

Adv. Oper. Theory 2 (2017), no. 3, 383–395

http://doi.org/10.22034/aot.1702-1122

ISSN: 2538-225X (electronic)

http://aot-math.org

A NOTE ON O-FRAMES FOR OPERATORS

CHANDER SHEKHAR ¹ and SHIV KUMAR KAUSHIK*²

Communicated by C. Heil

ABSTRACT. A sufficient condition for a boundedly complete O-frame and a necessary condition for an unconditional O-frame are given. Also, a necessary and sufficient condition for an absolute O-frame is obtained. Finally, it is proved that if two operators have an absolute O-frame, then their product also has an absolute O-frame.

1. Introduction

The notion of frames for Hilbert spaces was formally introduced by Duffin and Schaeffer [5] in the context of nonharmonic analysis. Daubechies, Grossmann and Meyer [4] revived interest in the theory in the early stages of the development of wavelet theory. Frames are a generalization of orthonormal bases. Frames have become a central tool in many areas of mathematics, such as image processing, wireless communications, sigma - delta quantization, filter bank theory, etc. For a comprehensive survey of frames and related concepts, we refer to the textbooks by Christensen [3], Heil [8] and the survey article of Casazza [1].

Han and Larson [7] defined a Schauder frame for a Banach space E to be a compression of a Schauder basis for E. Schauder frames were further studied in [2, 9, 10, 12, 13]. The notion of an O-frame for an operator $T \in B(E, F)$ was introduced and studied by O. Reinov [11] as a generalization of Schauder frames. In the particular case when the operator T = I, the notion of an O-frame is equivalent to that of a Schauder frame.

The convergence (and mode of convergence) of series associated with redundant

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Feb. 18, 2017; Accepted: Jun. 4, 2017.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 42C15; Secondary 42A38.

Key words and phrases. Schauder frame, O-frame, Unconditional O-frame.

building blocks is important in applied mathematics. For example, the series associated with frames (with frame operator S), i.e., $f = \sum_{k=1}^{\infty} \langle f, S^{-1} f_k \rangle f_k = \sum_{k=1}^{\infty} \langle S^{-1} f, f_k \rangle f_k$ is unconditionally convergent. It would be interesting to know about various modes of convergence, of the series associated with an O-frame for a given operator, in a Banach space. In this paper, we obtain some results related to the mode of convergence of the series associated with an O-frame for an operator in Banach spaces.

We organize the paper as follows: In Section 2, we study O-frames for operators and give a sufficient condition for an O-frame to be boundedly complete. Also, we discuss O-frames in finite dimensional Banach spaces and obtain some new results. In Section 3, we study unconditional convergence of series associated with O-frames in Banach spaces and give a necessary condition for the unconditional convergence of the series related to the O-frame. In Section 4, we introduce the notion of an absolute O-frame for an operator in a Banach space and obtain a necessary and sufficient condition for it. Finally, we prove that if two operators have an absolute O-frame, then their product also has an absolute O-frame.

2. O-Frames for Operators

Throughout this paper E will denote a separable Banach space and E^* the dual space of E.

Han and Larson [7] introduced the notion of Schauder frames in Banach spaces. They gave the following definition:

Definition 2.1. Let E be a Banach space. A pair of sequences $(\{f_k\}, \{f_k^*\}) \subset E \times E^*$ is called a Schauder frame for E if each $f \in E$ has the representation

$$f = \sum_{k=1}^{\infty} f_k^*(f) f_k,$$
 (2.1)

where the series in (2.1) converges in the norm topology of E.

O. Reinov [11] introduced the notion of an O-frame for an operator and gave the following definition:

Definition 2.2. Let E and F be infinite dimensional separable Banach spaces over the scalar field $(\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C})$ and let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ and $T \in B(E, F)$ be given. We say that the pair $(\{f_k^*\}, \{g_k\})$ is an O-frame for the operator T if

$$Tf = \sum_{k=1}^{\infty} f_k^*(f)g_k, \text{ for all } f \in E,$$
(2.2)

where the series in (2.2) converges in the norm topology of F.

Remark 2.3. An O-frame $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ for T = I is a Schauder frame for E. Also, if $(\{f_k^*\}, \{f_k\})$ is a Schauder frame for E and $T \in B(E)$, then $(\{f_k^*\}, \{Tf_k\})$ is an O-frame for T. Indeed, if $(\{f_k^*\}, \{f_k\})$ is a Schauder frame for E, then for each $f \in E$, we have

$$f = \sum_{k=1}^{\infty} f_k^*(f) f_k,$$

and for all $T \in B(E)$ we have

$$Tf = \sum_{k=1}^{\infty} f_k^*(f)Tf_k$$
, for all $f \in E$.

Thus, the pair $(\{f_k^*\}, (\{Tf_k\}))$ is an O-frame for T.

