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ON THE BEHAVIOR AT INFINITY OF CERTAIN INTEGRAL
OPERATOR WITH POSITIVE KERNEL
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ABSTRACT. Let a > 0 and v > 0. We consider integral operator of the form
1 ¥ y
Go, F(0)i= gy [ (1= D16, @)Wy, > .
’ V@) Jo o w
This paper is devoted to the study of the infinity behavior of G, . We also
provide separately result on the similar problem in the weighted Lebesgue
space.

1. INTRODUCTION
Let « >0, v >0 and

Go, /(1) = 5

+()

[a=Yr 0wy a0 @
where .

w@) = [ (=D
We denote by £ the family of positive nondecreasing functions {¢,(y)} with

respect, to y such that
/ 6,0y < oo.
ICR :=(0,+00)
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If @ > 0 and ¢,(x) = 1, the operator (1.1) coincides with the classical Riemann—
Liouville fractional integral operator ([9]). Also, we will see (1.1) as well-known
Hardy operator denoting v = 1 and ¢,(z) = 1 ([3]). In the last decades a
considerable attention of researchers was attracted to the study of the mapping
properties of integral operators such as Hardy operators, Riemann—Liouville op-
erators etc, in weighted Lebesgue spaces (see, e.g., monographs [4], [5], [11] and
papers [1], [2], [6], [7], [8], [10], [12]). Hardy inequality is one of the main tools
to study other integral operators from the boundedness viewpoint (see e.g., [4],
[11]). In this paper, the problem of the approximation of the identity for (1.1)
have been studied in the L? sense and in the almost everywhere sense i.e. how
can we write the following equality?

lim G, f(2) = /(). (1.2)

When a € (0,1), we illustrate the convergence of (1.2) is not established. The
other sections of our work are devoted to the proof of (1.2) for @ > 1 and the
similar problem in the weighted Lebesgue space setting. It seems that the results
of this work can be applied to a wider class of integral operators including much
broader class of kernels. We assume throughout the paper R, := (0, +00) and
{¢,(x)} € £ The symbol p' := -£5,p # 1 denotes the conjugate numbers of p,
and the symbol [J marks the end of a proof.

2. MAIN RESULTS

2.1. Divergence of G, for a € (0,1). The following example illustrate this
fact. Let us begin with a few basic definitions: The gamma function is defined
for {z€ C,z#0,—1,-2,...} to be:

['(2) :/ s*le ds.
0

Remember some important characteristics of the gamma function:

1. For z € {N\ 0}, ['(2) = 2!,

2. T(z+1) =z2I(2).

The beta function is defined for {z,y € C, Re(z) > 0, Re(y) > 0} to be:

Bz, y) = /0 11— )L,

Additionally,
['(2)T(y)

B(r,y) = Tty

We have
X y o
‘I}’Y(x) = / (1 - E) 1¢’Y(y)dy Q€ (07 1)77 >0,z > 0.
0

Let ¢, () = 27, then by the substitution y := ux

T 1
/ (1-— g)o"lgﬂdy = / (1 —u)* 2" du
0 0

i
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1
_ I'(y+ DI (a)
:ﬁ“/ I —w)* " du =28y +1,a) =" L—F L = P,
Stirling’s formula lim,, . \/FZ—'(g)n = 1 allows to replace factorials with their

approximation, so when v — oo,
L(y+1) = /2myye™”
Ty +a+1)~2r(y+a)(y+a) e
C(y+ DI'(«) V21yy7e T () (1)O‘F( )
s ~ |- ).

Dlr+a+1) = V/a(y+a)(y +ayteee 7y
Hence when v — oo

then

1 «
P, ~ 27! (—) ().
g

Remark 2.1. Let v = a. Assume that 0 < § < % then

z—0
Yyv—1 1
1__’Y 'Yd >
| a=rtyay =g

2.2. convergence almost everywhere of G, for o > 1. We capitalize on the
fact that any nondecreasing function has only a countable number of discontinu-
ities, and they are all jump discontinuities. So we can change any such function
into such a function that is also right-continuous by changing its values at a
countable number of points. For all v > 0, let ¢/ represent ¢, changed in such a
way to make ¢/, right-continuous. We do this by letting ¢’ (z1) = lim, .+ o~ (2)
for all z; > 0. We claim that ¢, then satisfies every hypothesis we make for ¢.,.

