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A NOTE ON O-FRAMES FOR OPERATORS

CHANDER SHEKHAR 1and SHIV KUMAR KAUSHIK∗2

Communicated by C. Heil

Abstract. A sufficient condition for a boundedly complete O-frame and a
necessary condition for an unconditional O-frame are given. Also, a necessary
and sufficient condition for an absolute O-frame is obtained. Finally, it is
proved that if two operators have an absolute O-frame, then their product also
has an absolute O-frame.

1. Introduction

The notion of frames for Hilbert spaces was formally introduced by Duffin and
Schaeffer [5] in the context of nonharmonic analysis. Daubechies, Grossmann and
Meyer [4] revived interest in the theory in the early stages of the development of
wavelet theory. Frames are a generalization of orthonormal bases. Frames have
become a central tool in many areas of mathematics, such as image processing,
wireless communications, sigma - delta quantization, filter bank theory, etc. For
a comprehensive survey of frames and related concepts, we refer to the textbooks
by Christensen [3], Heil [8] and the survey article of Casazza [1].

Han and Larson [7] defined a Schauder frame for a Banach space E to be a
compression of a Schauder basis for E. Schauder frames were further studied in
[2, 9, 10, 12, 13]. The notion of an O-frame for an operator T ∈ B(E,F ) was
introduced and studied by O. Reinov [11] as a generalization of Schauder frames.
In the particular case when the operator T = I, the notion of an O-frame is
equivalent to that of a Schauder frame.

The convergence (and mode of convergence) of series associated with redundant
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building blocks is important in applied mathematics. For example, the series
associated with frames (with frame operator S), i.e., f =

∑∞
k=1〈f, S−1fk〉fk =∑∞

k=1〈S−1f, fk〉fk is unconditionally convergent. It would be interesting to know
about various modes of convergence, of the series associated with an O-frame
for a given operator, in a Banach space. In this paper, we obtain some results
related to the mode of convergence of the series associated with an O-frame for
an operator in Banach spaces.

We organize the paper as follows: In Section 2, we study O-frames for operators
and give a sufficient condition for an O-frame to be boundedly complete. Also,
we discuss O-frames in finite dimensional Banach spaces and obtain some new
results. In Section 3, we study unconditional convergence of series associated with
O-frames in Banach spaces and give a necessary condition for the unconditional
convergence of the series related to the O-frame. In Section 4, we introduce the
notion of an absolute O-frame for an operator in a Banach space and obtain a
necessary and sufficient condition for it. Finally, we prove that if two operators
have an absolute O-frame, then their product also has an absolute O-frame.

2. O-frames for Operators

Throughout this paper E will denote a separable Banach space and E∗ the
dual space of E.

Han and Larson [7] introduced the notion of Schauder frames in Banach spaces.
They gave the following definition:

Definition 2.1. Let E be a Banach space. A pair of sequences ({fk}, {f ∗k}) ⊂
E × E∗ is called a Schauder frame for E if each f ∈ E has the representation

f =
∞∑

k=1

f ∗k (f)fk, (2.1)

where the series in (2.1) converges in the norm topology of E.

O. Reinov [11] introduced the notion of an O-frame for an operator and gave
the following definition:

Definition 2.2. Let E and F be infinite dimensional separable Banach spaces
over the scalar field (K = R or C) and let ({f ∗k}, {gk}) ⊂ E∗×F and T ∈ B(E,F )
be given. We say that the pair ({f ∗k}, {gk}) is an O-frame for the operator T if

Tf =
∞∑

k=1

f ∗k (f)gk, for all f ∈ E, (2.2)

where the series in (2.2) converges in the norm topology of F .

Remark 2.3. An O-frame ({f ∗k}, {gk}) ⊂ E∗ × F for T = I is a Schauder frame
for E. Also, if ({f ∗k}, {fk}) is a Schauder frame for E and T ∈ B(E), then
({f ∗k}, {Tfk}) is an O-frame for T . Indeed, if ({f ∗k}, {fk}) is a Schauder frame for
E, then for each f ∈ E, we have

f =
∞∑

k=1

f ∗k (f)fk,
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and for all T ∈ B(E) we have

Tf =
∞∑

k=1

f ∗k (f)Tfk, for all f ∈ E.

Thus, the pair ({f ∗k}, ({Tfk}) is an O-frame for T .