In the following example, we see that a pair of sequences $(\{f_k^*\}, \{g_k\}) \subset E^* \times E$ that is not a Schauder frame can be an O-frame for some operator T.

Example 2.4. Let $E = F = L^2(\mathbb{N}, \mu)$ be the discrete signal spaces, where μ is counting measure. Let $\{\chi_k\}$ be the sequence of standard unit vectors in E. Define sequences $\{f_k^*\} \subset E^*$ and $\{g_k\} \subset F$ by

$$f_k^*(f) = \xi_k, \ f = \{\xi_i\} \in E \ (k \in \mathbb{N})$$

and $g_k = \chi_{k+1}$, $k \in \mathbb{N}$. Then, we can easily verify that $(\{f_k^*\}, \{g_k\})$ is not a Schauder frame for E. However, if we consider the shift operator $T: E \to E$ given by

$$T(f) = \{0, \xi_1, \xi_2, ..., \}, f = \{\xi_j\} \in E,$$

then, $T \in B(E)$ and for each $f \in E$ we have

$$Tf = \sum_{k=1}^{\infty} f_k^*(f)g_k.$$

Thus, the pair $(\{f_k^*\}, \{g_k\})$ is an O-frame for T.

Definition 2.5. [11] Let $T \in B(E, F)$ and let $C \geq 1$. We say that T has the C-BAP (C-bounded approximation property), if for every compact subset K of E and for each $\epsilon > 0$, there exists a finite rank operator $R : E \to F$ such that $||R|| \leq C||T||$ and $\sup_{f \in K} ||Rf - Tf|| \leq \epsilon$.

The operator T is said to have the BAP, if it has the C-BAP for some constant $C \in [1, \infty)$.

O. Reinov gave the following characterization of O-frames in terms of BAP.

Theorem 2.6. [11] Let E and F be Banach spaces and let $T \in B(E, F)$. Then the following statements are equivalent:

- (1) T has an O-frame.
- (2) T has BAP.
- (3) The operator T can be factored through a Banach space with a Schauder basis.

Recall that an operator $T \in B(E, F)$ is said to factor through a Banach space G if there exist operators $R \in B(E, G)$ and $S \in B(G, F)$ such that T = SR.

Definition 2.7. A sequence $\{f_k\} \subset E$ is said to be ω -linearly independent if $\{c_k\} \subset \mathbb{K}, \sum_{k=1}^{\infty} c_k f_k = 0 \text{ imply } c_k = 0, \text{ for all } k \in \mathbb{N}.$

Next, we state a result in the form of a lemma that will be used in the subsequent work.

Lemma 2.8. [6] Let $\{f_k\} \subset E$ and let $\sum_{k=1}^{\infty} f_k$ be a series of vectors in E. Then the following statements are equivalent:

(1) If $\sigma(.)$ is any permutation of \mathbb{N} , then $\sum_{k=1}^{\infty} f_{\sigma(k)} = f$, for all $f \in E$.

(2) For each $\epsilon > 0$, there is a finite set $\Omega \subset \mathbb{N}$ such that

$$\left\| f - \sum_{j \in \Omega_0} f_j \right\| < \epsilon,$$

whenever $\Omega_0 \subset \mathbb{N}$ is a finite set satisfying $\Omega \subset \Omega_0$.

Definition 2.9. An O-frame $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ for an operator T is said to be boundedly complete if for each $\phi^{**} \in E^{**}$, the series $\sum_{k=1}^{\infty} \phi^{**}(f_k^*)g_k$ converges in F.

In the following result, we give a sufficient condition under which an O-frame is boundedly complete:

Theorem 2.10. Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be an O-frame for T such that

$$\sup_{n} \left| \left| \sum_{k=1}^{n} \alpha_{k} f_{k}^{*}(f) g_{k} \right| \right| < \infty \Rightarrow \sum_{k=1}^{\infty} \alpha_{k} f_{k}^{*}(f) g_{k} \quad converges \ in \ F,$$

where $\{\alpha_k\}$ is any sequence of scalars and $f \in E$. Then, $(\{f_k^*\}, \{g_k\})$ is a boundedly complete O-frame for T.

