques of real analysis and weight functions,
we obtain two lemmas and build a few equivalent conditions of a Hardy-type
integral inequality with a non-homogeneous kernel, related to a parameter
where the constant factor is expressed in terms of the extended Riemann zeta
function. Meanwhile, a few equivalent conditions for two kinds of Hardy-
type integral inequalities with the homogeneous kernel are deduced. We also
consider the operator expressions.

1. INTRODUCTION
If
0< / fA(x)dr < oo and 0 < / g*(y)dy < oo,
0 0

then we have the following Hilbert integral inequality (cf. [14]):

// f(z dwdy<7r(/ Pz dx/ooogQ(y)dy>, (1.1)

where, the constant factor 7 is the best possible.
In 1925, by introducing one pair of conjugate exponents (p, q), Hardy [2] gave an
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extension of (1.1) as follows:
For p > 1,%—# é =1, f(x),g(y) >0,

0 </ fP(z)dr < oo and 0 </ 91 (y)dy < oo,
0 0

we have

[y« ([ o) ([Twa)’

where, the constant factor sm(r7py 18 the best possible. Inequalities (1.1) and (1.2)
are important in Mathematlcal Analysis and its applications (cf. [3, 11, 19, 12,
13]).

In 1934, Hardy et al. presented the following extension of (1.2):
If k1(x,y) is a non-negative homogeneous function of degree —1,

k, = / k1 (u, 1)u%du e Ry = (0,00),
0

then we have the following Hardy—Hilbert-type integral inequality

‘Awlfkﬂﬁyﬂﬂ@mwdwy<kp(Amf%@¢0;(ng%wﬁoéj(L$

where, the constant factor k, is the best possible (cf. [3], Theorem 319). Addi-
tionally, the following Hilbert-type integral inequality with the non-homogeneous
kernel is proved:

If h(u) > 0,

(o) = /0OQ h(u)u®'du € Ry,

/ / () f()g(y)dzdy
<o) ([ o >dw);’( /Ooog%y)dy);, (1.4

where, the constant factor gb(%) is the best possible (cf. [3], Theorem 350).
In 1998, by introducing an independent parameter A > 0, Yang provided an
extension of (1.1) with the kernel (a:—'ry))‘ (cf. [20]). In 2004, Yang [21] introduced

another pair conjugate exponents (r, s), and gave the following extension of (1.2):
IfA>0,r>1,141=1,f(2),9(y) >0,

then

0</ 2P 1fp( )dxr < oo and O</ yq(k%)*lgq(y)dy<oo,
0 0
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[ |

W UO P13 lfp(x)dxr Uooqu“‘?)‘lgq(y)dy ", (L)

where, the constant factor m is the best possible.
For A = 1,7 = ¢,s = p, (L. o) reduces to (1.2); For A = 1,7 = p,s = ¢, (1.5)
reduces to the dual form of (1.2) as follows:

/ / fa:+y dedy 1 1
= sm( sin(n/p) (/ AC >d~”€>p (/Ooqu‘zgq(y)dy)q. (1.6)

)
For p = ¢ = 2, both (1.2) and (1.6) reduce to (1.1).
In [22], 1nequaht1es (1.2) and (1.5) are also extended with the kernel

then

1

1
(z+y)*
Moreover, Krni¢ et al. [6]-[L6] proved some extensions and particular cases of
(1.2), (1.3) and (1.4) with parameters.

In 2009, Yang (cf. [17, 19]) gave an extension of (1.3), (1.5). Namely he showed
that:
If A+ X =X€R=(—00,0), kx(z,y) is a non-negative homogeneous function
of degree —\, satisfying

k:/\(ux,uy) = u_/\k,\(x,y) (U,Qf, y > 0)7
with -
KO = [ s D € R = (0.50),
0

then we have

/OOO /OOO k(. y) f(x)g(y)dudy

< k(W) (/OOO :vp‘“l)lfp(x)dx); (/OOO y"(“"’“gq(y)dy)é . (@7

where, the constant factor k(A1) is the best possible.
For A\ =1, = 1 )\2 = 1 , (1.7) reduces to (1.3) and for ky(x,y) = wMy (A >0),
(1.7) reduces to Furthermore the following extension of (1.4) was proved:

/ / () (2)g(y)ddly
< oto) ([T 1fp(x)dw>;( /Ooqu“-ﬂ-lgq(y)czy)é, (18)

where, the constant factor ¢(o) is the best possible (cf. [18]).
For o = 1107 (1.8) reduces to (1.4).