In the following example, we see that a pair of sequences ({f ∗k}, {gk}) ⊂ E∗×E
that is not a Schauder frame can be an O-frame for some operator T .

Example 2.4. Let E = F = L2(N, µ) be the discrete signal spaces, where µ
is counting measure. Let {χk} be the sequence of standard unit vectors in E.
Define sequences {f ∗k} ⊂ E∗ and {gk} ⊂ F by

f ∗k (f) = ξk, f = {ξj} ∈ E (k ∈ N)

and gk = χk+1, k ∈ N. Then, we can easily verify that ({f ∗k}, {gk}) is not a
Schauder frame for E. However, if we consider the shift operator T : E → E
given by

T (f) = {0, ξ1, ξ2, ..., }, f = {ξj} ∈ E,

then, T ∈ B(E) and for each f ∈ E we have

Tf =
∞∑

k=1

f ∗k (f)gk.

Thus, the pair ({f ∗k}, {gk}) is an O-frame for T .

Definition 2.5. [11] Let T ∈ B(E,F ) and let C ≥ 1. We say that T has the
C-BAP (C-bounded approximation property), if for every compact subset K of
E and for each ε > 0, there exists a finite rank operator R : E → F such that
‖R‖ ≤ C‖T‖ and supf∈K ‖Rf − Tf‖ ≤ ε.

The operator T is said to have the BAP, if it has the C-BAP for some constant
C ∈ [1,∞).

O. Reinov gave the following characterization of O-frames in terms of BAP.

Theorem 2.6. [11] Let E and F be Banach spaces and let T ∈ B(E, F ). Then
the following statements are equivalent:

(1) T has an O-frame.
(2) T has BAP.
(3) The operator T can be factored through a Banach space with a Schauder

basis.

Recall that an operator T ∈ B(E,F ) is said to factor through a Banach space
G if there exist operators R ∈ B(E,G) and S ∈ B(G,F ) such that T = SR.

Definition 2.7. A sequence {fk} ⊂ E is said to be ω-linearly independent if
{ck} ⊂ K,

∑∞
k=1 ckfk = 0 imply ck = 0, for all k ∈ N.

Next, we state a result in the form of a lemma that will be used in the
subsequent work.

Lemma 2.8. [6] Let {fk} ⊂ E and let
∑∞

k=1 fk be a series of vectors in E. Then
the following statements are equivalent:

(1) If σ(.) is any permutation of N, then
∑∞

k=1 fσ(k) = f, for all f ∈ E.



386 C. SHEKHAR, S.K. KAUSHIK

(2) For each ε > 0, there is a finite set Ω ⊂ N such that∣∣∣∣∣
∣∣∣∣∣f −∑

j∈Ω0

fj

∣∣∣∣∣
∣∣∣∣∣ < ε,

whenever Ω0 ⊂ N is a finite set satisfying Ω ⊂ Ω0.

Definition 2.9. An O-frame ({f ∗k}, {gk}) ⊂ E∗ × F for an operator T is said to
be boundedly complete if for each φ∗∗ ∈ E∗∗, the series

∑∞
k=1 φ

∗∗(f ∗k )gk converges
in F .

In the following result, we give a sufficient condition under which an O-frame
is boundedly complete:

Theorem 2.10. Let ({f ∗k}, {gk}) ⊂ E∗ × F be an O-frame for T such that

sup
n

∣∣∣∣∣∣ n∑
k=1

αkf
∗
k (f)gk

∣∣∣∣∣∣ <∞⇒
∞∑

k=1

αkf
∗
k (f)gk converges in F,

where {αk} is any sequence of scalars and f ∈ E. Then, ({f ∗k}, {gk}) is a
boundedly complete O-frame for T .

Proof. Let φ∗∗ ∈ E∗∗. If 0 6= φ∗∗ ∈ [f ∗k ]⊥, then φ∗∗(f ∗k ) = 0, for all k ∈ N.
So, the series

∑∞
k=1 φ

∗∗(f ∗k )gk converges in F . Suppose that φ∗∗ /∈ [f ∗k ]⊥. Define
Tn : E → F by

Tnf =
n∑

k=1

f ∗k (f)gk, f ∈ E.

Let T ∗n be the adjoint operator of Tn. Then

(T ∗n(g∗))(f) =
( n∑

k=1

g∗(gk)f
∗
k

)
(f), g∗ ∈ F ∗, f ∈ E.