Proof. Let $\phi^{**} \in E^{**}$. If $0 \neq \phi^{**} \in [f_k^*]^{\perp}$, then $\phi^{**}(f_k^*) = 0$, for all $k \in \mathbb{N}$. So, the series $\sum_{k=1}^{\infty} \phi^{**}(f_k^*) g_k$ converges in F. Suppose that $\phi^{**} \notin [f_k^*]^{\perp}$. Define $T_n : E \to F$ by

$$T_n f = \sum_{k=1}^n f_k^*(f) g_k, \quad f \in E.$$

Let T_n^* be the adjoint operator of T_n . Then

$$(T_n^*(g^*))(f) = \Big(\sum_{k=1}^n g^*(g_k)f_k^*\Big)(f), \quad g^* \in F^*, f \in E.$$

This gives

$$T_n^*(g^*) = \sum_{k=1}^n g^*(g_k) f_k^*, \quad g^* \in F^*, n = 1, 2, 3, \dots$$

Further, for every $g^* \in F^*$, we have

$$(T_n^{**}(\phi^{**}))(g^*) = \phi^{**}(T_n^*(g^*)) = g^* \Big(\sum_{k=1}^n \phi^{**}(f_k^*)g_k\Big).$$

Therefore, we obtain

$$T_n^{**}(\phi^{**}) = \pi \Big(\sum_{k=1}^n \phi^{**}(f_k^*)g_k\Big),$$

where π is the canonical mapping of F into F^{**} . Since π is an isometry, it follows that

$$\left| \left| \sum_{k=1}^{n} \phi^{**}(f_k^*) g_k \right| \right| = \left| \left| \pi \left(\sum_{k=1}^{n} \phi^{**}(f_k^*) g_k \right) \right| \right|$$
$$= \|T_n^{**}(\phi^{**})\|$$
$$\leq \|T_n\| \|\phi^{**}\|.$$

This gives, $\sup_{n} \left| \left| \sum_{k=1}^{n} \phi^{**}(f_k^*) g_k \right| \right| < \infty$. Without loss of generality we may assume that $f_k^* \neq 0$, for all $k \in \mathbb{N}$. Then, there exists a non-zero $f \in E$ such that $f_k^*(f) \neq 0$, for all $k \in \mathbb{N}$. Choose $\{\alpha_k\} \subset \mathbb{K}$ (where \mathbb{K} is the scalar field) such that $\phi^{**}(f_k^*) = \alpha_k f_k^*(f)$, $k = 1, 2, 3, \ldots$ Then, $\sup_{n} \left| \left| \sum_{k=1}^{n} \alpha_k f_k^*(f) g_k \right| \right| < \infty$. Therefore, by hypotheses, $\sum_{k=1}^{\infty} \phi^{**}(f_k^*) g_k$ converges in F. Hence $(\{f_k^*\}, \{g_k\})$ is a boundedly complete O-frame for T.

Now, we discuss O-frames in finite dimensional Banach spaces.

Theorem 2.11. If E and F are finite dimensional Banach spaces, then every operator $T \in B(E, F)$ has an O-frame.

Proof. Let E and F be finite dimensional Banach spaces. Then, there exist sequences $\{h_k^*\}_{k=1}^n \subset E^*$ and $\{h_k\}_{k=1}^n \subset E$ such that

$$f = \sum_{k=1}^{n} h_k^*(f)h_k$$
, for all $f \in E$.

Let $T: E \to F$ be a bounded linear operator. Define sequences $\{g_n\} \subset F$ and $\{f_n^*\} \subset E^*$ as follows:

$$g_{tn^2+ln+\xi} = \frac{1}{2^{t+1}n} Th_{\xi}$$

$$f_{tn^2+ln+\xi}^* = h_{\xi}^*$$

$$\left(t = 0, 1, 2, ...; l = 0, 1, ..., n-1; \xi = 1, 2, ..., n \right).$$

Then, for each $f \in E$ we have

$$\sum_{k=1}^{\infty} f_k^*(f)g_k = \sum_{t=0}^{\infty} \sum_{l=0}^{n-1} \sum_{\xi=1}^n f_{tn^2+ln+\xi}^*(f)g_{tn^2+ln+\xi}$$

$$= \sum_{t=0}^{\infty} n \sum_{\xi=1}^n \frac{1}{2^{t+1}n} h_{\xi}^*(f)Th_{\xi}$$

$$= T\left(\sum_{t=0}^{\infty} n \sum_{\xi=1}^n \frac{1}{2^{t+1}n} h_{\xi}^*(f)h_{\xi}\right)$$

$$= T\left(\sum_{\xi=1}^n h_{\xi}^*(f)h_{\xi}\right)$$

$$= Tf.$$

Hence $(\{f_k^*\}, \{g_k\})$ is an O-frame for T.

Next, we discuss a special type of perturbation of an O-frame for $T \in B(E, F)$ and obtained a sufficient condition for the perturbed system to be an O-frame for T.

Theorem 2.12. Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be an O-frame for $T \in B(E, F)$. For a given $\epsilon > 0$ and a fixed $f_0 \in E$, let $\{h_k^*\} \subset E^*$ and $\{d_k\} \subset F$ be given by

$$h_k^* = \frac{1}{|f_k^*(f_0)| + \epsilon} f_k^* - \frac{1}{|f_{k+1}^*(f_0)| + \epsilon} f_{k+1}^*, \text{ for all } k \in \mathbb{N}$$

and

$$d_k = \sum_{n=1}^k (|f_n^*(f_0)| + \epsilon) g_n, \text{ for all } k \in \mathbb{N}.$$

If
$$\lim_{n\to\infty} \frac{f_{n+1}^*(f)}{|f_{n+1}^*(f_0)| + \epsilon} d_n = 0$$
, then $(\{h_k^*\}, \{d_k\})$ is an O-frame for T.