1. Certainly, gb; remains positive and nondecreasing on I C R, := (0, 4+00),
remains in L'(I) for any bounded subinterval I of (0,400), and [ ¢/, = [ &,.

2. Let ug € (0,1),7 > 0. Assume up < uy < 1. Then 4¢! (upz) < ¢, (u1) so

lim inf
G

/
0 < limsup ¢7(UOI) < lim ¢, (1) =0.
Yoo () T e W(x)
Therefore we assume also
¢7(u0x) _

lim

1=o0 W, (2)
In the next theorem we will prove the equality 1.2 at any Lebesgue point of f.
So we need some preliminaries.

(2.1)

Definition 2.2. A Lebesgue point of an integrable function f on R, is a point
x € R, satisfying

1 x
Ve>0, 300 >0 : 0<d<dy :>5/ lf(y) — f(z)|dy < e.
z—0

Lemma 2.3. [13] Let f be a monotone increasing function which is continuous
on the right. Then there is a unique Borel measure p such that for all a and b we
have

pu(a,b] = f(b) — f(a).
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Theorem 2.1. If f € L. (Ry). Let ¢, be right-continuous. Then at any

loc

Lebesgue point v € Ry of f we have
lim

1 ’ Y a—1 B
Voo U (2) /0 (1 =) (y)[f(y) - f2)ldy = 0.

Proof. According to the introduction of the section 2.2 for each v > 0 without a
loss of generality we assume that ¢.(y) is right-continuous on y. Then

\1/71;(;) /Om(l - %V*l%(y) £ (y) — f(x)| dy
N \Ifylx) /OH(l - %)“‘1%(@/) [f(y) = f(2)] dy
N \1/71(93) /:5(1 - %)a_l%(’y) 1f(y) = f(z)] dy.
For 0< & < b,
\I/,le) /:5(1 D)2 16, y) 1 () — F ()] dy
— o [ e = 8)15) - St dy

_|_

Using Lemma 2.3,

e (x— ) [* -
v, (z) /H(x —y)* | fly) = f(z)|dy

S, =

t ao (e [ de0) 1) - sl

Since x is a Lebesgue point of f then

Ve>0, 300 >0 : 0<d<dy é%/ (x—y)* Hfly) — flo)|dy < e,
z—0

SO

(x—0) [* a-1
5. = T [ =t i - 1) dy

OAD’Y<:C> o \I,“/<x> z—0,x]
e (o (x—0)5~ 1 N
- o ( ol = a/(w_m](x—t) d@(t))
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For a > 1 we have (z —y)* '~ 6“1+ (z -6 —y)* !, so

11—« =0
imsup g / (& — )60 ) £ () — F(2)|dy
' xl—aé‘a—l =0
~ s T / . 1f () — (@) dy
11—« x—4
- timsp s / (=5 — )" 6. () [ () — F()|dy

e Jl + JQ.

Since ¢, (x) is nondecreasing function,

l—a Sa—1 _
J < limsupx 0 Oyl

é‘) )
maup == )~ s

rl=a(y — 51 T — x—4
B <t TR 2D [ ) folan

applying (2.1), then

1 T—0 y
lim sup / 1— 5o (y) | f(y) — f(z)| dy = 0.
mawp g [ (0= 2t 150) - fi)
Since >0 was arbitrary,

1
lim

T T -
Voo U (2) /0 (1- ;) oy (y) | f(y) — f(x)|dy = 0.

O

2.3. Convergence of G, in L}.(0,a). In approximation theory and also in the
theory of partial differential equations, the spaces with weights are of interest.
Let w be a weight, that is, a measurable almost everywhere positive function on
a measurable set 2 C R;. Let 0 < p < co. Then LP(€2,w) denotes the set of all
measurable functions f defined almost everywhere on €2 and such that

1

[ fllzz ) = (/Q (w(z) If(x)l)pdx)p < .