This gives

T ∗n(g∗) =
n∑

k=1

g∗(gk)f
∗
k , g∗ ∈ F ∗, n = 1, 2, 3, ....

Further, for every g∗ ∈ F ∗, we have

(T ∗∗n (φ∗∗))(g∗) = φ∗∗(T ∗n(g∗)) = g∗
( n∑

k=1

φ∗∗(f ∗k )gk

)
.

Therefore, we obtain

T ∗∗n (φ∗∗) = π
( n∑

k=1

φ∗∗(f ∗k )gk

)
,
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where π is the canonical mapping of F into F ∗∗. Since π is an isometry, it follows
that ∣∣∣∣∣∣ n∑

k=1

φ∗∗(f ∗k )gk

∣∣∣∣∣∣ =
∣∣∣∣∣∣π( n∑

k=1

φ∗∗(f ∗k )gk

)∣∣∣∣∣∣
= ‖T ∗∗n (φ∗∗)‖
≤ ‖Tn‖‖φ∗∗‖.

This gives, sup
n

∣∣∣∣∣∣∑n
k=1 φ

∗∗(f ∗k )gk

∣∣∣∣∣∣ < ∞. Without loss of generality we may

assume that f ∗k 6= 0, for all k ∈ N. Then, there exists a non-zero f ∈ E such
that f ∗k (f) 6= 0, for all k ∈ N. Choose {αk} ⊂ K (where K is the scalar field)

such that φ∗∗(f ∗k ) = αkf
∗
k (f), k = 1, 2, 3, .... Then, sup

n

∣∣∣∣∣∣∑n
k=1 αkf

∗
k (f)gk

∣∣∣∣∣∣ <∞.

Therefore, by hypotheses,
∑∞

k=1 φ
∗∗(f ∗k )gk converges in F . Hence ({f ∗k}, {gk}) is

a boundedly complete O-frame for T . �

Now, we discuss O-frames in finite dimensional Banach spaces.

Theorem 2.11. If E and F are finite dimensional Banach spaces, then every
operator T ∈ B(E,F ) has an O-frame.

Proof. Let E and F be finite dimensional Banach spaces. Then, there exist
sequences {h∗k}n

k=1 ⊂ E∗ and {hk}n
k=1 ⊂ E such that

f =
n∑

k=1

h∗k(f)hk, for all f ∈ E.

Let T : E → F be a bounded linear operator. Define sequences {gn} ⊂ F and
{f ∗n} ⊂ E∗ as follows:

gtn2+ln+ξ =
1

2t+1n
Thξ

f ∗tn2+ln+ξ = h∗ξ

(t = 0, 1, 2, ...; l = 0, 1, ..., n− 1; ξ = 1, 2, ..., n
)
.

Then, for each f ∈ E we have

∞∑
k=1

f ∗k (f)gk =
∞∑

t=0

n−1∑
l=0

n∑
ξ=1

f ∗tn2+ln+ξ(f)gtn2+ln+ξ

=
∞∑

t=0

n
n∑

ξ=1

1

2t+1n
h∗ξ(f)Thξ

= T
( ∞∑

t=0

n
n∑

ξ=1

1

2t+1n
h∗ξ(f)hξ

)
= T

( n∑
ξ=1

h∗ξ(f)hξ

)
= Tf.

Hence ({f ∗k}, {gk}) is an O-frame for T . �



388 C. SHEKHAR, S.K. KAUSHIK

Next, we discuss a special type of perturbation of an O-frame for T ∈ B(E,F )
and obtained a sufficient condition for the perturbed system to be an O-frame
for T .

Theorem 2.12. Let ({f ∗k}, {gk}) ⊂ E∗×F be an O-frame for T ∈ B(E,F ). For
a given ε > 0 and a fixed f0 ∈ E, let {h∗k} ⊂ E∗ and {dk} ⊂ F be given by

h∗k =
1

|f ∗k (f0)|+ ε
f ∗k −

1

|f ∗k+1(f0)|+ ε
f ∗k+1, for all k ∈ N

and

dk =
k∑

n=1

(|f ∗n(f0)|+ ε)gn, for all k ∈ N.

If lim
n→∞

f ∗n+1(f)

|f ∗n+1(f0)|+ ε
dn = 0, then ({h∗k}, {dk}) is an O-frame for T .