Proof. By hypotheses, we have

$$\lim_{n \to \infty} \sum_{k=1}^{n} h_k^*(f) d_k = \lim_{n \to \infty} [h_1^*(f) d_1 + h_2^*(f) d_2 + \dots h_{n-1}^*(f) d_{n-1} + h_n^*(f) d_n]$$

$$= \lim_{n \to \infty} \left[\frac{f_1^*(f)}{|f_1^*(f_0)| + \epsilon} (|f_1^*(f_0)| + \epsilon) g_1 - \frac{f_2^*(f)}{|f_2^*(f_0)| + \epsilon} (|f_1^*(f_0)| + \epsilon) g_1 + \frac{f_2^*(f)}{|f_2^*(f_0)| + \epsilon} \{ (|f_1^*(f_0)| + \epsilon) g_1 + (|f_2^*(f_0)| + \epsilon) g_2 \}$$

$$- \frac{f_3^*(f)}{|f_3^*(f_0)| + \epsilon} \{ (|f_1^*(f_0)| + \epsilon) g_1 + (|f_2^*(f_0)| + \epsilon) g_2 \}$$

$$\dots + \frac{f_n^*(f)}{|f_n^*(f_0)| + \epsilon} d_n - \frac{f_{n+1}^*(f)}{|f_{n+1}^*(f_0)| + \epsilon} d_n]$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} f_k^*(f) g_k - \lim_{n \to \infty} \frac{f_{n+1}^*(f)}{|f_{n+1}^*(f_0)| + \epsilon} d_n$$

$$= T f$$

Hence $(\{h_k^*\}, \{d_k\})$ is an O-frame for T.

3. Unconditional convergence associated with O-frames

In this section, we study the notion of an unconditional O-frame defined by Reinov [11]. We begin with the following definition:

Definition 3.1. [11] Let E and F be infinite dimensional separable Banach spaces over the scalar field ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}). Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ and $T \in B(E, F)$. We say that the pair $(\{f_k^*\}, \{g_k\})$ is an UO-frame (unconditional O-frame) for T if

$$Tf = \sum_{k=1}^{\infty} f_k^*(f)g_k, \text{ for all } f \in E,$$
(3.1)

where the series in (3.1) converges unconditionally for each $f \in E$ in the norm topology of F.

Regarding the existence of an unconditional O-frame for T, we have the following example:

Example 3.2. Let $E = F = L^2(\mathbb{N}, \mu)$ be discrete signal spaces, where μ is counting measure. Let $\{\chi_k\}$ be the sequence of standard unit vectors in E. Define sequences $\{f_k^*\} \subset E^*$ and $\{g_k\} \subset E$ by

$$f_k^*(f) = \frac{\xi_k}{k}, \quad f = \{\xi_k\} \in E \ (k \in \mathbb{N})$$

and

$$g_k = \chi_k, \quad (k \in \mathbb{N}).$$

Consider the operator $T: E \to E$ given by

$$T(f) = \{\xi_1, \frac{\xi_2}{2}, \frac{\xi_3}{3}, ..., \}, f = \{\xi_j\} \in E.$$

Then, $T \in B(E)$ and for each $f \in E$ we have

$$Tf = \sum_{k=1}^{\infty} f_k^*(f)g_k.$$

Hence the pair $(\{f_k^*\}, \{g_k\})$ is an O-frame for T. Also, the O-frame $(\{f_k^*\}, \{g_k\})$ is unconditional. Indeed, let $f = \{\xi_k\} \subset E$. Then, for $n, p \in \mathbb{N}$, we have

$$\left\| \sum_{k=n}^{n+p} f_k^*(f) g_k \right\|_2^2 = \sum_{k=n}^{n+p} \left| \frac{\xi_k}{k} \right|^2.$$

Since the series $\sum_{k=1}^{\infty} |\frac{\xi_k}{k}|^2$ converges in \mathbb{K} , the series $\sum_{k=1}^{\infty} f_k^*(f)g_k$ converges unconditionally. Hence $(\{f_k^*\}, \{g_k\})$ is an UO-frame for T.

Next, we give an example of an O-frame which is not an unconditional O-frame.