Some inequalities equivalent to (1.7) and (1.8) are considered in [19] . In 2013,
Yang [18] also studied the equivalency between (1.7) and (1.8) by the addition of
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a particular condition. In 2017, Hong [5] studied an equivalent condition between
(1.7) with a few parameters.

Remark 1.1. (cf. [18]) If h(zy) = 0, for zy > 1, then

o) = / h(u)u”'du = 61() € Ry,

and (1.8) reduces to the following Hardy-type integral inequality with the non-
homogeneous kernel:

1

| ow ( I h(xy>f<x>dx> dy
< o) ([ wp(l‘“)‘lfp(x)daf); ([ yqﬂ—ﬂ—lng)dy); ()

if h(zy) =0, for xy < 1, then

o(0) = / " b du = 6y(0) € R,

and (1.8) reduces to another kind of Hardy-type integral inequality with the
non-homogeneous kernel, namely:

| ow ( Ia h(:vy)f(:v)d:v> dy

Y

< o) ([ :z:ff’“—ﬂ—lff“<:c>d:c)’i ([ yqﬂ—ﬂ—lgq(y)dy); ()

In this paper, by the use of techniques of real analysis and weight functions, we
obtain two lemmas and build a few equivalent conditions of a Hardy-type integral
inequalities with the non-homogeneous kernel

[ Inwy|”
|(zy)* = 1]

related to a parameter where the constant factor is expressed in terms of the
extended Riemann zeta function. Meanwhile, a few equivalent conditions of two
kinds of Hardy-type integral inequalities with the homogeneous kernel are de-
duced. We also consider the operator expressions.

(8,A>0),

2. TWO LEMMAS

For 3, X > 0, set

~|Inul?

h(u) := ] (u>0).
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For o > 0, by the Lebesgue term by term integration theorem (cf. [7]), we obtain

1 1 Jéj 1 _1 8
k(o) : = | ;1u| u’ tdu :/ —( nu) u’ tdu
o |ut =1 o l—w

1 o 00 1
= /(—lnu)ﬁZuk’\“ldu—Z/ (— Inu)?u** 7~ du.
0 k=0 k=00

Setting v = (kA + o)(—Inwu) in the above integral, we derive that
o0 1 o0
— Bo—v
ki(o) = ;(k)\+0)6+1/0 v’e "dv
rE+1)

)\,3+1 C(ﬁ + 17 %) E R+7 (21)

where,
L'(n) = / v e dv (n > 0)
0

is the gamma function and

o0

(soa) =3 (; (Re(s) > 1,a > 0)

c~ (k+a)
is the extended Riemann zeta function ({(s,1) = ((s) is the Riemann zeta func-
tion) (cf. [15]). In particular, for ¢ = A, we have

o) = "t e 1 1),

For0 <o <\ p=X—0>0,setting v =2, by (2.1), we deduce that

© 1] Jé]
ko(o) = / | Inul u” tdu
1

ur — 1

* (Inw)’ '(=Inv)?
/1 mu du: . mv“ dU

G CB+ L) = ki) € Ry (2.2)

In the sequel, we will always assume that

1 1
p>1, —+—-=1, and o1,u; € R.
P q

Lemma 2.1. If 8,0, > 0, there exists a constant My such that for any non-
negative measurable functions f(x), g(y) with z,y € (0,00), the inequality

o v |Inayl?
/O 9(y) [/0 —|(Lly>Ay_|1|f(ff)dx] dy

1 1
< M, { / x”“"“f”(fc)dx] p { / y g (y)dy (2:3)
0 0
holds. Then oy = o, and My > k(o).
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Proof. If 01 > o, then for n > —— (n € N), we set:

f(x): xa+p—n—’0<I§1 g(y)': 0,01<y<1
e 0,z >1 P y Ty >1 7

and obtain

1

1 - L
B z[ / :cp“")lfﬁ(:v)dévr{ / yq(l”l)lgz(y)dyl
0 0
1 L % e 1 %
= </ xn_ldx) (/ y_n_ldy) = n.
0 1

For u = xy, we derive that

Lo z/ooogn(y) (/0 %ﬂz(w)dw) dy
- ([ ) et

and thus by (2.3), we have

o) 1/ I
/ y(o'l—O')—:L—ldy/ ( lnuz W du
1 o l—u

= 1 <M J, = Mn< oco.