Proof. By hypotheses, we have

lim
n→∞

n∑
k=1

h∗k(f)dk = lim
n→∞

[h∗1(f)d1 + h∗2(f)d2 + ...h∗n−1(f)dn−1 + h∗n(f)dn]

= lim
n→∞

[
f ∗1 (f)

|f ∗1 (f0)|+ ε
(|f ∗1 (f0)|+ ε)g1 −

f ∗2 (f)

|f ∗2 (f0)|+ ε
(|f ∗1 (f0)|+ ε)g1

+
f ∗2 (f)

|f ∗2 (f0)|+ ε
{(|f ∗1 (f0)|+ ε)g1 + (|f ∗2 (f0)|+ ε)g2}

− f ∗3 (f)

|f ∗3 (f0)|+ ε
{(|f ∗1 (f0)|+ ε)g1 + (|f ∗2 (f0)|+ ε)g2}

....+
f ∗n(f)

|f ∗n(f0)|+ ε
dn −

f ∗n+1(f)

|f ∗n+1(f0)|+ ε
dn]

= lim
n→∞

n∑
k=1

f ∗k (f)gk − lim
n→∞

f ∗n+1(f)

|f ∗n+1(f0)|+ ε
dn

= Tf.

Hence ({h∗k}, {dk}) is an O-frame for T . �

3. Unconditional convergence associated with O-frames

In this section, we study the notion of an unconditional O-frame defined by
Reinov [11]. We begin with the following definition:

Definition 3.1. [11] Let E and F be infinite dimensional separable Banach spaces
over the scalar field (K = R or C). Let ({f ∗k}, {gk}) ⊂ E∗ × F and T ∈ B(E,F ).
We say that the pair ({f ∗k}, {gk} is an UO-frame (unconditional O-frame) for T
if

Tf =
∞∑

k=1

f ∗k (f)gk, for all f ∈ E, (3.1)

where the series in (3.1) converges unconditionally for each f ∈ E in the norm
topology of F .
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Regarding the existence of an unconditional O-frame for T , we have the
following example:

Example 3.2. Let E = F = L2(N, µ) be discrete signal spaces, where µ is
counting measure. Let {χk} be the sequence of standard unit vectors in E.
Define sequences {f ∗k} ⊂ E∗ and {gk} ⊂ E by

f ∗k (f) =
ξk
k
, f = {ξk} ∈ E (k ∈ N)

and

gk = χk, (k ∈ N).

Consider the operator T : E → E given by

T (f) = {ξ1,
ξ2
2
,
ξ3
3
, ..., }, f = {ξj} ∈ E.

Then, T ∈ B(E) and for each f ∈ E we have

Tf =
∞∑

k=1

f ∗k (f)gk.

Hence the pair ({f ∗k}, {gk}) is an O-frame for T . Also, the O-frame ({f ∗k}, {gk})
is unconditional. Indeed, let f = {ξk} ⊂ E. Then, for n, p ∈ N, we have∣∣∣∣∣∣ n+p∑

k=n

f ∗k (f)gk

∣∣∣∣∣∣2
2

=

n+p∑
k=n

∣∣∣ξk
k

∣∣∣2.
Since the series

∑∞
k=1 |

ξk
k
|2 converges in K, the series

∑∞
k=1 f

∗
k (f)gk converges

unconditionally. Hence ({f ∗k}, {gk}) is an UO-frame for T .

Next, we give an example of an O-frame which is not an unconditional O-frame.

Example 3.3. Let E = F = (c0, ‖.‖∞), where c0 = {{αn} ⊂ C : lim
n→∞

αn → 0}.
Define {f ∗k} ⊂ E by

f ∗k (f) = (0, 0, ..., ξk − ξk+1, 0, 0..., 0), f = {ξk} (k ∈ N).

Take gk =
∑k

i=1Xi+1, where {Xi} is the sequence of canonical unit vectors.
Consider the operator T : E → E given by

T (f) = {0, ξ1, ξ2, ξ3, ..., ξn
(n+1)th place

, 0, 0, 0, ...}, f = {ξn} ∈ E.

Then, T ∈ B(E) and for each f ∈ E we have

Tf =
∞∑

k=1

f ∗k (f)gk.

Thus, the pair ({f ∗k}, {gk}) is an O-frame for T . In order to show that ({f ∗k}, {gk})
is not unconditional, let f ∈ E and n, p ∈ N. Then∣∣∣∣∣∣ n+p∑

k=n

f ∗k (f)gk

∣∣∣∣∣∣
∞

= sup
n≤l≤n+p

∣∣∣ n+p∑
k=l

f ∗k (f)
∣∣∣.
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Take f0 = {0, 1
2
, 0,

1

3
, 0, ...}. Then, for this f0, the series

∑∞
k=1 f

∗
k (f0) is

conditionally convergent. Therefore ({f ∗k}, {gk}) is not an UO-frame for T .