The space LP(Q),w) is complete and also separable for 0 < p < oc.

Theorem 2.2. Assume that

1. a>0,

2. there exists ®,(u) such that for all w € (0,1) the inequality :'fﬁ:—((zjc:)ﬁ) < &, (u)
holds for all xz € (0,a),

8. limsup, ., [|[®]|10,1) = C < o0,

4. for all >0 and 0 < ¢ <1, limy_oo [u™PP ()| £1(0,c) = 0.

Then for f € L2.(0,a),1 <p < oo,a > 1,

: 1 ! a—1
i s | = 20,00y = @)z, 00 = 0

y—00
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Proof. For ~y sufficiently large and for r,z € (0,a) and applying Hélder’s inequal-
ity, we obtain

/Or“ = )1, (y) £ (9)ldy
< ([ (a-2isn) ) ([ weomra)

and

i/ 1 a-+1 i/
~(+5) ’ oy Ty (ur) ) b
=r W (r /u P du
(00)" (=
. vt W
< plety) (\117(7’)) (/ u= P <I>7(u)du> = A,.
0

Let ap’ = 3, for 0 < ¢ < 1,

1 ¢ 1
/ u” ' (u)du = / u PO, (u)du + / u PO, (u)du
0 0 ¢

A
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Since for 0 < p < oo, a > 0, continuous functions with compact support are
dense in Li, then limy || f(t2) — f(z)|z», = 0, i.e. for every e > 0, there exists
0 < (. < 1 such that for (, <u < 1,

</o (mﬂf(“x) - f(x>|)pdas)’l7 <5

So
Gy < /; (Ily(u)</0a (:vo‘]f(ux) —f(x)|)pda:>;du
< é/: & (u)du < %/01 ®.,(u)du,
and
o [ ([ (S 000) g ) < ¢
Also

i sup /OCS (/0 (%xamm - f(x)])pd:c);du
< tmsup | ) o, [ (a150) - f(:r)l)pdw) "o
gliiris;ip/oce @V(u)((/oa (xo‘]f(uxﬂ)pdx); 4 (/0 (xo‘]f(x)opdx);)du

¢ 1
< ||f||L§a limsup/ q)'y(u) (?+1>du:0.
0

Y00 U P

Therefore,

lim sup ||
yooo - Woy()

< sy | ) ([ (xf,:((g)xalf(ws) - f<x>|)pda:)’l’du

+ sy /< ([ (Fgstarisun - @) ar) s

and so lim,_, ||m fox(l — f)ail(bw(y)f(y)dy - f(l')HL’;a 0,0) = 0. O

In the following Theorem 2.3 we will study the infinity behavior of G4 for
uniformly continuous functions.

/0 - 5yt ) Wy — @),

Theorem 2.3. For all z € (0,a),0 < a < oo and u € (0,1), assume that

1. there exists ®.(u), so that zfﬁl—((g) < P (u),
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2. lim, o @, (u) = 0.
Then for any uniformly continuous function f on (0,a),

Ly )
U (2) /0 (1= =)0y (9)f ()dy — f(z)| = 0.

lim sup
T 0<z<a

Proof. Let € > 0, Since lim,_o, @ (u) = 0, so there exists vy, such that for v > 7,

<I> (a—5> _ €
! a 28Upgsoq |f(t)| '

The function f is uniformly continuous on (0,a), it follows that there exists
0 < d < a, such that |f(u) — f(v)|] < € for u,v € (0,a), and |u —v| < §. For
0<x<9,

5 | 0 s o
< g | =Dt w1 - rwldy
For § < x < a,
i L =D w) 1w - rwldy
z—0
= v =YW - @y
© g L0 D) - el dy
< G @ O - 0, ~0)
- ‘I,f(x) /:(1 %)“‘%(y)dy
< e e
< (25w SO )%(a - 6) +e
Hence
hflsogp S 1(93) /0 (1- %)"“1¢7(y)f(y)dy — flz)| < 2,
and so,
tim sup | 0= 20, )y — )| =0
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