Example 3.3. Let $E = F = (c_0, ||.||_{\infty})$, where $c_0 = \{\{\alpha_n\} \subset \mathbb{C} : \lim_{n \to \infty} \alpha_n \to 0\}$. Define $\{f_k^*\} \subset E$ by

$$f_k^*(f) = (0, 0, ..., \xi_k - \xi_{k+1}, 0, 0..., 0), \quad f = \{\xi_k\} \quad (k \in \mathbb{N}).$$

Take $g_k = \sum_{i=1}^k \mathcal{X}_{i+1}$, where $\{\mathcal{X}_i\}$ is the sequence of canonical unit vectors. Consider the operator $T: E \to E$ given by

$$T(f) = \{0, \xi_1, \xi_2, \xi_3, ..., \underbrace{\xi_n}_{(n+1)^{\text{th place}}}, 0, 0, 0, ...\}, f = \{\xi_n\} \in E.$$

Then, $T \in B(E)$ and for each $f \in E$ we have

$$Tf = \sum_{k=1}^{\infty} f_k^*(f)g_k.$$

Thus, the pair $(\{f_k^*\}, \{g_k\})$ is an O-frame for T. In order to show that $(\{f_k^*\}, \{g_k\})$ is not unconditional, let $f \in E$ and $n, p \in \mathbb{N}$. Then

$$\left\| \sum_{k=n}^{n+p} f_k^*(f) g_k \right\|_{\infty} = \sup_{n \le l \le n+p} \left| \sum_{k=l}^{n+p} f_k^*(f) \right|.$$

Take $f_0 = \{0, \frac{1}{2}, 0, \frac{1}{3}, 0, ...\}$. Then, for this f_0 , the series $\sum_{k=1}^{\infty} f_k^*(f_0)$ is conditionally convergent. Therefore $(\{f_k^*\}, \{g_k\})$ is not an UO-frame for T.

Next, we give a necessary condition for an unconditional O-frame for T.

Theorem 3.4. Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be an UO-frame for T. Then, for every $f \in E$

$$\lim_{n \to \infty} \sup_{g \in F^*, ||f|| \le 1} \sum_{i=n+1}^{\infty} |f_k^*(f)| |g(g_k)| = 0.$$

Proof. Let $\epsilon > 0$ be given. Since $(\{f_k^*\}, \{g_k\})$ is an UO-frame for T, by Lemma 2.8, there exists a finite subset d of $\mathbb N$ such that

$$||Tf - \sum_{i \in d'} f_k^*(f)g_i|| < \frac{\epsilon}{4}$$
, for all finite subsets d' of \mathbb{N} with $d' \subset d$. (3.2)

Define sets

$$d_1(f) = \{i \in \{n+1, n+2, ..., n+m\} : \text{Real } g^*(g_i)f_i^*(f) \ge 0\}$$

and

$$d_2(f) = \{i \in \{n+1, n+2, ..., n+m\} : \text{Real } g^*(g_i)f_i^*(f) < 0\},$$

where $n \ge n_0 = \max_{i \in d'} i, m \ge 1$ and $g^* \in F^*$ is such that $||g^*|| \le 1$. Then, by using (3.2), we have

$$\sum_{i=n+1}^{n+m} |\text{Real } g^*(g_i) f_i^*(f)| = \sum_{j=1}^2 \sum_{i \in d_j(f)} |\text{Real } g^*(g_i) f_i^*(f)|$$

$$= \sum_{j=1}^2 \left| \text{Real } g^* \Big(\sum_{i \in d_j(f)} f_i^*(f) g_i \Big) \right|$$

$$\leq \sum_{j=1}^2 \left| g^* \Big(\sum_{i \in d_j(f)} f_i^*(f) g_i \Big) \right|$$

$$\leq \sum_{j=1}^2 ||g^*|| \left| \left| \sum_{i \in d_j(f)} f_i^*(f) g_i \right| \right|$$

$$\leq \sum_{j=1}^2 \left(\left| \left| Tf - \sum_{i \in d_j(f) \cup d} f_i^*(f) g_i \right| \right| + \left| \left| Tf - \sum_{i \in d_j(f) \cup d} f_i^*(f) g_i \right| \right| \right)$$

$$< \frac{\epsilon}{2}, \text{ for all } f \in E.$$

Similarly, we can show that

$$\sum_{i=n+1}^{n+m} |\operatorname{Im} g^*(g_i) f_i^*(f)| < \frac{\epsilon}{2}, \text{ for all } f \in E.$$

Hence

$$\lim_{n \to \infty} \sup_{g \in F^*, ||f|| \le 1} \sum_{i=n+1}^{\infty} |f_k^*(f)| |g(g_k)| = 0, \quad f \in E.$$

Next, we obtain a condition on $T \in B(E, F)$ under which an O-frame for T is a Schauder frame for F.

Proposition 3.5. Let E and F be separable Banach spaces and let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be an O-frame for $T \in B(E, F)$. If T is invertible, then $(\{T^{-1^*}f_k^*\}, \{g_k\})$ is a Schauder frame for F. Moreover, if $(\{f_k^*\}, \{g_k\})$ is an unconditional O-frame for $T \in B(E, F)$, then $(\{T^{-1^*}f_k^*\}, \{g_k\})$ is an unconditional Schauder frame for F.