Next, we give a necessary condition for an unconditional O-frame for T .

Theorem 3.4. Let ({f ∗k}, {gk}) ⊂ E∗ × F be an UO-frame for T . Then, for
every f ∈ E

lim
n→∞

sup
g∈F ∗,‖f‖≤1

∞∑
i=n+1

|f ∗k (f)||g(gk)| = 0.

Proof. Let ε > 0 be given. Since ({f ∗k}, {gk}) is an UO-frame for T , by Lemma
2.8, there exists a finite subset d of N such that

‖Tf −
∑
i∈d′

f ∗k (f)gi‖ <
ε

4
, for all finite subsets d′ of N with d′ ⊂ d. (3.2)

Define sets

d1(f) = {i ∈ {n+ 1, n+ 2, ..., n+m} : Real g∗(gi)f
∗
i (f) ≥ 0}

and

d2(f) = {i ∈ {n+ 1, n+ 2, ..., n+m} : Real g∗(gi)f
∗
i (f) < 0},

where n ≥ n0 = maxi∈d′ i,m ≥ 1 and g∗ ∈ F ∗ is such that ‖g∗‖ ≤ 1. Then, by
using (3.2), we have

n+m∑
i=n+1

|Real g∗(gi)f
∗
i (f)| =

2∑
j=1

∑
i∈dj(f)

|Real g∗(gi)f
∗
i (f)|

=
2∑

j=1

∣∣∣Real g∗
( ∑

i∈dj(f)

f ∗i (f)gi

)∣∣∣
≤

2∑
j=1

∣∣∣ g∗( ∑
i∈dj(f)

f ∗i (f)gi

)∣∣∣
≤

2∑
j=1

‖g∗‖
∣∣∣∣∣∣ ∑

i∈dj(f)

f ∗i (f)gi

∣∣∣∣∣∣
≤

2∑
j=1

(∣∣∣∣∣∣Tf − ∑
i∈dj(f)∪d

f ∗i (f)gi

∣∣∣∣∣∣+ ∣∣∣∣∣∣Tf − ∑
i∈dj(f)∪d

f ∗i (f)gi

∣∣∣∣∣∣)
<
ε

2
, for all f ∈ E.

Similarly, we can show that

n+m∑
i=n+1

|Im g∗(gi)f
∗
i (f)| < ε

2
, for all f ∈ E.
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Hence

lim
n→∞

sup
g∈F ∗,‖f‖≤1

∞∑
i=n+1

|f ∗k (f)||g(gk)| = 0, f ∈ E.

�

Next, we obtain a condition on T ∈ B(E,F ) under which an O-frame for T is
a Schauder frame for F .

Proposition 3.5. Let E and F be separable Banach spaces and let ({f ∗k}, {gk}) ⊂
E∗×F be an O-frame for T ∈ B(E,F ). If T is invertible, then ({T−1∗f ∗k}, {gk})
is a Schauder frame for F . Moreover, if ({f ∗k}, {gk}) is an unconditional O-frame
for T ∈ B(E,F ), then ({T−1∗f ∗k}, {gk}) is an unconditional Schauder frame for
F .

Proof. For g ∈ F , we have

g =
∞∑

k=1

f ∗k (T−1g)gk

=
∞∑

k=1

(T−1)∗f ∗k (g)gk.

Hence ({T−1∗f ∗k}, {gk}) is a Schauder frame for F . Moreover, the series∑∞
k=1(T

−1)∗f ∗k (f)gk converges unconditionally as ({f ∗k}, {gk}) is an unconditional
O-frame for T ∈ B(E,F ). Thus, ({T−1∗f ∗k}, {gk}) is an unconditional Schauder
frame for F . �

4. Absolute O-frames

In this section, we define and study absolute O-frames. We begin with the
following definition:

Definition 4.1. Let ({f ∗k}, {gk}) ⊂ E∗×F be an O-frame for T ∈ B(E,F ). We
say that the pair ({f ∗k}, {gk} is an absolute O-frame for T if the series

∞∑
k=1

f ∗k (f)gk,

converges absolutely for each f ∈ E. That is,
∑∞

k=1 ‖f ∗k (f)gk‖ converges in R,
for all f ∈ E.