Since

it follows that

By (2.4), in view of
/1 (= Inw)? Wy > 0,
0

we get that oo < oo, which is a contradiction.
- (n € N), we set:

~ 0,0<z<1 o1t -1
= ’ ~ _JyTe0<y<1
fn(x> . { xafifl > 1 ) gn(y) . { O,y > 1 )
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For u = xy, we obtain

[T [ ,J“;fy_’i, |
n [ al o

oo 1
_ / [L'(U o1) 7—1d / (_lnu)\)ﬂugl+qinfldu’
1 0o l—u

and thus by Fubini’s theorem (cf. [7]) and (2.3), we have

o'} 1
x(afal)f%fldw (_ In u)ﬁual-‘r(%n—ldu
1 o 1—u?

A L A
- h—/o gn(y) [/O |(:cy)A—1|d]dy<M1‘]1 Mn.

Since

—o)— = >
(0 —01) n_O,

/ 2= "1dr — 0.
1

/1 <_l—nu)ﬂugl+ﬁ‘ldu >0
0

1 —ur

we deduce that oo < 0o, which is a contradiction.
Hence, we conclude that o1 = o.
For oy = o, inequality (2.5) is reduced to the following

T(_ B
M, > / Enw)? orda1g,
0

it follows that

By (2.5), in view of

1 —ur
Since
{(I?Zz_ﬂuﬂql"l n=1
is nonnegative and increasing in (0, 1], by Levi’s theorem (cf. [7]), we get
My = tm [ ER g,

n—oo Jo 1 —u?

1 — 1
= / lim —( Inw) e du = ky (o).
0

n—oo 1 — u)‘

The lemma is proved. [

243

(2.5)

(2.6)
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Lemma 2.2. If 3 > 0,0 < 0 < A, there exists a constant Ms, such that for any
non-negative measurable functions f(z), g(y) with z,y € (0,00), the inequality

e oo nzyl?
/O 9(y) [/1 %f(x)dx] dy

1 1

< M {/ xp“”“f”(fc)dw] ' U y"“‘”“g"(y)dy] q (2.7)
0 0
holds. Then oy = o, and My > k(o).

Proof. If o1 < o, then for n > —0_101 (n € N), we consider two functions f,(z) and
9n(y) as in Lemma 1, and obtain that

hi=| [T @ad | [Cetegia) <o

Setting u = xy, we obtain

o[ * |lnwzyl” -
— /1 /OO (lnxy) o' Pinildl' yo’lJrqinfldy
0 . (xy)* —

1
1 e ) 8
_ / y(01—0)+71l—1dy/ (1;1u) u"_z%n_ldu,
0 o ut—1

and then by (2.7), we obtain

1 o0 B
/ y(ol—a)—l—i—ldy/ (l)I\l'U,) uafpinfldu
0 1 our—1
<

=

Since

1
(01 —0)+— <0,

1
/ Y=y = oo
0

00 B
/ (w)” oty > 0,
1 1

ur —

S

it follows that

By (2.8), in view of

we deduce that oo < oo, Which is a contradiction.
If oy > o, then for n > ——(n € N), we consider two functions f,(z) and
gn(y) as in Lemma 1, and find

l

n=| [ e ]:’{/Omyq“ D gig)dy| = n.
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Setting u = xy, we obtain

o * |Inzyl®
L o :/ (@ / _nayl? vy de
1 [e’s)
(In $y>ﬁ o1—+—1 o+t -1
— — 2 Y T dy| 2% T dr
/0 M (zy) —17 !

1 )
_ / x(o—al)+;1d$/ (lfu)ﬁuol‘q%_ldu,
0 o out—1

and then by Fubini’s theorem (cf. [7]) and (2.7), we obtain

1 o) Jé]
/ $(0—01)+}L—1dx/ (lnu) U;Uli‘%"ildu
0 1

R - /OOO n(y) [/w Md:ﬂ] dy < MyJy = Myn.  (2.9)

|(zy)* = 1]

Since

1
- <o
(o 01)+n_ )

it follows that
1
/ 2=+l — 0.
0

By (2.9), in view of

o] 1 B
/ (;’lu)lual—qln—ldu > 07
1 Ut =

we deduce that oo < oo, which is a contradiction.