Proof. For $g \in F$, we have

$$g = \sum_{k=1}^{\infty} f_k^*(T^{-1}g)g_k$$
$$= \sum_{k=1}^{\infty} (T^{-1})^* f_k^*(g)g_k.$$

Hence $(\{T^{-1}^*f_k^*\}, \{g_k\})$ is a Schauder frame for F. Moreover, the series $\sum_{k=1}^{\infty} (T^{-1})^* f_k^*(f) g_k$ converges unconditionally as $(\{f_k^*\}, \{g_k\})$ is an unconditional O-frame for $T \in B(E, F)$. Thus, $(\{T^{-1}^*f_k^*\}, \{g_k\})$ is an unconditional Schauder frame for F.

4. Absolute O-frames

In this section, we define and study absolute O-frames. We begin with the following definition:

Definition 4.1. Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be an O-frame for $T \in B(E, F)$. We say that the pair $(\{f_k^*\}, \{g_k\})$ is an absolute O-frame for T if the series

$$\sum_{k=1}^{\infty} f_k^*(f)g_k,$$

converges absolutely for each $f \in E$. That is, $\sum_{k=1}^{\infty} ||f_k^*(f)g_k||$ converges in \mathbb{R} , for all $f \in E$.

Existence of an absolute O-frame is ensured by the following example:

Example 4.2. Let $E = F = L^1(\mathbb{N}, \mu)$ be discrete signal spaces, where μ is counting measure. Let $\{\chi_k\}$ be the sequence of standard unit vectors in E. Define sequences $\{f_k^*\} \subset E^*$ and $\{g_k\} \subset E$ by

$$\begin{cases} f_1^*(f) = \xi_1, \\ f_2^*(f) = f_3^*(f) = \xi_2, \\ f_4^*(f) = f_5^*(f) = f_6^*(f) = \xi_3, \\ \dots \end{cases}$$

and

$$\begin{cases}
g_1 = 0, \\
g_2 = g_3 = \frac{\chi_2}{2}, \\
g_4 = g_5 = g_6 = \frac{\chi_3}{3}, \\
\dots
\end{cases}$$

Consider the operator $T: E \to E$ given by

$$T(f) = \{0, \xi_2, \xi_3, ..., \}, \ f = \{\xi_j\} \in E.$$

Then, $T \in B(E)$ and for each $f \in E$, we have

$$Tf = \sum_{k=1}^{\infty} f_k^*(f)g_k.$$

Thus, the pair $(\{f_k^*\}, \{g_k\})$ is an O-frame for T. Also, the O-frame $(\{f_k^*\}, \{g_k\})$ is absolute. Indeed, let $f = \{\xi_k\} \subset E$. Then

$$\sum_{k=1}^{\infty} \left| \left| f_k^*(f) g_k \right| \right| = \sum_{k=2}^{\infty} |\xi_k|.$$

Since the series $\sum_{k=2}^{\infty} |\xi_k|$ is convergent, the series $\sum_{k=1}^{\infty} f_k^*(f)g_k$ converges absolutely.

Next, we define a positively confined O-frame for T as follows:

Definition 4.3. Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be an O-frame for $T \in B(E, F)$. Then, the pair $(\{f_k^*\}, \{g_k\})$ is said to be

(1) pre-positively confined, if there exist strictly positive constants α and β such that

$$\alpha \le ||g_k|| \le \beta$$
, for all $k \in \mathbb{N}$,

(2) post-positively confined, if there exist strictly positive constants α^0 and β^0 such that

$$\alpha^0 \le ||f_k^*|| \le \beta^0$$
, for all $k \in \mathbb{N}$,

(3) positively confined, if it is both pre and post-positively confined.

The following result provides a necessary and sufficient condition for a prepositively confined O-frame for T to be absolute.

Theorem 4.4. Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be a pre-positively confined O-frame for T. Then, the O-frame $(\{f_k^*\}, \{g_k\})$ is absolute if and only if the series $\sum_{k=1}^{\infty} |f_k^*(f)|$ converges for all $f \in E$.