Existence of an absolute O-frame is ensured by the following example:

Example 4.2. Let E = F = L1(N, µ) be discrete signal spaces, where µ is
counting measure. Let {χk} be the sequence of standard unit vectors in E.
Define sequences {f ∗k} ⊂ E∗ and {gk} ⊂ E by

f ∗1 (f) = ξ1,

f ∗2 (f) = f ∗3 (f) = ξ2,

f ∗4 (f) = f ∗5 (f) = f ∗6 (f) = ξ3,

...
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and 
g1 = 0,

g2 = g3 =
χ2

2
,

g4 = g5 = g6 =
χ3

3
,

....

Consider the operator T : E → E given by

T (f) = {0, ξ2, ξ3, ..., }, f = {ξj} ∈ E.

Then, T ∈ B(E) and for each f ∈ E, we have

Tf =
∞∑

k=1

f ∗k (f)gk.

Thus, the pair ({f ∗k}, {gk}) is an O-frame for T . Also, the O-frame ({f ∗k}, {gk})
is absolute. Indeed, let f = {ξk} ⊂ E. Then

∞∑
k=1

∣∣∣∣∣∣f ∗k (f)gk

∣∣∣∣∣∣ =
∞∑

k=2

|ξk|.

Since the series
∑∞

k=2 |ξk| is convergent, the series
∑∞

k=1 f
∗
k (f)gk converges

absolutely.

Next, we define a positively confined O-frame for T as follows:

Definition 4.3. Let ({f ∗k}, {gk}) ⊂ E∗ × F be an O-frame for T ∈ B(E,F ).
Then, the pair ({f ∗k}, {gk}) is said to be

(1) pre-positively confined, if there exist strictly positive constants α and β
such that

α ≤ ‖gk‖ ≤ β, for all k ∈ N,

(2) post-positively confined, if there exist strictly positive constants α0 and
β0 such that

α0 ≤ ‖f ∗k‖ ≤ β0, for all k ∈ N,

(3) positively confined, if it is both pre and post-positively confined.

The following result provides a necessary and sufficient condition for a pre-
positively confined O-frame for T to be absolute.

Theorem 4.4. Let ({f ∗k}, {gk}) ⊂ E∗ × F be a pre-positively confined O-frame
for T . Then, the O-frame ({f ∗k}, {gk}) is absolute if and only if the series∑∞

k=1 |f ∗k (f)| converges for all f ∈ E.

Proof. Since the O-frame ({f ∗k}, {gk}) is pre-positively confined, there exist
positive constants α and β such that α ≤ ‖gk‖ ≤ β, for all k ∈ N. Suppose



A NOTE ON O-FRAMES FOR OPERATORS 393

that ({f ∗k}, {gk}) is absolute. Then, for all f ∈ E we have

∞∑
k=1

|f ∗k (f)| =
∞∑

k=1

∣∣∣∣∣∣f ∗k (f)gk

‖gk‖

∣∣∣∣∣∣
≤ 1

α

∞∑
k=1

∣∣∣∣∣∣f ∗k (f)gk

∣∣∣∣∣∣ <∞.

Conversely, suppose that
∑∞

k=1 |f ∗k (f)| converges for all f ∈ E. Then

m∑
k=n

∣∣∣∣∣∣f ∗k (f)gk

∣∣∣∣∣∣ =
m∑

k=n

|f ∗k (f)|‖gk‖

≤ β

m∑
k=n

|f ∗k (f)| → 0 as m,n→∞.

Therefore
∑∞

k=1

∣∣∣∣∣∣f ∗k (f)gk

∣∣∣∣∣∣ converges in R. Hence the O-frame ({f ∗k}, {gk}) is

absolute. �

Next, we give a necessary and sufficient condition for a post-positively confined
O-frame for T ∗ to be absolute.

Theorem 4.5. Let ({gk}, {f ∗k}) ⊂ E∗ × F be a post-positively confined O-frame
for T ∗. Then, the O-frame ({gk}, {f ∗k}) is absolute if and only if the series∑∞

k=1 |g∗(gk)| converges for all g∗ ∈ F ∗.

Proof. It can be worked out on the lines of Theorem 4.4. �

Next, we prove the following result related to an absolute O-frame satisfying
certain conditions.