Hence, we conclude that o1 = o.
For o1 = o, inequality (2.9) reduces to the following

% (] B 1
M22/ —i?wluo_qn_ldu. (2.10)
. _
Since
(Inu)?

1
o———1700
U ol

{u/\—l

is nonnegative and increasing in [1, 00), again by the application of Levi’s theorem
(cf. [7]), we obtain that

M, > lim
2T s 1 ur — 1

o0 1 J6] 1
= / lim ( nu)luofmldu = ko(0).
1

n—oo u)‘ —

This completes the proof of the lemma. [J 0
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3. MAIN RESULTS AND COROLLARIES

Theorem 3.1. If 3,0,\ > 0, then the following conditions are equivalent:
(i) There exists a constant My, such that for any f(z) > 0(z € (0,00)), satis-

fying N
0< / gPU=) =L P (1) dx < oo,
0

we have the following Hardy-type integral inequality of the first kind with the
non-homogeneous kernel:

e v n zy|? . z
J o :{/0 il [/0 l(LZ—)Ayl”f(x)da:] dy}

< M [/OO xp(l_")_lfp(as)da:} ’ ; (3.1)
0

(ii) There exists a constant My, such that for any f(x),g(y) > 0(x,y € (0,00)),
satisfying

0< / aPU=) =1 P (1) da < oo,
0
and .
0</yWﬂHf@@<w
0

we have the following inequality:

Y o 7 | In zy|® Ve
1= [ [/ Tt >d]dy

< | [T p@a | [Tt 62
0 0

(i1i) o1 = 0.
If Condition (iii) holds true, then My > ki(o) and the constant factor

My = ko) = D41, )

in (3.1) and (3.2) is the best possible.

Proof.
“(1) = (#)”. By Holder’s inequality (cf. [8]), we have

r- [ [ym-i / % &)—fg’_'ﬁumdx] (v~"9)) dy

SJU’MHHW@@T. (3.3)
0

Thus by (3.1), we deduce (3.2).
“(ii) = (4i7)”. By Lemma 1, we have oy = 0.
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“(7i1) = (1)”. Setting u = xy, we obtain the following weight function:

" v Inayl®
wi(o,y) - :y/o W[E Lda

1

(—IHU)’B o—1

By the weighted Holder inequality and (3.4), for y € (0, 00), we have

1 p
v | Inzyl?
—————f(x)dx
[/ gy -1
v |Inzyl? (e=1)/p 2lo=1/a P
[mayl” [y
- U o )] [
-1
/i |Inzy|® 3o tfP(x )dx /; |Inzyl® 2o 'dx ’
o T —1] e | Jy Ty~ 1009

o—1

1
5 B
_ a(1—o)—17P— L [V “nl"y| y P
[w1(0,y)y } /0 |(zy) — 1] zlo- 1p/qf ()dz

VAN

o—1

1
gt [ Inayl” oy
= (ot [T A e (35

If (3.5) obtains the form of equality for a y € (0,00), then (cf. [8]) there exist
constants A and B, such that they are not all zero and

xo‘—l

Yo
A fp( ) y(Ufl)Q/p

a.e.in R..
(c—1)p/q +

Let A # 0 (otherwise B = A = 0). It follows that
gPU=o) =1 #p(g) = yq(lf")E a.e.in Ry
Ax ’
which contradicts the fact that

0< / aPU=) =1 #P(3) da < oo,
0
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Hence, (3.5) assumes the form of strict inequality. Then for oy = o, by (3.5) and
Fubini’s theorem (cf. [7]), we obtain

1 o0 % 1 B o-1 %
J < <k1<a>>q{ 11 KL;fy_'wfl)p/qu(x)dx] dy}

N Sl D L
= (ki(o))s {/0 /0 [(zy)* — 1] z-DG-D) dy] f <I>dx}

= (o)} | [Tee et pais %

— k(o) [ /0 - fp(a:)da:} ’

Setting My > ki(0), (3.1) follows.