Proof. Since the O-frame $(\{f_k^*\}, \{g_k\})$ is pre-positively confined, there exist positive constants α and β such that $\alpha \leq \|g_k\| \leq \beta$, for all $k \in \mathbb{N}$. Suppose

that $(\{f_k^*\}, \{g_k\})$ is absolute. Then, for all $f \in E$ we have

$$\sum_{k=1}^{\infty} |f_k^*(f)| = \sum_{k=1}^{\infty} \left| \left| \frac{f_k^*(f)g_k}{\|g_k\|} \right| \right|$$

$$\leq \frac{1}{\alpha} \sum_{k=1}^{\infty} \left| \left| f_k^*(f)g_k \right| \right| < \infty.$$

Conversely, suppose that $\sum_{k=1}^{\infty} |f_k^*(f)|$ converges for all $f \in E$. Then

$$\sum_{k=n}^{m} \left| \left| f_k^*(f)g_k \right| \right| = \sum_{k=n}^{m} \left| f_k^*(f) \right| \|g_k\|$$

$$\leq \beta \sum_{k=n}^{m} \left| f_k^*(f) \right| \to 0 \quad \text{as} \quad m, n \to \infty.$$

Therefore $\sum_{k=1}^{\infty} \left| \left| f_k^*(f) g_k \right| \right|$ converges in \mathbb{R} . Hence the O-frame $(\{f_k^*\}, \{g_k\})$ is absolute.

Next, we give a necessary and sufficient condition for a post-positively confined O-frame for T^* to be absolute.

Theorem 4.5. Let $(\{g_k\}, \{f_k^*\}) \subset E^* \times F$ be a post-positively confined O-frame for T^* . Then, the O-frame $(\{g_k\}, \{f_k^*\})$ is absolute if and only if the series $\sum_{k=1}^{\infty} |g^*(g_k)|$ converges for all $g^* \in F^*$.

Proof. It can be worked out on the lines of Theorem 4.4.

Next, we prove the following result related to an absolute O-frame satisfying certain conditions.

Theorem 4.6. Let $(\{f_k^*\}, \{g_k\}) \subset E^* \times F$ be an absolute O-frame for $T \in B(E, F)$. If $\{g_k\}$ is ω -linearly independent and T is surjective, then there exists a topological isomorphism of $\ell^1(\mathbb{N})$ onto F.

Proof. Define $\Psi : \ell^1(\mathbb{N}) \to F$ by

$$\Psi(\{\xi_k\}) = \sum_{k=1}^{\infty} \frac{\xi_k g_k}{\|g_k\|}, \quad \{\xi_k\} \in \ell^1(\mathbb{N}).$$

Then, for all $\{\xi_k\} \in \ell^1(\mathbb{N})$ we have

$$\|\Psi(\{\xi_k\})\| = \left\| \sum_{k=1}^{\infty} \frac{\xi_k g_k}{\|g_k\|} \right\|$$
$$\leq \sum_{k=1}^{\infty} |\xi_k| < \infty.$$

Therefore, Ψ is a bounded linear operator such that $\operatorname{Ker}\Psi=\{0\}$ (where $\operatorname{Ker}\Psi$ denotes the kernel of Ψ). This follows from the fact that $\{g_k\}$ is ω -linearly independent. To show that ψ is onto, let $g \in F$ be any arbitrary element. Since

T is onto, there is an $f \in E$ such that Tf = g. Choose $\alpha_k = f_k^*(f) ||g_k||$, for all $k \in \mathbb{N}$. Since $(\{f_k^*\}, \{g_k\})$ is absolute, $\{\alpha_k\} \in \ell^1(\mathbb{N})$. Also, we have

$$\Psi(\{\alpha_k\}) = \sum_{k=1}^{\infty} \frac{\alpha_k g_k}{\|g_k\|}$$

$$= \sum_{k=1}^{\infty} \frac{f_k^*(f) \|g_k\| g_k}{\|g_k\|}$$

$$= g.$$

Thus Ψ is onto. Therefore, using Open Mapping Theorem, we conclude that ψ is a topological isomorphism of $\ell^1(\mathbb{N})$ onto F.

If T_1 and T_2 are bounded linear operators, then it is easy to verify that their product $T_1 \times T_2$ is also a bounded linear operator. The following result shows that if T_1 and T_2 are bounded linear operators having an absolute O-frame, then their product $T_1 \times T_2$ with a suitable norm also has an absolute O-frame.

Theorem 4.7. Let E_1, E_2, F_1 and F_2 be Banach spaces. Let $(\{f_k^*\}, \{g_k\}) \subset E_1^* \times F_1$ and $(\{p_k^*\}, \{q_k\}) \subset E_2^* \times F_2$ be absolute O-frames for operators $T_1 \in B(E_1, F_1)$ and $T_2 \in B(E_2, F_2)$, respectively. Then, $T_1 \times T_2$ also has an absolute O-frame.