Theorem 4.6. Let ({f ∗k}, {gk}) ⊂ E∗ × F be an absolute O-frame for T ∈
B(E,F ). If {gk} is ω-linearly independent and T is surjective, then there exists
a topological isomorphism of `1(N) onto F .

Proof. Define Ψ : `1(N) → F by

Ψ({ξk}) =
∞∑

k=1

ξkgk

‖gk‖
, {ξk} ∈ `1(N).

Then, for all {ξk} ∈ `1(N) we have

‖Ψ({ξk})‖ =
∣∣∣∣∣∣ ∞∑

k=1

ξkgk

‖gk‖

∣∣∣∣∣∣
≤

∞∑
k=1

|ξk| <∞.

Therefore, Ψ is a bounded linear operator such that KerΨ = {0} (where KerΨ
denotes the kernel of Ψ ). This follows from the fact that {gk} is ω-linearly
independent. To show that ψ is onto, let g ∈ F be any arbitrary element. Since
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T is onto, there is an f ∈ E such that Tf = g. Choose αk = f ∗k (f)‖gk‖, for all
k ∈ N. Since ({f ∗k}, {gk}) is absolute, {αk} ∈ `1(N). Also, we have

Ψ({αk}) =
∞∑

k=1

αkgk

‖gk‖

=
∞∑

k=1

f ∗k (f)‖gk‖gk

‖gk‖
= g.

Thus Ψ is onto. Therefore, using Open Mapping Theorem, we conclude that ψ
is a topological isomorphism of `1(N) onto F . �

If T1 and T2 are bounded linear operators, then it is easy to verify that their
product T1 × T2 is also a bounded linear operator. The following result shows
that if T1 and T2 are bounded linear operators having an absolute O-frame, then
their product T1 × T2 with a suitable norm also has an absolute O-frame.

Theorem 4.7. Let E1, E2, F1 and F2 be Banach spaces. Let ({f ∗k}, {gk}) ⊂ E∗
1 ×

F1 and ({p∗k}, {qk}) ⊂ E∗
2 ×F2 be absolute O-frames for operators T1 ∈ B(E1, F1)

and T2 ∈ B(E2, F2), respectively. Then, T1 × T2 also has an absolute O-frame.

Proof. Let h = (f, g) ∈ E1×E2, where f ∈ E1 and g ∈ E2. Define {hk} ⊂ F1×F2

and {h∗k} ⊂ (E1 × E2)
∗ by {

h2k = (gk, 0)

h2k−1 = (0, qk)

and {
h∗2k(f, g) = f ∗k (f)

h∗2k−1(f, g) = p∗k(g).

Also, define T1 × T2 : E1 × E2 → F1 × F2 by

(T1 × T2)(f, g) = (T1f, T2g).

Then, for each h ∈ E1 × E2 we have
∞∑

k=1

h∗k(f, g)hk =
∞∑

k=1

h∗2k(f, g)h2k +
∞∑

k=1

h∗2k−1(f, g)h2k−1

=

(
∞∑

k=1

f ∗k (f)gk,

∞∑
k=1

p∗k(g)qk

)
= (T1f, T2g)

= (T1 × T2)(h).

Thus ({h∗k}, {hk}) is an O-frame for T1 × T2. Since ({f ∗k}, {gk}) ⊂ E∗
1 × F1

and ({p∗k}, {qk}) ⊂ E∗
2 × F2 are absolute O-frames for operators T1 ∈ B(E1, F1)

and T2 ∈ B(E2, F2), respectively, the series
∑∞

k=1 ‖f ∗k (f)gk‖ converges for each
f ∈ E1 and the series

∑∞
k=1 ‖p∗k(f)qk‖ converges for each f ∈ E2. Thus, by the

definition of the system ({h∗k}, {hk}), the series
∑∞

k=1 ‖h∗k(f)hk‖ converges for all
h ∈ E1 × E2. Hence ({h∗k}, {hk}) is an absolute O-frame for T1 × T2. �
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Finally, as an application, we give the following result.

Corollary 4.8. If T1 and T2 are bounded linear operators having BAP, then the
product T1 × T2 with a suitable norm on the underlying space also has BAP.

Proof. If T1 and T2 have BAP, then by Theorem 2.6, T1 and T2 both have an O-
frame. Therefore, by Theorem 4.7, T1 × T2 has an O-frame. Hence by Theorem
2.6 again, T1 × T2 has bounded approximation property. �
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