Therefore, Condition (i), Condition (ii) and Condition (iii) are equivalent.

When Condition (iii) is satisfied, if there exists a constant factor M; < ki(0),
such that (3.2) is valid, then by Lemma 1, we have M; > ki(c). Hence, the
constant factor M; = k(o) in (3.2) is the best possible. The constant factor
M; = ki(0) in (3.1) is still the best possible. Otherwise, by (3.3) (for o1 = o),
we would conclude that the constant factor M; = ki(o) in (3.2) is not the best
possible. [ [

Setting
y= 1 GO =V 24(3), =20
Y’ Yy’
in Theorem 1, then replacing Y (G(Y)) by v (g(y)), since p = A — o, we have

Corollary 3.2. If 3,0, > 0, then the following conditions are equivalent:
(i) There exists a constant My, such that for any f(x) > 0 (z € (0,00)), for
which

0< / gPU=) =L #P (1) dr < oo,
0

the following Hardy-type inequality of the first kind with the homogeneous kernel

18 satisfied:
© Y /gl P
{/ v U Fog—y ”””)d””} dy}

< M, {/OO xp(l_")_lf”(x)dx] ’ ; (3.6)
0

(ii) There exists a constant My, such that for any f(x),g(y) > 0(x,y € (0,00)),
satisfying

0 </ 2= =1 fP(3)dx < oo and 0 </ ya=r)=1 g9 (1)) dy < oo,
0 0
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we have the following inequality:

/Ooog(y) [ Oy Mf(ﬂf)dl’] dy

|z — 32|

< | [Tl [T ggal e

(iii) p1 = p.

If Condition (iii) holds true, then we have My > ky(o), and the constant M, =
ki(o) in (5.6) and (3.7) is the best possible.
Remark 3.3. On the other hand, setting

1 1
y=1yv GY)= YA_29(?)» pr=A— 0

in Corollary 1, and replacing Y (G(Y')) by y (9(y)), we have Theorem 1. Hence,
we conclude that Theorem 1 and Corollary 1 are equivalent.

Similarly, for 0 < 0 = A — < A, we obtain the following weight function:

Y b | In zy|Pzo~1
Y

> In’u
= / Y 1u(’_1du = kqo(o) (y > 0),
1

and thus in view of Lemma 2 and similarly to the way we showed Theorem 1, we
deduce the following theorem.

Theorem 3.4. If 3 >0, 0 < 0 = X—pu < A\, then the following conditions are
equivalent:
(i) There exists a constant My, such that for any f(x) > 0(z € (0,00)), satis-

fying
0< / gPU=) =1 P (1) d < oo,
0

we have the following Hardy-type inequality of the second kind with the non-
homogeneous kernel:

S L | N A
{/ y [/ Gy — 1) )d] dy}

< M [ / T grti=o)- fp(a:)da:} " (3.8)
0

(i1) There exists a constant Ms, such that for any f(x),g9(y) > 0(x,y € (0,00)),
satisfying

0< / g~ =L fP(3)dx < oo and 0 < / ya=o0=Lgq (1) dy < oo,
0 0
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we have the following inequality:

o0 | lnay|?
/0 9(y) [/ %ﬂ@dl’] dy

- M [ / xp<1—a>—1fp<x>dx]P[/ pi--igal s (39)
0 0

(i1i) o1 = 0.
If Condition (iii) holds true, then we have My > ko(o), and the constant factor

My = hy(o) = Tt D e 1,8y =y

A
in (3.8) and (3.9) is the best possible.

Setting

1 _ 1
Y= ?7 G(Y) :YA 2.9(?)7 M1 :)‘_Ul

in Theorem 2, and replacing Y (G(Y)) by y (g(y)), we get

Corollary 3.5. If 3 >0, 0 < 0 = A — u < A, then the following conditions are
equivalent:
(i) There exists a constant My, such that for any f(x) > 0(z € (0,00)), satis-

fying .
0< / gPU=) =1 P (1) d < oo,
0

we obtain the following Hardy-type inequality of the second kind with the homo-

geneous kernel:
o] 00 p l
P11 | In(z/y)|” ’
U L e

1

< M, {/OO xp(l_”)_lfp(x)dx} ’ ; (3.10)
0

(i1) There exists a constant My, such that for any f(x),g(y) > 0(x,y € (0,00)),
satisfying

0 </ 2= =1 fP(3)dx < 0o and 0 </ ya=r)=1g9 (1)) dy < oo,
0 0
we derive the following inequality:
= > [In(z/y)|’ }
9y / — o f(@)dz | dy
[ o[ e
< M, [/ xp(la)lfp(x)da:} [/ yl=r)=lga()dy| ;  (3.11)
0 0
(iti) p1 = p.