Proof. Let $h = (f, g) \in E_1 \times E_2$, where $f \in E_1$ and $g \in E_2$. Define $\{h_k\} \subset F_1 \times F_2$ and $\{h_k^*\} \subset (E_1 \times E_2)^*$ by

$$\begin{cases} h_{2k} = (g_k, 0) \\ h_{2k-1} = (0, q_k) \end{cases}$$

and

$$\begin{cases} h_{2k}^*(f,g) = f_k^*(f) \\ h_{2k-1}^*(f,g) = p_k^*(g). \end{cases}$$

Also, define $T_1 \times T_2 : E_1 \times E_2 \to F_1 \times F_2$ by

$$(T_1 \times T_2)(f,g) = (T_1 f, T_2 g).$$

Then, for each $h \in E_1 \times E_2$ we have

$$\sum_{k=1}^{\infty} h_k^*(f,g)h_k = \sum_{k=1}^{\infty} h_{2k}^*(f,g)h_{2k} + \sum_{k=1}^{\infty} h_{2k-1}^*(f,g)h_{2k-1}$$

$$= \left(\sum_{k=1}^{\infty} f_k^*(f)g_k, \sum_{k=1}^{\infty} p_k^*(g)q_k\right)$$

$$= (T_1f, T_2g)$$

$$= (T_1 \times T_2)(h).$$

Thus $(\{h_k^*\}, \{h_k\})$ is an O-frame for $T_1 \times T_2$. Since $(\{f_k^*\}, \{g_k\}) \subset E_1^* \times F_1$ and $(\{p_k^*\}, \{q_k\}) \subset E_2^* \times F_2$ are absolute O-frames for operators $T_1 \in B(E_1, F_1)$ and $T_2 \in B(E_2, F_2)$, respectively, the series $\sum_{k=1}^{\infty} \|f_k^*(f)g_k\|$ converges for each $f \in E_1$ and the series $\sum_{k=1}^{\infty} \|p_k^*(f)q_k\|$ converges for each $f \in E_2$. Thus, by the definition of the system $(\{h_k^*\}, \{h_k\})$, the series $\sum_{k=1}^{\infty} \|h_k^*(f)h_k\|$ converges for all $h \in E_1 \times E_2$. Hence $(\{h_k^*\}, \{h_k\})$ is an absolute O-frame for $T_1 \times T_2$.

Finally, as an application, we give the following result.

Corollary 4.8. If T_1 and T_2 are bounded linear operators having BAP, then the product $T_1 \times T_2$ with a suitable norm on the underlying space also has BAP.

Proof. If T_1 and T_2 have BAP, then by Theorem 2.6, T_1 and T_2 both have an Oframe. Therefore, by Theorem 4.7, $T_1 \times T_2$ has an Oframe. Hence by Theorem 2.6 again, $T_1 \times T_2$ has bounded approximation property.

Acknowledgments. The authors would like to thank the referee(s) for his/her critical remarks and suggestions for the improvement of the paper.

References

- 1. P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no.2, 129–201.
- 2. P. G. Casazza, S. J. Dilworth, E. Odell, Th. Schlumprecht, and A. Zsak, *Coefficient quantization for frames in Banach spaces*, J. Math. Anal. Appl. **348** (2008), no. 1, 66–86.
- 3. O. Christensen, An introduction to frames and riesz bases, Birkhäuser, Boston, 2016.
- 4. I Daubechies, A. Grossmann, and Y. Meyer, *Painless nonorthogonal expansion*, J. Math. Phys. **27** (1986), no. 5, 1271–1283.
- 5. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
- 6. M. Fabián, P. Habala, P. Hájek, V.M. Santalucia, J. Pelant, and V. Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 8. Springer-Verlag, New York, 2001.
- 7. D. Han and D. R. Larson, Frames, bases and group representations, Memo. Amer. Math. Soc. 147 (2000), no. 697, x+94 pp.
- 8. C. Heil, A basis theory primer, Birkhäuser, Boston, 2011.
- 9. S. K. Kaushik, S. K. Sharma, and K. T. Poumai, On Schauder frames in conjugate Banach spaces, J. Math. 2013, Art. ID 318659, 4 pp.
- K. T. Poumai, On some classes of Schauder frames in Banach spaces, Int. J. Wavelets, Multiresolut Inf. Process. 12 (2014), no. 2,1450022.
- 11. O. Reinov, *O-frame for operators in Banach spaces*, Poincare J. Anal. Appl. **2015**, no. 2, 65–75.
- 12. R. Liu, On shrinking and boundedly complete Schauder frames of Banach spaces, J. Math. Anal. Appl. **365**, no. 1, 385–398.
- R. Liu and B. Zheng, A characterization of Schauder frames which are near-Schauder bases,
 J. Fourier Anal. Appl. 16 (2010), no. 5, 791–803.

¹DEPARTMENT OF MATHEMATICS, INDRAPRASTHA COLLEGE FOR WOMEN, UNIVERSITY OF DELHI, DELHI 110054, INDIA.

E-mail address: shekhar.hilbert@gmail.com

²Department of Mathematics, Department of Mathematics, Kirori Mal College, University of Delhi, Delhi 110 007, India.

E-mail address: shikk2003@yahoo.co.in