If Condition (iii) holds true, then we have My > ko(o), and the constant My =
ko(o) = ki(p) in (3.10) and (3.11) is the best possible.
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Remark 3.6. Similarly, Theorem 2 and Corollary 2 are equivalent.

4. OPERATOR EXPRESSIONS
For o, A > 0, 4 = X\ — o, we set the following functions:
p(x) = 2?7 (y) =y T (y) =yt
wherefrom,
VIPy) =y ¢ () =y (zy € Ry).
Define the following real normed linear spaces:

Lys(Ry) :z{f:Hpr,w = ( /Ooow(l‘ﬂf( rpda: " < oo

wherefrom,

|
Lus(R.) ={ Mol = ([~ vtlatiran)’ oo}
|

Lyo(Ry) :{ HgHw—(/ o(v)lg(y \qdy < o0

Lpy»(Ry) = {h Pl = (/OOO P y)lh(y)l”dy) < OO},
Leg—r(Ry) = {h P lpgi—» = (/OOO ¢1p(y)|h(y)!pdy); < OO}-

(a) In view of Theorem 1 (for oy = o), where f € L, ,(R.), setting
1
v | Inzyl?
hy::/ —————f(x)dr (y € Ry),
1( ) 0 !(.%’y))‘—ll ( ) ( +)

by (3.1), we obtain that

T [ / wl‘p@)hm)dy}” < Mfllpe <00 (A1)

Definition 4.1. We define a Hardy-type integral operator of the first kind with
the non-homogeneous kernel

TV 2 L, (Ry) — Lyyi-»(Ry)

as follows:
For any f € L,,(Ry), there exists a unique representation T f = h €

L, 1-»(Ry), satisfying
TV f(y) = (),
for any y € R.



252 M. TH. RASSIAS, B. YANG
In view of (4.1), it follows that
1
Tl = allpsr-» < M| £l
and thus the operator Tl(l) is bounded satisfying
TOp
(GRS, it LI VA
10y @) | fllpe

If we define the formal inner product of Tl(l) f and g as follows:

o0 % nzy|?
(1" f, 9) ::/0 [/0 Ku—y’f(l’)dx] 9(y)dy,

zy)* — 1|
then we can rewrite Theorem 1 in the following manner:

Theorem 4.2. For 3,0, > 0, the following conditions are equivalent:
(1) There exists a constant My, such that for any f(z) > 0,f € L,,(Ry),
| fllp.e > 0, the following inequality holds true:

1
T Fllpi-r < Mi]|fllp: (4.2)

(ii) There ezists a constant My, such that for any

f(@),9(y) 20, f € Lpy(Ry), g9 € LoyRe), || fllps [l9llgw > 0,
the following inequality holds true

(1" £, 9) < Mi| Fllpollg] g (4.3)
We still have ||T1(1)|| = ki(o) < M.

(b) In view of Corollary 1 (for y; = ), where f € L, ,(R,), setting

Y1ln(x B
hay) = [ RE G0 e Ry,
0 \x -y ’
by (3.6), we deduce that
hallpgs = [ / ¢1—P<y>h§<y>dy] < Millfllpy <00 (44)

Definition 4.3. We define a Hardy-type integral operator of the first kind with
the homogeneous kernel

TP ¢ Ly, (Ry) — Lyg»(Ry)

as follows:
For any f € L, ,(R), there exists a unique representation

TP f =hy € Lyg»(Ry),

satisfying Tl(Z)f(y) = hy(y), for any y € R,
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In view of (4.4), it follows that

2
1T Fllpstr = [hallpgr-» < M1 fllpe,
and thus the operator T1(2) is bounded satisfying
7@ -
= s WO Sl oy
f(F#0)eLp o (Ry) ||f||p7s0

If we define the formal inner product of T1(2) f and g as

o0 Y| 1n(x s
(1" £, 9) ::/0 {0 @DV 2o gy,

2% — 2|
then Corollary 1 assumes the following form:

Corollary 4.4. For 3,0, > 0, the following conditions are equivalent:
(1) There exists a constant My, such that for any f(x) > 0, f € L,,(Ry),
| fllp.e > 0, the following inequality holds true:

2
T Fllpgr-r < M| f]pe: (4.5)

(11) There exists a constant My, such that for any f(x),g(y) >0, f € L, ,(Ry),
9 € Lyo(Ry), || fllpes 11gllge > 0, the following inequality holds true:

2
(T .9) < M|l 9]l (4.6)
We still have ||T1(2)H = k(o) < M.
Remark 4.5. Similarly, Theorem 3 and Corollary 3 are equivalent.

(c) In view of Theorem 2 (for o4 = o), where f € L, ,(R), setting

(™ |Inayl’ Vi
)= [ o e (€ Ry,

@ =

by (3.8), we derive that

[l s = [ / w<y>Hf<y>dy]” < Mo[fllpp <00 (4T)

Definition 4.6. We define a Hardy-type integral operator of the second kind
with the non-homogeneous kernel

Tz(l) D Lpp(Ry) = Ly (Ry)

as follows:
For any f € L,,(R;), there exists a unique representation TQ(I) f = H, €

L, 1-»(Ry), satisfying TV f(y) = Hi(y), for any y € R,
In view of (4.7), it follows that

1
I1T5" Fllpasi— = [[Hallpgi—v < M| fllpps
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and thus the operator T2(1) is bounded satisfying
T(l) .
= s Ml gy
1#0eLp o) | fllne
If we define the formal inner product of Tél) f and g as follows:
00 o] B
(1) (ln xy)
T. = —_— d d
11,9 4[[<wwﬁﬂm4mw%
Yy
then Theorem 2 obtains the following form:

Theorem 4.7. For > 0,0 < 0 = XA — pu < A, the following conditions are

equivalent:
(1) There exists a constant Ms, such that for any f(z) > 0,f € L,,(Ry),
| fllp.e > 0, the following inequality holds true:

1
TSV Fllp—r < M| fllp: (4.8)

(11) There exists a constant Ms, such that for any f(z),g(y) >0, f € L, ,(Ry),
g € Lyyw(Ri), | fllpos [19]lgw > 0, we have the following inequality:

(T2(1)f7 9) < Mal| fllpell9llg.0- (4.9)
We still have ||[TSV|| = ka(o) = ki(p) < Ms.

(d) In view of Corollary 2 (for y; = p), where f € L, ,(R,), setting

)= [ e e v,

2% = 9|
by (3.10), we derive that

HmmwF{A¢H@m%m45wmmm<m. (4.10)

Definition 4.8. We define a Hardy-type integral operator of the second kind
with the homogeneous kernel
T2(2)  Lpo(Ry) = Ly gi-»(Ry)

as follows:
For any f € L, ,(R), there exists a unique representation T 2(2) f=HyeL,n»(Ry),

satisfying T2(2)f(y) = Hs(y), for any y € R,.
In view of (4.10), it follows that
2
1T flpor-» = | Hallpgr—r < Mol 1]y

and thus the operator T2(2) is bounded satisfying

T(Q) B
HT2(2)H = Sup M S MZ-
r#0elyo®y) b
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If we define the formal inner product of T1(2) f and g as follows:

0= [ [ I/ ] gy,

A — A
then Corollary 2 obtains the following form:

Corollary 4.9. For 8 > 0,0 < 0 = XA — u < A, the following conditions are
equivalent:

(i) There exists a constant Ms, such that for any f(z) > 0,f € L, ,(R;),
| fllp. > 0, the following inequality holds true:

2
TS Fllpgr-r < Mol[f]pe: (4.11)

(11) There exists a constant M,, such that for any f(x),g(y) >0, f € L, ,(Ry),
9 € Lyo(Ry), || fllpes 11gllg.e > 0, we have the following inequality:

(T3 £,9) < Mal| Il 1916 (4.12)
We still have ||T\2|| = k(o) = ki () < Mo,
Remark 4.10. Similarly, Theorem 4 and Corollary 4 are equivalent.
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